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CHAPTER

ONE

INTRODUCTION

The MOSEK Optimization Suite 8.1.0.27 is a powerful software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e conic quadratic (also known as second-order cone),
e convex quadratic,

e semidefinite,

e and general convex.

Integer constrained variables are supported for all problem classes except for semidefinite and general
convex problems. In order to obtain an overview of features in the MOSEK Optimization Suite consult
the product introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all relations
are linear. The tremendous success of both applications and theory of linear optimization can be ascribed
to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

Linear functions are trivially differentiable.

There exist very efficient algorithms and software for solving linear problems.

Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the ad-
vantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic
optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Az —-be K
where K = {y : y > 0}, i.e.,

Az — b=y,

y € K.

In conic optimization a wider class of convex sets K is allowed, for example in 3 dimensions I may
correspond to an ice cream cone. The conic optimizer in MOSEK supports three structurally different
types of cones K, which allows a surprisingly large number of nonlinear relations to be modelled (as
described in the MOSEK modeling cookbook), while preserving the nice algorithmic and theoretical
properties of linear optimization.
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1.1 Why the Command Line Tools?

The MOSEK capabilities can be accessed from the command line without the need to use any program-
ming language. The user can input optimization problems using files in a variety of formats, or via the
AMPL language shell.

The Command Line Tools provides access to:
e Linear Optimization (LO)
e Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)
e Convex Quadratic and Quadratically Constrained Optimization (QCQO)
e Semidefinite Optimization (SDO)
e General Convex Optimization problems (via AMPL).
as well as to additional utilities for:
e problem analysis,
e sensitivity analysis,

e infeasibility diagnostics.

2 Chapter 1. Introduction
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CONTACT INFORMATION

Phone +45 7174 9373

Website mosek.com

Email
sales@mosek.com Sales, pricing, and licensing
support@mosek.com Technical support, questions and bug reports
info@mosek.com Everything else.

Mailing Address
MOSEK ApS

Fruebjergvej 3

Symbion Science Park, Box 16

2100 Copenhagen O

Denmark

You can get in touch with MOSEK using popular social media as well:

Blogger http:/ /blog.mosek.com

Google Group | https://groups.google.com /forum /#!forum /mosek
Twitter https:/ /twitter.com/mosektw

Google+ https://plus.google.com/+Mosek /posts
Linkedin https://www.linkedin.com /company/mosek-aps

In particular Twitter is used for news, updates and release announcements.
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https://twitter.com/mosektw
https://plus.google.com/+Mosek/posts
https://www.linkedin.com/company/mosek-aps
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LICENSE AGREEMENT

Before using the MOSEK software, please read the license agreement available in the distribution
at <MSKHOME>/mosek/8/mosek-eula.pdf or on the MOSEK website https://mosek.com/products
license-agreement.

MOSEK uses some third-party open-source libraries. Their license details follows.
zlib

MOSEK includes the zlib library obtained from the zlib website. The license agreement for z/ib is shown
in Listing 3.1.

Listing 3.1: 2lib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from the
netlib website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

/****************************************************************
*
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The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

¥R K K K X X X X X X X X X ¥

***************************************************************/

6 Chapter 3. License Agreement
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INSTALLATION

In this section we discuss how to install and setup the MOSEK Command Line Tools.

Important: Before running this MOSEK interface please make sure that you:

e Installed MOSEK correctly. Some operating systems require extra steps. See the Installation
guide for instructions and common troubleshooting tips.

e Set up a license. See the Licensing guide for instructions.

Locating Files
The files in Command Line Tools are organized as reported in Table 4.1.

Table 4.1: Relevant files for the Command Line Tools.

Relative Path Description Label

<MSKHOME>/mosek/8/tools/platform/<PLATFORM>/bin Binaries <BINDIR>

<MSKHOME>/mosek/8/tools/platform/<PLATFORM>/bin/mosek | Mosek executable

<MSKHOME>/mosek/8/tools/examples/data Examples <EXDIR>
where

e <MSKHOME> is the folder in which the MOSEK package has been installed,

e <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win32x86, win64x86,
1inux64x86 or osx64x86.

Setting up paths

The executable file is ready for use. It may be convenient to add the directory <BINDIR> to the environ-
ment variable PATH, and then MIOSEK can simply be used by typing

mosek

in the command line.

4.1 Testing the installation

To test that Command Line Tools has been installed correctly go to the examples directory <EXDIR> and
run MOSEK on any of the input files, for example 1o1.mps:

mosek lol.mps
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Is should produce output similar to:

MOSEK Version 8.0.0.53 (Build date: 2017-1-12 22:21:45)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Open file 'lol.mps'
Reading started.

[....]

Optimizer started.
Interior-point optimizer started.

[....]

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.3333333280e+01 nrm: 5e+01 Viol.
Dual. obj: 8.3333333242e+01 nrm: 4e+00 Viol.

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.3333333333e+01 nrm: 5e+01 Viol.
Dual. obj: 8.3333333245e+01 nrm: 4e+00 Viol.

Open file 'lol.sol'
Start writing.
done writing. Time: 0.00

Open file 'lol.bas'
Start writing.

done writing. Time: 0.00

Return code - 0 [MSK_RES_OK]

con:
con:

con:
con:

1e-08
2e-10

Te-15
2e-10

var: 0e+00
var: 5e-09

var: 0e+00
var: 5e-09

Chapter 4.

Installation
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THE COMMAND LINE TOOL

5.1 Introduction

The MOSEK command line tool is used to solve optimization problems from the operating system
command line. It is invoked as follows

’mosek [options] [filename]

where both [options] and [filename] are optional arguments:

e [options] consists of command line arguments that modify the behavior of MOSEK. They are
listed in Sec. 5.5. In particular, options can be used to set optimizer parameters.

e [filename] is a file describing the optimization problem. The MOSEK command line accepts
files in any of the supported file formats or in the AMPL .nl format.

If no arguments are given, MOSEK will display a splash screen and exit.

user@host:~$ mosek/8/tools/platform/linux64x86/bin/mosek
MOSEK Version 8.0.0.32(BETA) (Build date: 2016-7-12 10:29:26)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com

Platform: Linux/64-X86

*x% No input file specified. No optimization is performed.

Return code - 0 [MSK_RES_OK]

5.2 Files

The MOSEK command line tool communicates with the user via files and prints some execution logs
and solution summary to the terminal.

Input files

Optimization problems are read from files. See Sec. 14 for details.

File format conversion

To convert between two file formats supported by MOSEK use the option -z together with -out to
specify the target file name. The target file type must support the problem type of the source file,
otherwise the conversion will be partial. For instance in case a MPS file must be converted in a more
readable OPF format, the following line can be used
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mosek -x -out lol.opf lol.mps

With the -z option the solver will not actually solve the problem.

Output files

Solutions are written to files:

e .bas - basic solution,

e .sol - interior point solution,

e .itg - integer solution (the only available solution for mixed-integer problems).

For linear problems both the basic and interior point solution may be present. Infeasibility certificates
are stored in the same files. See Sec. 14.8 for details.

5.3 Example

To solve a problem stored in file, say 1ol.mps, write:

’mosek lol.mps

The solver will

e read lol.mps from disk,

e solve the problem and display the solution log and

e store the relevant solution files if any solution exists; file content explained in Sec. 14.8.

Reading started.

Read summary

Type
Objective sense

Constraints
Cones
Time

Problem
Name
Objective sense
Type
Constraints
Cones
Scalar variables
Matrix variables
Integer variables

Scalar variables :
Matrix variables :

O O W O

MOSEK Version 8.0.0.34(BETA) (Build date: 2016-8-24 00:51:13)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86

Open file '/home/andrea/mosek/8/tools/examples/data/lol.mps'

Using 'obj' as objective vector

Read 13 number of A nonzeros in 0.00 seconds.
Using 'rhs' as rhs vector

Using 'bound' as bound vector

Reading terminated. Time: 0.00

: LO (linear optimization problem)
! max

: lol
! max
: LO (linear optimization problem)

O O O W

10
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Optimizer started.

Interior-point optimizer started.
Presolve started.

Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.

Freed constraints in eliminator : O
Eliminator terminated.

Eliminator - tries : 1 time : 0.00
Lin. dep. - tries 1 time : 0.00
Lin. dep. - number H¢
Presolve terminated. Time: 0.00
Optimizer - threads : 2
Optimizer - solved problem : the primal
Optimizer - Constraints : 3
Optimizer - Cones : 0
Optimizer - Scalar variables HG conic 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time 0.00
Factor - nonzeros before factor : 6 after factor 6
Factor - dense dim. : 0 flops : 1.06e+02
ITE PFEAS DFEAS GFEAS PRSTATUS  POBJ DOBJ MU TIME
0 8.0e+00 3.2e+00 3.5e+00 1.00e+00  1.000000000e+01  0.000000000e+00 1.0e+00 0.01
1 4.2e+00 2.5e+00 4.7e-01 0.00e+00  3.093970927e+01  2.766058702e+01  2.6e+00 0.01
2 4.2e-01 2.5e-01 4.6e-02 -1.82e-02 6.511676243e+01  6.308843559e+01  2.6e-01 0.01
3 3.6e-02 2.1e-02 3.9e-03 5.84e-01 8.096141239e+01  8.061962333e+01  2.2e-02 0.01
4 1.5e-05 9.1e-06 1.7e-06 9.43e-01  8.333280389e+01  8.333241803e+01  9.2e-06 0.01
5 1.5e-09 9.1le-10 1.7e-10 1.00e+00  8.333333328e+01  8.333333324e+01 9.2e-10 0.01
Basis identification started.
Primal basis identification phase started.
ITER TIME
0 0.00
Primal basis identification phase terminated. Time: 0.00
Dual basis identification phase started.
ITER TIME
0 0.00
Dual basis identification phase terminated. Time: 0.00
Basis identification terminated. Time: 0.00
Interior-point optimizer terminated. Time: 0.01.
Optimizer terminated. Time: 0.02
Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.3333333280e+01 nrm: 5e+01 Viol. con: 1e-08 var: 0e+00
Dual. obj: 8.3333333242e+01 nrm: 4e+00 Viol. con: 2e-10 var: 5e-09
Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.3333333333e+01 nrm: 5e+01 Viol. con: 7e-15 var: 0e+00
Dual. obj: 8.3333333245e+01 nrm: 4e+00 Viol. con: 2e-10 var: 5e-09
Optimizer summary
Optimizer - time: 0.02
Interior-point - iterations : 5 time: 0.01
Basis identification - time: 0.00
Primal - iterations : O time: 0.00
Dual - iterations : O time: 0.00
Clean primal - iterations : O time: 0.00

5.3. Example

11
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Clean dual - iterations : O time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : O time: 0.00
Dual simplex - iterations : O time: 0.00
Mixed integer - relaxations: 0 time: 0.00

Open file '/home/andrea/mosek/8/tools/examples/data/lol.sol’
Start writing.
done writing. Time: 0.00

Open file '/home/andrea/mosek/8/tools/examples/data/lol.bas’
Start writing.

done writing. Time: 0.00

Return code - 0 [MSK_RES_OK]

5.4 Solver Parameters

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the
optimizer. The typical settings which can be changed with solver parameters include:

e choice of the optimizer for linear problems,

e choice of primal/dual solver,

e turning presolve on/off,

e turning heuristics in the mixed-integer optimizer on/off,
e level of multi-threading,

o feasibility tolerances,

e solver termination criteria,

e behaviour of the license manager,

and more. All parameters have default settings which will be suitable for most typical users. Each
parameter is identified by a unique string name and it can accept either integers or symbolic names,
floating point values or symbolic strings. Please refer to Sec. 13.2 for the complete list of available solver
parameters.

5.4.1 Setting from command line

Setting solver parameters is possible using the command line option -d.If multiple parameters must be
specified, option -d must be repeated for each one. For example, the next command will switch off
presolve, set a feasibility tolerance and solve the problem from lol.opf:

mosek -d MSK_IPAR_PRESOLVE_USE MSK_OFF -d MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-8 lol.opf

5.4.2 Using the Parameter File

Solver parameters can also be set using a parameter file, for example:

BEGIN MOSEK

% This is a comment.

% The subsequent line tells MOSEK that an optimal

% basis should be computed by the interior-point optimizer.
MSK_IPAR_PRESOLVE_USE MSK_OFF

12 Chapter 5. The Command Line Tool
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MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-9
END MOSEK

The syntax of the parameter file must obey a few simple rules:
e The file must begin with BEGIN MOSEK and end with END MOSEK.
e Empty lines and lines starting from a % sign are ignored.
e FEach line contains a valid MOSEK parameter name followed by its value.

The parameter file can have any name. Assuming it has been called mosek.par, it can be used using the
-p option as follows:

mosek -p mosek.par afiro.mps

Command-line parameters override those from the parameter file in case of repetition. For instance

mosek -p mosek.par -d MSK_DPAR_INTPNT_TOL_PFEAS 1.0e-8 afiro.mps

will set MSK_DPAR_INTPNT_TOL_PFEAS to 108 using the value provided on the command line.

5.5 Command Line Arguments

The following list shows the available command-line arguments for MOSEK:

-anapro
Analyze the problem data.

-anasoli <name>
Analyze the initial solution name e.g. -anasoli bas.

-anasolo <name>
Analyze the final solution name e.g. -anasolo itg.

MOSEK is started in AMPL mode.

-basi <name>
Input basic solution file name.

-baso <name>
Output basic solution file name.

-d <name> <value>
Define the value value for the MOSEK parameter name.

-dbgmem <name>

Name of memory debug file.
-f

Complete license information is printed.
“h, -7

Help.

-inti <name>
Input integer solution file name.

-into <name>
Output integer solution file name.

-itri <name>
Input interior point solution file name.

5.5. Command Line Arguments 13
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-itro <name>
Output interior point solution file name.

-info <name>
Infeasible subproblem output file name.

-infrepo <name>
Feasibility reparation output file.

-1,-L <dir>
dir is the directory where the MOSEK license file mosek.1lic is located.

-max
The problem is maximized.

-min
The problem is minimized.

Ignore errors in subsequent parameter settings.

-out <name>
Write the task to a data file named name. See Sec. 14.

-p <name>, -pari <name>
Name of the input parameter file.

-paro <name>
Name of the output parameter file.

If the option is present, the program returns —1 if an error occurred, otherwise 0.

-removeitg
Removes all integer constraints after reading the problem.

-rout <name>
If the option is present, the program writes the return code to file name.

-q <name>
Name of an optional log file.

-sen <file>
Perform sensitivity analysis based on file.

-silent
As little information as possible is send to the terminal.

-toconic
Translate to conic form after reading.

-v
MOSEK version is printed and no optimization is performed.
-w
If this options is on, then MOSEK will wait for a license.
-X

Do not run the optimizer. Useful for converting between file formats.

List all possible solver parameters with default value, lower bound and upper bound (if applicable).

14 Chapter 5. The Command Line Tool
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THE MOSEK-BUNDLED AMPL SHELL

AMPL is a modeling language for specifying linear and nonlinear optimization models in a natural
way. AMPL also makes it easy to solve the problem and e.g. display the solution or part of it. We
will not discuss the specifics of the AMPL language here but instead refer the reader to [FGKO03/,
http://ampl.com/BOOK /download.html and the AMPL website http://www.ampl.com.

AMPL cannot solve optimization problems by itself but requires a link to an optimizer. The MOSEK
distribution includes:

e An AMPL link which makes it possible to use MOSEK as an optimizer within AMPL. The link
can be used from any AMPL shell.

e The full, official AMPL shell repackaged under the name mampl. This is sold as a separate product,
and it can be hooked to other optimizers as well.

Note:

e To use MOSEK from AMPL you need to set up the system path to the MOSEK command line
tool.

e It is possible to specify problems in AMPL that cannot be solved by MOSEK. The optimization
problem must be a smooth convex optimization problem as discussed in Sec. 7.

For the remainder of this section we refer to the MOSEK-bundled mampl as the AMPL interpreter of
choice. However, the tutorial applies also to any other standard AMPL shell available to the user.

6.1 Locating the AMPL shell

Assuming MSKHOME is the folder in which MOSEK has been installed, the AMPL shell is the executable
file

’ {MSKHOME}/mosek/8/tools/platform/{PLATFORM}/bin/mampl

for Linux and OSX users (PLATFORM must be among 1inux64x86, 0sx64x86), and under

’ {MSKHOME}\mosek\8\tools\platform\{PLATFORM}\bin\mampl

for Windows users (PLATFORM must be among win32x86, win64x86).

6.2 An example

In many instances, you can successfully apply MOSEK simply by specifying the model and data, setting
the solver option to MOSEK, and typing solve.

Consider a simple linear optimization problem formulated as an AMPL model in Listing 6.1.

15
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Listing 6.1: An example of an optimization problem in AMPL language.

set NUTR ordered;
set FOOD ordered;

param cost {FOOD} >= 0;
param f_min {FOOD} >= O, default O;
param f_max {j in FOOD} >= f_min[j], default Infinity;

param n_min {NUTR} >= O, default O;
param n_max {i in NUTR} >= n_min[i], default Infinity;

param amt {NUTR,FO0OD} >= O;

minimize Total_Cost: sum {j in FOOD} cost[j] * Buyl[jl;

minimize Nutr_Amt {i in NUTR}: sum {j in FOOD} amt[i,j] * Buyl[jl;

subject to Diet {i in NUTR}:
n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];

We can specify the input data using an input file again following the AMPL syntax, as in Listing 6.2.

Listing 6.2: An example of data for an optimization problem using AMPL language.

param: FOOD: cost f_min f_max :=
"Quarter Pounder w/ Cheese" .84

1
"McLean Deluxe w/ Cheese" 2.19
"Big Mac" 1.84
"Filet-0-Fish" 1.44
"McGrilled Chicken" 2.29
"Fries, small" T7
"Sausage McMuffin" 1.29
"1% Lowfat Milk" .60
"Orange Juice" .72 . .
param: NUTR: n_min n_max :=

Cal 2000 .

Carbo 350 375

Protein 55

VitA 100

VitC 100

Calc 100 .

Iron 100 .

param amt (tr):
Cal Carbo Protein VitA VitC Calc Iron :=

"Quarter Pounder w/ Cheese" 510 34 28 15 6 30 20
"McLean Deluxe w/ Cheese" 370 35 24 15 10 20 20
"Big Mac" 500 42 25 6 2 25 20
"Filet-0-Fish" 370 38 14 2 0 15 10
"McGrilled Chicken" 400 42 31 8 15 15 8
"Fries, small" 220 26 3 0 15 0 2
"Sausage McMuffin" 345 27 15 4 0 20 15
"1% Lowfat Milk" 110 12 9 10 4 30 0
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’ "Orange Juice" 80 20

2 120 2 2

Invoke the AMPL shell:

’mampl

and type in the commands:

ampl:
ampl:
ampl:
ampl:

model diet.mod;
data diet.dat;
option solver mosek;
solve;

The resulting output is:

MOSEK finished.

Problem status - PRIMAL_AND_DUAL_FEASIBLE
Solution status - OPTIMAL

Primal objective - 14.8557377

Dual objective - 14.8557377

Objective = Total_Cost

6.3 Retrieving solutions

6.3.1 Status codes

The AMPL parameter solve_result_num is used to indicate the outcome of the optimization process.
It is used as follows

ampl:

display solve_result_num

Please refer to table Table 6.1 for possible values of this parameter.

Table 6.1: Interpretation of solve_result_num.

Value | Message

0 the solution is optimal.

100 suboptimal primal solution.

101 superoptimal (dual feasible) solution.
150 the solution is near optimal.

200 primal infeasible problem.

300 dual infeasible problem.

400 too many iterations.
500 solution status is unknown.
501 ill-posed problem, solution status is unknown.

> 501 | Mapped MOSEK response code. See note below.

MOSEK response codes are mapped to AMPL return codes greater than 501. In order to get the
actual response code the base value 501 must be subtracted. For example: the AMPL return code 502
corresponds to MOSEK response code 1.

6.3.2 Which solution is returned

MOSEK can produce three types of solutions: basic, interior point and integer. The solution returned
to AMPL is determined according to the following rules:

6.3. Retrieving solutions
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e For problems containing integer variables only the integer solution is available and it is returned.
e For nonlinear problems only the interior point solution is available and it is returned.

e For linear problems, if both basic and interior point solution are available, then the basic solution
is returned. Otherwise the only available solution is returned.

6.4 Optimizer options

6.4.1 The MOSEK parameter database

The MOSEK optimizer can be controller using solver parameters, as described in Sec. 5.4. These
parameters can be modified within AMPL as shown in the example below:

ampl: model diet.mod;

ampl: data diet.dat;

ampl: option solver mosek;

ampl: option mosek_options

ampl? 'msk_ipar_optimizer = msk_optimizer_primal_simplex \
ampl? msk_ipar_sim_max_iterations = 100000';

ampl: solve;

In the example above a string called mosek_options is created which contains the parameter settings.
Each parameter setting has the format

parameter_name = value

where parameter_name is a valid MOSEK parameter name. See Sec. 13.2 for a description of all valid
MOSEK parameters.

An alternative way of specifying the parameters is

ampl: option mosek_options
ampl? 'msk_ipar_optimizer = msk_optimizer_primal_simplex'
ampl? 'msk_ipar_sim_max_iterations = 100000';

New parameters can also be appended to an existing option string as shown below.

ampl: option mosek_options $mosek_options
ampl? ' msk_ipar_sim_print_freq = O msk_ipar_sim_max_iterations = 1000';

The expression $mosek_options expands to the current value of the option. Line two in the example
appends an additional value msk_ipar_sim_max_iterations to the option string.

6.4.2 Options
MOSEK recognizes the following AMPL options.
outlev

Controls the amount of printed output. 0 means no printed output and a higher value means progressively
more output. An example of setting outlev is as follows:

ampl: option mosek_options 'outlev=2'j;
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wantsol

Controls the solution information generated when run in standalone mode (called without the argument
-AMPL). It should be constructed as the sum of

to write a .sol file

to print the primal variable values

to print the dual variable values

to suppress printing the solution message

O = D] =

We refer the reader to the AMPL manual [FGK03] for more details.

6.4.3 Passing variable names to MOSEK

AMPL assigns meaningful names to all the constraints and variables. Since MOSEK uses item names
in error and log messages, it may be useful to pass the AMPL names to MOSEK. This can be achieved
with the command:

ampl: option auxfiles rc;
ampl: solve;

6.5 Hot-start

Frequently, a sequence of optimization problems is solved where each problem differs only slightly from
the previous problem. In that case it may be advantageous to use the previous optimal solution to
warm-start the optimizer. Such a facility is available in MOSEK only when the simplex optimizer is
used.

The warm-start facility exploits the AMPL variable suffix sstatus to communicate the optimal basis
back to AMPL, and AMPL uses this facility to communicate an initial basis to MOSEK. The following
example demonstrates this feature.

ampl: model diet.mod;

ampl: data diet.dat;

ampl: option solver mosek;

ampl: option mosek_options

ampl? 'msk_ipar_optimizer = msk_optimizer_primal_simplex outlev=2';
ampl: solve;

ampl: display Buy.sstatus;

ampl: solve;

The resulting output is:

Accepted: msk_ipar_optimizer MSK_OPTIMIZER_PRIMAL_SIMPLEX

Accepted: outlev =2

Computer - Platform : Linux/64-X86

Computer - CPU type : Intel-P4

MOSEK - task name :

MOSEK - objective sense : min

MOSEK - problem type : LO (linear optimization problem)

MOSEK - constraints 7 variables : 9
MOSEK - integer variables : 0

Optimizer started.

Simplex optimizer started.
Presolve started.

Linear dependency checker started.
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Linear dependency checker terminated.

Stk.
tries
elim's
tries
number

Presolve - size (kb) : 0
Eliminator -
Eliminator -
Lin. dep. -
Lin. dep. -
Presolve terminated. Time: 0.00

Primal simplex optimizer started.

O = OO

time : 0.00

time : 0.00

Primal simplex optimizer setup started.
Primal simplex optimizer setup terminated.

Optimizer
Optimizer

- solved problem
- constraints
Optimizer - hotstart
ITER DEGITER (%)
o TOTTIME

0 0.00

— 0.01

3 0.00

. 0.01

Primal simplex optimizer terminated.

PFEAS

1.40e+03 NA

0.00e+00 NA

: the primal
H variables : 9
: no

DFEAS

POBJ DOBJ TIME,

1.2586666667e+01 NA 0.00,

1.4855737705e+01 NA 0.00y

Simplex optimizer terminated. Time: 0.00.

Optimizer terminated. Time: 0.01
Return code - 0 [MSK_RES_OK]
MOSEK finished.
Problem status
Solution status
Primal objective
Dual objective

: OPTIMAL
14.8557377
14.8557377

Objective = Total_Cost
Buy.sstatus [*] :=

'Quarter Pounder w/ Cheese'
'McLean Deluxe w/ Cheese'
'Big Mac' 1low
Filet-0-Fish 1low
'McGrilled Chicken'
'Fries, small' Dbas
'Sausage McMuffin'
'1% Lowfat Milk'
'Orange Juice'

bas
low

low

low
bas
low
Accepted: msk_ipar_optimizer
Accepted: outlev
Basic solution
Problem status : UNKNOWN
Solution status : UNKNOWN
Primal - objective: 1.4855737705e+01
Dual - objective: 0.0000000000e+00

Platform

CPU type

task name
objective sense
problem type

Computer -
Computer -
MOSEK -
MOSEK -
MOSEK -
MOSEK - constraints

MOSEK - integer variables
Optimizer started.

Simplex optimizer started.
Presolve started.
Presolve - Stk.
Eliminator - tries
Eliminator - elim's
Lin. dep. - tries

size (kb) : 0O

: 0 time

: 0 time

: PRIMAL_AND_DUAL_FEASIBLE

= MSK_OPTIMIZER_PRIMAL_SIMPLEX
=2

infeas.: 2.00e+03

0.00e+00

3.97e+03 max bound infeas.:
7.14e-01 max bound infeas.:

eq.

eq. infeas.:

: Linux/64-X86

Intel-P4

: min

: L0 (linear optimization problem)

7 variables : 9
: 0

: 0.00

o

: 0.00
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Lin. dep. - number : 0
Presolve terminated. Time: 0.00

Primal simplex optimizer started.

Primal simplex optimizer setup started.
Primal simplex optimizer setup terminated.

Optimizer - solved problem : the primal

Optimizer - constraints 7 variables 9

Optimizer - hotstart . yes

Optimizer - Num. basic e Basis rank 7

Optimizer - Valid bas. fac. : no

ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ TIME,
— TOTTIME

0 0.00 0.00e+00 NA 1.4855737705e+01 NA 0.00,
— 0.01

0 0.00 0.00e+00 NA 1.4855737705e+01 NA 0.00,
— 0.01

Primal simplex optimizer terminated.
Simplex optimizer terminated. Time: 0.00.
Optimizer terminated. Time: 0.01

Return code - 0 [MSK_RES_OK]

MOSEK finished.

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL

Primal objective : 14.8557377

Dual objective : 14.8557377

Objective = Total_Cost

Please note that the second solve takes fewer iterations since the previous optimal basis is reused.

6.6 Infeasibility report

For linear optimization problems without any integer constrained variables MOSEK can generate an
infeasibility report automatically. The report provides important information about the infeasibility.

The generation of the infeasibility report is turned on using the parameter setting

option auxfiles rc;
option mosek_options 'msk_ipar_infeas_report_auto=msk_on';

For further details about infeasibility report see Sec. 11.

6.7 Sensitivity analysis

MOSEK can calculate sensitivity information for the objective and constraints. To enable sensitivity
information set the option:

’sensitivity =1

Results are returned in variable/constraint suffixes as follows:
e .down Smallest value of objective coefficient /right hand side before the optimal basis changes.
e .up Largest value of objective coefficient /right hand side before the optimal basis changes.
e .current Current value of objective coefficient/right hand side.

For ranged constraints sensitivity information is returned only for the lower bound.

The example below returns sensitivity information on the diet model.
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ampl: model diet.mod;

ampl: data diet.dat;

ampl: option solver mosek;

ampl: option mosek_options 'sensitivity=1';

ampl: solve;

#display sensitivity information and current solution.
ampl: display _var.down,_var.current,_var.up,_var;
#display sensitivity information and optimal dual values.
ampl: display _con.down,_con.current,_con.up,_con;

The resulting output is:

Return code - 0 [MSK_RES_OK]
MOSEK finished.

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL

Primal objective : 14.8557377

Dual objective 1 14.8557377

suffix up 0UT;

suffix down OUT;
suffix current OUT;
Objective = Total_Cost

:  _var.down _var.current _var.up _var 1=
1 1.37385 1.84 1.86075 4.38525

2 1.8677 2.19 Infinity 0

3 1.82085 1.84 Infinity 0

4 1.35466 1.44 Infinity 0

5 1.57633 2.29 Infinity 0

6 0.094 0.77 0.794851 6.14754

7 1.22759 1.29 Infinity 0

8 0.57559 0.6 0.910769 3.42213

9 0.657279 0.72 Infinity 0

ampl: display _con.down,_con.current,_con.up,_con;

: _con.down _con.current  _con.up _con 1=
1 -Infinity 2000 3965.37 0

2 297.6 350 375 0.0277049

3 -Infinity 55 172.029 0

4 63.0531 100 195.388  0.0267541

5 -Infinity 100 132.213 0

6 -Infinity 100 234.221 O

7 17.6923 100 142.821  0.0248361

6.8 Using the command line version of the AMPL interface

AMPL can generate a data file containing the optimization problem and all relevant information which
can then be read and solved by the MOSEK command line tool.

When the problem has been loaded into AMPL, the commands

ampl: option auxfiles rc;
ampl: write bprob;

will make AMPL write the appropriate data files, i.e.
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prob.nl
prob.col
prob.row

Then the problem can be solved using the command line version of MOSEK as follows

mosek prob.nl outlev=10 -a

The option -a indicates that MOSEK is invoked in AMPL mode. When MOSEK is invoked in AMPL
mode the standard MOSEK command line options should appear after the -a option except for the
file name which should be the first argument. As the above example demonstrates MOSEK accepts
command line options following the AMPL convention. To see which command line arguments MOSEK
accepts in AMPL mode write:

mosek -= -a

For linear, quadratic and quadratically constrained problems a text file representation of the problem
can be obtained by performing one of the following conversions:

mosek prob.nl -a -x -out prob.mps
mosek prob.nl -a -x -out prob.opf
mosek prob.nl -a -x -out prob.lp
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CHAPTER
SEVEN

PROBLEM FORMULATION AND SOLUTIONS

In this chapter we will discuss the following issues:

e The formal, mathematical formulations of the problem types that MOSEK can solve and their
duals.

e The solution information produced by MOSEK.
e The infeasibility certificate produced by MOSEK if the problem is infeasible.

7.1 Linear Optimization

A linear optimization problem can be written as

minimize e+ ef
subject to ¢ < Az < uc, (7.1)
= < x <

where
e m is the number of constraints.
e 1 is the number of decision variables.
e z € R" is a vector of decision variables.
e ¢ € R” is the linear part of the objective function.
e A € R™*™ ig the constraint matrix.
e [ € R™ is the lower limit on the activity for the constraints.
e y° € R™ is the upper limit on the activity for the constraints.
e [ € R” is the lower limit on the activity for the variables.
e u” € R" is the upper limit on the activity for the variables.

A primal solution () is (primal) feasible if it satisfies all constraints in (7.1). If (7.1) has at least one
primal feasible solution, then (7.1) is said to be (primal) feasible.

In case (7.1) does not have a feasible solution, the problem is said to be (primal) infeasible
7.1.1 Duality for Linear Optimization

Corresponding to the primal problem (7.1), there is a dual problem

maximize  (19)Ts§ — (u)Ts¢ + (1%)Ts¥ — (u®)T's® + ¢/

AT P —sr =
. AV (7.2)
subject to —y+si—s;, = 0,
87,585,587, 8% > 0.
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If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at 0,
and we use the convention that the product of the bound value and the corresponding dual variable is
0. E.g.

lj=-0c0 = (sf)j=0and[j-(s7); =0.

This is equivalent to removing variable (s7); from the dual problem. A solution

(875 80 515 54)

to the dual problem is feasible if it satisfies all the constraints in (7.2). If (7.2) has at least one feasible
solution, then (7.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

A Primal-dual Feasible Solution

A solution
C C LT T
(xvyvsl75u75lasu)

is denoted a primal-dual feasible solution, if (x) is a solution to the primal problem (7.1) and

(y, 87,85, 87, s5) is a solution to the corresponding dual problem (7.2).

The Duality Gap

Let
(@, y% (s7), (s3)", (s7)", (s2)")
be a primal-dual feasible solution, and let
()" = Ax™.

For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

a*+cf = {(

)(
Tk

si)* = ()T (s5)" + (19)T(s7)" = (u) " (s7)" + e/ }
" [(sf (( D7 = 1)+ (s9)7 (uf = (29)7)] (7.3)
o ()3 = 19) + (s2)5 (uf — 27)]

JINT J

where the first relation can be obtained by transposing and multiplying the dual constraints (7.2) by
z* and (z°)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

An Optimal Solution

It is well-known that a linear optimization problem has an optimal solution if and only if there exist fea-
sible primal and dual solutions so that the duality gap is zero, or, equivalently, that the complementarity
conditions

Slc):(xf)*_lzc) = Oa Z_Ow--am 17
(s0)i(uf —(2§)") = 0, i=0,....m—1,
(s7);j(x; =15) = 0, j=0,...,n—1,
(sp)j(uj—=x) = 0, j=0,...,n—1,

are satisfied.

If (7.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and dual
solution are reported, including a status indicating the exact state of the solution.
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7.1.2 Infeasibility for Linear Optimization

Primal Infeasible Problems

If the problem (7.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (1¢)7s¢ — (u®)TsS + (1%)Ts? — (u®)Ts2
subject to
ATy 4 67 — 5T =0, (7.4)
—y + sj — 55 =0,
Slca 827 5?7 Sfb Z Oa

such that the objective value is strictly positive, i.e. a solution
(v, (s0)", (s0)7 (s7)% (s0)")
to (7.4) so that
)T ()" = ()T (s5)* + (A1) (s7)* — (u™) T (s5)" > 0.

Such a solution implies that (7.4) is unbounded, and that its dual is infeasible. As the constraints to the
dual of (7.4) are identical to the constraints of problem (7.1), we thus have that problem (7.1) is also
infeasible.

Dual Infeasible Problems

If the problem (7.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

T

minimize c'x
subject to ¢ < Az < 4f, (7.5)
T < x < a®,
where
o 0 if [§ > —o0 . 0 ifuf <o
Cc __ 1 ) "(}, — 1 )
L _{ —oo otherwise, } and i : { oo otherwise, }
and
- 0 if T > —oc0 0 ifu? <o
%= JoT d 4% := g -
J { —o0 otherwise, } anc. { oo otherwise, }
such that

Tz < 0.

Such a solution implies that (7.5) is unbounded, and that its dual is infeasible. As the constraints to
the dual of (7.5) are identical to the constraints of problem (7.2), we thus have that problem (7.2) is also
infeasible.

Primal and Dual Infeasible Case

In case that both the primal problem (7.1) and the dual problem (7.2) are infeasible, MOSEK will
report only one of the two possible certificates — which one is not defined (MOSEK returns the first
certificate found).
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Minimalization vs. Maximalization

When the objective sense of problem (7.1) is maximization, i.e.

maximize e+ ef
subject to ¢ < Ax < uc,
r < T < u*

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (7.2). The dual problem thus takes the form

minimize  (1¢)7s¢ — (u®)TsS + (1%)Ts¥ — (u®)Ts% + ¢f
subject to
ATy + s7 — 5% =c,
-y + 57 — 55, =0,
87,585,587, 8, < 0.

This means that the duality gap, defined in (7.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

ATy+sf — 58 =0,
—y+s;i—s, =0, (76)
51C7 Sfm Slxa Si S 07
such that the objective value is strictly negative

)7 (sP)" = (u) " (s5)" + (1) (s7)" — (u™) " (s3)" < 0.

Similarly, the certificate of dual infeasibility is an x satisfying the requirements of (7.5) such that ¢’z > 0.

7.2 Conic Quadratic Optimization

Conic quadratic optimization is an extension of linear optimization (see Sec. 7.1) allowing conic domains
to be specified for subsets of the problem variables. A conic quadratic optimization problem can be
written as

minimize Iy +ef
subject to ¢ < Ax < S,
Fo< - < (7.7)
x ek,
where set K is a Cartesian product of convex cones, namely K = K; x --- x K,. Having the domain
restriction, z € K, is thus equivalent to
xt e K C Rn”,
where z = (2!,...,2P) is a partition of the problem variables. Please note that the n-dimensional

Euclidean space R™ is a cone itself, so simple linear variables are still allowed.
MOSEK supports only a limited number of cones, specifically:
e The R"™ set.

e The quadratic cone:

n
n o __ n . 2
Q"= zeR":21 > E 3

i=2

e The rotated quadratic cone:
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n
or = xGR":2x1x222x?, 1 >0, x22>0
—

Although these cones may seem to provide only limited expressive power they can be used to model a
wide range of problems as demonstrated in [MOSEKApS12].

7.2.1 Duality for Conic Quadratic Optimization

The dual problem corresponding to the conic quadratic optimization problem (7.7) is given by

maximize  (19)Ts¢ — (u®)TsS + (1%)Ts¥ — (u®)TsZ + ¢f
subject to
ATy 4+ s7 — s +s2 =c

u
—y + sf — 55 =0,
C C T xr
81,81“5178“ 205
x *
sy e Kr,

where the dual cone K* is a Cartesian product of the cones
Kr=K] x- x K,

where each K} is the dual cone of ;. For the cone types MOSEK can handle, the relation between the
primal and dual cone is given as follows:

e The R" set:
Ki=R" & K/ ={seR": s=0}.

e The quadratic cone:

Ki=Q" & Ki=Q"=qsecR":5 >

e The rotated quadratic cone:

Nt
Ki=9r & Ki=9Q%= SERnt:QSLSQZZS?, s1>0, s3>0
=3

Please note that the dual problem of the dual problem is identical to the original primal problem.

7.2.2 Infeasibility for Conic Quadratic Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. This works
exactly as for linear problems (see Sec. 7.1.2).

Primal Infeasible Problems

If the problem (7.7) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual
solution reported is the certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize  (1¢)Ts§ — (u®)TsS + (1%)Ts¥ — (u®)Ts

subject to
ATy + s7 — s% + s = 0,
—y + s — 55, = 0,
7,86, 87, st > 0,
sy € K,

such that the objective value is strictly positive.
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Dual infeasible problems

If the problem (7.8) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal
solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

T

minimize c'x
subject to ¢ < Ax < ac,
r < T < 4%,
z €K,
where
- 0 if [§ > —o0 e 0 ifuf<oo
5= oo T and 45 = v
—oo otherwise, oo otherwise,
and

jr 0 if 7 > —o0, and 4% — 0 ifuj <oo,
771 —oo otherwise, J 7] oo otherwise,
such that the objective value is strictly negative.
7.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic quadratic optimization (see Sec. 7.2) allowing posi-
tive semidefinite matrix variables to be used in addition to the usual scalar variables. A semidefinite
optimization problem can be written as

minimize Z;L;()l cjz; + Z?;é (C;, X))+
subject to  If < Z;Z;Ol a;;jxj + Z?;Ol (Ai;, X)) < uf, i=0,....m—1 (7.9)
S Z; < wuj, j=0,...,n-1
e, X; €S8, j=0,...,p—1

where the problem has p symmetric positive semidefinite variables Yj € S:_j of dimension r; with
symmetric coefficient matrices C; € 8”7 and A4; ; € S"7. We use standard notation for the matrix inner
product, i.e., for U,V € R™*" we have

m—1n—1

i=0 j=0

With semidefinite optimization we can model a wide range of problems as demonstrated in
[MOSEKApS12].

7.3.1 Duality for Semidefinite Optimization

The dual problem corresponding to the semidefinite optimization problem (7.9) is given by

maximize  (19)Ts¢ — (u®)TsS + (1%)Ts¥ — (u®)TsZ + ¢f
subject to
c— ATy + 5% — sF = %,
Cj—ZfLOyiAij:Sj, jIO,...,p—l (710)
sf— 5o =y,
sy, 85,587,808 >0,

st ek, S;e8Y7, j=0,...,p—1
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where A € R™*™, A;; = a;;, which is similar to the dual problem for conic quadratic optimization (see
Sec. 7.2.1), except for the addition of dual constraints

<Cj — ZyiAij> S S:_J
=0

Note that the dual of the dual problem is identical to the original primal problem.

7.3.2 Infeasibility for Semidefinite Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works
exactly as for linear problems (see Sec. 7.1.2).

Primal Infeasible Problems

If the problem (7.9) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual
solution reported is a certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize (ZC)TSZC — (u)Ts¢ + (l”)Tsf — (u)TsT
subject to
ATy+sf—sﬁ+st:07
Z?;oli‘/iAij'f‘Sj:O, j=0,...,p—1
—y+si—s;,=0,
5,85, 7, 5% > 0,
st e Kx, SjeS:_j, j=0,...,p—1

such that the objective value is strictly positive.

Dual Infeasible Problems

If the problem (7.10) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal
solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize >0 ¢y + 2020 (Ch, Xy)
subject to 1§ < T ajx;+ Z?;& (Aij, X;) < 4, i=0,...,m—1
< x < 4",
rek, X;e8Y, j=0,...,p—1
where
- 0 if [§ >;—o0 0 ifuf<;00
(.Z — 2 ) ) "? — 2 ) )
L { —oo otherwise, and - a;: { oo otherwise,
and
- 0 if 1% >;—o0 0 ifu? <500
¥ = J ’, ’ d o% = J ’ ’
J { —oo otherwise, anc. 4 { oo otherwise,

such that the objective value is strictly negative.
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7.4 Quadratic and Quadratically Constrained Optimization

A convex quadratic and quadratically constrained optimization problem has the form

minimize %xTQ‘)x +cTx+cf
subject to I < %.TTQkI + Z;:Ol agjr; < uf, k=0,...,m—1, (7.11)
l]m’ S Zj S ’LL;;, ] 07 . y TV 17

where Q° and all Q* are symmetric matrices. Moreover, for convexity, Q° must be a positive semidefinite
matrix and Q¥ must satisfy

—oo < Iy = QF is negative semidefinite,
ug < oo = Q" is positive semidefinite,
—co<lf <uf <oo = QF=0.

The convexity requirement is very important and MOSEK checks whether it is fulfilled.

7.4.1 A Recommendation

Any convex quadratic optimization problem can be reformulated as a conic quadratic optimization prob-
lem, see [MOSEKApS12] and in particular [And13/. In fact MOSEK does such conversion internally
as a part of the solution process for the following reasons:

e the conic optimizer is numerically more robust than the one for quadratic problems.

e the conic optimizer is usually faster because quadratic cones are simpler than quadratic functions,
even though the conic reformulation usually has more constraints and variables than the original
quadratic formulation.

e it is easy to dualize the conic formulation if deemed worthwhile potentially leading to (huge)
computational savings.

However, instead of relying on the automatic reformulation we recommend to formulate the problem as
a conic problem from scratch because:

e it saves the computational overhead of the reformulation including the convexity check. A conic
problem is convex by construction and hence no convexity check is needed for conic problems.

e usually the modeller can do a better reformulation than the automatic method because the modeller
can exploit the knowledge of the problem at hand.

To summarize we recommend to formulate quadratic problems and in particular quadratically constrained
problems directly in conic form.

7.4.2 Duality for Quadratic and Quadratically Constrained Optimization

The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(7.11) is given by

maximize  (19)7sf — (u®)TsS + (1%)7s7 — (u®)Ts2 + 27 {ZZ:(} yLQF — Q"} x+cf

subject to ATy 4 s7 — s% + {ZZ:OI yrQ* — QO} r=c (7.12)
—y+s7— s, =0,
s7,85,87, 85 > 0.

The dual problem is related to the dual problem for linear optimization (see Sec. 7.1.1), but depends on
the variable x which in general can not be eliminated. In the solutions reported by MOSEK, the value
of x is the same for the primal problem (7.11) and the dual problem (7.12).
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7.4.3 Infeasibility for Quadratic and Quadratically Constrained Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. This works
exactly as for linear problems (see Sec. 7.1.2).

Primal Infeasible Problems

If the problem (7.11) with all Q* = 0 is infeasible, MOSEK will report a certificate of primal infeasibility.
As the constraints are the same as for a linear problem, the certificate of infeasibility is the same as for
linear optimization (see Sec. 7.1.2).

Dual Infeasible Problems

If the problem (7.12) with all Q¥ = 0 is dual infeasible, MOSEK will report a certificate of dual
infeasibility. The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize 'z
subject to ¢ < Ax < 4f,
0 < Q2 < 0,
T < z < 4%
where
- 0 if [§ > —c0 0 ifuf<oo
- i 7 ac = i ’
li { —oo otherwise, } and i : { oo otherwise, }
and

- 0 if I > -0 0 ifu? <oo

T _ J ’ 0% = J ’

L { —oo otherwise, } and - : { oo otherwise, }
such that the objective value is strictly negative.

7.5 General Convex Optimization

The general nonlinear optimizer (which may be available for all or some types of nonlinear problems
depending on the interface), solves smooth (twice differentiable) convex nonlinear optimization problems
of the form

minimize f@)+ Tz +cf
subject to I¢ < g(x) + Ax < uS,
< T < u®,

where
e m is the number of constraints.
e 7 is the number of decision variables.
e r € R™ is a vector of decision variables.
e ¢ € R” is the linear part objective function.

o A ¢ R™X"™ is the constraint matrix.

[¢ € R™ is the lower limit on the activity for the constraints.

u® € R™ is the upper limit on the activity for the constraints.
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e [ € R" is the lower limit on the activity for the variables.
e y” € R" is the upper limit on the activity for the variables.
e f:R™ — R is a nonlinear function.

e g:R"™ — R™ is a nonlinear vector function.

This means that the i-th constraint has the form

The linear term Az is not included in g(z) since it can be handled much more efficiently as a separate
entity when optimizing.

The nonlinear functions f and g must be smooth in all © € [I7;u®]. Moreover, f(z) must be a convex
function and g;(z) must satisfy

-0 <Il§f = g(x)is concave,
uf < oo = gi(x)is convex,

—co<lf<uf <oo = gi(x)=0.

[

7.5.1 Duality for General convex Optimization

Similarly to the linear case, MOSEK reports dual information in the general nonlinear case. Indeed in
this case the Lagrange function is defined by

L(z,s5,85,87,82) = f(z)+cTa+cf
—(s))" (g(x) + Az —1°) = (s5)" (u® — g(z) — Ax)
—(s7)" (= 17) = (s7)" (u* — ),

and the dual problem is given by

maximize L(z, S, 85,87, su)
subject to  V,L(,s{, s, st,s5)T = 0,
C (& x xr
S5 Su 51+ 5u 2 0,

which is equivalent to

maximize  (19)Ts¢ — (u®)TsS + (1%)Ts¥ — (u®)TsZ + ¢f
+f(@) = g(x)'y = (Vf(2)" = Vg(2)Ty)"a
subject to ATy + 57 — s — (Vf(2)T = Vg(z)Ty) = ¢
—y + sj — s, = 0,
87,585,878, > 0.

In this context we use the following definition for scalar functions

and accordingly for vector functions

V91 (.’E)

Vgm (x )
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CHAPTER
EIGHT

THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

The most essential part of MOSEK are the optimizers. This chapter describes the optimizers for the
class of continuous problems without integer variables, that is:

e linear problems,
e conic problems (quadratic and semidefinite),
e general convex problems.

MOSEK offers an interior-point optimizer for each class of problems and also a simplex optimizer for
linear problems. The structure of a successful optimization process is roughly:

e Presolve
1. Elimination: Reduce the size of the problem.
2. Dualizer: Choose whether to solve the primal or the dual form of the problem.
3. Scaling: Scale the problem for better numerical stability.
e Optimization
1. Optimize: Solve the problem using selected method.
2. Terminate: Stop the optimization when specific termination criteria have been met.
3. Report: Return the solution or an infeasibility certificate.

The preprocessing stage is transparent to the user, but useful to know about for tuning purposes. The
purpose of the preprocessing steps is to make the actual optimization more efficient and robust. We
discuss the details of the above steps in the following sections.

8.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

1. remove redundant constraints,

2. eliminate fixed variables,

3. remove linear dependencies,

4. substitute out (implied) free variables, and

5. reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [AA95] and [AGMX96].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes
too much time or memory compared to the reduction in problem size gained it may be disabled. This
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is done by setting the parameter ¥SK_IPAR_PRESOLVE_USE to MSK_PRESOLVE_MODE_OFF. The two most
time-consuming steps of the presolve are

e the eliminator, and
e the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the original problem is not. If it is suspected that presolved problem is much
harder to solve than the original, we suggest to first turn the eliminator off by setting the parameter
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES to 0. If that does not help, then trying to turn entire
presolve off may help.

Since all computations are done in finite precision, the presolve employs some tolerances when con-
cluding a variable is fixed or a constraint is redundant. If it happens that MOSEK incorrectly con-
cludes a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters
MSK_DPAR_PRESOLVE_TOL_X and MSK_DPAR_PRESOLVE_TOL_S. However, if reducing the parameters ac-
tually helps then this should be taken as an indication that the problem is badly formulated.

Eliminator
The purpose of the eliminator is to eliminate free and implied free variables from the problem using

substitution. For instance, given the constraints

Y
Y,z

vl

Zj Ly
0,

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the elim-
inator consumes too much time or memory compared to the reduction in problem size gained it may be
disabled. This can be done by setting the parameter ¥SK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
to 0. In rare cases the eliminator may cause that the problem becomes much hard to solve.

Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equalities.
For instance, the three linear equalities

T1+zo4+23 = 1,
z1 4+ 0.5z = 0.5,
0.5x9 +x3 = 0.5.

contain exactly one linear dependency. This implies that one of the constraints can be dropped with-
out changing the set of feasible solutions. Removing linear dependencies is in general a good idea
since it reduces the size of the problem. Moreover, the linear dependencies are likely to introduce
numerical problems in the optimization phase. It is best practice to build models without linear de-
pendencies, but that is not always easy for the user to control. If the linear dependencies are removed
at the modelling stage, the linear dependency check can safely be disabled by setting the parameter
MSK_IPAR_PRESOLVE_LINDEP_USE to MSK_OFF.

Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is more efficient to solve the primal or dual
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problem. The form (primal or dual) is displayed in the MOSEK log and available as an information
item from the solver. Should the internal heuristics not choose the most efficient form of the problem it
may be worthwhile to set the dualizer manually by setting the parameters:

e MSK_IPAR_INTPNT_SOLVE_FORM: In case of the interior-point optimizer.
e MSK_IPAR_SIM_SOLVE_FORM: In case of the simplex optimizer.

Note that currently only linear and conic quadratic problems may be automatically dualized.

Scaling

Problems containing data with large and/or small coefficients, say 1.0e + 9 or 1.0e — 7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate data. Since computers work in finite precision, extreme coefficients
should be avoided. In general, data around the same order of magnitude is preferred, and we will refer to
a problem, satisfying this loose property, as being well-scaled. If the problem is not well scaled, MOSEK
will try to scale (multiply) constraints and variables by suitable constants. MOSEK solves the scaled
problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution of this issue is to reformulate the problem, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point
and simplex optimizers can be controlled with the parameters MSK_IPAR_INTPNT_SCALING and
MSK_IPAR_SIM_SCALING respectively.

8.2 Using Multiple Threads in an Optimizer

Multithreading in interior-point optimizers

The interior-point optimizers in MOSEK have been parallelized. This means that if you solve linear,
quadratic, conic, or general convex optimization problem using the interior-point optimizer, you can
take advantage of multiple CPU’s. By default MOSEK will automatically select the number of threads
to be employed when solving the problem. However, the maximum number of threads employed can
be changed by setting the parameter ¥SK_IPAR_NUM_THREADS. This should never exceed the number of
cores on the computer.

The speed-up obtained when using multiple threads is highly problem and hardware dependent, and con-
sequently, it is advisable to compare single threaded and multi threaded performance for the given prob-
lem type to determine the optimal settings. For small problems, using multiple threads is not be worth-
while and may even be counter productive because of the additional coordination overhead. Therefore, it
may be advantageous to disable multithreading using the parameter MSK_IPAR_INTPNT_MULTI_THREAD.

The interior-point optimizer parallelizes big tasks such linear algebra computations.

Thread Safety

The MOSEK API is thread-safe provided that a task is only modified or accessed from one thread at
any given time. Also accessing two or more separate tasks from threads at the same time is safe. Sharing
an environment between threads is safe.
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Determinism

The optimizers are run-to-run deterministic which means if a problem is solved twice on the same
computer using the same parameter setting and exactly the same input then exactly the same results is
obtained. One restriction is that no time limits must be imposed because the time taken to perform an
operation on a computer is dependent on many factors such as the current workload.

8.3 Linear Optimization

8.3.1 Optimizer Selection

Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternative is the simplex method (primal or dual). The optimizer can be selected using
the parameter ¥SK_IPAR_OPTIMIZER.

The Interior-point or the Simplex Optimizer?

Given a linear optimization problem, which optimizer is the best: the simplex or the interior-point
optimizer? It is impossible to provide a general answer to this question. However, the interior-point
optimizer behaves more predictably: it tends to use between 20 and 100 iterations, almost independently
of problem size, but cannot perform warm-start. On the other hand the simplex method can take
advantage of an initial solution, but is less predictable from cold-start. The interior-point optimizer is
used by default.

The Primal or the Dual Simplex Variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer
is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and
computational improvements, which, in our experience, make it faster on average than the primal version.
Still, it depends much on the problem structure and size. Setting the ¥SK_IPAR_OPTIMIZER parameter to
MSK_OPTIMIZER_FREE_SIMPLEX instructs MOSEK to choose one of the simplex variants automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, it is best to try
all the options.

8.3.2 The Interior-point Optimizer

The purpose of this section is to provide information about the algorithm employed in the MOSEK
interior-point optimizer for linear problems and about its termination criteria.

The homogeneous primal-dual problem

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
of standard form

minimize T
subject to Az = b, (8.1)
xz > 0.

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then converts it back to the input form when reporting the solution.
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Since it is not known beforehand whether problem (8.1) has an optimal solution, is primal infeasible or
is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason why
MOSEK solves the so-called homogeneous model

Axr —br = 0,
ATy+s—cr = 0,

—cTe4+bTy—x = 0, (8.2)
r,s, 7,k > 0

)

where y and s correspond to the dual variables in (8.1), and 7 and & are two additional scalar variables.
Note that the homogeneous model (8.2) always has solution since

(z,y,s,7,k) = (0,0,0,0,0)
is a solution, although not a very interesting one. Any solution
(&*, 4", 8%, 7, K*)
to the homogeneous model (8.2) satisfies

zhs

; ;zoandT*/{*zo.

Moreover, there is always a solution that has the property 7* + x* > 0.

First, assume that 7 > 0 . It follows that

Az
-
.
ATL 4 =
. :
_CT% + bT%
A S

* %

OO O o

IVl

*
y* os*
T T%

This shows that f— is a primal optimal solution and ( ) is a dual optimal solution; this is reported

as the optimal interior-point solution since

Jf* y* S*
(x,y,s): F5F7F

is a primal-dual optimal solution (see Sec. 7.1 for the mathematical background on duality and optimal-
ity).
On other hand, if k* > 0 then
Ax*
ATy* + S*
_ch* + bTy*

|
ox o0

Vvl

T, 8%, T K
This implies that at least one of
cl'z* <0 (8.3)
or
bTy* >0 (8.4)

is satisfied. If (8.3) is satisfied then z* is a certificate of dual infeasibility, whereas if (8.4) is satisfied
then y* is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required
for a solution to the original problem is obtained. A solution to the homogeneous model can be computed
using a primal-dual interior-point algorithm [And09/.
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Interior-point Termination Criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal
solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion
has to be employed.

In the k-th iteration of the interior-point algorithm a trial solution
(", 9", 8", 7" KY)
to homogeneous model is generated, where
¥ sk kR > 0.
Optimal case

Whenever the trial solution satisfies the criterion

|aze —o| < e@+iblL),
ATY 458 ¢ < (it ely), and (8.5)
min (St 152~ ) < egma (1, 0D ),
the interior-point optimizer is terminated and
(2", 9", s*)
Tk

is reported as the primal-dual optimal solution. The interpretation of (8.5) is that the optimizer is
terminated if

° f—f is approximately primal feasible,

° {f—:, f_—i} is approximately dual feasible, and

e the duality gap is almost zero.

Dual infeasibility certificate

On the other hand, if the trial solution satisfies

_ T k el k
G (1 ) 14 e

then the problem is declared dual infeasible and z* is reported as a certificate of dual infeasibility. The
motivation for this stopping criterion is as follows: First assume that HAJ:I“HOO =0 ; then 2 is an exact
certificate of dual infeasibility. Next assume that this is not the case, i.e.

|42 >0

and define
_max (1) .
“TAZF] Tell

It is easy to verify that

max (1, [[b]] )
lelloo

which shows Z is an approximate certificate of dual infeasibility, where ¢; controls the quality of the
approximation. A smaller value means a better approximation.

[AZ]| o, = € Tr> 1,

and —c'T >
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Primal infeasibility certificate
Finally, if
'bT k ||b||oo AT k k
eyt > —— e [|ATy 4 57
o)
then y* is reported as a certificate of primal infeasibility.
Adjusting optimality criteria and near optimality
It is possible to adjust the tolerances €,, €4, €4 and ¢; using parameters; see table for details.

Table 8.1: Parameters employed in termination criterion

ToleranceParameter | name

Ep MSK_DPAR_INTPNT_TOL_PFEAS
€4 MSK_DPAR_INTPNT_TOL_DFEAS
Eg MSK_DPAR_INTPNT_TOL_REL_GAP
E; MSK_DPAR_INTPNT_TOL_INFEAS

The default values of the termination tolerances are chosen such that for a majority of problems appearing
in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances usually
is not worthwhile. However, an inspection of (8.5) reveals that the quality of the solution depends on
[1b]| . and ||c||,; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal and
dual feasibility at the same rate [And09/. This means that if the optimizer is stopped prematurely then
it is very unlikely that either the primal or dual solution is feasible. Another consequence is that in most
cases all the tolerances, €,, €4, €4 and ¢;, have to be relaxed together to achieve an effect.

In some cases the interior-point method terminates having found a solution not too far from meeting the
optimality condition (8.5). A solution is defined as near optimal if scaling the termination tolerances
€p, €d; €4 and €4 by the same factor €, € [1.0,+00] makes the condition (8.5) satisfied. A near optimal
solution is therefore of lower quality but still potentially valuable. If for instance the solver stalls, i.e.
it can make no more significant progress towards the optimal solution, a near optimal solution could be
available and be good enough for the user. Near infeasibility certificates are defined similarly. The value
of €, can be adjusted with the parameter ¥SK_DPAR_INTPNT_CO_TOL_NEAR_REL.

The basis identification discussed in Sec. 8.3.2 requires an optimal solution to work well; hence basis
identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

Basis Identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique
primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing
step that computes an optimal basic solution starting from the optimal interior-point solution. More
information about the basis identification procedure may be found in /AY96/. In the following we provide
an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:
e a basic solution is often more accurate than an interior-point solution,
e a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,

e a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is partic-
ularly appealing when solving continuous relaxations of mixed integer problems, as well as in all
applications in which sparser solutions are preferred.
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To illustrate how the basis identification routine works, we use the following trivial example:

minimize T4y
subject to x4+y = 1,
z,y > 0.

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions,
namely

(1,

0= (1,0,
5 = (0,1).

) )

The interior point algorithm will actually converge to the center of the optimal set, i.e. to (z*,y*) =
(1/2,1/2) (to see this in MOSEK deactivate Presolve).

In practice, when the algorithm gets close to the optimal solution, it is possible to construct in polynomial
time an initial basis for the simplex algorithm from the current interior point solution. This basis is used
to warm-start the simplex algorithm that will provide the optimal basic solution. In most cases the
constructed basis is optimal, or very few iterations are required by the simplex algorithm to make it
optimal and hence the final clean-up phase be short. However, for some cases of ill-conditioned problems
the additional simplex clean up phase may take of lot a time.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the basis
identification procedure can be turned off. The parameters

o MSK_IPAR_INTPNT_BASIS,

e MSK_IPAR_BI_IGNORE_MAX_ITER, and

o MSK_IPAR_BI_IGNORE_NUM_ERROR
control when basis identification is performed.

The type of simplex algorithm to be used (primal/dual) can be tuned with the parame-
ter MSK_IPAR_BI_CLEAN_OPTIMIZER, and the maximum number of iterations can be set with
MSK_IPAR_BI_MAX_ITERATIONS.

Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads 1

Optimizer - solved problem : the dual

Optimizer - Constraints 2

Optimizer - Cones : 0

Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0

Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3

Factor - dense dim. : 0 flops : 7.00e+001
ITE PFEAS DFEAS GFEAS PRSTATUS  POBJ DOBJ MU TIME
0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.0e+000 0.00
1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.5e+000 0.00
2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-001 0.00
3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-002 0.01
4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-004 0.01
5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-008 0.01
6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-012 0.01

The first line displays the number of threads used by the optimizer and the second line tells that the
optimizer chose to solve the dual problem rather than the primal problem. The next line displays the
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problem dimensions as seen by the optimizer, and the Factor. .. lines show various statistics. This is
followed by the iteration log.

Using the same notation as in Sec. 8.3.2 the columns of the iteration log have the following meaning:
e ITE: Iteration index k.

e PFEAS: HAQEk — kaHOO . The numbers in this column should converge monotonically towards zero
but may stall at low level due to rounding errors.

e DFEAS: ||ATyk + 8% —crk ||Oo . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e GFEAS: | —cTz* +bTy* — k¥| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to —1 if that is not the case.

e POBJ: cT'z¥ /7%, An estimate for the primal objective value.

e DOBJ: bT'y* /7%, An estimate for the dual objective value.

o MU. (:Ek)TSkJerK/k

T . The numbers in this column should always converge to zero.

TIME: Time spent since the optimization started.

8.3.3 The Simplex Optimizer

An alternative to the interior-point optimizer is the simplex optimizer. The simplex optimizer uses a
different method that allows exploiting an initial guess for the optimal solution to reduce the solution
time. Depending on the problem it may be faster or slower to use an initial guess; see Sec. 8.3.1 for a
discussion. MOSEK provides both a primal and a dual variant of the simplex optimizer.

Simplex Termination Criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate.
A basic solution is optimal when it is primal and dual feasible; see Sec. 7.1 for a definition of the primal
and dual problem. Due to the fact that computations are performed in finite precision MOSEK allows
violations of primal and dual feasibility within certain tolerances. The user can control the allowed
primal and dual tolerances with the parameters #SK_DPAR_BASIS_TOL_X and MSK_DPAR_BASIS_TOL_S.

Setting the parameter MSK_IPAR_OPTIMIZER to MSK_OPTIMIZER_FREE_SIMPLEX instructs MOSEK to
select automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to
choose the best optimizer for the given problem and the available solution. The same parameter can also
be used to force one of the variants.

Starting From an Existing Solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a warm-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will warm-start automatically.

By default MOSEK uses presolve when performing a warm-start. If the optimizer only needs very few
iterations to find the optimal solution it may be better to turn off the presolve.
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Numerical Difficulties in the Simplex Optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK treats a “numerically unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are a way to escape long sequences where the
optimizer tries to recover from an unstable situation.

Examples of set-backs are: repeated singularities when factorizing the basis matrix, repeated loss of
feasibility, degeneracy problems (no progress in objective) and other events indicating numerical difficul-
ties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in such a
situation try to reformulate it into a better scaled problem. Then, if a lot of set-backs still occur, trying
one or more of the following suggestions may be worthwhile:

e Raise tolerances for allowed primal or dual feasibility: increase the value of
— MSK_DPAR_BASIS_TOL_X, and
— MSK_DPAR_BASIS_TOL_S.
e Raise or lower pivot tolerance: Change the ¥SK_DPAR_SIMPLEX_ABS_TOL_PIV parameter.
e Switch optimizer: Try another optimizer.
e Switch off crash: Set both MSK_IPAR_SIM_PRIMAL_CRASH and MSK_IPAR_SIM_DUAL_CRASH to Q.
e Experiment with other pricing strategies: Try different values for the parameters
— MSK_IPAR_SIM_PRIMAL_SELECTION and
— MSK_IPAR_SIM_DUAL_SELECTION.

e If you are using warm-starts, in rare cases switching off this feature may improve stability. This is
controlled by the ¥SK_IPAR_SIM_HOTSTART parameter.

e Increase maximum number of set-backs allowed controlled by MSK_IPAR_SIM_MAX_NUM_SETBACKS.

e If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See
the parameter MSK_IPAR_SIM_DEGEN for details.

The Simplex Log

Below is a typical log output from the simplex optimizer:

Optimizer - solved problem : the primal

Optimizer - Constraints T 667

Optimizer - Scalar variables 1 1424 conic : 0

Optimizer - hotstart : no

ITER DEGITER(%) PFEAS DFEAS POBJ DOBJ TIME,
. TOTTIME

0 0.00 1.43e+05 NA 6.5584140832e+03 NA 0.00,
o 0.02

1000 1.10 0.00e+00 NA 1.4588289726e+04 NA 0.13,
— 0.14

2000 0.75 0.00e+00 NA 7.3705564855e+03 NA 0.21,
- 0.22

3000 0.67 0.00e+00 NA 6.0509727712e+03 NA 0.29,
o 0.31

4000 0.52 0.00e+00 NA 5.5771203906e+03 NA 0.38,
— 0.39

4533 0.49 0.00e+00 NA 5.5018458883e+03 NA 0.42,
o 0.44

The first lines summarize the problem the optimizer is solving. This is followed by the iteration log, with
the following meaning:
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e ITER: Number of iterations.
e DEGITER(%): Ratio of degenerate iterations.

e PFEAS: Primal feasibility measure reported by the simplex optimizer. The numbers should be 0 if
the problem is primal feasible (when the primal variant is used).

e DFEAS: Dual feasibility measure reported by the simplex optimizer. The number should be 0 if the
problem is dual feasible (when the dual variant is used).

e POBJ: An estimate for the primal objective value (when the primal variant is used).
e DOBJ: An estimate for the dual objective value (when the dual variant is used).
e TIME: Time spent since this instance of the simplex optimizer was invoked (in seconds).

e TOTTIME: Time spent since optimization started (in seconds).

8.4 Conic Optimization

For conic optimization problems only an interior-point type optimizer is available.

8.4.1 The Interior-point optimizer

The homogeneous primal-dual problem

The interior-point optimizer is an implementation of the so-called homogeneous and self-dual algorithm.
For a detailed description of the algorithm, please see [ART03]. In order to keep our discussion simple
we will assume that MOSEK solves a conic optimization problem of the form:

T

minimize c'x
subject to Az = b, (8.6)
reK

where K is a convex cone. The corresponding dual problem is

maximize bT'y
subject to ATy +s = ¢, (8.7)
xeK*

where K* is the dual cone of K. See Sec. 7.2 for definitions.

Since it is not known beforehand whether problem (8.6) has an optimal solution, is primal infeasible or
is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason that
MOSEK solves the so-called homogeneous model

Ax —br = 0,
ATy+s—cr = 0,
—cTr+bTy—k = 0,
€ K (8.8)
s € K*
.k > 0

7

where y and s correspond to the dual variables in (8.6), and 7 and k are two additional scalar variables.
Note that the homogeneous model (8.8) always has a solution since

(‘T7 Y,8,T, KZ) = (07 07 07 07 0)
is a solution, although not a very interesting one. Any solution

(x*ay*as*uT*a"{'*)
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to the homogeneous model (8.8) satisfies
(@) Ts* + 7°k* = 0
i.e. complementarity. Observe that * € I and s* € I* implies
(x*)Ts* >0
and therefore
T'R* = 0.
since 7%, k* > 0. Hence, at least one of 7* and k* is zero.

First, assume that 7* > 0 and hence k* = 0. It follows that

AZ = b,

Ty s~
—TE T =,
/" e K,
s*/t* e K*.

This shows that f— is a primal optimal solution and (f—*, j—*) is a dual optimal solution; this is reported

as the optimal interior-point solution since

(LIZ‘,y7S): Fa?vﬁ

is a primal-dual optimal solution.

On other hand, if k* > 0 then

Az* = 0,
ATy + 5% = 0,
—cTac* + bTy* — I{*,
¢ e K,
s* e K*.
This implies that at least one of
c'z* <0 (8.9)
or
bIy* >0 (8.10)

holds. If (8.9) is satisfied, then z* is a certificate of dual infeasibility, whereas if (8.10) holds then y* is
a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required
for a solution to the original problem is obtained. A solution to the homogeneous model can be computed
using a primal-dual interior-point algorithm [And09].

Interior-point Termination Criterion

Since computations are performed in finite precision, and for efficiency reasons, it is not possible to solve
the homogeneous model exactly in general. Hence, an exact optimal solution or an exact infeasibility
certificate cannot be computed and a reasonable termination criterion has to be employed.

In every iteration k of the interior-point algorithm a trial solution

($k7yk, SkaTk> "ik)
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to the homogeneous model is generated, where
ot e K, s e K*, 7%, kF > 0.

Therefore, it is possible to compute the values:

. k
pI’f = arg min, {p| Af—k—b‘oo Spsp(1+\\b||oo)}7

. 2k k
ph = arg min, {p| ATY + 5 ch Spsd(1+”c||oo)}7

o0
AT & . . T,k T,k

Pt = arg min, {p | ((UE(TL); 7‘{%1» _ bifk |) < pegmax | 1, I‘W) } :
pgi = arg minp {P | ATyk +Sk||oo < peibTyk, bTyk > ()} and
phi = argmin, {p| ||AzF| < —peicTaF, Tab <0}.

Note €, 4,64 and €; are nonnegative user specified tolerances.

Optimal Case

Observe pf measures how far ¥ /7% is from being a good approximate primal feasible solution. Indeed
if p]; <1, then

xk
4% -1 <ea+ o, (@.11)

oo

This shows the violations in the primal equality constraints for the solution 2*/7* is small compared to
the size of b given ¢, is small.

Similarly, if p% < 1, then (y*, s*)/7* is an approximate dual feasible solution. If in addition p, < 1, then
the solution (z*,4*, s¥)/7% is approximate optimal because the associated primal and dual objective
values are almost identical.

In other words if max(p];, ok, p’;) < 1, then
(z*,y", s*)
Tk

is an approximate optimal solution.

Dual Infeasibility Certificate

Next assume that p¥ <1 and hence

HAkaoo < —aichk and —cTzF >0
holds. Now in this case the problem is declared dual infeasible and z* is reported as a certificate of dual
infeasibility. The motivation for this stopping criterion is as follows. Let

. ar
7=y
and it is easy to verify that
|AZ|| <e;and 'z =1

which shows Z is an approximate certificate of dual infeasibility, where ¢; controls the quality of the
approximation.
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Primal Infeasiblity Certificate

Next assume that p’;i < 1 and hence
HATyk' + skHoo < g;bTy* and bTy* > 0
holds. Now in this case the problem is declared primal infeasible and (y*, s*) is reported as a certificate
of primal infeasibility. The motivation for this stopping criterion is as follows. Let
k k

Y= Y and 5:=
Tk Tk

and it is easy to verify that
HATQ + EHOO <gand blg=1

which shows (y*,s*) is an approximate certificate of dual infeasibility, where &; controls the quality of
the approximation.

Adjusting optimality criteria and near optimality
It is possible to adjust the tolerances €, €4, €4 and €; using parameters; see table for details.

Table 8.2: Parameters employed in termination criterion

ToleranceParameter | name

Ep MSK_DPAR_INTPNT_CO_TOL_PFEAS
€4 MSK_DPAR_INTPNT_CO_TOL_DFEAS
&g MSK_DPAR_INTPNT_CO_TOL_REL_GAP
E; MSK_DPAR_INTPNT_CO_TOL_INFEAS

The default values of the termination tolerances are chosen such that for a majority of problems appearing
in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances usually
is not worthwhile. However, an inspection of (8.11) reveals that the quality of the solution depends on
[1b]| . and ||c[|; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal and
dual feasibility at the same rate [And09/. This means that if the optimizer is stopped prematurely then
it is very unlikely that either the primal or dual solution is feasible. Another consequence is that in most
cases all the tolerances, €, €4, €4 and ¢;, have to be relaxed together to achieve an effect.

In some cases the interior-point method terminates having found a solution not too far from meeting the
optimality condition (8.11). A solution is defined as near optimal if scaling the termination tolerances
€p, €4, €9 and g4 by the same factor ¢,, € [1.0, +00] makes the condition (8.11) satisfied. A near optimal
solution is therefore of lower quality but still potentially valuable. If for instance the solver stalls, i.e.
it can make no more significant progress towards the optimal solution, a near optimal solution could be
available and be good enough for the user. Near infeasibility certificates are defined similarly. The value
of &, can be adjusted with the parameter ¥SK_DPAR_INTPNT_CO_TOL_NEAR_REL.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

The Interior-point Log

Below is a typical log output from the interior-point optimizer:

Optimizer - threads : 20
Optimizer - solved problem : the primal
Optimizer - Constraints 1
Optimizer - Cones 2
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Optimizer Scalar variables : 6 conic 6
Optimizer Semi-definite variables: O scalarized : 0

Factor setup time : 0.00 dense det. time : 0.00
Factor ML order time : 0.00 GP order time 0.00
Factor nonzeros before factor : 1 after factor 1

Factor dense dim. H¢ flops : 1.70e+01
ITE PFEAS DFEAS GFEAS PRSTATUS  POBJ DOBJ MU TIME
0 1.0e+00 2.9e-01 3.4e+00 0.00e+00 2.414213562e+00  0.000000000e+00 1.0e+00 0.01
1 2.7e-01 7.9e-02 2.2e+00 8.83e-01 6.969257574e-01  -9.685901771e-03 2.7e-01 0.01
2 6.5e-02 1.9e-02 1.2e+00 1.16e+00 7.606090061e-01  6.046141322e-01 6.5e-02 0.01
3 1.7e-03 b5.0e-04 2.2e-01 1.12e+00 7.084385672e-01  7.045122560e-01 1.7e-03 0.01
4 1.4e-08 4.2e-09 4.9e-08 1.00e+00 7.071067941e-01  7.071067599e-01 1.4e-08 0.01

The first line displays the number of threads used by the optimizer and the second line tells that the
optimizer chose to solve the dual problem rather than the primal problem. The next line displays the
problem dimensions as seen by the optimizer, and the Factor. .. lines show various statistics. This is
followed by the iteration log.

Using the same notation as in Sec. 8.4.1 the columns of the iteration log have the following meaning;:
e ITE: Iteration index k.

e PFEAS: ||Az" — br"|| . The numbers in this column should converge monotonically towards zero
but may stall at low level due to rounding errors.

e DFEAS: ||ATy’C + sk —erk ||Oo . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e GFEAS: | —cT'z% 4+ bTy* — k*| . The numbers in this column should converge monotonically towards
zero but may stall at low level due to rounding errors.

e PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to —1 if that is not the case.

e POBJ: ¢Tz¥ /7%, An estimate for the primal objective value.
e DOBJ: bT'y*/7%. An estimate for the dual objective value.

k)TSk-‘erFv'k

o MU: & =1 . The numbers in this column should always converge to zero.

e TIME: Time spent since the optimization started (in seconds).

8.5 Nonlinear Convex Optimization

8.5.1 The Interior-point Optimizer

For general convex optimization problems an interior-point type optimizer is available. The interior-point
optimizer is an implementation of the homogeneous and self-dual algorithm. For a detailed description
of the algorithm, please see [AY98/, [AY99].

The Convexity Requirement
Continuous nonlinear problems are required to be convex. For quadratic problems MOSEK tests this
requirement before optimizing. Specifying a non-convex problem results in an error message.
The following parameters are available to control the convexity check:
e /MSK_IPAR_CHECK_CONVEXITY: Turn convexity check on/off.
e /SK_DPAR_CHECK_CONVEXITY_REL_TOL: Tolerance for convexity check.

e MSK_IPAR_LOG_CHECK_CONVEXITY: Turn on more log information for debugging.

8.5. Nonlinear Convex Optimization 49



MOSEK Command Line Tools, Release 8.1.0.27

The Differentiability Requirement
The nonlinear optimizer in MOSEK requires both first order and second order derivatives. This of
course implies care should be taken when solving problems involving non-differentiable functions.

For instance, the function

fla) =a?
is differentiable everywhere whereas the function

fl@)= vz

is only differentiable for z > 0 . In order to make sure that MOSEK evaluates the functions at points
where they are differentiable, the function domains must be defined by setting appropriate variable
bounds.

In general, if a variable is not ranged MOSEK will only evaluate that variable at points strictly within
the bounds. Hence, imposing the bound

x>0

in the case of 1/ is sufficient to guarantee that the function will only be evaluated in points where it is
differentiable.

However, if a function is defined on a closed range, specifying the variable bounds is not sufficient.
Consider the function

(8.12)

In this case the bounds
0<z<1

will not guarantee that MOSEK only evaluates the function for x strictly between 0 and 1
To force MOSEK to strictly satisfy both bounds on ranged variables set the parameter
MSK_IPAR_INTPNT_STARTING_POINT to MSK_STARTING_POINT_SATISFY_BOUNDS.

For efficiency reasons it may be better to reformulate the problem than to force MOSEK to observe
ranged bounds strictly. For instance, (8.12) can be reformulated as follows

fl@) = 5+5
0 = 1-z—y
0 < =z
0 < .

Interior-point Termination Criteria

The parameters controlling when the general convex interior-point optimizer terminates are shown in
Table 8.3.

Table 8.3: Parameters employed in termination criteria.

Parameter name Purpose

MSK_DPAR_INTPNT_NL_TOL_PFEAS Controls primal feasibility
MSK_DPAR_INTPNT_NL_TOL_DFEAS Controls dual feasibility
MSK_DPAR_INTPNT_NL_TOL_REL_GAP | Controls relative gap

MSK_DPAR_INTPNT_TOL_INFEAS Controls when the problem is declared infeasible
MSK_DPAR_INTPNT_NL_TOL_MU_RED Controls when the complementarity is reduced enough
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CHAPTER

NINE

THE OPTIMIZER FOR MIXED-INTEGER PROBLEMS

A problem is a mixed-integer optimization problem when one or more of the variables are constrained
to be integer valued. Readers unfamiliar with integer optimization are recommended to consult some
relevant literature, e.g. the book [Wol98] by Wolsey.

9.1 The Mixed-integer Optimizer Overview

MOSEK can solve mixed-integer
e linear,
e quadratic and quadratically constrained, and
e conic quadratic

problems, at least as long as they do not contain both quadratic objective or constraints and conic
constraints at the same time. The mixed-integer optimizer is specialized for solving linear and conic op-
timization problems. Pure quadratic and quadratically constrained problems are automatically converted
to conic form.

By default the mixed-integer optimizer is run-to-run deterministic. This means that if a problem is
solved twice on the same computer with identical parameter settings and no time limit then the obtained
solutions will be identical. If a time limit is set then this may not be case since the time taken to solve
a problem is not deterministic. The mixed-integer optimizer is parallelized i.e. it can exploit multiple
cores during the optimization.

The solution process can be split into these phases:
1. Presolve: See Sec. 8.1.
2. Cut generation: Valid inequalities (cuts) are added to improve the lower bound.

3. Heuristic: Using heuristics the optimizer tries to guess a good feasible solution. Heuristics can
be controlled by the parameter MSK_IPAR_MIO_HEURISTIC_LEVEL.

4. Search: The optimal solution is located by branching on integer variables.

9.2 Relaxations and bounds

It is important to understand that, in a worst-case scenario, the time required to solve integer opti-
mization problems grows exponentially with the size of the problem (solving mixed-integer problems is
NP-hard). For instance, a problem with n binary variables, may require time proportional to 2" . The
value of 2™ is huge even for moderate values of n.

In practice this implies that the focus should be on computing a near-optimal solution quickly rather
than on locating an optimal solution. Even if the problem is only solved approximately, it is important
to know how far the approximate solution is from an optimal one. In order to say something about the
quality of an approximate solution the concept of relazation is important.
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Consider for example a mixed-integer optimization problem

z* = minimize Tz
subject to Ax = b,
2> 0 (9.1)
x; € Z, vieJ.
It has the continuous relaxation

zZ = minimize Tz
subject to Az = b, (9.2)

z>0

obtained simply by ignoring the integrality restrictions. The relaxation is a continuous problem, and
therefore much faster to solve to optimality with a linear (or, in the general case, conic) optimizer.
We call the optimal value z the objective bound. The objective bound z normally increases during the
solution search process when the continuous relaxation is gradually refined.

Moreover, if & is any feasible solution to (9.1) and

T3

w
I
Q

then
2 <z <z

These two inequalities allow us to estimate the quality of the integer solution: it is no further away from
the optimum than Z — z in terms of the objective value. Whenever a mixed-integer problem is solved
MOSEK reports this lower bound so that the quality of the reported solution can be evaluated.

9.3 Termination Criterion

In general, it is time consuming to find an exact feasible and optimal solution to an integer optimization
problem, though in many practical cases it may be possible to find a sufficiently good solution. The issue
of terminating the mixed-integer optimizer is rather delicate and the user has numerous possibilities of
influencing it with various parameters. The mixed-integer optimizer employs a relaxed feasibility and
optimality criterion to determine when a satisfactory solution is located.

A candidate solution that is feasible for the continuous relaxation is said to be an integer feasible solution
if the criterion

min(xj — I_l‘jJ, ’—Jﬁj-‘ — l‘j) <6 Vj eJ

is satisfied, meaning that z; is at most ¢; from the nearest integer.

Whenever the integer optimizer locates an integer feasible solution it will check if the criterion
Z — 2 < max(ds, 63 max(10719 | 2]))

is satisfied. If this is the case, the integer optimizer terminates and reports the integer feasible solution
as an optimal solution. If an optimal solution cannot be located after the time specified by the param-
eter MSK_DPAR_MIO_DISABLE_TERM_TIME (in seconds), it may be advantageous to relax the termination
criteria, and they become replaced with

|

— 2z < max(dy, 65 max(10719|2)).

Any solution satisfying those will now be reported as near optimal and the solver will be terminated
(note that since this criterion depends on timing, the optimizer will not be run to run deterministic).

All the § tolerances discussed above can be adjusted using suitable parameters — see Table 9.1.
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Table 9.1: Tolerances for the mixed-integer optimizer.

Tolerance

Parameter name

o1

MSK_DPAR_MIO_TOL_ABS_RELAX_INT

02

MSK_DPAR_MIO_TOL_ABS_GAP

3

MSK_DPAR_MIO_TOL_REL_GAP

d4

MSK_DPAR_MIO_NEAR_TOL_ABS_GAP

Js5

MSK_DPAR_MIO_NEAR_TOL_REL_GAP

In Table 9.2 some other common parameters affecting the integer optimizer termination criterion are
shown. Please note that if the effect of a parameter is delayed, the associated termination criterion is
applied only after some time, specified by the ¥SK_DPAR_MIO_DISABLE_TERM_TIME parameter.

Table 9.2: Other parameters affecting the integer optimizer termi-

nation criterion.

Parameter name De- Explanation

layed
MSK_IPAR_MIO_MAX_NUM_BRANCHES | Yes Maximum number of branches allowed.
MSK_TIPAR_MIO_MAX_NUM_RELAXS Yes Maximum number of relaxations allowed.
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS| Yes Maximum number of feasible integer solutions al-

lowed.

9.4 Speeding Up the Solution

Process

As mentioned previously, in many cases it is not possible to find an optimal solution to an integer
optimization problem in a reasonable amount of time. Some suggestions to reduce the solution time are:

e Relax the termination criterion: In case the run time is not acceptable, the first thing to do is to
relax the termination criterion — see Sec. 9.3 for details.

e Specify a good initial solution: In many cases a good feasible solution is either known or easily
computed using problem-specific knowledge. If a good feasible solution is known, it is usually
worthwhile to use this as a starting point for the integer optimizer.

e Improve the formulation: A mixed-integer optimization problem may be impossible to solve in one
form and quite easy in another form. However, it is beyond the scope of this manual to discuss good
formulations for mixed-integer problems. For discussions on this topic see for example [IW0l98].

9.5 Understanding Solution Quality

To determine the quality of the solution one should check the following:

e The problem status and solution status returned by MOSEK, as well as constraint violations in

case of suboptimal solutions.

e The optimality gap defined as

¢ = |(objective value of feasible solution) — (objective bound)| = |z — z|.

which measures how much the located solution can deviate from the optimal solution
to the problem. The optimality gap can be retrieved through the information item
MSK_DINF_MIO_0BJ_ABS_GAP. Often it is more meaningful to look at the relative optimality gap
normalized against the magnitude of the solution.

€rel =

|z — 2|
max(10-19,|z|)"

The relative optimality gap is available in MSK_DINF_MIO_0BJ_REL_GAP.

9.4. Speeding Up the Solution Process
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9.6 The Optimizer Log

Below is a typical log output from the mixed-integer optimizer:

Presolved problem: 6573 variables, 35728 constraints, 101258 non-zeros
Presolved problem: O general integer, 4294 binary, 2279 continuous
Clique table size: 1636

BRANCHES RELAXS  ACT_NDS DEPTH BEST_INT_0BJ BEST_RELAX_OBJ REL_GAP(%) TIME
0 1 0 0 NA 1.8218819866e+07 NA 1.6
0 1 0 0 1.8331557950e+07 1.8218819866e+07 0.61 3.5
0 1 0 0 1.8300507546e+07 1.8218819866e+07 0.45 4.3
Cut generation started.

0 2 0 0 1.8300507546e+07 1.8218819866e+07 0.45 5.3
Cut generation terminated. Time = 1.43

0 3 0 0 1.8286893047e+07 1.8231580587e+07 0.30 7.5
15 18 1 0 1.8286893047e+07 1.8231580587e+07 0.30 10.5
31 34 1 0 1.8286893047e+07 1.8231580587e+07 0.30 11.1
51 54 1 0 1.8286893047e+07 1.8231580587e+07 0.30 11.6
91 94 1 0 1.8286893047e+07 1.8231580587e+07 0.30 12.4
171 174 1 0 1.8286893047e+07 1.8231580587e+07 0.30 14.3
331 334 1 0 1.8286893047e+07 1.8231580587e+07 0.30 17.9
[...1

1.825846762609e+07
1.823311032986e+07
: Not employed

Objective of best integer solution :
Best objective bound
Construct solution objective

Construct solution # roundings : 0
User objective cut value : 0
Number of cuts generated : 117
Number of Gomory cuts : 108
Number of CMIR cuts : 9
Number of branches 1 4425
Number of relaxations solved 1 4410

Number of interior point iterations: 25
Number of simplex iteratioms 1 221131

The first lines contain a summary of the problem as seen by the optimizer. This is followed by the
iteration log. The columns have the following meaning:

e BRANCHES: Number of branches generated.

e RELAXS: Number of relaxations solved.

e ACT_NDS: Number of active branch bound nodes.

e DEPTH: Depth of the recently solved node.

e BEST_INT_0BJ: The best integer objective value, Z.

e BEST_RELAX_0BJ: The best objective bound, z.

e REL_GAP(%): Relative optimality gap, 100% - €yel

e TIME: Time (in seconds) from the start of optimization.

Following that a summary of the optimization process is printed.
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CHAPTER

TEN

PROBLEM ANALYZER

The problem analyzer prints a detailed survey of the
e linear constraints and objective
e quadratic constraints
e conic constraints
e variables
of the model.

In the initial stages of model formulation the problem analyzer may be used as a quick way of verifying
that the model has been built or imported correctly. In later stages it can help revealing special structures
within the model that may be used to tune the optimizer’s performance or to identify the causes of
numerical difficulties.

The problem analyzer is run from the command line using the -anapro argument and produces something
similar to the following (this is the problem analyzer’s survey of the aflow30a problem from the MIPLIB
2003 collection.)

Analyzing the problem

Constraints Bounds Variables
upper bd: 421 ranged : all cont: 421
fixed : 58 bin : 421

Objective, min cx

range: min |c|: 0.00000 min |c|>0: 11.0000 max |cl|: 500.000
distrib: lcl vars
0 421
[11, 100) 150
[100, 500] 271

Constraint matrix A has
479 rows (constraints)
842 columns (variables)
2091 (0.518449%) nonzero entries (coefficients)

Row nonzeros, A_i
range: min A_i: 2 (0.23753%) max A_i: 34 (4.038%)

distrib: A_i rows rows’, accl,
2 421 87.89 87.89

[8, 15] 20 4.18 92.07

[16, 31] 30 6.26 98.33

[32, 34] 8 1.67 100.00
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Column nonzeros, Alj
range: min Alj: 2 (0.417537%) max Alj: 3 (0.626305%)

distrib: Alj cols cols, acch
2 435 51.66 51.66
3 407 48.34 100.00

A nonzeros, A(ij)

range: min [A(ij)|: 1.00000 max |A(ij)|: 100.000
distrib: AL coeffs
[1, 10) 1670
(10, 100] 421

Constraint bounds, 1lb <= Ax <= ub

distrib: bl 1bs ubs
0 421
[1, 10] 58 58

Variable bounds, 1lb <= x <= ub

distrib: Ibl 1bs ubs
0 842

[1, 10) 421

[10, 100] 421

The survey is divided into six different sections, each described below. To keep the presentation short
with focus on key elements. The analyzer generally attempts to display information on issues relevant
for the current model only: e.g., if the model does not have any conic constraints (this is the case in the
example above) or any integer variables, those parts of the analysis will not appear.

General Characteristics

The first part of the survey consists of a brief summary of the model’s linear and quadratic constraints
(indexed by %) and variables (indexed by j). The summary is divided into three subsections:

Constraints

upper bd The number of upper bounded constraints, Z;:Ol a;jr; < uf

lower bd The number of lower bounded constraints, {§ < Z;L;Ol Qi T

ranged The number of ranged constraints, [{ < Z?;ol a;jr; < ug

. . —1
o fixed The number of fixed constraints, I§ = Z?:o ai;T; = uf

e free The number of free constraints

Bounds

e upper bd The number of upper bounded variables, z; < uj

lower bd The number of lower bounded variables, [ < x;

ranged The number of ranged variables, Ij; < z; < uf

fixed The number of fixed variables, [} = z; = uj

free The number of free variables
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Variables

e cont The number of continuous variables, z; € R
e bin The number of binary variables, z; € {0,1}
e int The number of general integer variables, z; € Z

Only constraints, bounds and domains actually in the model will be reported on; if all entities in a section
turn out to be of the same kind, the number will be replaced by all for brevity.

Objective

The second part of the survey focuses on (the linear part of) the objective, summarizing the optimization
sense and the coefficients’ absolute value range and distribution. The number of 0 (zero) coefficients is
singled out (if any such variables are in the problem).

The range is displayed using three terms:
e min |c| The minimum absolute value among all coeffecients
e min |c|>0 The minimum absolute value among the nonzero coefficients
e max |c| The maximum absolute value among the coefficients
If some of these extrema turn out to be equal, the display is shortened accordingly:
e If min |c| is greater than zero, the min |c|>0 term is obsolete and will not be displayed

e If only one or two different coefficients occur this will be displayed using all and an explicit listing
of the coefficients

The absolute value distribution is displayed as a table summarizing the numbers by orders of magnitude
(with a ratio of 10). Again, the number of variables with a coefficient of 0 (if any) is singled out. Each line
of the table is headed by an interval (half-open intervals including their lower bounds), and is followed
by the number of variables with their objective coefficient in this interval. Intervals with no elements are
skipped.

Linear Constraints

The third part of the survey displays information on the nonzero coefficients of the linear constraint
matrix.

Following a brief summary of the matrix dimensions and the number of nonzero coefficients in total,
three sections provide further details on how the nonzero coefficients are distributed by row-wise count
(A_i), by column-wise count (Alj), and by absolute value (|A(ij) |). Each section is headed by a brief
display of the distribution’s range (min and max), and for the row/column-wise counts the corresponding
densities are displayed too (in parentheses).

The distribution tables single out three particularly interesting counts: zero, one, and two nonzeros per
row/column; the remaining row/column nonzeros are displayed by orders of magnitude (ratio 2). For
each interval the relative and accumulated relative counts are also displayed.

Note that constraints may have both linear and quadratic terms, but the empty rows and columns
reported in this part of the survey relate to the linear terms only. If empty rows and/or columns
are found in the linear constraint matrix, the problem is analyzed further in order to determine if the
corresponding constraints have any quadratic terms or the corresponding variables are used in conic or
quadratic constraints.

The distribution of the absolute values, |A(ij) |, is displayed just as for the objective coefficients de-
scribed above.

57



MOSEK Command Line Tools, Release 8.1.0.27

Constraint and Variable Bounds

The fourth part of the survey displays distributions for the absolute values of the finite lower and upper
bounds for both constraints and variables. The number of bounds at 0 is singled out and, otherwise,
displayed by orders of magnitude (with a ratio of 10).

Quadratic Constraints

The fifth part of the survey displays distributions for the nonzero elements in the gradient of the quadratic
constraints, i.e. the nonzero row counts for the column vectors Qx . The table is similar to the tables
for the linear constraints’ nonzero row and column counts described in the survey’s third part.

Quadratic constraints may also have a linear part, but that will be included in the linear constraints
survey; this means that if a problem has one or more pure quadratic constraints, part three of the survey
will report the number of linear constraint rows with 0 (zero) nonzeros. Likewise, variables that appear
in quadratic terms only will be reported as empty columns (0 nonzeros) in the linear constraint report.

Conic Constraints

The last part of the survey summarizes the model’s conic constraints. For each of the two types of cones,
quadratic and rotated quadratic, the total number of cones are reported, and the distribution of the
cones’ dimensions are displayed using intervals. Cones dimensions of 2, 3, and 4 are singled out.
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CHAPTER

ELEVEN

ANALYZING INFEASIBLE PROBLEMS

When developing and implementing a new optimization model, the first attempts will often be either
infeasible, due to specification of inconsistent constraints, or unbounded, if important constraints have
been left out.

In this section we will

e go over an example demonstrating how to locate infeasible constraints using the MOSEK infeasi-
bility report tool,

e discuss in more general terms which properties may cause infeasibilities, and

e present the more formal theory of infeasible and unbounded problems.

11.1 Example: Primal Infeasibility

A problem is said to be primal infeasible if no solution exists that satisfies all the constraints of the
problem.

As an example of a primal infeasible problem consider the problem of minimizing the cost of transporta-
tion between a number of production plants and stores: Each plant produces a fixed number of goods,
and each store has a fixed demand that must be met. Supply, demand and cost of transportation per
unit are given in Fig. 11.1.

Supply Demand
1100
200
200
1000 ‘
500
1000
500

Fig. 11.1: Supply, demand and cost of transportation.
The problem represented in Fig. 11.1 is infeasible, since the total demand

2300 = 1100 + 200 + 500 + 500
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exceeds the total supply
2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant i to store j by x;; , the problem can be
formulated as the LP:

minimize T11 + 21’12 + 51’23 + 21‘24 + 31 + 29333 + T34

subject to T11 + 19 < 200,
Toz + T2a < 1000,
r31 + w33 + w3 < 1000,
r11 + x31 = 1100,

T12 = 200,

23 + 33 = 500,

Tog + r34 = 500,

Lij > 0.

(11.1)

Solving problem (11.1) using MOSEK will result in a solution, a solution status and a problem status.
Among the log output from the execution of MOSEK on the above problem are the lines:

Basic solution
Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER

The first line indicates that the problem status is primal infeasible. The second line says that a certificate
of the infeasibility was found. The certificate is returned in place of the solution to the problem.

11.2 Locating the cause of Primal Infeasibility

Usually a primal infeasible problem status is caused by a mistake in formulating the problem and therefore
the question arises: What is the cause of the infeasible status? When trying to answer this question, it
is often advantageous to follow these steps:

e Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

e Consider whether your problem has some necessary conditions for feasibility and examine if these
are satisfied, e.g. total supply should be greater than or equal to total demand.

e Verify that coefficients and bounds are reasonably sized in your problem.

If the problem is still primal infeasible, some of the constraints must be relaxed or removed completely.
The MOSEK infeasibility report (Sec. 11.4) may assist you in finding the constraints causing the
infeasibility.

Possible ways of relaxing your problem nclude:
e Increasing (decreasing) upper (lower) bounds on variables and constraints.
e Removing suspected constraints from the problem.

Returning to the transportation example, we discover that removing the fifth constraint
Xr1p = 200

makes the problem feasible.
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11.3 Locating the Cause of Dual Infeasibility

A problem may also be dual infeasible. In this case the primal problem is often unbounded, meaning that
feasbile solutions exists such that the objective tends towards infinity. An example of a dual infeasible
and primal unbounded problem is:

minimize T
subject to x; < 5.

To resolve a dual infeasibility the primal problem must be made more restricted by
e Adding upper or lower bounds on variables or constraints.
e Removing variables.

e Changing the objective.

11.3.1 A cautionary note

The problem

minimize 0

subject to 0 <z,
xjng+l7 jzla"'7n_17
Ty, < —1

is clearly infeasible. Moreover, if any one of the constraints is dropped, then the problem becomes
feasible.

This illustrates the worst case scenario where all, or at least a significant portion of the constraints
are involved in causing infeasibility. Hence, it may not always be easy or possible to pinpoint a few
constraints responsible for infeasibility.

11.4 The Infeasibility Report

MOSEK includes functionality for diagnosing the cause of a primal or a dual infeasibility. It can be
turned on by setting the MSK_IPAR_INFEAS_REPORT_AUTO to MSK_ON. This causes MOSEK to print a
report on variables and constraints involved in the infeasibility.

The MSK_IPAR_INFEAS_REPORT_LEVEL parameter controls the amount of information presented in the
infeasibility report. The default value is 1.

11.4.1 Example: Primal Infeasibility

We will keep working with the problem (11.1) written in LP format:

Listing 11.1: The code for problem (11.1).

\
\ An example of an infeasible linear problem.
\
minimize
obj: + 1 x11 + 2 x12
+ 5 x23 + 2 x24
+ 1 x31 + 2 x33 +1 x34

st
sO: + x11 + x12 <= 200
sl: + x23 + x24 <= 1000
s2: + x31 + x33 + x34 <= 1000
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dil: + x11 + x31 = 1100
d2: + x12 = 200
d3: + x23 + x33 = 500
d4: + x24 + x34 = 500
bounds
end

Using the command line (please remeber it accepts options following the C API format)

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp

MOSEK produces the following infeasibility report:

MOSEK PRIMAL INFEASIBILITY REPORT.
Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper

0 s0 NONE 2.000000e+002 0.000000e+000 1.000000e+000
2 s2 NONE 1.000000e+003 0.000000e+000 1.000000e+000
3 d1 1.100000e+003 1.100000e+003 1.000000e+000 0.000000e+000
4 d2 2.000000e+002 2.000000e+002 1.000000e+000 0.000000e+000

The following bound constraints are involved in the infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper
8 x33 0.000000e+000 NONE 1.000000e+000 0.000000e+000
10 x34 0.000000e+000 NONE 1.000000e+000 0.000000e+000

The infeasibility report is divided into two sections corresponding to constraints and variables. It is a
selection of those lines from the problem solution (in this case the file infeas.sol), which are important
in understanding primal infeasibility. In this case the constraints s0, s2, d1, d2 and variables x33, x34
are of importance.

The columns Dual lower and Dual upper contain the values of dual variables sf, s, s and sj in
the primal infeasibility certificate (see Sec. 7.1.2). Only the non-zero ones, which contribute to the

optimization objective and thus are important for infeasibility, are shown.

It is also possible to obtain the infeasible subproblem. The command line

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp

produces the files rinfeas.bas.inf.1lp. In this case the content of the file rinfeas.bas.inf.1p is

minimize

obj: + 0 x11 + 0 x12 + 0 x13 + 0 x21 + 0 x22 + 0 x23
+ 0 x31 + 0 x32 + 0 x33 + 0 x24 + 0 x34

subject to

sO: + x11 + x12 <= 2e+02

s2: + x31 + x33 + x34 <= 1e+03

dl: + x11 + x31 = 1.1e+03

d2: + x12 2e+02

bounds

x11 free

x12 free
x13 free
x21 free
x22 free
x23 free
x31 free
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x32 free

0 <= x33 <= +infinity
x24 free

0 <= x34 <= +infinity
end

which is an optimization problem. This problem is identical to (11.1), except that the objective and
some of the constraints and bounds have been removed. Executing the command

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON rinfeas.bas.inf.lp

demonstrates that the reduced problem is primal infeasible. Since the reduced problem is usually
smaller than original problem, it should be easier to locate the cause of infeasibility in this rather than
in the original (11.1).

11.4.2 Example: Dual Infeasibility
The following problem is dual to (11.1) and therefore it is dual infeasible.

Listing 11.2: The dual of problem (11.1).

maximize + 200 y1 + 1000 y2 + 1000 y3 + 1100 y4 + 200 y5 + 500 y6 + 500 y7

subject to
x11: yl+y4 < 1
x12: yl+yb < 2
x23: y2+y6 < 5
x24: y2+y7 < 2
x31: y3+y4 < 1
x33: y3+y6 < 2
x34: y3+y7 < 1

bounds
-inf <= y1 < 0
-inf <= y2 < 0
-inf <= y3 < 0
y4 free
y5 free
y6 free
y7 free

end

This can be verified by proving that
(yla cey y7) = (_la 0) _17 1a 1) 070)

is a certificate of dual infeasibility (see Sec. 7.1.2) as we can see from this report:

MOSEK DUAL INFEASIBILITY REPORT.
Problem status: The problem is dual infeasible

The following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound
5 x33 -1.000000e+00 NONE 2.000000e+00
6 x34 -1.000000e+00 NONE 1.000000e+00

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound
0 yi -1.000000e+00 2.000000e+02 NONE 0.000000e+00
2 y3 -1.000000e+00 1.000000e+03 NONE 0.000000e+00
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3 y4 1.000000e+00 1.100000e+03 NONE NONE
4 y5 1.000000e+00 2.000000e+02 NONE NONE

Interior-point solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER
Primal. obj: 1.0000000000e+02 nrm: 1e+00 Viol. con: 0e+00 var: 0e+00

Let y* denote the reported primal solution. MOSEK states
e that the problem is dual infeasible,
e that the reported solution is a certificate of dual infeasibility, and
e that the infeasibility measure for y* is approximately zero.

Since the original objective was maximization, we have that ¢”'y* > 0. See Sec. 7.1.2 for how to interpret
the parameter values in the infeasibility report for a linear program. We see that the variables y1, y3,
y4, y5 and the constraints x33 and x34 contribute to infeasibility with non-zero values in the Activity
column.

One possible strategy to fir the infeasibility is to modify the problem so that the certificate of infeasibility
becomes invalid. In this case we could do one the following things:

e Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.

e Increase the object coefficient of y3. Changing the coefficients sufficiently will invalidate the in-
equality ¢”y* > 0 and thus the certificate.

e Add lower bounds on x11 or x31. This will directly invalidate the certificate of infeasibility.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes dual feasible — the reason for infeasibility may simply move, resulting a problem that
is still infeasible, but for a different reason.

More often, the reported certificate can be used to give a hint about errors or inconsistencies in the
model that produced the problem.

11.5 Theory Concerning Infeasible Problems

This section discusses the theory of infeasibility certificates and how MOSEK uses a certificate to
produce an infeasibility report. In general, MOSEK solves the problem

minimize Lz +cf
subject to ¢ < Az < (11.2)
r < x < u®
where the corresponding dual problem is
maximize (19)Ts8 — (ue)TsS,
H(I) st — (u) sy + ¢!
subject to ATy + s7 — % = ¢ (11.3)
—y + sf — s = 0,

C C xT xT
sy, 85,87,8, <0.

We use the convension that for any bound that is not finite, the corresponding dual variable is fixed at
zero (and thus will have no influence on the dual problem). For example

l;c = - = (Sf)j =0

64 Chapter 11. Analyzing Infeasible Problems




MOSEK Command Line Tools, Release 8.1.0.27

11.6 The Certificate of Primal Infeasibility

A certificate of primal infeasibility is any solution to the homogenized dual problem

maximize  (19)Ts§ — (u)TsS
+() st — (u?) s,
subject to ATy + s7 — % = 0,
—y + 5] — s, = 0,

C C x x
sy, 85,87,85 <0.

with a positive objective value. That is, (s{*, s5*, s7*, s7*) is a certificate of primal infeasibility if
(lc)TSlc* o (UC)TSZ* + (ZZL’)TSII* o (um)TSi* >0
and
ATy + s —su* = 0,
—y + s — 8" = 0,

sy, s st syt < 0.

The well-known Farkas Lemma tells us that (11.2) is infeasible if and only if a certificate of primal
infeasibility exists.

Let (s7*,s5%, s7*, s2*) be a certificate of primal infeasibility then
(s")i > 0((sy")i > 0)

implies that the lower (upper) bound on the ¢ th constraint is important for the infeasibility. Furthermore,
(s77); > 0((sy")i > 0)

implies that the lower (upper) bound on the j th variable is important for the infeasibility.

11.7 The certificate of dual infeasibility

A certificate of dual infeasibility is any solution to the problem

minimize Tz
subject to I < Ax < @S,
< x < u”

with negative objective value, where we use the definitions

If = 0 L > % ag = 0. ui< o
v —o0, otherwise, [’ oo, otherwise,

. 0, I§ > —o0, and @ = 0, uf <oo,
© 71 —oo, otherwise, 7] oo, otherwise.

Stated differently, a certificate of dual infeasibility is any * such that

and

- e < 0,
l© < Azt < af, (11.4)
< ozt <t

The well-known Farkas Lemma tells us that (11.3) is infeasible if and only if a certificate of dual infea-
sibility exists.

Note that if x* is a certificate of dual infeasibility then for any j such that
variable j is involved in the dual infeasibility.

Given the assumption that all weights are 1 then the command
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mosek -primalrepair -d MSK_IPAR_LOG_FEAS_REPAIR 3 feasrepair.lp

will form the repaired problem and solve it. The parameter MSK_IPAR_LOG_FEAS_REPAIR controls the

amount of log output from the repair. A value of 2 causes the optimal repair to printed out.

The output from running the above command is:

Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Open file 'feasrepair.lp'

Read summary
Type

Objective sense
Constraints
Scalar variables :
Matrix variables :
Time

: L0 (linear optimization problem)
: min

O O N B

Computer
Platform : Windows/64-X86
Cores H

Problem

Name

Objective sense
Type

Constraints

Cones

Scalar variables
Matrix variables
Integer variables

: min
: LO (linear optimization problem)

O O N O

Primal feasibility repair started.
Optimizer started.

Interior-point optimizer started.
Presolve started.

Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.

Total number of eliminations : 2
Eliminator terminated.

Eliminator - tries 1 time 0.00
Eliminator - elim's : 2

Lin. dep. - tries 1 time 0.00

Lin. dep. - number H¢

Presolve terminated. Time: 0.00

Optimizer - threads 1

Optimizer - solved problem : the primal

Optimizer - Constraints : 2

Optimizer - Cones : 0

Optimizer - Scalar variables G conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0

Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3

Factor - dense dim. : 0 flops : 5.40e+001
ITE PFEAS DFEAS GFEAS PRSTATUS  POBJ DOBJ MU TIME
0 2.7e+001 1.0e+000 4.8e+000 1.00e+000 4.195228609e+000 0.000000000e+000 1.0e+000 0.00
1 2.4e+001 8.6e-001 1.5e+000 0.00e+000 1.227497414e+001 1.504971820e+001 2.6e+000 0.00
2 2.6e+000 9.7e-002 1.7e-001 -6.19e-001 4.363064729e+001 4.648523094e+001 3.0e-001 0.00
3 4.7e-001 1.7e-002 3.1e-002 1.24e+000 4.256803136e+001 4.298540657e+001 5.2e-002 0.00
4 8.7e-004 3.2e-005 5.7e-005 1.08e+000 4.249989892e+001 4.250078747e+001 9.7e-005 0.00
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5 8.7e-008 3.2e-009 5.7e-009 1.00e+000 4.249999999e+001 4.250000008e+001 9.7e-009 0.00
6 8.7e-012 3.2e-013 5.7e-013 1.00e+000 4.250000000e+001 4.250000000e+001 9.7e-013 0.00
Basis identification started.

Primal basis identification phase started.

ITER TIME

0 0.00

Primal basis identification phase terminated. Time: 0.00

Dual basis identification phase started.

ITER TIME

0 0.00

Dual basis identification phase terminated. Time: 0.00

Basis identification terminated. Time: 0.00

Interior-point optimizer terminated. Time: 0.00.

Optimizer terminated. Time: 0.03

Basic solution summary

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: 4.2500000000e+001  Viol. con: 1e-013 var: 0e+000
Dual. obj: 4.2500000000e+001  Viol. con: 0e+000 var: 5e-013
Optimal objective value of the penalty problem: 4.250000000000e+001

Repairing bounds.

Increasing the upper bound -2.25e+001 on constraint 'c4' (3) with 1.35e+002.
Decreasing the lower bound 6.50e+002 on variable 'x2' (4) with 2.00e+001.
Primal feasibility repair terminated.

Optimizer started.

Interior-point optimizer started.

Presolve started.

Presolve terminated. Time: 0.00

Interior-point optimizer terminated. Time: 0.00.

Optimizer terminated. Time: 0.00

Interior-point solution summary

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: -5.6700000000e+003 Viol. con: 0e+000 var: 0e+000
Dual. obj: -5.6700000000e+003 Viol. con: 0e+000 var: 0e+000

Basic solution summary

Problem status : PRIMAL_AND_DUAL_FEASIBLE

Solution status : OPTIMAL

Primal. obj: -5.6700000000e+003 Viol. con: 0e+000 var: 0e+000
Dual. obj: -5.6700000000e+003 Viol. con: 0e+000 var: 0e+000

Optimizer summary

Optimizer - time: 0.00
Interior-point - iterations : O time: 0.00
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : O time: 0.00
Clean primal - iterations : O time: 0.00
Clean dual - iterations : 0 time: 0.00
Clean primal-dual - iterations : O time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : O time: 0.00
Primal-dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0O time: 0.00

reports the optimal repair. In this case it is to increase the upper bound on constraint c4 by 1.35e2 and
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decrease the lower bound on variable x2 by 20.
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CHAPTER

TWELVE

SENSITIVITY ANALYSIS

Given an optimization problem it is often useful to obtain information about how the optimal objective
value changes when the problem parameters are perturbed. E.g, assume that a bound represents the
capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it is
worthwhile knowing what the value of additional capacity is. This is precisely the type of questions the
sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called sensitivity
analysis.

References

The book [Chv83] discusses the classical sensitivity analysis in Chapter 10 whereas the book /[RTV97/
presents a modern introduction to sensitivity analysis. Finally, it is recommended to read the short
paper [Wal00] to avoid some of the pitfalls associated with sensitivity analysis.

Warning: Currently, sensitivity analysis is only available for continuous linear optimization prob-
lems. Moreover, MOSEK can only deal with perturbations of bounds and objective function coeffi-
cients.

12.1 Sensitivity Analysis for Linear Problems

12.1.1 The Optimal Objective Value Function

Assume that we are given the problem

(16w 1%, u*,¢) = minimize Tz
subject to ¢ < Az < uC, (12.1)
" < x < U,

and we want to know how the optimal objective value changes as [{ is perturbed. To answer this question
we define the perturbed problem for [ as follows

fie(B) = minimize 'z
subject to ¢4 Be; < Az < uf
& < z< Ut
where e; is the i-th column of the identity matrix. The function
fiz(B) (12.2)

shows the optimal objective value as a function of 3. Please note that a change in § corresponds to a
perturbation in ¢ and hence (12.2) shows the optimal objective value as a function of varying [¢ with
the other bounds fixed.
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It is possible to prove that the function (12.2) is a piecewise linear and convex function, i.e. its graph
may look like in Fig. 12.1 and Fig. 12.2.

f(B) A

A
\J

I31 0 Bz

Fig. 12.1: 8 =0 is in the interior of linearity interval.

Clearly, if the function fic(3) does not change much when § is changed, then we can conclude that the
optimal objective value is insensitive to changes in [{. Therefore, we are interested in the rate of change
in f1e(8) for small changes in 3 — specifically the gradient

fllg (0)7

which is called the shadow price related to [§. The shadow price specifies how the objective value changes
for small changes of 8 around zero. Moreover, we are interested in the linearity interval

B € [B1, 5]

for which
71:(8) = £1:(0).

Since fe is not a smooth function fj. may not be defined at 0, as illustrated in Fig. 12.2. In this case
we can define a left and a right shadow price and a left and a right linearity interval.

The function fje considered only changes in If. We can define similar functions for the remaining
parameters of the z defined in (12.1) as well:

fl;(ﬁ) = Z(lc+5ei7uc7lxauxﬂc)7 ’i:l,...,m
Jue(B) = 2(1%u®+ Bei, 1%, u”,c), i=1,...,m,
flj(lB) = Z(lc’uc’lm—FﬂEj’um’C)’ j:17""
fu;(ﬂ) Z(lc7ucvlwvuw+66j7c)v jzlu"'7

Je,;(B) = =z(%us 1% u” c+ Pej), j=1,...,n.

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the
parameters u$ etc.

Equality Constraints

In MOSEK a constraint can be specified as either an equality constraint or a ranged constraint. If some
constraint e is an equality constraint, we define the optimal value function for this constraint as

fef(ﬂ) = Z(lc + Beiauc + ﬂeialmaumac)
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f(B) A

A
\J

B1 0 Bz B

Fig. 12.2: 8 =0 is a breakpoint.

Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed simul-
taneously. Therefore, MOSEK will handle sensitivity analysis differently for a ranged constraint with
¢ = u§ and for an equality constraint.

12.1.2 The Basis Type Sensitivity Analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [Chv83/,
is based on an optimal basic solution or, equivalently, on an optimal basis. This method may produce
misleading results /[RT'V97] but is computationally cheap. Therefore, and for historical reasons, this
method is available in MOSEK.

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic solution which
provides a partition of variables into basic and non-basic variables, the basis type sensitivity analysis
computes the linearity interval [51, 2] so that the basis remains optimal for the perturbed problem. A
shadow price associated with the linearity interval is also computed. However, it is well-known that
an optimal basic solution may not be unique and therefore the result depends on the optimal basic
solution employed in the sensitivity analysis. This implies that the computed interval is only a subset
of the largest interval for which the shadow price is constant. Furthermore, the optimal objective value
function might have a breakpoint for § = 0. In this case the basis type sensitivity method will only
provide a subset of either the left or the right linearity interval.

In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete
information. Hence, the results of the basis type sensitivity analysis should be used with care.

12.1.3 The Optimal Partition Type Sensitivity Analysis

Another method for computing the complete linearity interval is called the optimal partition type sen-
sitivity analysis. The main drawback of the optimal partition type sensitivity analysis is that it is
computationally expensive compared to the basis type analysis. This type of sensitivity analysis is
currently provided as an experimental feature in MOSEK.

Given the optimal primal and dual solutions to (12.1), i.e. * and ((s{)*, (s5)*, (s7)*, (s5)*) the optimal
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objective value is given by

The left and right

shadow prices o7 and o for [§ are given by this pair of optimization problems:

01 = minimize el's¢
subject to AT (s — s8) + s7 — s = ¢
()T (sF) = ()T (s5) + (1) (s7) = ()T (s3) = =%,
sy, s50,87,50 >0
and
02 = maximize el's¢
subject to AT (8§ — s) + s — s = ¢
()T (sF) = ()T (s5) + (1) (s7) = ()T (s3) = 2%,
87,585,587, 85 2> 0.
These two optimization problems make it easy to interpret the shadow price. Indeed, if

((s§)*, (sS)*, (s7)*, (sE)*) is an arbitrary optimal solution then

u

(s0)f € lo1,02].

Next, the linearity interval [31, B2] for I§ is computed by solving the two optimization problems

f1 = minimize I}
subject to ¢+ Be; < Ax < uc,
e —of = z¥,
lm S x S 21)7
and
B2 = maximize I}
subject to ¢+ Be; < Ax < uc,
e —o9f = 2%,
& < T < u”.
The linearity intervals and shadow prices for s, [, and uj are computed similarly to [f.

The left and right shadow prices for c; denoted o1 and o2 respectively are computed as follows:

01 = minimize e]Tx
subject to [c+ fBe; < Ax < uf,
Tr = 2%,
[ < x < u®,
and
0y = maximize e?w
subject to [°+ Be; < Ax < wuf
e = 2%,
I < < u*.

Once again the above two optimization problems make it easy to interpret the shadow prices. Indeed, if
¥ is an arbitrary primal optimal solution, then

x; € [o1,09].

The linearity interval [51, B2] for a ¢; is computed as follows:

/1 = minimize B
subject to AT (s — s8) + sF — s = ¢+ fe,,
()T () — ()T (s5) + (1) (s7) — (u)T(s5) =B < 27,
s7,85,87,80 >0
and
B2 = maximize I6]
subject to AT (s — s8) + 87 — s = ¢+ fe,,
()T () = ()T (s5) + (1) (s7) — (u)T(s5) =028 < 27,
sy, 85,587,802 0.
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12.1.4 Example: Sensitivity Analysis

As an example we will use the following transportation problem. Consider the problem of minimizing the
transportation cost between a number of production plants and stores. Each plant supplies a number of
goods and each store has a given demand that must be met. Supply, demand and cost of transportation
per unit are shown in Fig. 12.3.

Supply Demand

800

400
100

1200 ‘ AN

500
1000

500

Fig. 12.3: Supply, demand and cost of transportation.

If we denote the number of transported goods from location ¢ to location j by x;;, problem can be
formulated as the linear optimization problem of minimizing

1.’£11 + 2%12 + 5.%23 + 2£824 + 1$31 + 2£E33 + 11[,’34

subject to

400,
1200,
1000,
800,
100,
500,
500,
0.

11 + 12
Toz + T
T31 + ®33 + T3
11 +  x31
T12

I IAIAIA

(12.3)

T2z + T33
Tog4 + T34
Z11, Z12, T23, T24, 31, 33, T34

vVl

The sensitivity parameters are shown in Table 12.1 and Table 12.2 for the basis type analysis and in
Table 12.3 and Table 12.4 for the optimal partition type analysis.
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Table 12.1: Ranges and shadow prices related to bounds on con-
straints and variables: results for the basis type sensitivity analysis.

Con. | B1 B2 01 02

1 —300.00 0.00 3.00 | 3.00
2 —700.00 +o00 0.00 | 0.00
3 —500.00 0.00 3.00 | 3.00
4 —0.00 500.00 | 4.00 | 4.00
5 —0.00 300.00 | 5.00 | 5.00
6 —0.00 700.00 | 5.00 | 5.00
7 —500.00 700.00 | 2.00 | 2.00
Var. | 1 B2 01 02

T11 —00 300.00 | 0.00 | 0.00
T12 —00 100.00 | 0.00 | 0.00
To3 —00 0.00 0.00 | 0.00
Loy —00 500.00 | 0.00 | 0.00
T3] —00 500.00 | 0.00 | 0.00
33 —00 500.00 | 0.00 | 0.00
T34 —0.000000 | 500.00 | 2.00 | 2.00

Table 12.2: Ranges and shadow prices related to bounds on con-
straints and variables: results for the optimal partition type sensi-

tivity analysis.

Con. | 3 B2 01 02

1 —300.00 | 500.00 | 3.00 1.00
2 —700.00 | 400 —0.00 | —0.00
3 —500.00 | 500.00 | 3.00 1.00
4 —500.00 | 500.00 | 2.00 4.00
) —100.00 | 300.00 | 3.00 5.00
6 —500.00 | 700.00 | 3.00 5.00
7 —500.00 | 700.00 | 2.00 2.00
Var. | 3 B2 01 02
T11 —00 300.00 | 0.00 0.00
T12 —00 100.00 | 0.00 0.00
T23 —00 500.00 | 0.00 2.00
Toy —00 500.00 | 0.00 0.00
T31 —00 500.00 | 0.00 0.00
T33 —00 500.00 | 0.00 0.00
T34 —00 500.00 | 0.00 2.00
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Table 12.3: Ranges and shadow prices related to the objective co-
efficients: results for the basis type sensitivity analysis.

Var. | B B2 01 02

c1 —00 3.00 | 300.00 | 300.00
Ca —00 00 100.00 | 100.00
c3 —2.00 | o0 0.00 0.00
cq —00 2.00 | 500.00 | 500.00
cs —3.00 | oo 500.00 | 500.00
Cg —00 2.00 | 500.00 | 500.00
cy —2.00 | oo 0.00 0.00

Table 12.4: Ranges and shadow prices related to the objective co-
efficients: results for the optimal partition type sensitivity analysis.

Var. | B B2 o1 o2

c1 —00 3.00 | 300.00 | 300.00
Co —00 00 100.00 | 100.00
c3 —2.00 | o© 0.00 0.00
cq —00 2.00 | 500.00 | 500.00
cs —3.00 | oo 500.00 | 500.00
Cg —00 2.00 | 500.00 | 500.00
c7 —2.00 | © 0.00 0.00

Examining the results from the optimal partition type sensitivity analysis we see that for constraint
number 1 we have 01 = 3, 09 = 1 and 7 = —300, 2 = 500. Therefore, we have a left linearity interval
of [-300,0] and a right interval of [0,500]. The corresponding left and right shadow prices are 3 and 1

respectively. This implies that if the upper bound on constraint 1 increases by

B €0, /1] = [0,500]
then the optimal objective value will decrease by the value
o983 =1p.
Correspondingly, if the upper bound on constraint 1 is decreased by
B € [0,300]
then the optimal objective value will increase by the value

Ulﬁ = Sﬁ

12.2 Sensitivity Analysis with MOSEK

A sensitivity analysis can be performed with the MOSEK command line tool specifying the option

-sen, e.g.

12.2. Sensitivity Analysis with MOSEK
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mosek myproblem.mps -sen sensitivity.ssp

where sensitivity.ssp is a file in the format described in the next section. The ssp file describes which
parts of the problem the sensitivity analysis should be performed on, see Sec. 12.2.1.

By default results are written to a file named myproblem.sen. If necessary, this file name can be changed
by setting the MSK_SPAR_SENSITIVITY_RES_FILE_NAME parameter. By default a basis type sensitivity
analysis is performed. However, the type of sensitivity analysis (basis or optimal partition) can be
changed by setting the parameter MSK_IPAR_SENSITIVITY_TYPE appropriately. Following values are
accepted for this parameter:

o MSK_SENSITIVITY_TYPE_BASIS

o MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION

12.2.1 Sensitivity Analysis Specification File

MOSEK employs an MPS-like file format to specify on which model parameters the sensitivity analysis
should be performed. As the optimal partition type sensitivity analysis can be computationally expensive
it is important to limit the sensitivity analysis.

The format of the sensitivity specification file is shown in Listing 12.1, where capitalized names are
keywords, and names in brackets are names of the constraints and variables to be included in the
analysis.

Listing 12.1: Sensitivity analysis file specification.

BOUNDS CONSTRAINTS
UIL|ILU [cnamei]

UILILU [cname2] - [cname3]
BOUNDS VARIABLES

UIL|ILU [vname1]

UILILU [vname2] - [vname3]
OBJECTIVE VARIABLES
[vname1]

[vname?2] - [vname3]

The sensitivity specification file has three sections, i.e.

e BOUNDS CONSTRAINTS: Specifies on which bounds on constraints the sensitivity analysis should be
performed.

e BOUNDS VARIABLES: Specifies on which bounds on variables the sensitivity analysis should be per-
formed.

e OBJECTIVE VARIABLES: Specifies on which objective coefficients the sensitivity analysis should be
performed.

A line in the body of a section must begin with a whitespace. In the BOUNDS sections one of the keys
L, U, and LU must appear next. These keys specify whether the sensitivity analysis is performed on the
lower bound, on the upper bound, or on both the lower and the upper bound respectively. Next, a single
constraint (variable) or range of constraints (variables) is specified.

Recall from Sec. 12.1.1 that equality constraints are handled in a special way. Sensitivity analysis of an
equality constraint can be specified with either L, U, or LU, all indicating the same, namely that upper
and lower bounds (which are equal) are perturbed simultaneously.

As an example consider

BOUNDS CONSTRAINTS
L "consl"
U "cons2"
LU "cons3"-"cons6"
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which requests that sensitivity analysis is performed on the lower bound of the constraint named cons1,
on the upper bound of the constraint named cons2, and on both lower and upper bound on the constraints
named cons3 to cons6.

It is allowed to use indexes instead of names, for instance

BOUNDS CONSTRAINTS

L "consl"
U 2
LU 3 -6

The character * indicates that the line contains a comment and is ignored.

12.2.2 Example: Sensitivity Analysis from Command Line

As an example consider problem (12.3): the sensitivity file shown below (included in the distribution
among the examples).

Listing 12.2: Sensitivity file for problem (12.3).

* Comment 1

BOUNDS CONSTRAINTS

U "c1" * Analyze upper bound for constraints named cl
U 2 * Analyze upper bound for constraints with index 2
U 3-5 * Analyze upper bound for constraint with index in interval [3:5]

VARIABLES CONSTRAINTS

L 2-4 * This section specifies which bounds on variables should be analyzed.

L "x11"
OBJECTIVE CONSTRAINTS

"x11" * This section specifies which objective coeficients should be analysed.
2

The command

mosek transport.lp -sen sensitivity.ssp -d MSK_IPAR_SENSITIVITY_TYPE sensitivitytype.basis

produces the output file as follow

Listing 12.3: Results of sensitivity analysis

BOUNDS CONSTRAINTS

INDEX NAME BOUND LEFTRANGE RIGHTRANGE LEFTPRICE U
—RIGHTPRICE

0 cl UP -6.574875e-18 5.000000e+02 1.000000e+00 1.
—000000e+00

2 c3 UP -6.574875e-18 5.000000e+02 1.000000e+00 1.
—000000e+00

3 c4 FIX -5.000000e+02 6.574875e-18 2.000000e+00 2.
—000000e+00

4 cb FIX -1.000000e+02 6.574875e-18 3.000000e+00 3.
—000000e+00

5 c6 FIX -5.000000e+02 6.574875e-18 3.000000e+00 3.
—000000e+00

BOUNDS VARIABLES

INDEX NAME BOUND LEFTRANGE RIGHTRANGE LEFTPRICE U

—RIGHTPRICE

2 x23 LO -6.574875e-18 5.000000e+02 2.000000e+00 2.

—000000e+00

3 x24 LO -inf 5.000000e+02 0.000000e+00 0.
000000e+00
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4 x31
—000000e+00
0 x11
—000000e+00

OBJECTIVE VARIABLES

INDEX NAME
—RIGHTPRICE
0 x11
—000000e+02
2 x23
—000000e+00

LO

LO

-inf

-inf

LEFTRANGE

-inf

-2.000000e+00

5.000000e+02

3.000000e+02

RIGHTRANGE

1.000000e+00

+inf

0.000000e+00 0.
0.000000e+00 0.
LEFTPRICE U

3.000000e+02 3.
0.000000e+00 0.

12.2.3 Controlling Log Output

Setting the parameter ¥SK_IPAR_LOG_SENSITIVITY to 1 or 0 (default) controls whether or not the results
from sensitivity calculations are printed to the message stream.

The parameter MSK_IPAR_LOG_SENSITIVITY_OPT controls the amount of debug information on internal
calculations from the sensitivity analysis.
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e Optimizer parameters:
— Double, Integer, String
— Full list
— Browse by topic

e Optimizer response codes

o (Constants

13.1 Parameters grouped by topic

Analysis

o MSK_DPAR_ANA_SOL_INFEAS_TOL

o MSK_IPAR_ANA_SOL_BASIS

o MSK_IPAR_ANA_SOL_PRINT_VIOLATED
o MSK_IPAR_LOG_ANA_PRO

Basis identification

o MSK_DPAR_SIM_LU_TOL_REL_PIV
o MSK_IPAR_BI_CLEAN_OPTIMIZER
o MSK_IPAR_BI_IGNORE_MAX_ITER
o MSK_IPAR_BI_IGNORE_NUM_ERROR
o MSK_IPAR_BI_MAX_ITERATIONS
o MSK_IPAR_INTPNT_BASIS

o MSK_IPAR_LOG_BI

o MSK_IPAR_LOG_BI_FREQ

Conic interior-point method

o MSK_DPAR_INTPNT_CO_TOL_DFEAS
o MSK_DPAR_INTPNT_CO_TOL_INFEAS
o MSK_DPAR_INTPNT_CO_TOL_MU_RED

APl REFERENCE
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MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
MSK_DPAR_INTPNT_CO_TOL_PFEAS
MSK_DPAR_INTPNT_CO_TOL_REL_GAP

check

MSK_DPAR_DATA_SYM_MAT_TOL
MSK_DPAR_DATA_SYM_MAT_TOL_HUGE
MSK_DPAR_DATA_SYM_MAT_TOL_LARGE
MSK_DPAR_DATA_TOL_AIJ
MSK_DPAR_DATA_TOL_AIJ_HUGE
MSK_DPAR_DATA_TOL_AIJ_LARGE
MSK_DPAR_DATA_TOL_BOUND_INF
MSK_DPAR_DATA_TOL_BOUND_WRN
MSK_DPAR_DATA_TOL_C_HUGE
MSK_DPAR_DATA_TOL_CJ_LARGE
MSK_DPAR_DATA_TOL_QIJ
MSK_DPAR_DATA_TOL_X
MSK_DPAR_SEMIDEFINITE_TOL_APPROX
MSK_IPAR_CHECK_CONVEXITY
MSK_IPAR_LOG_CHECK_CONVEXITY

input/output

MSK_IPAR_INFEAS_REPORT_AUTO
MSK_IPAR_LOG_FILE
MSK_IPAR_OPF_MAX_TERMS_PER_LINE
MSK_IPAR_OPF_WRITE_HEADER
MSK_IPAR_OPF_WRITE_HINTS
MSK_IPAR_OPF_WRITE_PARAMETERS
MSK_IPAR_OPF_WRITE_PROBLEM
MSK_IPAR_OPF_WRITE_SOL_BAS
MSK_IPAR_OPF_WRITE_SOL_ITG
MSK_IPAR_OPF_WRITE_SOL_ITR
MSK_IPAR_OPF_WRITE_SOLUTIONS
MSK_IPAR_PARAM_READ_CASE_NAME
MSK_IPAR_PARAM_READ_IGN_ERROR
MSK_IPAR_READ_DATA_COMPRESSED
MSK_IPAR_READ_DATA_FORMAT
MSK_IPAR_READ_DEBUG
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o MSK_IPAR_READ_KEEP_FREE_CON

o MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU
o MSK_IPAR_READ_LP_QUOTED_NAMES

o MSK_IPAR_READ_MPS_FORMAT

o MSK_IPAR_READ_MPS_WIDTH

o MSK_IPAR_READ_TASK_IGNORE_PARAM
o MSK_IPAR_SOL_READ_NAME_WIDTH

o MSK_IPAR_SOL_READ_WIDTH

® MSK_IPAR_WRITE_BAS_CONSTRAINTS

o MSK_IPAR_WRITE_BAS_HEAD

o MSK_IPAR_WRITE_BAS_VARIABLES

o MSK_IPAR_WRITE_DATA_COMPRESSED

o MSK_IPAR_WRITE_DATA_FORMAT

o MSK_IPAR_WRITE_DATA_PARAM

o MSK_IPAR_WRITE_FREE_CON

o MSK_IPAR_WRITE_GENERIC_NAMES

o MSK_IPAR_WRITE_GENERIC_NAMES_IO
o MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS
o MSK_IPAR_WRITE_INT_CONSTRAINTS

o MSK_IPAR_WRITE_INT_HEAD

o MSK_IPAR_WRITE_INT_VARIABLES

o MSK_IPAR_WRITE_LP_FULL_0BJ

o MSK_IPAR_WRITE_LP_LINE_WIDTH

o MSK_IPAR_WRITE_LP_QUOTED_NAMES

o MSK_IPAR_WRITE_LP_STRICT_FORMAT
o MSK_IPAR_WRITE_LP_TERMS_PER_LINE
o MSK_IPAR_WRITE_MPS_FORMAT

o MSK_IPAR_WRITE_MPS_INT

o MSK_IPAR_WRITE_PRECISION

o MSK_IPAR_WRITE_SOL_BARVARIABLES
o MSK_IPAR_WRITE_SOL_CONSTRAINTS

o MSK_IPAR_WRITE_SOL_HEAD

o MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES
o MSK_IPAR_WRITE_SOL_VARIABLES

o MSK_IPAR_WRITE_TASK_INC_SOL

o MSK_IPAR_WRITE_XML_MODE

o MSK_SPAR_BAS_SOL_FILE_NAME

o MSK_SPAR_DATA_FILE_NAME

o MSK_SPAR_DEBUG_FILE_NAME
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o MSK_SPAR_INT_SOL_FILE_NAME

o MSK_SPAR_ITR_SOL_FILE_NAME

o MSK_SPAR_MIO_DEBUG_STRING

o MSK_SPAR_PARAM_COMMENT_SIGN

o MSK_SPAR_PARAM_READ_FILE_NAME
o MSK_SPAR_PARAM_WRITE_FILE_NAME
o MSK_SPAR_READ_MPS_BOU_NAME

o MSK_SPAR_READ_MPS_O0BJ_NAME

o MSK_SPAR_READ_MPS_RAN_NANME

o MSK_SPAR_READ_MPS_RHS_NAME

o MSK_SPAR_SENSITIVITY_FILE_NAME
o MSK_SPAR_SENSITIVITY_RES_FILE_NAME
o MSK_SPAR_SOL_FILTER_XC_LOW

o MSK_SPAR_SOL_FILTER_XC_UPR

o MSK_SPAR_SOL_FILTER_XX_LOW

o MSK_SPAR_SOL_FILTER_XX_UPR

o MSK_SPAR_STAT_FILE_ NAME

o MSK_SPAR_STAT_KEY

o MSK_SPAR_STAT_NANE

o MSK_SPAR_WRITE_LP_GEN_VAR_NAME

Debugging

o MSK_IPAR_AUTO_SORT_A_BEFORE_OPT

Dual simplex

o MSK_IPAR_SIM_DUAL_CRASH
o MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION
o MSK_IPAR_SIM_DUAL_SELECTION

Infeasibility report

o MSK_IPAR_INFEAS_GENERIC_NAMES
o MSK_IPAR_INFEAS_REPORT_LEVEL
o MSK_IPAR_LOG_INFEAS_ANA
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Interior-point method

MSK_DPAR_CHECK_CONVEXITY_REL_TOL
MSK_DPAR_INTPNT_CO_TOL_DFEAS
MSK_DPAR_INTPNT_CO_TOL_INFEAS
MSK_DPAR_INTPNT_CO_TOL_MU_RED
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
MSK_DPAR_INTPNT_CO_TOL_PFEAS
MSK_DPAR_INTPNT_CO_TOL_REL_GAP
MSK_DPAR_INTPNT_NL_MERIT_BAL
MSK_DPAR_INTPNT_NL_TOL_DFEAS
MSK_DPAR_INTPNT_NL_TOL_MU_RED
MSK_DPAR_INTPNT_NL_TOL_NEAR_REL
MSK_DPAR_INTPNT_NL_TOL_PFEAS
MSK_DPAR_INTPNT_NL_TOL_REL_GAP
MSK_DPAR_INTPNT_NL_TOL_REL_STEP
MSK_DPAR_INTPNT_QO_TOL_DFEAS
MSK_DPAR_INTPNT_QO_TOL_INFEAS
MSK_DPAR_INTPNT_QO_TOL_MU_RED
MSK_DPAR_INTPNT_QO0_TOL_NEAR_REL
MSK_DPAR_INTPNT_QO_TOL_PFEAS
MSK_DPAR_INTPNT_{O_TOL_REL_GAP
MSK_DPAR_INTPNT_TOL_DFEAS
MSK_DPAR_INTPNT_TOL_DSAFE
MSK_DPAR_INTPNT_TOL_INFEAS
MSK_DPAR_INTPNT_TOL_MU_RED
MSK_DPAR_INTPNT_TOL_PATH
MSK_DPAR_INTPNT_TOL_PFEAS
MSK_DPAR_INTPNT_TOL_PSAFE
MSK_DPAR_INTPNT_TOL_REL_GAP
MSK_DPAR_INTPNT_TOL_REL_STEP
MSK_DPAR_INTPNT_TOL_STEP_SIZE
MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL
MSK_IPAR_BI_IGNORE_MAX_ITER
MSK_IPAR_BI_IGNORE_NUM_ERROR
MSK_IPAR_INTPNT_BASIS
MSK_IPAR_INTPNT_DIFF_STEP
MSK_IPAR_INTPNT_HOTSTART
MSK_IPAR_INTPNT_MAX_ITERATIONS
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MSK_IPAR_INTPNT_MAX_NUM_COR
MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS
MSK_IPAR_INTPNT_OFF_COL_TRH
MSK_IPAR_INTPNT_ORDER_METHOD
MSK_IPAR_INTPNT_REGULARIZATION_USE
MSK_IPAR_INTPNT_SCALING
MSK_IPAR_INTPNT_SOLVE_FORM
MSK_IPAR_INTPNT_STARTING_POINT
MSK_IPAR_LOG_INTPNT

License manager

MSK_IPAR_CACHE_LICENSE
MSK_IPAR_LICENSE_DEBUG
MSK_IPAR_LICENSE_PAUSE_TINE
MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS
MSK_IPAR_LICENSE_TRH_EXPIRY_WRN
MSK_IPAR_LICENSE_WAIT

Logging

MSK_IPAR_LOG
MSK_IPAR_LOG_ANA_PRO
MSK_IPAR_LOG_BI
MSK_IPAR_LOG_BI_FREQ
MSK_IPAR_LOG_CUT_SECOND_OPT
MSK_IPAR_LOG_EXPAND
MSK_IPAR_LOG_FEAS_REPAIR
MSK_IPAR_LOG_FILE
MSK_IPAR_LOG_INFEAS_ANA
MSK_IPAR_LOG_INTPNT
MSK_IPAR_LOG_MIO
MSK_IPAR_LOG_MIO_FREQ
MSK_IPAR_LOG_ORDER
MSK_IPAR_LOG_PRESOLVE
MSK_IPAR_LOG_RESPONSE
MSK_IPAR_LOG_SENSITIVITY
MSK_IPAR_LOG_SENSITIVITY_OPT
MSK_IPAR_LOG_SINM
MSK_IPAR_LOG_SIM_FREQ
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o MSK_IPAR_LOG_STORAGE

Mixed-integer optimization

MSK_DPAR_MIO_DISABLE_TERM_TIME
MSK_DPAR_MIO_MAX_TIME
MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
MSK_DPAR_MIO_NEAR_TOL_REL_GAP
MSK_DPAR_MIO_REL_GAP_CONST
MSK_DPAR_MIO_TOL_ABS_GAP
MSK_DPAR_MIO_TOL_ABS_RELAX_INT
MSK_DPAR_MIO_TOL_FEAS
MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT
MSK_DPAR_MIO_TOL_REL_GAP
MSK_IPAR_LOG_MIO
MSK_IPAR_LOG_MIO_FREQ
MSK_IPAR_MIO_BRANCH_DIR
MSK_IPAR_MIO_CONSTRUCT_SOL
MSK_IPAR_MIO_CUT_CLIQUE
MSK_IPAR_MIO_CUT_CMIR
MSK_IPAR_MIO_CUT_GMI
MSK_IPAR_MIO_CUT_IMPLIED_BOUND
MSK_IPAR_MIO_CUT_KNAPSACK_COVER
MSK_IPAR_MIO_CUT_SELECTION_LEVEL
MSK_IPAR_MIO_HEURISTIC_LEVEL
MSK_IPAR_MIO_MAX_NUM_BRANCHES
MSK_IPAR_MIO_MAX_NUM_RELAXS
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS
MSK_IPAR_MIO_NODE_OPTIMIZER
MSK_IPAR_MIO_NODE_SELECTION
MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE
MSK_IPAR_MIO_PROBING_LEVEL
MSK_IPAR_MIO_RINS_MAX_NODES
MSK_IPAR_MIO_ROOT_OPTIMIZER
MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL
MSK_IPAR_MIO_VB_DETECTION_LEVEL
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Nonlinear convex method

o MSK_DPAR_INTPNT_NL_MERIT_BAL

o MSK_DPAR_INTPNT_NL_TOL_DFEAS

o MSK_DPAR_INTPNT_NL_TOL_MU_RED

o MSK_DPAR_INTPNT_NL_TOL_NEAR_REL
o MSK_DPAR_INTPNT_NL_TOL_PFEAS

o MSK_DPAR_INTPNT_NL_TOL_REL_GAP

o MSK_DPAR_INTPNT_NL_TOL_REL_STEP
o MSK_DPAR_INTPNT_TOL_INFEAS

o MSK_IPAR_CHECK_CONVEXITY

o MSK_IPAR_LOG_CHECK_CONVEXITY

Output information

o MSK_IPAR_INFEAS_REPORT_LEVEL
o MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS
o MSK_IPAR_LICENSE_TRH_EXPIRY_WRN
o MSK_IPAR_LOG

o MSK_IPAR_LOG_BI

o MSK_IPAR_LOG_BI_FREQ

o MSK_IPAR_LOG_CUT_SECOND_OPT
o MSK_IPAR_LOG_EXPAND

o MSK_IPAR_LOG_FEAS_REPAIR

o MSK_IPAR_LOG_FILE

o MSK_IPAR_LOG_INFEAS_ANA

o MSK_IPAR_LOG_INTPNT

o MSK_IPAR_LOG_MIO

o MSK_IPAR_LOG_MIO_FREQ

o MSK_IPAR_LOG_ORDER

o MSK_IPAR_LOG_RESPONSE

o MSK_IPAR_LOG_SENSITIVITY

o MSK_IPAR_LOG_SENSITIVITY_OPT
o MSK_IPAR_LOG_SIM

o MSK_IPAR_LOG_SIM_FRE(Q

o MSK_IPAR_LOG_SIM_MINOR

o MSK_IPAR_LOG_STORAGE

o MSK_IPAR_MAX_NUM_WARNINGS
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Overall solver

MSK_IPAR_BI_CLEAN_OPTIMIZER
MSK_IPAR_INFEAS_PREFER_PRINMAL
MSK_IPAR_LICENSE_WAIT
MSK_IPAR_MIO_MODE
MSK_IPAR_OPTIMIZER
MSK_IPAR_PRESOLVE_LEVEL
MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS
MSK_IPAR_PRESOLVE_USE
MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER
MSK_IPAR_SENSITIVITY_ALL
MSK_IPAR_SENSITIVITY_OPTIMIZER
MSK_IPAR_SENSITIVITY_TYPE
MSK_IPAR_SOLUTION_CALLBACK

Overall system

MSK_IPAR_AUTO_UPDATE_SOL_INFO
MSK_IPAR_INTPNT_MULTI_THREAD
MSK_IPAR_LICENSE_WAIT
MSK_IPAR_LOG_STORAGE
MSK_IPAR_MIO_MT_USER_CB
MSK_IPAR_MT_SPINCOUNT
MSK_IPAR_NUM_THREADS
MSK_IPAR_REMOVE_UNUSED_SOLUTIONS
MSK_IPAR_TIMING_LEVEL
MSK_SPAR_REMOTE_ACCESS_TOKEN

Presolve

MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP
MSK_DPAR_PRESOLVE_TOL_AIJ
MSK_DPAR_PRESOLVE_TOL_REL_LINDEP
MSK_DPAR_PRESOLVE_TOL_S
MSK_DPAR_PRESOLVE_TOL_X
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
MSK_IPAR_PRESOLVE_LEVEL
MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH
MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH
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o MSK_IPAR_PRESOLVE_LINDEP_USE
® MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS
o MSK_IPAR_PRESOLVE_USE

Primal simplex

o MSK_IPAR_SIM_PRIMAL_CRASH
o MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION
o MSK_IPAR_SIM_PRIMAL_SELECTION

Progress callback

o MSK_IPAR_SOLUTION_CALLBACK

Simplex optimizer

MSK_DPAR_BASIS_REL_TOL_S
MSK_DPAR_BASIS_TOL_S
MSK_DPAR_BASIS_TOL_X
MSK_DPAR_SIM_LU_TOL_REL_PIV
MSK_DPAR_SIMPLEX_ABS_TOL_PIV
MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE
MSK_IPAR_LOG_SIM
MSK_IPAR_LOG_SIM_FREQ
MSK_IPAR_LOG_SIM_MINOR
MSK_IPAR_SENSITIVITY_OPTIMIZER
MSK_IPAR_SIM_BASIS_FACTOR_USE
MSK_IPAR_SIM_DEGEN
MSK_IPAR_SIM_DUAL_PHASEONE_METHOD
MSK_IPAR_SIM_EXPLOIT_DUPVEC
MSK_IPAR_SIM_HOTSTART
MSK_IPAR_SIM_HOTSTART_LU
MSK_IPAR_SIM_MAX_ITERATIONS
MSK_IPAR_SIM_MAX_NUM_SETBACKS
MSK_IPAR_SIM_NON_SINGULAR
MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD
MSK_IPAR_SIM_REFACTOR_FREQ
MSK_IPAR_SIM_REFORMULATION
MSK_IPAR_SIM_SAVE_LU
MSK_IPAR_SIM_SCALING
MSK_IPAR_SIM_SCALING_METHOD
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MSK_IPAR_SIM_SOLVE_FORM
MSK_IPAR_SIM_STABILITY_PRIORITY
MSK_IPAR_SIM_SWITCH_OPTIMIZER

Solution input/output

MSK_IPAR_INFEAS_REPORT_AUTO
MSK_IPAR_SOL_FILTER_KEEP_BASIC
MSK_IPAR_SOL_FILTER_KEEP_RANGED
MSK_IPAR_SOL_READ_NAME_WIDTH
MSK_IPAR_SOL_READ_WIDTH
MSK_IPAR_WRITE_BAS_CONSTRAINTS
MSK_IPAR_WRITE_BAS_HEAD
MSK_IPAR_WRITE_BAS_VARIAB