
MOSEK Optimizer API for Python
Release 8.0.0.94

MOSEK ApS

2017

CONTENTS

1 Introduction 1
1.1 Why the Optimizer API for Python? . 1
1.2 License agreement . 1

2 Installation 3
2.1 Compatibility . 3
2.2 Instructions . 3
2.3 Testing the Installation . 4

3 Basic Tutorials 5
3.1 The Basics Tutorial . 6
3.2 Linear Optimization . 8
3.3 Conic Quadratic Optimization . 16
3.4 Semidefinite Optimization . 20
3.5 Quadratic Optimization . 24
3.6 Integer Optimization . 31
3.7 Optimizer Termination Handling . 35
3.8 Problem Modification and Reoptimization . 37
3.9 Solution Analysis . 41
3.10 Solver Parameters . 46

4 Nonlinear Tutorials 49
4.1 Separable Convex (SCopt) Interface . 49

5 Advanced Tutorials 53
5.1 The Progress Call-back . 53
5.2 Solving Linear Systems Involving the Basis Matrix . 55
5.3 Calling BLAS/LAPACK Routines from MOSEK . 62
5.4 Computing a Sparse Cholesky Factorization . 64
5.5 Converting a quadratically constrained problem to conic form 69
5.6 MOSEK OptServer . 72

6 Guidelines 77
6.1 Deployment . 77
6.2 Efficiency Considerations . 77
6.3 The license system . 79

7 Case Studies 81
7.1 Portfolio Optimization . 81

8 Errors and Warnings 101
8.1 Warnings . 101
8.2 Errors . 101

9 Managing I/O 103
9.1 Stream I/O . 103

i

9.2 File I/O . 104
9.3 Verbosity . 104

10 Problem Formulation and Solutions 107
10.1 Linear Optimization . 107
10.2 Conic Quadratic Optimization . 110
10.3 Semidefinite Optimization . 112
10.4 Quadratic and Quadratically Constrained Optimization 114
10.5 General Convex Optimization . 115

11 The Optimizers for Continuous Problems 117
11.1 Presolve . 117
11.2 Linear Optimization . 119
11.3 Conic Optimization . 125
11.4 Nonlinear Convex Optimization . 126
11.5 Using Multiple Threads in an Optimizer . 127

12 The Optimizer for Mixed-integer Problems 129
12.1 Some Concepts and Facts Related to Mixed-integer Optimization 129
12.2 The Mixed-integer Optimizer . 130
12.3 Termination Criterion . 130
12.4 Parameters Affecting the Termination of the Integer Optimizer. 131
12.5 How to Speed Up the Solution Process . 131
12.6 Understanding Solution Quality . 132

13 Problem Analyzer 133
13.1 General Characteristics . 134
13.2 Objective . 135
13.3 Linear Constraints . 135
13.4 Constraint and Variable Bounds . 136
13.5 Quadratic Constraints . 136
13.6 Conic Constraints . 136

14 Analyzing Infeasible Problems 137
14.1 Example: Primal Infeasibility . 137
14.2 Locating the cause of Primal Infeasibility . 138
14.3 Locating the Cause of Dual Infeasibility . 139
14.4 The Infeasibility Report . 139
14.5 Theory Concerning Infeasible Problems . 141
14.6 The Certificate of Primal Infeasibility . 141
14.7 The certificate of dual infeasibility . 142

15 Sensitivity Analysis 143
15.1 Sensitivity Analysis for Linear Problems . 143
15.2 Sensitivity Analysis with MOSEK . 149

16 API Reference 153
16.1 API Conventions . 153
16.2 Functions grouped by topic . 157
16.3 The Interface for Separable Convex Optimization . 165
16.4 Parameters . 165
16.5 Response codes . 213
16.6 Enumerations . 235
16.7 Data Types . 261
16.8 Class Env . 262
16.9 Class Task . 268
16.10 Exceptions . 327

17 Supported File Formats 329

ii

17.1 The LP File Format . 330
17.2 The MPS File Format . 335
17.3 The OPF Format . 347
17.4 The CBF Format . 356
17.5 The XML (OSiL) Format . 371
17.6 The Task Format . 371
17.7 The JSON Format . 371
17.8 The Solution File Format . 379

18 Interface changes 381
18.1 Compatibility . 381
18.2 Functions . 381
18.3 Parameters . 382
18.4 Constants . 384
18.5 Response Codes . 387

Bibliography 391

API Index 393

iii

iv

CHAPTER

ONE

INTRODUCTION

The MOSEK Optimization Suite 8.0.0.94 is a powerfull software package capable of solving large-scale
optimization problems of the following kind:

• linear,

• convex quadratic,

• conic quadratic (also known as second-order cone),

• semidefinite,

• and general convex.

Integer constrained variables are supported for all problem classes except for semidefinite and general
convex problems. In order to obtain an overview of features in the MOSEK Optimization Suite consult
the product introduction guide.

1.1 Why the Optimizer API for Python?

The Optimizer API for Python provides an object-oriented interface to the MOSEK optimizers. This
object oriented design is common to Java, Python and .NET and is based on a thin class-based interface
to the native C optimizer API. The overhead introduced by this mapping is minimal.

The Optimizer API for Python can be used with any application running on recent Python 2 and 3
interpreters. It consists of a single mosek package which can be used in Python scripts and interactive
shells making it suited for fast prototyping and inspection of models.

1.2 License agreement

Before using the MOSEK software, please read the license agreement available in the distribu-
tion at <MSKHOME>/mosek/8/mosek-eula.pdf or on the MOSEK website https://mosek.com/sales/
license-agreement.

1

http://docs.mosek.com/8.0/intro/index.html
https://mosek.com/sales/license-agreement
https://mosek.com/sales/license-agreement

MOSEK Optimizer API for Python, Release 8.0.0.94

MOSEK uses some third-party open-source libraries. Their license details follows.

zlib

MOSEK includes the zlib library obtained from the zlib website. The license agreement for zlib is shown
in Listing 1.1.

Listing 1.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from the
netlib website. The license agreement for fplib is shown in Listing 1.2.

Listing 1.2: fplib license.

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

2 Chapter 1. Introduction

http://zlib.org
http://www.netlib.org

CHAPTER

TWO

INSTALLATION

In this section we discuss how to install and setup the MOSEK Optimizer API for Python.

2.1 Compatibility

The MOSEK Optimizer API for Python requires Python with numpy. Below the supported Python
versions are shown

Platform Python PyPy2.7
Linux 64 bit 2.7, 3.4 and newer Yes
Mac OS 64 bit 2.7, 3.4 and newer Yes
Windows 32 and 64 bit 2.7, 3.4 and newer Yes

2.2 Instructions

2.2.1 Conda Install

Please follow the instructions in the Installation Guide.

2.2.2 Manual Install

Instructions for installing MOSEK Optimization Suite can in located in the Installation Guide.

Subsequently, let <MSKHOME> denote where MOSEK is installed

The relevant files of the MOSEK Optimizer API for Python are organized as reported in Table 2.1.

Table 2.1: Relevant files for the MOSEK Optimizer API for Python.

Relative Path Description Label
<MSKHOME>/mosek/8/tools/platform/<PLATFORM>/python/2 Python 2 install PYTHON2DIR
<MSKHOME>/mosek/8/tools/platform/<PLATFORM>/python/3 Python 3 install PYTHON3DIR
<MSKHOME>/mosek/8/tools/examples/python Examples EXDIR
<MSKHOME>/mosek/8/tools/examples/data Additional data MISCDIR

Install the Package

To install MOSEK run the setup.py script located in <PYTHON2DIR> or <PYTHON3DIR> depending on
the Python version you want to use. For instance, to install MOSEK for Python 3 on a user level, i.e.,
with no special system privilegdes needed, type

3

http://docs.mosek.com/8.0/install/index.html
http://docs.mosek.com/8.0/install/index.html

MOSEK Optimizer API for Python, Release 8.0.0.94

$ python3 <PYTHON3DIR>/setup.py install --user

on Linux and Mac OS or

C:\> python3 <PYTHON3DIR>\setup.py install --user

on Windows.

For a system wide installation drop the --user flag.

2.2.3 PIP Install

A simple PIP installer is available on the MOSEK Github repository. Atlthough there is a MOSEK
package in the official PIP repository then it is not created by MOSEK. It cannot be recommended to
use that package.

2.3 Testing the Installation

The MOSEK Optimizer API for Python installation can be tested by running some of the enclosed
examples. Indeed to run one of the distributed examples, open a terminal and change folder to <EXDIR>
i.e.

cd <EXDIR>

then use your Python interpreter to run the example. For instance to execute example lo1 type

python lo1.py

4 Chapter 2. Installation

https://github.com/MOSEK/Mosek.pip

CHAPTER

THREE

BASIC TUTORIALS

In this section a number of examples is provided to demonstrate the functionality required for solving
linear, conic, semidefinite and quadratic problems as well as mixed integer problems.

• Basic tutorial : This is the simplest tutorial: it solves a linear optimization problem read from file.
It will show how

– setup the MOSEK environment and problem task,

– run the solver and

– check the optimization results.

• Linear optimization tutorial : It shows how to input a linear program. It will show how

– define variables and their bounds,

– define constraints and their bounds,

– define a linear objective function,

– input a linear program but rows or by column.

– retrieve the solution.

• Conic quadratic optimization tutorial : The basic steps needed to formulate a conic quadratic
program are introduced:

– define quadratic cones,

– assign the relevant variables to their cones.

• Semidefinite optimization tutorial : How to input semidefintite optimization problems is the topic
of this tutorial, and in particular how to

– input semidefinite matrices and in sparse format,

– add semidefinite matrix variable and

– formulate linear constraints and objective function based on matrix variables.

• Mixed-Integer optimization tutorial : This tutorial shows how integrality conditions can be speci-
fied.

• Quadratic optimization tutorial : It shows how to input quadratic terms in the objective function
and constraints.

• Response code tutorial : How to deal with the termination and solver status code is the topic of
this tutorial:

– what are termination and termination code,

– how to check for errors and

– which are the best practice to deal with them.

This is a very important tutorial, every user should go through it.

• Reoptimization tutorial : This tutorial gives information on how to

5

MOSEK Optimizer API for Python, Release 8.0.0.94

– modify linear constraints,

– add new variables/constraints and

– reoptimize the given problem, i.e. run the MOSEK optimizer again.

• Solution analysis : This tutorial shows how the user can analyze the solution returned by the
solver.

• Parameter setting tutorial : This tutorial shows how to set the solver parameters.

3.1 The Basics Tutorial

The simplest program using the MOSEK Python interface can be described shortly:

1. Create an environment.

2. Set up environment specific data and initialize the environment.

3. Create a task.

4. Load a problem into the task.

5. Optimize the problem.

6. Fetch the result.

7. Delete the environment and task.

3.1.1 The environment and the task

The first MOSEK related step in any program that employs MOSEK is to create an environment
object. The environment contains environment specific data such as information about the license file,
streams for environment messages etc. When this is done one or more task objects can be created. Each
task is associated with a single environment and defines a complete optimization problem as well as task
message streams and optimization parameters.

In Python, the creation of an environment and a task would look something like this:

Create an environment
env = Env()

Create a task
task = env.Task()

Load a problem into the task, optimize etc.

When done, tasks and environments may be disposed explicitly by calling the dispose method. This is
not strictly necessary, but it will free up allocated resources and checked-out licenses immediately instead
of when the garbage collector runs. From Python 2.6 and later the with construction can be used to
dispose objects automatically when they drop of out of the with scope:

Create an environment
with Env() as env:

Create a task
with env.Task() as task:

Load a problem into the task, optimize etc.

Please note that multiple tasks should, if possible, share the same environment.

6 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

3.1.2 Example: Simple Working Example

The simple example in Listing 3.1 shows a working Python program which

• creates an environment and a task,

• reads a problem from a file,

• optimizes the problem, and

• writes the solution to a file.

Listing 3.1: A simple code solving a problem loaded from file.

import mosek
import sys

def streamprinter(msg):
sys.stdout.write (msg)
sys.stdout.flush ()

if len(sys.argv) <= 1:
print ("Missing argument, syntax is:")
print (" simple inputfile [solutionfile]")

else:
Create the mosek environment.
with mosek.Env () as env:

Create a task object linked with the environment env.
We create it with 0 variables and 0 constraints initially,
since we do not know the size of the problem.
with env.Task (0, 0) as task:

task.set_Stream (mosek.streamtype.log, streamprinter)

We assume that a problem file was given as the first command
line argument (received in `argv')

task.readdata (sys.argv[1])

Solve the problem
task.optimize ()

Print a summary of the solution
task.solutionsummary (mosek.streamtype.log)

If an output file was specified, write a solution
if len(sys.argv) >= 3:

We define the output format to be OPF, and tell MOSEK to
leave out parameters and problem data from the output file.
task.putintparam (mosek.iparam.write_data_format, mosek.dataformat.op)
task.putintparam (mosek.iparam.opf_write_solutions, mosek.onoffkey.on)
task.putintparam (mosek.iparam.opf_write_hints, mosek.onoffkey.off)
task.putintparam (mosek.iparam.opf_write_parameters, mosek.onoffkey.off)
task.putintparam (mosek.iparam.opf_write_problem, mosek.onoffkey.off)

task.writedata (sys.argv[2])

Reading and Writing Problems

Use the task.writedata function to write a problem to a file. By default, when not choosing any
specific file format for the parameter iparam.write_data_format , MOSEK will determine the output
file format by the extension of the file name:

3.1. The Basics Tutorial 7

MOSEK Optimizer API for Python, Release 8.0.0.94

task.writedata (sys.argv[2])

Similarly, controlled by iparam.read_data_format , the function task.readdata can read a problem
from a file:

task.readdata (sys.argv[1])

Working with the problem data

An optimization problem consists of several components; objective, objective sense, constraints, variable
bounds etc.

Therefore, the interface provides a number of methods to operate on the task specific data, all of which
are listed under the Task class-specification.

Setting parameters

Apart from the problem data, the task contains a number of parameters defining the behavior of
MOSEK. For example the iparam.optimizer parameter defines which optimizer to use. There are
three kinds of parameters in MOSEK

• Integer parameters that can be set with task.putintparam ,

• Double parameters that can be set with task.putdouparam , and

• string parameters that can be set with task.putstrparam ,

The values for integer parameters are either simple integer values or enum values. See Section 3.10 for
more details on how to set parameters.

A complete list of all parameters is found in Section 16.4 .

3.2 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem
of the following form:

Minimize or maximize the objective function

𝑛−1∑︁
𝑗=0

𝑐𝑗𝑥𝑗 + 𝑐𝑓

subject to the linear constraints

𝑙𝑐𝑘 ≤
𝑛−1∑︁
𝑗=0

𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

and the bounds

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

where we have used the problem elements:

• 𝑚 and 𝑛 which are the number of constraints and variables respectively,

• 𝑥 which is the variable vector of length 𝑛,

• 𝑐 which is a coefficient vector of size 𝑛

8 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

𝑐 =

⎡⎢⎣ 𝑐0
...

𝑐𝑛−1

⎤⎥⎦ ,

• 𝑐𝑓 which is a constant,

• 𝐴 which is a 𝑚× 𝑛 matrix of coefficients is given by

𝐴 =

⎡⎢⎣ 𝑎0,0 · · · 𝑎0,(𝑛−1)

... · · ·
...

𝑎(𝑚−1),0 · · · 𝑎(𝑚−1),(𝑛−1)

⎤⎥⎦ ,

• 𝑙𝑐 and 𝑢𝑐 which specify the lower and upper bounds on constraints respectively, and

• 𝑙𝑥 and 𝑢𝑥 which specifies the lower and upper bounds on variables respectively.

Note: Please note the unconventional notation using 0 as the first index rather than 1. Hence, 𝑥0 is
the first element in variable vector 𝑥.

3.2.1 Example LO1

The following is an example of a linear optimization problem:

maximize 3𝑥0 + 1𝑥1 + 5𝑥2 + 1𝑥3

subject to 3𝑥0 + 1𝑥1 + 2𝑥2 = 30,
2𝑥0 + 1𝑥1 + 3𝑥2 + 1𝑥3 ≥ 15,

2𝑥1 + 3𝑥3 ≤ 25,

(3.1)

having the bounds

0 ≤ 𝑥0 ≤ ∞,
0 ≤ 𝑥1 ≤ 10,
0 ≤ 𝑥2 ≤ ∞,
0 ≤ 𝑥3 ≤ ∞.

Solving the problem

To solve the problem above we go through the following steps:

1. Create an environment.

2. Create an optimization task.

3. Load a problem into the task object.

4. Optimization.

5. Extracting the solution.

Below we explain each of these steps.

3.2. Linear Optimization 9

MOSEK Optimizer API for Python, Release 8.0.0.94

Create an environment.

Before setting up the optimization problem, a MOSEK environment must be created. All tasks in the
program should share the same environment.

Make mosek environment
with mosek.Env() as env:

Create an optimization task.

Next, an empty task object is created:

Create a task object
with env.Task(0,0) as task:

Attach a log stream printer to the task
task.set_Stream (mosek.streamtype.log, streamprinter)

We also connect a call-back function to the task log stream. Messages related to the task are passed
to the call-back function. In this case the stream call-back function writes its messages to the standard
output stream.

Load a problem into the task object.

Before any problem data can be set, variables and constraints must be added to the problem via calls to
the functions task.appendcons and task.appendvars .

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

New variables can now be referenced from other functions with indexes in 0, . . . , numvar − 1 and new
constraints can be referenced with indexes in 0, . . . , numcon − 1. More variables and/or constraints can
be appended later as needed, these will be assigned indexes from numvar/numcon and up.

Next step is to set the problem data. We loop over each variable index 𝑗 = 0, . . . , numvar − 1 calling
functions to set problem data. We first set the objective coefficient 𝑐𝑗 = c[j] by calling the function
task.putcj .

task.putcj(j,c[j])

The bounds on variables are stored in the arrays

Bound keys for variables
bkx = [mosek.boundkey.lo,

mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo]

Bound values for variables
blx = [0.0, 0.0, 0.0, 0.0]
bux = [+inf, 10.0, +inf, +inf]

and are set with calls to task.putvarbound .

10 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j,bkx[j],blx[j],bux[j])

The Bound key stored in bkx specify the type of the bound according to Table 3.1.

Table 3.1: Bound keys as defined in the enum boundkey.

Bound key Type of bound Lower bound Upper bound
boundkey.fx 𝑢𝑗 = 𝑙𝑗 Finite Identical to the lower bound
boundkey.fr Free −∞ +∞
boundkey.lo 𝑙𝑗 ≤ · · · Finite +∞
boundkey.ra 𝑙𝑗 ≤ · · · ≤ 𝑢𝑗 Finite Finite
boundkey.up · · · ≤ 𝑢𝑗 −∞ Finite

Interpretation of the bound keys.

For instance bkx[0]= boundkey.lo means that 𝑥0 ≥ 𝑙𝑥0 . Finally, the numerical values of the bounds on
variables are given by

𝑙𝑥𝑗 = blx[j]

and

𝑢𝑥
𝑗 = bux[j].

Recall that in our example the 𝐴 matrix is given by

𝐴 =

⎡⎣ 3 1 2 0
2 1 3 1
0 2 0 3

⎤⎦ .

This matrix is stored in sparse format in the arrays:

asub = [[0, 1],
[0, 1, 2],
[0, 1],
[1, 2]]

aval = [[3.0, 2.0],
[1.0, 1.0, 2.0],
[2.0, 3.0],
[1.0, 3.0]]

The array aval[j] contains the non-zero values of column 𝑗 and asub[j] contains the row index of
these non-zeros.

Using the function task.putacol we set column 𝑗 of 𝐴

task.putacol(j, # Variable (column) index.
asub[j], # Row index of non-zeros in column j.
aval[j]) # Non-zero Values of column j.

Alternatively, the same 𝐴 matrix can be set one row at a time; please see Listing 3.3.

Finally, the bounds on each constraint are set by looping over each constraint index 𝑖 = 0, . . . , numcon−1

Set the bounds on constraints.
blc[i] <= constraint_i <= buc[i]
for i in range(numcon):

task.putconbound(i,bkc[i],blc[i],buc[i])
task.putconboundslice(0,numcon, bkc,blc,buc);

3.2. Linear Optimization 11

MOSEK Optimizer API for Python, Release 8.0.0.94

Optimization

After the problem is set-up the task can be optimized by calling the function task.optimize .

task.optimize()

Extracting the solution.

After optimizing the status of the solution is examined with a call to task.getsolsta . If the solution
status is reported as solsta.optimal or solsta.near_optimal the solution is extracted in the lines
below:

xx = [0.]*numvar
task.getxx(mosek.soltype.bas, # Request the basic solution.

xx)

The task.getxx function obtains the solution. MOSEK may compute several solutions depending on
the optimizer employed. In this example the basic solution is requested by setting the first argument to
soltype.bas .

Catching exceptions

We cache any exceptions thrown by MOSEK in the lines:

except mosek.Exception as e:
print ("ERROR: %s" % str(e.errno))
if e.msg is not None:

print ("\t%s" % e.msg)
sys.exit(1)

The types of exceptions that MOSEK can throw can be seen in 16.5 .

Source code for lo1

Listing 3.2: Linear optimization example: complete listing.

import sys
import mosek

Since the value of infinity is ignored, we define it solely
for symbolic purposes
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main ():
Make mosek environment
with mosek.Env() as env:

Create a task object
with env.Task(0,0) as task:

Attach a log stream printer to the task
task.set_Stream (mosek.streamtype.log, streamprinter)

Bound keys for constraints

12 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

bkc = [mosek.boundkey.fx,
mosek.boundkey.lo,
mosek.boundkey.up]

Bound values for constraints
blc = [30.0, 15.0, -inf]
buc = [30.0, +inf, 25.0]

Bound keys for variables
bkx = [mosek.boundkey.lo,

mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo]

Bound values for variables
blx = [0.0, 0.0, 0.0, 0.0]
bux = [+inf, 10.0, +inf, +inf]

Objective coefficients
c = [3.0, 1.0, 5.0, 1.0]

Below is the sparse representation of the A
matrix stored by column.
asub = [[0, 1],

[0, 1, 2],
[0, 1],
[1, 2]]

aval = [[3.0, 2.0],
[1.0, 1.0, 2.0],
[2.0, 3.0],
[1.0, 3.0]]

numvar = len(bkx)
numcon = len(bkc)

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j,c[j])

Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j,bkx[j],blx[j],bux[j])

Input column j of A
task.putacol(j, # Variable (column) index.

asub[j], # Row index of non-zeros in column j.
aval[j]) # Non-zero Values of column j.

Set the bounds on constraints.
blc[i] <= constraint_i <= buc[i]
for i in range(numcon):

task.putconbound(i,bkc[i],blc[i],buc[i])
task.putconboundslice(0,numcon, bkc,blc,buc);

3.2. Linear Optimization 13

MOSEK Optimizer API for Python, Release 8.0.0.94

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.maximize)

Solve the problem
task.optimize()
Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

Get status information about the solution
solsta = task.getsolsta(mosek.soltype.bas)

if (solsta == mosek.solsta.optimal or
solsta == mosek.solsta.near_optimal):

xx = [0.]*numvar
task.getxx(mosek.soltype.bas, # Request the basic solution.

xx)
print ("Optimal solution: ")
for i in range(numvar):

print ("x["+str(i)+"]="+str(xx[i]))
elif (solsta == mosek.solsta.dual_infeas_cer or

solsta == mosek.solsta.prim_infeas_cer or
solsta == mosek.solsta.near_dual_infeas_cer or
solsta == mosek.solsta.near_prim_infeas_cer):

print("Primal or dual infeasibility certificate found.\n")
elif solsta == mosek.solsta.unknown:

print("Unknown solution status")
else:

print("Other solution status")

call the main function
try:

main ()
except mosek.Exception as e:

print ("ERROR: %s" % str(e.errno))
if e.msg is not None:

print ("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

sys.exit(0)

Row-wise input

In the previous example the 𝐴 matrix is set one column at a time. Alternatively the same matrix can be
set one row at a time or the two methods can be mixed as in the example in Section 3.8 . The following
example show how to set the 𝐴 matrix by rows

Listing 3.3: Example showing how to input the 𝐴 matrix row-wise.

import sys
import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

14 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

sys.stdout.write(text)
sys.stdout.flush()

We might write everything directly as a script, but it looks nicer
to create a function.
def main ():

Make a MOSEK environment
with mosek.Env () as env:

Attach a printer to the environment
env.set_Stream (mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0,0) as task:

Attach a printer to the task
task.set_Stream (mosek.streamtype.log, streamprinter)

Bound keys for constraints
bkc = [mosek.boundkey.fx,

mosek.boundkey.lo,
mosek.boundkey.up]

Bound values for constraints
blc = [30.0, 15.0, -inf]
buc = [30.0, +inf, 25.0]
Bound keys for variables
bkx = [mosek.boundkey.lo,

mosek.boundkey.ra,
mosek.boundkey.lo,
mosek.boundkey.lo]

Bound values for variables
blx = [0.0, 0.0, 0.0, 0.0]
bux = [+inf, 10.0, +inf, +inf]
Objective coefficients

c = [3.0, 1.0, 5.0, 1.0]

We input the A matrix column-wise
asub contains row indexes
asub = [[0, 1, 2],

[0, 1, 2, 3],
[0, 3]]

acof contains coefficients
aval = [[3.0, 1.0, 2.0],

[2.0, 1.0, 3.0, 1.0],
[2.0, 3.0]]

numvar = len(bkx)
numcon = len(bkc)
Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

#Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j,c[j])
Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putbound(mosek.accmode.var,j,bkx[j],blx[j],bux[j])

for i in range(numcon):
task.putbound(mosek.accmode.con,i,bkc[i],blc[i],buc[i])

3.2. Linear Optimization 15

MOSEK Optimizer API for Python, Release 8.0.0.94

Input row i of A
task.putarow(i, # Row index.

asub[i], # Column indexes of non-zeros in row i.
aval[i]); # Non-zero Values of row i.

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.maximize)

Optimize the task
task.optimize()

Print a summary containing information
#about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

prosta = task.getprosta(mosek.soltype.bas)
solsta = task.getsolsta(mosek.soltype.bas)

Output a solution
xx = [0.]*numvar
task.getxx(mosek.soltype.bas,

xx)

if solsta == mosek.solsta.optimal or solsta == mosek.solsta.near_optimal:
print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.near_dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.near_prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main ()
except mosek.Exception as e:

print ("ERROR: %s" % str(e.errno))
if e.msg is not None:

print ("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

sys.exit(0)

3.3 Conic Quadratic Optimization

Conic optimization is a generalization of linear optimization, allowing constraints of the type

𝑥𝑡 ∈ 𝒦𝑡,

where 𝑥𝑡 is a subset of the problem variables and 𝒦𝑡 is a convex cone. Actually, since the set R𝑛 of real
numbers is also a convex cone, all variables can in fact be partitioned into subsets belonging to separate
convex cones, simply stated 𝑥 ∈ 𝒦 .

16 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

MOSEK can solve conic quadratic optimization problems of the form

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,

where the domain restriction, 𝑥 ∈ 𝒦, implies that all variables are partitioned into convex cones

𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑝−1), with 𝑥𝑡 ∈ 𝒦𝑡 ⊆ R𝑛𝑡 .

For convenience, the user only specify subsets of variables 𝑥𝑡 belonging to cones 𝒦𝑡 different from the
set R𝑛𝑡 of real numbers. These cones can be a:

• Quadratic cone:

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥0 ≥

⎯⎸⎸⎷𝑛−1∑︁
𝑗=1

𝑥2
𝑗

⎫⎬⎭ .

• Rotated quadratic cone:

𝒬𝑛
r =

⎧⎨⎩𝑥 ∈ R𝑛 : 2𝑥0𝑥1 ≥
𝑛−1∑︁
𝑗=2

𝑥2
𝑗 , 𝑥0 ≥ 0, 𝑥1 ≥ 0

⎫⎬⎭ .

From these definition it follows that

(𝑥4, 𝑥0, 𝑥2) ∈ 𝒬3,

is equivalent to

𝑥4 ≥
√︁
𝑥2
0 + 𝑥2

2.

Furthermore, each variable may belong to one cone at most. The constraint 𝑥𝑖 − 𝑥𝑗 = 0 would however
allow 𝑥𝑖 and 𝑥𝑗 to belong to different cones with same effect.

3.3.1 Example CQO1

We want to solve the following Conic Optimization Problem problem:

minimize 𝑥4 + 𝑥5 + 𝑥6

subject to 𝑥1 + 𝑥2 + 2𝑥3 = 1,
𝑥1, 𝑥2, 𝑥3 ≥ 0,

𝑥4 ≥
√︀
𝑥2
1 + 𝑥2

2,
2𝑥5𝑥6 ≥ 𝑥2

3

(3.2)

is an example of a conic quadratic optimization problem. The problem involves some linear constraints,
a quadratic cone and a rotated quadratic cone.

Implementation

Problem (3.2) can be implemeted using the MOSEK Python API as follows:

3.3. Conic Quadratic Optimization 17

MOSEK Optimizer API for Python, Release 8.0.0.94

Listing 3.4: Source code solving problem (3.2).

import sys
import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

We might write everything directly as a script, but it looks nicer
to create a function.
def main ():

Make a MOSEK environment
with mosek.Env () as env:

Attach a printer to the environment
env.set_Stream (mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0,0) as task:

Attach a printer to the task
task.set_Stream (mosek.streamtype.log, streamprinter)

bkc = [mosek.boundkey.fx]
blc = [1.0]
buc = [1.0]

c = [0.0, 0.0, 0.0,
1.0, 1.0, 1.0]

bkx = [mosek.boundkey.lo,mosek.boundkey.lo,mosek.boundkey.lo,
mosek.boundkey.fr,mosek.boundkey.fr,mosek.boundkey.fr]

blx = [0.0, 0.0, 0.0,
-inf, -inf, -inf]

bux = [inf, inf, inf,
inf, inf, inf]

asub = [[0], [0], [0]]
aval = [[1.0], [1.0], [2.0]]

numvar = len(bkx)
numcon = len(bkc)
NUMANZ = 4

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

#Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

for j in range(numvar):
Set the linear term c_j in the objective.

task.putcj(j,c[j])
Set the bounds on variable j
blx[j] <= x_j <= bux[j]

task.putbound(mosek.accmode.var,j,bkx[j],blx[j],bux[j])

18 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

for j in range(len(aval)):
Input column j of A

task.putacol(j, # Variable (column) index.
asub[j], # Row index of non-zeros in column j.
aval[j]) # Non-zero Values of column j.

for i in range(numcon):
task.putbound(mosek.accmode.con,i,bkc[i],blc[i],buc[i])

Input the cones
task.appendcone(mosek.conetype.quad,

0.0,
[3, 0, 1])

task.appendcone(mosek.conetype.rquad,
0.0,
[4, 5, 2])

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.minimize)

Optimize the task
task.optimize()
Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

Output a solution
xx = [0.]*numvar
task.getxx(mosek.soltype.itr,

xx)

if solsta == mosek.solsta.optimal or solsta == mosek.solsta.near_optimal:
print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.near_dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.near_prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main ()
except mosek.Exception as e:

print ("ERROR: %s" % str(e.code))
if msg is not None:

print ("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

sys.exit(0)

3.3. Conic Quadratic Optimization 19

MOSEK Optimizer API for Python, Release 8.0.0.94

The only new function introduced in the example is task.appendcone , which is called here:

task.appendcone(mosek.conetype.quad,
0.0,
[3, 0, 1])

The first argument selects the type of quadratic cone. Either conetype.quad for a quadratic cone or
conetype.rquad for a rotated quadratic cone. The cone parameter 0.0 is currently not used by MOSEK
— simply passing 0.0 will work.

The last argument is a list of indexes of the variables in the cone.

3.4 Semidefinite Optimization

Semidefinite optimization is a generalization of conic quadratic optimization, allowing the use of matrix
variables belonging to the convex cone of positive semidefinite matrices

𝒮𝑟
+ =

{︀
𝑋 ∈ 𝒮𝑟 : 𝑧𝑇𝑋𝑧 ≥ 0, ∀𝑧 ∈ R𝑟

}︀
,

where 𝒮𝑟 is the set of 𝑟 × 𝑟 real-valued symmetric matrices.

MOSEK can solve semidefinite optimization problems of the form

minimize
∑︀𝑛−1

𝑗=0 𝑐𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+ 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢𝑐

𝑖 , 𝑖 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

𝑥 ∈ 𝒦, 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 0, . . . , 𝑝− 1

where the problem has 𝑝 symmetric positive semidefinite variables 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ of dimension 𝑟𝑗 with

symmetric coefficient matrices 𝐶𝑗 ∈ 𝒮𝑟𝑗 and 𝐴𝑖,𝑗 ∈ 𝒮𝑟𝑗 . We use standard notation for the matrix inner
product, i.e., for 𝐴,𝐵 ∈ R𝑚×𝑛 we have

⟨𝐴,𝐵⟩ :=

𝑚−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝐴𝑖𝑗𝐵𝑖𝑗 .

3.4.1 Example SDO1

The problem

minimize

⟨⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝑋

⟩
+ 𝑥0

subject to

⟨⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑋

⟩
+ 𝑥0 = 1,

⟨⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , 𝑋

⟩
+ 𝑥1 + 𝑥2 = 1/2,

𝑥0 ≥
√
𝑥1

2 + 𝑥2
2, 𝑋 ⪰ 0,

(3.3)

is a mixed semidefinite and conic quadratic programming problem with a 3-dimensional semidefinite
variable

𝑋 =

⎡⎣ 𝑋00 𝑋10 𝑋20

𝑋10 𝑋11 𝑋21

𝑋20 𝑋21 𝑋22

⎤⎦ ∈ 𝒮3
+,

20 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

and a conic quadratic variable (𝑥0, 𝑥1, 𝑥2) ∈ 𝒬3. The objective is to minimize

2(𝑋00 + 𝑋10 + 𝑋11 + 𝑋21 + 𝑋22) + 𝑥0,

subject to the two linear constraints

𝑋00 + 𝑋11 + 𝑋22 + 𝑥0 = 1,

and

𝑋00 + 𝑋11 + 𝑋22 + 2(𝑋10 + 𝑋20 + 𝑋21) + 𝑥1 + 𝑥2 = 1/2.

Problem (3.3) is implemented in Listing 3.5.

Listing 3.5: Source code solving problem (3.3).

import sys
import mosek

Since the value of infinity is ignored, we define it solely
for symbolic purposes
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

def main ():
Make mosek environment
with mosek.Env() as env:

Create a task object and attach log stream printer
with env.Task(0,0) as task:

task.set_Stream(mosek.streamtype.log, streamprinter)

Bound keys for constraints
bkc = [mosek.boundkey.fx,

mosek.boundkey.fx]

Bound values for constraints
blc = [1.0, 0.5]
buc = [1.0, 0.5]

Below is the sparse representation of the A
matrix stored by row.
asub = [[0],

[1, 2]]
aval = [[1.0],

[1.0, 1.0]]

conesub = [0, 1, 2]

barci = [0, 1, 1, 2, 2]
barcj = [0, 0, 1, 1, 2]
barcval = [2.0, 1.0, 2.0, 1.0, 2.0]

barai = [[0, 1, 2],
[0, 1, 2, 1, 2, 2]]

baraj = [[0, 1, 2],
[0, 0, 0, 1, 1, 2]]

baraval = [[1.0, 1.0, 1.0],

3.4. Semidefinite Optimization 21

MOSEK Optimizer API for Python, Release 8.0.0.94

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]

numvar = 3
numcon = len(bkc)
BARVARDIM = [3]

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append matrix variables of sizes in 'BARVARDIM'.
The variables will initially be fixed at zero.
task.appendbarvars(BARVARDIM)

Set the linear term c_0 in the objective.
task.putcj(0, 1.0)

for j in range(numvar):
Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j, mosek.boundkey.fr, -inf, +inf)

for i in range(numcon):
Set the bounds on constraints.
blc[i] <= constraint_i <= buc[i]
task.putconbound(i, bkc[i], blc[i], buc[i])

Input row i of A
task.putarow(i, # Constraint (row) index.

asub[i], # Column index of non-zeros in constraint j.
aval[i]) # Non-zero values of row j.

task.appendcone(mosek.conetype.quad,
0.0,
conesub)

symc = task.appendsparsesymmat(BARVARDIM[0],
barci,
barcj,
barcval)

syma0 = task.appendsparsesymmat(BARVARDIM[0],
barai[0],
baraj[0],
baraval[0])

syma1 = task.appendsparsesymmat(BARVARDIM[0],
barai[1],
baraj[1],
baraval[1])

task.putbarcj(0, [symc], [1.0])

task.putbaraij(0, 0, [syma0], [1.0])
task.putbaraij(1, 0, [syma1], [1.0])

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.minimize)

22 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

Solve the problem and print summary
task.optimize()
task.solutionsummary(mosek.streamtype.msg)

Get status information about the solution
prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

if (solsta == mosek.solsta.optimal or
solsta == mosek.solsta.near_optimal):

xx = [0.]*numvar
task.getxx(mosek.soltype.itr, xx)

lenbarvar = BARVARDIM[0] * (BARVARDIM[0]+1) / 2
barx = [0.]*int(lenbarvar)
task.getbarxj(mosek.soltype.itr, 0, barx)

print("Optimal solution:\nx=%s\nbarx=%s" % (xx,barx))
elif (solsta == mosek.solsta.dual_infeas_cer or

solsta == mosek.solsta.prim_infeas_cer or
solsta == mosek.solsta.near_dual_infeas_cer or
solsta == mosek.solsta.near_prim_infeas_cer):

print("Primal or dual infeasibility certificate found.\n")
elif solsta == mosek.solsta.unknown:

print("Unknown solution status")
else:

print("Other solution status")

call the main function
try:

main ()
except mosek.Exception as e:

print ("ERROR: %s" % str(e.errno))
if e.msg is not None:

print ("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

sys.exit(0)

Source code comments

This example introduces several new functions. The first new function task.appendbarvars is used to
append the semidefinite variable:

task.appendbarvars(BARVARDIM)

Symmetric matrices are created using the function task.appendsparsesymmat :

symc = task.appendsparsesymmat(BARVARDIM[0],
barci,
barcj,
barcval)

syma0 = task.appendsparsesymmat(BARVARDIM[0],
barai[0],
baraj[0],
baraval[0])

3.4. Semidefinite Optimization 23

MOSEK Optimizer API for Python, Release 8.0.0.94

syma1 = task.appendsparsesymmat(BARVARDIM[0],
barai[1],
baraj[1],
baraval[1])

The second argument specifies the dimension of the symmetric variable and the third argument gives the
number of non-zeros in the lower triangular part of the matrix. The next three arguments specify the
non-zeros in the lower-triangle in triplet format, and the last argument will be updated with a unique
index of the created symmetric matrix.

After one or more symmetric matrices have been created using task.appendsparsesymmat , we can
combine them to setup a objective matrix coefficient 𝐶𝑗 using task.putbarcj , which forms a linear
combination of one more symmetric matrices:

task.putbarcj(0, [symc], [1.0])

The second argument specify the semidefinite variable index 𝑗; in this example there is only a single
variable, so the index is 0. The next three arguments give the number of matrices used in the linear com-
bination, their indices (as returned by task.appendsparsesymmat), and the weights for the individual
matrices, respectively. In this example, we form the objective matrix coefficient directly from a single
symmetric matrix.

Similary, a constraint matrix coefficient 𝐴𝑖𝑗 is setup by the function task.putbaraij :

task.putbaraij(0, 0, [syma0], [1.0])
task.putbaraij(1, 0, [syma1], [1.0])

where the second argument specifies the constraint number (the corresponding row of 𝐴), and the third
argument specifies the semidefinite variable index (the corresponding column of 𝐴). The next three
arguments specify a weighted combination of symmetric matrices used to form the constraint matrix
coefficient. After the problem is solved, we read the solution using task.getbarxj :

task.getbarxj(mosek.soltype.itr, 0, barx)

The function returns the half-vectorization of 𝑋𝑗 (the lower triangular part stacked as a column vector),
where the semidefinite variable index 𝑗 is given in the second argument, and the third argument is a
pointer to an array for storing the numerical values.

3.5 Quadratic Optimization

MOSEK can solve quadratic and quadratically constrained convex problems. This class of problems
can be formulated as follows:

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

(3.4)

Without loss of generality it is assumed that 𝑄𝑜 and 𝑄𝑘 are all symmetric because

𝑥𝑇𝑄𝑥 =
1

2
𝑥𝑇 (𝑄 + 𝑄𝑇)𝑥.

This implies that a non-symmetric 𝑄 can be replaced by the symmetric matrix 1
2 (𝑄 + 𝑄𝑇).

The problem is required to be convex. More precisely, the matrix 𝑄𝑜 must be positive semi-definite and
the 𝑘th constraint must be of the form

𝑙𝑐𝑘 ≤ 1

2
𝑥𝑇𝑄𝑘𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑘,𝑗𝑥𝑗 (3.5)

24 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

with a negative semi-definite 𝑄𝑘 or of the form

1

2
𝑥𝑇𝑄𝑘𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘.

with a positive semi-definite 𝑄𝑘. This implies that quadratic equalities are not allowed. Specifying a
non-convex problem will result in an error when the optimizer is called.

A matrix is positive semidefinite if the smallest eigenvalue of the matrix is nonnegative. An alternative
statement of the positive semidefinite requirement is

𝑥𝑇𝑄𝑥 ≥ 0, ∀𝑥.

If 𝑄 is not positive semidefinite, then MOSEK will not produce reliable results or work at all.

One way of checking whether 𝑄 is positive semidefinite is to check whether all the eigenvalues of 𝑄 are
nonnegative.

3.5.1 Example: Quadratic Objective

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3

𝑥 ≥ 0.
(3.6)

For the example (3.6) implies that

𝑄 =

⎡⎣ 2 0 −1
0 0.2 0
−1 0 2

⎤⎦ , 𝑐 =

⎡⎣ 0
−1
0

⎤⎦ , 𝐴 =
[︀

1 1 1
]︀
,

and that

𝑙𝑐 = 1, 𝑢𝑐 = ∞, 𝑙𝑥 =

⎡⎣ 0
0
0

⎤⎦ and 𝑢𝑥 =

⎡⎣ ∞
∞
∞

⎤⎦
Please note the explicit 1

2 in the objective function of (3.4) which implies that diagonal elements must
be doubled in 𝑄, i.e. 𝑄11 = 2, whereas the coefficient in (3.6) is 1 in front of 𝑥2

1.

Important: MOSEK assumes that the 𝑄 matrix is symmetric, i.e. 𝑄 = 𝑄𝑇 , and that 𝑄 is positive
semidefinite.

The source code follows in Listing 3.6.

Listing 3.6: Source code implementing problem (3.6).

import sys
import os

import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

3.5. Quadratic Optimization 25

MOSEK Optimizer API for Python, Release 8.0.0.94

We might write everything directly as a script, but it looks nicer
to create a function.
def main ():

Open MOSEK and create an environment and task
Make a MOSEK environment
with mosek.Env () as env:

Attach a printer to the environment
env.set_Stream (mosek.streamtype.log, streamprinter)
Create a task
with env.Task() as task:

task.set_Stream (mosek.streamtype.log, streamprinter)
Set up and input bounds and linear coefficients
bkc = [mosek.boundkey.lo]
blc = [1.0]
buc = [inf]
numvar = 3
bkx = [mosek.boundkey.lo]*numvar
blx = [0.0]*numvar
bux = [inf]*numvar
c = [0.0, -1.0, 0.0]
asub = [[0], [0], [0]]
aval = [[1.0], [1.0], [1.0]]

numvar = len(bkx)
numcon = len(bkc)

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j,c[j])
Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putbound(mosek.accmode.var,j,bkx[j],blx[j],bux[j])
Input column j of A
task.putacol(j, # Variable (column) index.

asub[j], # Row index of non-zeros in column j.
aval[j]) # Non-zero Values of column j.

for i in range(numcon):
task.putbound(mosek.accmode.con,i,bkc[i],blc[i],buc[i])

Set up and input quadratic objective
qsubi = [0, 1, 2, 2]
qsubj = [0, 1, 0, 2]
qval = [2.0, 0.2, -1.0, 2.0]

task.putqobj(qsubi,qsubj,qval)

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.minimize)

Optimize
task.optimize()
Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

26 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

Output a solution
xx = [0.]*numvar
task.getxx(mosek.soltype.itr,

xx)

if solsta == mosek.solsta.optimal or solsta == mosek.solsta.near_optimal:
print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.near_dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.near_prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main()
except mosek.Exception as e:

print ("ERROR: %s" % str(e.errno))
if e.msg is not None:

import traceback
traceback.print_exc()
print ("\t%s" % e.msg)

sys.exit(1)
except:

import traceback
traceback.print_exc()
sys.exit(1)

print ("Finished OK")
sys.exit(0)

Example code comments

Most of the functionality in this example has already been explained for the linear optimization example
in Section 3.2 and it will not be repeated here.

This example introduces one new function, task.putqobj , which is used to input the quadratic terms
of the objective function.

Since 𝑄𝑜 is symmetric only the lower triangular part of 𝑄𝑜 is inputted. The upper part of 𝑄𝑜 is computed
by MOSEK using the relation

𝑄𝑜
𝑖𝑗 = 𝑄𝑜

𝑗𝑖.

Entries from the upper part may not appear in the input.

The lower triangular part of the matrix 𝑄𝑜 is specified using an unordered sparse triplet format (for
details, see Section 16.1.3):

qsubi = [0, 1, 2, 2]
qsubj = [0, 1, 0, 2]
qval = [2.0, 0.2, -1.0, 2.0]

3.5. Quadratic Optimization 27

MOSEK Optimizer API for Python, Release 8.0.0.94

Please note that

• only non-zero elements are specified (any element not specified is 0 by definition),

• the order of the non-zero elements is insignificant, and

• only the lower triangular part should be specified.

Finally, the matrix 𝑄𝑜 is loaded into the task:

task.putqobj(qsubi,qsubj,qval)

3.5.2 Example: Quadratic constraints

In this section describes how to solve a problem with quadratic constraints. Please note that quadratic
constraints are subject to the convexity requirement (3.5).

Consider the problem:

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3 − 𝑥2
1 − 𝑥2

2 − 0.1𝑥2
3 + 0.2𝑥1𝑥3,

𝑥 ≥ 0.

This is equivalent to

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥
subject to 1

2𝑥
𝑇𝑄0𝑥 + 𝐴𝑥 ≥ 𝑏,

(3.7)

where

𝑄𝑜 =

⎡⎣ 2 0 −1
0 0.2 0
−1 0 2

⎤⎦ , 𝑐 =
[︀

0 − 10
]︀
, 𝐴 =

[︀
1 1 1

]︀
, 𝑏 = 1.

𝑄0 =

⎡⎣ −2 0 0.2
0 −2 0

0.2 0 −0.2

⎤⎦ .

Listing 3.7: Script implementing problem (3.7).

import sys
import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

We might write everything directly as a script, but it looks nicer
to create a function.
def main ():

Make a MOSEK environment
with mosek.Env () as env:

Attach a printer to the environment
env.set_Stream (mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0,0) as task:

28 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

Attach a printer to the task
task.set_Stream (mosek.streamtype.log, streamprinter)

Set up and input bounds and linear coefficients
bkc = [mosek.boundkey.lo]
blc = [1.0]
buc = [inf]

bkx = [mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo]

blx = [0.0, 0.0, 0.0]
bux = [inf, inf, inf]

c = [0.0, -1.0, 0.0]

asub = [[0], [0], [0]]
aval = [[1.0], [1.0], [1.0]]

numvar = len(bkx)
numcon = len(bkc)
NUMANZ = 3
Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

#Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

#Optionally add a constant term to the objective.
task.putcfix(0.0)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j,c[j])
Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putbound(mosek.accmode.var,j,bkx[j],blx[j],bux[j])
Input column j of A
task.putacol(j, # Variable (column) index.

asub[j], # Row index of non-zeros in column j.
aval[j]) # Non-zero Values of column j.

for i in range(numcon):
task.putbound(mosek.accmode.con,i,bkc[i],blc[i],buc[i])

Set up and input quadratic objective

qsubi = [0, 1, 2, 2]
qsubj = [0, 1, 0, 2]
qval = [2.0, 0.2, -1.0, 2.0]

task.putqobj(qsubi,qsubj,qval)

The lower triangular part of the Q^0
matrix in the first constraint is specified.
This corresponds to adding the term
- x0^2 - x1^2 - 0.1 x2^2 + 0.2 x0 x2

qsubi = [0, 1, 2, 2]
qsubj = [0, 1, 2, 0]

3.5. Quadratic Optimization 29

MOSEK Optimizer API for Python, Release 8.0.0.94

qval = [-2.0, -2.0, -0.2, 0.2]

put Q^0 in constraint with index 0.

task.putqconk (0, qsubi,qsubj, qval);

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.minimize)

Optimize the task
task.optimize()

Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

prosta = task.getprosta(mosek.soltype.itr)
solsta = task.getsolsta(mosek.soltype.itr)

Output a solution
xx = [0.]*numvar
task.getxx(mosek.soltype.itr,

xx)

if solsta == mosek.solsta.optimal or solsta == mosek.solsta.near_optimal:
print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.near_dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.near_prim_infeas_cer:
print("Primal or dual infeasibility.\n")

elif mosek.solsta.unknown:
print("Unknown solution status")

else:
print("Other solution status")

call the main function
try:

main ()
except mosek.Exception as e:

print ("ERROR: %s" % str(code))
if msg is not None:

print ("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

sys.exit(0)

The only new function introduced in this example is task.putqconk , which is used to add quadratic
terms to the constraints. While task.putqconk add quadratic terms to a specific constraint, it is also
possible to input all quadratic terms in all constraints in one chunk using the task.putqcon function.

30 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

3.6 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is denoted
an integer optimization problem.

Section 3.6.2 shows how to input an initial feasible solution to help the solver.

3.6.1 Example MILO1

In this section the example

maximize 𝑥0 + 0.64𝑥1

subject to 50𝑥0 + 31𝑥1 ≤ 250,
3𝑥0 − 2𝑥1 ≥ −4,
𝑥0, 𝑥1 ≥ 0 and integer

(3.8)

is used to demonstrate how to solve a problem with integer variables.

The example (3.8) is almost identical to a linear optimization problem (see 3.2) except for some variables
being integer constrained. Therefore, only the specification of the integer constraints requires something
new compared to the linear optimization problem discussed previously.

In MOSEK these constraints are specified using the function task.putvartype as shown in the code:

task.putvartypelist([0, 1],
[mosek.variabletype.type_int,

mosek.variabletype.type_int])

The complete source for the example is listed Listing 3.8. Please note that when
task.getsolutionslice is called, the integer solution is requested by using soltype.itg . No dual
solution is defined for integer optimization problems.

Listing 3.8: Source code implementing problem (3.8).

import sys
import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

We might write everything directly as a script, but it looks nicer
to create a function.
def main ():

Make a MOSEK environment
with mosek.Env () as env:

Attach a printer to the environment
env.set_Stream (mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0,0) as task:

Attach a printer to the task
task.set_Stream (mosek.streamtype.log, streamprinter)

bkc = [mosek.boundkey.up, mosek.boundkey.lo]
blc = [-inf, -4.0]
buc = [250.0, inf]

3.6. Integer Optimization 31

MOSEK Optimizer API for Python, Release 8.0.0.94

bkx = [mosek.boundkey.lo, mosek.boundkey.lo]
blx = [0.0, 0.0]
bux = [inf, inf]

c = [1.0, 0.64]

asub = [[0, 1], [0, 1]]
aval = [[50.0, 3.0], [31.0, -2.0]]

numvar = len(bkx)
numcon = len(bkc)

Append 'numcon' empty constraints.
The constraints will initially have no bounds.
task.appendcons(numcon)

#Append 'numvar' variables.
The variables will initially be fixed at zero (x=0).
task.appendvars(numvar)

for j in range(numvar):
Set the linear term c_j in the objective.
task.putcj(j,c[j])
Set the bounds on variable j
blx[j] <= x_j <= bux[j]
task.putvarbound(j,bkx[j],blx[j],bux[j])
Input column j of A
task.putacol(j, # Variable (column) index.

asub[j], # Row index of non-zeros in column j.
aval[j]) # Non-zero Values of column j.

task.putconboundlist(range(numcon),bkc,blc,buc)

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.maximize)

Define variables to be integers
task.putvartypelist([0, 1],

[mosek.variabletype.type_int,
mosek.variabletype.type_int])

Optimize the task
task.optimize()

Print a summary containing information
about the solution for debugging purposes
task.solutionsummary(mosek.streamtype.msg)

prosta = task.getprosta(mosek.soltype.itg)
solsta = task.getsolsta(mosek.soltype.itg)

X

Output a solution
xx = [0.]*numvar
task.getxx(mosek.soltype.itg,xx)

if solsta in [mosek.solsta.integer_optimal, mosek.solsta.near_integer_optimal]:
print("Optimal solution: %s" % xx)

elif solsta == mosek.solsta.dual_infeas_cer:
print("Primal or dual infeasibility.\n")

elif solsta == mosek.solsta.prim_infeas_cer:

32 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

print("Primal or dual infeasibility.\n")
elif solsta == mosek.solsta.near_dual_infeas_cer:

print("Primal or dual infeasibility.\n")
elif solsta == mosek.solsta.near_prim_infeas_cer:

print("Primal or dual infeasibility.\n")
elif mosek.solsta.unknown:

if prosta == mosek.prosta.prim_infeas_or_unbounded:
print("Problem status Infeasible or unbounded.\n")

elif prosta == mosek.prosta.prim_infeas:
print("Problem status Infeasible.\n")

elif prosta == mosek.prosta.unkown:
print("Problem status unkown.\n")

else:
print("Other problem status.\n")

else:
print("Other solution status")

call the main function
try:

main ()
except mosek.Exception as msg:

#print "ERROR: %s" % str(code)
if msg is not None:

print ("\t%s" % msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

sys.exit(0)

Solving a mixed-integer optimization program could easily result in long running time. It is therefore of
interest to consider a termination criterion based on the maximum running time. This is possible setting
the dparam.mio_max_time . See Section 3.10 for more details on how to set solver parameters.

3.6.2 Specifying an initial solution

Integer optimization problems are generally hard to solve, but the solution time can often be reduced by
providing an initial solution for the solver. It is not necessary to specify the whole solution. By setting the
iparam.mio_construct_sol parameter to onoffkey.on and inputting values for the integer variables
only, will force MOSEK to compute the remaining continuous variable values.

If the specified integer solution is infeasible or incomplete, MOSEK will simply ignore it.

Consider the problem

maximize 7𝑥0 + 10𝑥1 + 𝑥2 + 5𝑥3

subject to 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 ≤ 2.5
𝑥0, 𝑥1, 𝑥2 ∈ Z

𝑥0, 𝑥1, 𝑥2, 𝑥3 ≥ 0

(3.9)

The following example demonstrates how to optimize the problem using a feasible starting solution
generated by selecting the integer values as 𝑥0 = 0, 𝑥1 = 2, 𝑥2 = 0.

Solution values can be set using task.putsolution (for inputting a whole solution) or
task.putsolutioni (for inputting solution values related to a single variable or constraint).

Listing 3.9: Implementation of problem (3.9) specifying an initial solution.

import sys
import mosek

3.6. Integer Optimization 33

MOSEK Optimizer API for Python, Release 8.0.0.94

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

We might write everything directly as a script, but it looks nicer
to create a function.
def main ():

Make a MOSEK environment
with mosek.Env () as env:

Attach a printer to the environment
env.set_Stream (mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0,0) as task:

Attach a printer to the task
task.set_Stream (mosek.streamtype.log, streamprinter)

bkc = [mosek.boundkey.up]
blc = [-inf,]
buc = [2.5]

bkx = [mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo,
mosek.boundkey.lo]

blx = [0.0, 0.0, 0.0, 0.0]
bux = [inf, inf, inf, inf]

c = [7.0, 10.0, 1.0, 5.0]

asub = [0, 0, 0, 0]
acof = [1.0, 1.0, 1.0, 1.0]

ptrb = [0, 1, 2, 3]
ptre = [1, 2, 3, 4]

numvar = len(bkx)
numcon = len(bkc)

Input linear data
task.inputdata(numcon,numvar,

c,0.0,
ptrb, ptre, asub, acof,
bkc, blc, buc,
bkx, blx, bux)

Input objective sense
task.putobjsense(mosek.objsense.maximize)

Define variables to be integers

task.putvartypelist([0, 1, 2],

34 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

[mosek.variabletype.type_int,
mosek.variabletype.type_int,
mosek.variabletype.type_int])

Construct an initial feasible solution from the
values of the integer valuse specified
task.putintparam(mosek.iparam.mio_construct_sol,

mosek.onoffkey.on);

Assign values 0,2,0 to integer variables. Important to
assign a value to all integer constrained variables.
task.putxxslice(mosek.soltype.itg,0,3,[0.0, 2.0, 0.0])

Optimize
task.optimize()

Did mosek construct a feasible initial solution ?
if task.getintinf(mosek.iinfitem.mio_construct_solution) > 0:

print("Objective value of constructed integer solution: %-24.12e" % task.
→˓getdouinf(mosek.dinfitem.mio_construct_solution_obj))

else:
print("Intial integer solution construction failed.");

if task.solutiondef(mosek.soltype.itg):

Output a solution
xx = [0.]*numvar
task.getxx(mosek.soltype.itg, xx)
print("Integer optimal solution")
for j in range(0,numvar) :

print("\tx[%d] = %e" % (j,xx[j]))
else:

print("No integer solution is available.")

call the main function
try:

main ()
except mosek.Exception as e:

print ("ERROR: %s" % str(e.errno))
if e.msg is not None:

print ("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

3.7 Optimizer Termination Handling

After solving an optimization problem with MOSEK an approriate action must be taken depending on
the outcome. Usually the expected outcome is an optimal solution, but there may be several situations
where this is not the result. E.g., if the problem is infeasible or nearly so or if the solver ran out of
memory or stalled while optimizing, the result may not be as expected.

This section discusses what should be considered when an optimization has ended unsuccessfully.

Before continuing, let us consider the four status codes available in MOSEK that is relevant for the
error handing:

• Termination code: It provides information about why the optimizer terminated. For instance if

3.7. Optimizer Termination Handling 35

MOSEK Optimizer API for Python, Release 8.0.0.94

a time limit has been specfied (this is common for mixed integer problems), the termination code
will tell if this termination limit was the cause of the termination. Note that reaching a prespecfied
time limit is not considered an exceptional case. It must be expected that this occurs occasionally.

• Response code: It is an information about the system status and the outcome of the call to a
MOSEK functionalities. This code is used to report the unexpected failures such as out of space.

MOSEK runs silently when no errors are encountered, while an exception is generated otherwise. See
16.5 for a list of possible exceptions.

• Solution status: It contains information about the status of the solution, e.g., whether the
solution is optimal or a certificate of infeasibility.

• Problem status: It describes what MOSEK knows about the feasibility of the problem, i.e., if
the is problem feasible or infeasible.

The problem status is mostly used for integer problems. For continuous problems a problem status of,
say, infeasible will always mean that the solution is a certificate of infeasibility. For integer problems it
is not possible to provide a certificate, and thus a separate problem status is useful.

Note that if we want to report, e.g., that the optimizer terminated due to a time limit or because it
stalled but with a feasible solution, we have to consider both the termination code, and the solution
status.

The following pseudo code demonstrates a best practice way of dealing with the status codes.

• if (the solution status is as expected)

– The normal case:

Do whatever that was planned. Note the response code is ignored because the solution has
the expected status. Of course we may check the response anyway if we like.

• else

– Exceptional case:

Based on solution status, response and termination codes take appropriate action.

In Listing 3.10 the pseudo code is implemented. The idea of the example is to read an optimization
problem from a file, e.g., an MPS file and optimize it. Based on status codes an appropriate action is
taken, which in this case is to print a suitable message.

Listing 3.10: A typical code that handle MOSEK response code.

import mosek
import sys

def streamprinter(text):
sys.stdout.write(text)
sys.stdout.flush()

def main(args):
if len(args) < 1:

print ("No input file specified")
return

else:
print ("Inputfile: %s" % args[0])

try:
with mosek.Env() as env:

with env.Task(0,0) as task:
task.set_Stream (mosek.streamtype.log, streamprinter)

task.readdata(args[0])

trmcode = task.optimize()

36 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

solsta = task.getsolsta(mosek.soltype.itr)

if solsta in [mosek.solsta.optimal,
mosek.solsta.near_optimal]:

print ("An optimal basic solution is located.")
task.solutionsummary(mosek.streamtype.log)

elif solsta in [mosek.solsta.dual_infeas_cer,
mosek.solsta.near_dual_infeas_cer]:

print ("Dual infeasibility certificate found.")
elif solsta in [mosek.solsta.prim_infeas_cerl,

mosek.solsta.near_prim_infeas_cer]:
print("Primal infeasibility certificate found.\n");

elif solsta == mosek.solsta.sta_unknown:
The solutions status is unknown. The termination code
indicating why the optimizer terminated prematurely.
print ("The solution status is unknown.")
print ("Termination code: %s" % str(trmcode))

else:
print ("An unexpected solution status is obtained.")

except mosek.MosekException as err:
print ("Generic error:")
print (err)

if __name__ == '__main__':
import sys
main(sys.argv[1:])

3.8 Problem Modification and Reoptimization

Often one might want to solve not just a single optimization problem, but a sequence of problem, each
differing only slightly from the previous one. This section demonstrates how to modify and re-optimize
an existing problem. The example we study is a simple production planning model.

Problem modifications regarding variables, cones, objective function and constraints can be grouped in
three categories:

• add/remove,

• coefficient modifications,

• bounds modifications.

These operations may be costly and, especially removing variables and constraints. Special care must
be taken with respect to constraints and variable indexes that may be invalidated.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more
efficiently exploiting the information and internal state from the previous execution.

For instance the former optimal solution may be still feasibile, but no more optimal; or for tiny modifi-
cations of the objective function it may be still optimal. This is a special case that we discuss in Section
15 .

In general, MOSEK exploits dual information and the availablity of an optimal basis from the previous
execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution.
Restarting capabilities for interior-point methods are still not reliable and effective as those for the simplex
algorithm. More information can be found in Chapter 10 of the book [Chv83] .

3.8. Problem Modification and Reoptimization 37

MOSEK Optimizer API for Python, Release 8.0.0.94

3.8.1 Example: Production Planning

A company manufactures three types of products. Suppose the stages of manufacturing can be split into
three parts, namely Assembly, Polishing and Packing. In the table below we show the time required for
each stage as well as the profit associated with each product.

Product no. Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)
0 2 3 2 1.50
1 4 2 3 2.50
2 3 3 2 3.00

With the current resources available, the company has 100, 000 minutes of assembly time, 50, 000 minutes
of polishing time and 60, 000 minutes of packing time available per year.

Now the question is how many items of each product the company should produce each year in order to
maximize profit?

Denoting the number of items of each type by 𝑥0, 𝑥1 and 𝑥2 , this problem can be formulated as the
linear optimization problem:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2

subject to 2𝑥0 + 4𝑥1 + 3𝑥2 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 ≤ 60000,

(3.10)

and

𝑥0, 𝑥1, 𝑥2 ≥ 0.

Code in Listing 3.11 loads and solves this problem:

Listing 3.11: How to load problem (3.10)

Create a MOSEK environment
with mosek.Env () as env:

Create a task
with env.Task(0,0) as task:

Attach a printer to the task
task.set_Stream (mosek.streamtype.log, streamprinter)

Bound keys for constraints
bkc = [mosek.boundkey.up,

mosek.boundkey.up,
mosek.boundkey.up]

Bound values for constraints
blc = [-inf, -inf, -inf]
buc = [100000.0 , 50000.0, 60000.0]

Bound keys for variables
bkx = [mosek.boundkey.lo,

mosek.boundkey.lo,
mosek.boundkey.lo]

Bound values for variables
blx = [0.0, 0.0, 0.0]
bux = [+inf, +inf, +inf]

Objective coefficients
csub = [0, 1, 2]
cval = [1.5, 2.5, 3.0]

We input the A matrix column-wise
asub contains row indexes
asub = [0, 1, 2,

38 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

0, 1, 2,
0, 1, 2]

acof contains coefficients
acof = [2.0, 3.0, 2.0,

4.0, 2.0, 3.0,
3.0, 3.0, 2.0]

aptrb and aptre contains the offsets into asub and acof where
columns start and end respectively
aptrb = [0, 3, 6]
aptre = [3, 6, 9]

numvar = len(bkx)
numcon = len(bkc)

Append the constraints
task.appendcons(numcon)

Append the variables.
task.appendvars(numvar)

Input objective
task.putcfix(0.0)
task.putclist(csub,cval)

Put constraint bounds
task.putconboundslice(0, numcon, bkc, blc, buc)

Put variable bounds
task.putvarboundslice(0, numvar,bkx, blx, bux)

Input A non-zeros by columns
for j in range(numvar):

ptrb,ptre = aptrb[j],aptre[j]
task.putacol(j,

asub[ptrb:ptre],
acof[ptrb:ptre])

Input the objective sense (minimize/maximize)
task.putobjsense(mosek.objsense.maximize)

Optimize the task
task.optimize()

Output a solution
xx = [0.]*numvar
task.getsolutionslice(mosek.soltype.bas,

mosek.solitem.xx,
0,numvar,
xx)

print ("xx =", xx)

3.8.2 Changing the A Matrix

Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds
to setting 𝑎0,0 = 3, which is done by calling the function task.putaij as shown below.

task.putaij(0, 0, 3.0)

3.8. Problem Modification and Reoptimization 39

MOSEK Optimizer API for Python, Release 8.0.0.94

The problem now has the form:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 ≤ 60000,

(3.11)

and

𝑥0, 𝑥1, 𝑥2 ≥ 0.

After changing the 𝐴 matrix we can find the new optimal solution by calling task.optimize again

3.8.3 Appending Variables

We now want to add a new product with the following data:

Product no. Assembly (minutes) Polishing (minutes) Packing (minutes) Profit ($)
3 4 0 1 1.00

This corresponds to creating a new variable 𝑥3 , appending a new column to the 𝐴 matrix and setting
a new value in the objective. We do this in Listing 3.12

Listing 3.12: How to add a column.

Append a new varaible x_3 to the problem */
task.appendvars(1)

Set bounds on new varaible
task.putbound(mosek.accmode.var,

task.getnumvar()-1,
mosek.boundkey.lo,
0,
+inf)

Change objective
task.putcj(task.getnumvar()-1,1.0)

Put new values in the A matrix
acolsub = [0, 2]
acolval = [4.0, 1.0]

task.putacol(task.getnumvar()-1, # column index
acolsub,
acolval)

After this operation the problem looks this way:

maximize 1.5𝑥0 + 2.5𝑥1 + 3.0𝑥2 + 1.0𝑥3

subject to 3𝑥0 + 4𝑥1 + 3𝑥2 + 4𝑥3 ≤ 100000,
3𝑥0 + 2𝑥1 + 3𝑥2 ≤ 50000,
2𝑥0 + 3𝑥1 + 2𝑥2 + 1𝑥3 ≤ 60000,

(3.12)

and

𝑥0, 𝑥1, 𝑥2, 𝑥3 ≥ 0.

3.8.4 Reoptimization

When task.optimize is called MOSEK will store the optimal solution internally. After a task has been
modified and task.optimize is called again the solution will automatically be used to reduce solution
time of the new problem, if possible.

40 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

In this case an optimal solution to problem (3.11) was found and then added a column was added to get
(3.12). We let MOSEK select the suitable simplex algorithm to perform reoptimization.

Change optimizer to simplex free and reoptimize
task.putintparam(mosek.iparam.optimizer,mosek.optimizertype.free_simplex)
task.optimize()

3.8.5 Appending Constraints

Now suppose we want to add a new stage to the production called Quality control for which 30000
minutes are available. The time requirement for this stage is shown below:

Product no. Quality control (minutes)
0 1
1 2
2 1
3 1

This corresponds to adding the constraint

𝑥0 + 2𝑥1 + 𝑥2 + 𝑥3 ≤ 30000

to the problem which is done in the following code:

Append a new constraint
task.appendcons(1)

Set bounds on new constraint
task.putconbound(task.getnumcon()-1, mosek.boundkey.up,-inf, 30000)

Put new values in the A matrix

arowsub = [0, 1, 2, 3]
arowval = [1.0, 2.0, 1.0, 1.0]

task.putarow(task.getnumcon()-1, # row index
arowsub,
arowval)

3.9 Solution Analysis

The main purpose of MOSEK is to solve optimization problems and therefore the most fundamental
question to be asked is whether the solution reported by MOSEK is a solution to the desired optimization
problem.

There can be several reasons why it might be not case. The most prominent reasons are:

• A wrong problem. The problem inputted to MOSEK is simply not the right problem, i.e. some
of the data may have been corrupted or the model has been incorrectly built.

• Numerical issues. The problem is badly scaled or otherwise badly posed.

• Other reasons. E.g. not enough memory or an explicit user request to stop.

The first step in verifying that MOSEK reports the expected solution is to inspect the solution summary
generated by MOSEK (see Section 3.9.1). The solution summary provides information about

• the problem and solution statuses,

• objective value and infeasibility measures for the primal solution, and

3.9. Solution Analysis 41

MOSEK Optimizer API for Python, Release 8.0.0.94

• objective value and infeasibility measures for the dual solution, where applicable.

By inspecting the solution summary it can be verified that MOSEK produces a feasible solution, and,
in the continuous case, the optimality can be checked using the dual solution. Furthermore, the problem
itself ca be inspected using the problem analyzer discussed in Section 13 .

If the summary reports conflicting information (e.g. a solution status that does not match the actual
solution), or the cause for terminating the solver before a solution was found cannot be traced back to
the reasons stated above, it may be caused by a bug in the solver; in this case, please contact MOSEK
support (see Section 1.2).

If it has been verified that MOSEK solves the problem correctly but the solution is still not as expected,
next step is to verify that the primal solution satisfies all the constraints. Hence, using the original
problem it must be determined whether the solution satisfies all the required constraints in the model.
For instance assume that the problem has the constraints

𝑥1 + 2𝑥2 + 𝑥3 ≤ 1,
𝑥1, 𝑥2, 𝑥3 ≥ 0

and MOSEK reports the optimal solution

𝑥1 = 𝑥2 = 𝑥3 = 1.

Then clearly the solution violates the constraints. The most likely explanation is that the model does
not match the problem entered into MOSEK, for instance

𝑥1 − 2𝑥2 + 𝑥3 ≤ 1

may have been inputted instead of

𝑥1 + 2𝑥2 + 𝑥3 ≤ 1.

A good way to debug such an issue is to dump the problem to OPF file and check whether the violated
constraint has been specified correctly.

Verifying that a feasible solution is optimal can be harder. However, for continuous problems, i.e. prob-
lems without any integer constraints, optimality can verified using a dual solution. Normally, MOSEK
will report a dual solution; if that is feasible and has the same objective value as the primal solution,
then the primal solution must be optimal.

An alternative method is to find another primal solution that has better objective value than the one
reported to MOSEK. If that is possible then either the problem is badly posed or there is bug in
MOSEK.

3.9.1 The Solution Summary

Due to MOSEK employs finite precision floating point numbers then reported solution is an approximate
optimal solution. Therefore after solving an optimization problem it is relevant to investigate how good
an approximation the solution is. For a convex optimization problem that is an easy task because the
optimality conditions are:

• The primal solution must satisfy all the primal constraints.

• The dual solution much satisfy all the dual constraints.

• The primal and dual objective values must be identical.

Therefore, the MOSEK solution summary displays that information that makes it possible to verify the
optimality conditions. Indeed the solution summary reports how much primal and dual solutions violate
the primal and constraints respectively. In addition the objective values assoctaied with each solution
repoted.

In case of a linear optimization problem the solution summary may look like

42 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

Basic solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -4.6475314286e+002 nrm: 5e+002 Viol. con: 1e-014 var: 1e-014
Dual. obj: -4.6475314543e+002 nrm: 1e+001 Viol. con: 4e-009 var: 4e-016

The interpreation of the solution summary is as follows:

• Information for the basic solution is reported.

• The problem status is primal and dual feasible which means the problem has an optimal solution.

• The solution status is optimal.

• Next information about the primal solution is reported. The information consists of the objective
value, the infinity norm of the primal solution and violation meassures. The violation for the
constraints (con:) is the maximal violation in any of the constraints. Whereas the violations for
the variables (var:) is the maximal bound violation for any of the variables. In this case the
primal violations for the constraints and variables are small meaning the solution is an almost
feasible solution. Observe due to the rounding errors it can be expected that the violations are
proportional to the size (nrm:) of the solution.

• Similarly for the dual solution the violations are small and hence the dual solution is almost feasible.

• Finally, it can be seen that the primal and dual objective values are almost identical.

To summarize in this case a primal and a dual solution only violate the primal and dual constraints
slightly. Moreover, the primal and dual objective values are almost identical and hence it can be concluded
that the reported solution is a good approximation to the optimal solution.

The reason the size (=norms) of the solution are shown is that it shows some about conditioning of the
problem because if the primal and/or dual solution has very large norm then the violations and objective
values are sensitive to small pertubations in the problem data. Therefore, the problem is unstable and
care should be taken before using the solution.

Observe the function task.solutionsummary will print out the solution summary. In addition

• the problem status can be obtained using task.getprosta .

• the solution status can be obtained using task.getsolsta .

• the primal constraint and variable violations can be obtained with task.getpviolcon and
task.getpviolvar .

• the dual constraint and variable violations can be obtained with task.getdviolcon and
task.getdviolvar respectively.

• the primal and dual objective values can be obtained with task.getprimalobj and
task.getdualobj .

Now what happens if the problem does not have an optimal solution e.g. is primal infeasible. In such a
case the solution summary may look like

Interior-point solution summary
Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 6.7319732555e+000 nrm: 8e+000 Viol. con: 3e-010 var: 2e-009

i.e. MOSEK reports that the solution is a certificate of primal infeasibility but a certificate of primal
infeasibility what does that mean? It means that the dual solution is a Farkas type certificate. Recall
Farkas’ Lemma says

𝐴𝑥 = 𝑏,
𝑥 ≥ 0

3.9. Solution Analysis 43

MOSEK Optimizer API for Python, Release 8.0.0.94

if and only if a 𝑦 exists such that

𝐴𝑇 𝑦 ≤ 0,
𝑏𝑇 𝑦 > 0.

(3.13)

Observe the infeasibility certificate has the same form as a regular dual solution and therefore the
certificate is stored as a dual solution. In order to check quality of the primal infeasibility certificate
it should be checked whether satisfies (3.13). Hence, the dual objective value is 𝑏𝑇 𝑦 should be strictly
positive and the maximal violation in 𝐴𝑇 𝑦 ≤ 0 should be a small. In this case we conclude the certificate
is of high quality because the dual objective is postive and large compared to the violations. Note the
Farkas certificate is a ray so any postive multiple of that ray is also certificate. This implies the absolute
of the value objective value and the violation is not relevant.

In the case a problem is dual infeasible then the solution summary may look like

Basic solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER
Primal. obj: -2.0000000000e-002 nrm: 1e+000 Viol. con: 0e+000 var: 0e+000

Observe when a solution is a certificate of dual infeasibility then the primal solution contains the cer-
tificate. Moreoever, given the problem is a minimization problem the objective value should be negative
and large compared to the worst violation if the certificate is strong.

Listing 3.13 shows how to use these function to determine the quality of the solution.

Listing 3.13: An example of solution quality analysis.

import sys
import mosek

def streamprinter(msg):
sys.stdout.write (msg)
sys.stdout.flush ()

if len(sys.argv) <= 1:
print ("Missing argument, syntax is:")
print (" solutionquality inputfile")

else:

try:

Create the mosek environment.
with mosek.Env () as env:

Create a task object linked with the environment env.
We create it with 0 variables and 0 constraints initially,
since we do not know the size of the problem.
with env.Task (0, 0) as task:

task.set_Stream (mosek.streamtype.log, streamprinter)

We assume that a problem file was given as the first command
line argument (received in `argv')
task.readdata (sys.argv[1])

Solve the problem
task.optimize ()

Print a summary of the solution
task.solutionsummary (mosek.streamtype.log)

whichsol= mosek.soltype.bas

44 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

solsta= task.getsolsta(whichsol)

␣
→˓pobj,pviolcon,pviolvar,pviolbarvar,pviolcones,pviolitg,dobj,dviolcon,dviolvar,dviolbarvar,dviolcones␣
→˓= task.getsolutioninfo(whichsol)

if solsta in [mosek.solsta.optimal,mosek.solsta.near_optimal]:

abs_obj_gap = abs(dobj-pobj)
rel_obj_gap = abs_obj_gap/(1.0 + min(abs(pobj),abs(dobj)))
max_primal_viol = max(pviolcon,pviolvar)
max_primal_viol = max(max_primal_viol ,pviolbarvar)
max_primal_viol = max(max_primal_viol ,pviolcones)

max_dual_viol = max(dviolcon,dviolvar)
max_dual_viol = max(max_dual_viol ,dviolbarvar)
max_dual_viol = max(max_dual_viol ,dviolcones)

Assume the application needs the solution to be within
1e-6 ofoptimality in an absolute sense. Another approach
would be looking at the relative objective gap

print ("\n\n")
print ("Customized solution information.\n")
print (" Absolute objective gap: %e\n"%abs_obj_gap)
print (" Relative objective gap: %e\n"%rel_obj_gap)
print (" Max primal violation : %e\n"%max_primal_viol)
print (" Max dual violation : %e\n"%max_dual_viol)

accepted= True

if rel_obj_gap>1e-6 :
print ("Warning: The relative objective gap is LARGE.")
accepted = False

We will accept a primal infeasibility of 1e-8 and
dual infeasibility of 1e-6. These number should chosen problem
dependent.
if max_primal_viol>1e-8 :

print ("Warning: Primal violation is too LARGE")
accepted = False

if max_dual_viol>1e-6 :
print ("Warning: Dual violation is too LARGE.")
accepted = False

if accepted:

numvar = task.getnumvar()
print ("Optimal primal solution")
xj=[0.]
for j in range(numvar):

task.getxxslice(whichsol,j,j+1,xj)
print ("x[%d]: %e\n"%(j,xj[0]))

else:
#Print detailed information about the solution
task.analyzesolution(mosek.streamtype.log,whichsol)

elif solsta in [mosek.solsta.dual_infeas_cer, mosek.solsta.prim_infeas_cer,\
mosek.solsta.near_dual_infeas_cer, mosek.solsta.near_prim_infeas_

→˓cer]:

3.9. Solution Analysis 45

MOSEK Optimizer API for Python, Release 8.0.0.94

print ("Primal or dual infeasibility certificate found.")

elif solsta == mosek.solsta.unkwown:
print ("The status of the solution is unknown.")

else:
print ("Other solution status")

except mosek.Error as e:
print (e)

3.9.2 The Solution Summary for Mixed-Integer Problems

The solution summary for a mixed-integer problem may look like

Listing 3.14: Example of solution summary for a mixed-integer problem.

Integer solution solution summary
Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 3.4016000000e+005 nrm: 1e+000 Viol. con: 0e+000 var: 0e+000 itg: 3e-014

The main diffrence compared to thecontinous case covered previously is that no information about
the dual solution is provided. Simply because there is no dual solution available for a mixed integer
problem. In this case it can be seen that the solution is highly feasible because the violations are small.
Moreoever, the solution is denoted integer optimal. Observe itg: 3e-014 implies that all the integer
constrained variables are at most 3𝑒− 014 from being an exact integer.

3.10 Solver Parameters

The MOSEK API provides many parameters to tune and customize the solver behaviour. Parameters
are grouped depending on their type: integer, double or string. In general, it should not be necessary to
change any of the parameters but if required, it is easily done. A complete list of all parameters is found
in Section 16.4 .

We will show how to access and set the integer parameter that define the logging verbosity of the solver,
i.e. iparam.log , and the algorithm used by MOSEK, i.e. iparam.optimizer .

Note: The very same concepts and procedures apply to string and double valued parameters.

To inspect the current value of a parameter, we can use the task.getintparam . In this example we say

param= task.getintparam(mosek.iparam.log)

To set a parameter the MOSEK API provides several functions that differ in the way the parameter
name and value are specified.

A parameter can be accessed by an identifier using task.putintparam

task.putintparam(mosek.iparam.log,1)

try:
print ('setting to -1 using putintparam...')
task.putintparam(mosek.iparam.log,-1)

46 Chapter 3. Basic Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

except mosek.Error as e:
print ('-1 rejected as not a valid value')

The values for integer parameters are either simple integer values or enum values. Enumerations are
provided mainly to improve readability and ensure compatibility.

In the next lines we show how to set the algorithm used by MOSEK to solve linear optimization prob-
lem. To that purpose we set the iparam.optimizer parameter using a value from the optimizertype
enumeration: for instance we may decide to use the dual simplex algorithm, and thus

task.putintparam(mosek.iparam.optimizer,mosek.optimizertype.dual_simplex)

For more information about other parameter related functions, please browse the API reference in Section
16 .

The complete code for this tutorial follows in Listing 3.15.

Listing 3.15: Parameter setting example.

import mosek

Create the mosek environment.
with mosek.Env () as env:

Create the mosek environment.
with env.Task() as task:

print ('Test MOSEK parameter get/set functions')

param= task.getintparam(mosek.iparam.log)
print ('default value for parameter mosek.ipar.log= ',param)

print (' setting to 1 using putintparam...')
task.putintparam(mosek.iparam.log,1)

try:
print ('setting to -1 using putintparam...')
task.putintparam(mosek.iparam.log,-1)

except mosek.Error as e:
print ('-1 rejected as not a valid value')

print ('setting to 2 using putparam...')
task.putparam('MSK_IPAR_LOG','2')

print ('setting to 3 using putnaintparam...')
task.putnaintparam('MSK_IPAR_LOG',3)

print ('selecting the dual simplex algorithm...')
task.putintparam(mosek.iparam.optimizer,mosek.optimizertype.dual_simplex)

3.10. Solver Parameters 47

MOSEK Optimizer API for Python, Release 8.0.0.94

48 Chapter 3. Basic Tutorials

CHAPTER

FOUR

NONLINEAR TUTORIALS

This chapter provides information about how to solve general convex nonlinear optimization problems
using MOSEK. By general nonlinear problems it is meant problems that cannot be formulated as a
conic quadratic optimization or a convex quadratically constrained optimization problem.

In general it is recommended not to use nonlinear optimizer unless needed. The reasons are

• MOSEK has no way of checking whether the formulated problem is convex and if this assumption
is not satisfied the optimizer will not work.

• The nonlinear optimizer requires 1st and 2nd order derivative information which is hard to provide
correctly i.e. it is nontrivial to program the code that computes the derivative information.

• The algorithm employed for nonlinear optimization problems is not as good as the one employed
for conic problems i.e. conic problems has special that can be exploited to make the optimizer
faster and more robust.

This leads to following advices in decreasing order of importance.

1. Consider reformulating the problem to a conic quadratic optimization problem if at all possible. In
particular many problems involving polynomial terms can easily be reformulated to conic quadratic
form.

2. Consider reformulating the problem to a separable optimization problem because that simplifies
the issue with verifying convexity and computing 1st and 2nd order derivatives significantly. In
most cases problems on separable form also solves faster because of the simpler structure of the
functions.

3. Finally, if the problem cannot be reformulated to separable form then use a modelling language
like AMPL or GAMS. The reason is the modeling language will do all the computing of function
values and derivatives. This eliminates an important source of errors. Therefore, it is strongly
recommended to use a modelling language at the prototype stage.

4.1 Separable Convex (SCopt) Interface

The MOSEK optimizer API provides a way to add simple non-linear functions composed from a limited
set of non-linear terms. Non-linear terms can be mixed with quadratic terms in objective and constraints.

We consider a normal linear problem with additional non-linear terms 𝑧:

minimize 𝑧0(𝑥) + 𝑐𝑇𝑥
subject to 𝑙𝑐𝑖 ≤ 𝑧𝑖(𝑥) + 𝑎𝑇𝑖 𝑥 ≤ 𝑢𝑐

𝑖 , 𝑖 = 1 . . .𝑚
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ R𝑛 𝑧 : R𝑛 → R(𝑚+1)

Using the separable non-linear interface it is possible to add non-linear functions of the form

𝑧𝑖(𝑥) =

𝐾𝑖∑︁
𝑘=1

𝑤𝑖
𝑘(𝑥𝑝𝑖𝑘

), 𝑤𝑖
𝑘 : R → R

49

MOSEK Optimizer API for Python, Release 8.0.0.94

In other words, each non-linear function 𝑧𝑖 is a sum of separable functions 𝑤𝑖
𝑘 of one variable each. A

limited set of functions are supported; each 𝑤𝑖
𝑘 can be one of the separable functions:

Table 4.1: Functions supported by the SCopt interface.

Separable function Operator name
𝑓𝑥 ln(𝑥) ent Entropy function
𝑓𝑒𝑔𝑥+ℎ exp Exponential function
𝑓 ln(𝑔𝑥 + ℎ) log Logarithm
𝑓(𝑥 + ℎ)𝑔 pow Power function

where 𝑓 , 𝑔 and ℎ are constants.

This formulation does not guarantee convexity. For MOSEK to be able to solve the problem, following
requirements must be met:

• If the objective is minimized, the sum of non-linear terms must be convex, otherwise it must be
concave.

• Any constraint bounded below must be concave, and any constraint bounded above must be convex.

• Each separable term must be twice differentiable within the bounds of the variable it is applied to.

If these are not satisfied MOSEK may not be able to solve the problem or produce a meaningful status
report. For details see Section 4.1.1 .

Important: When to use the SCopt API:

• When conic can absolutely not be used.

• when a conic formulation would be significantly larger

Problems: less stable, less predictable, harder to debug, worse status info

4.1.1 Ensuring Convexity and Differentiability

Some simple rules can be set up to ensure that the problem satisfies MOSEK‘s convexity and differ-
entiability requirements. First of all, for any variable 𝑥𝑖 used in a separable term, the variable bounds
must define a range within which the function is twice differentiable.

We can define these bounds as follows:

Separable function Operator name Safe 𝑥 bounds
𝑓𝑥 ln(𝑥) ent 0 < 𝑥.
𝑓𝑒𝑔𝑥+ℎ exp −∞ < 𝑥 < ∞.

𝑓 ln(𝑔𝑥 + ℎ) log If 𝑔 > 0: −ℎ/𝑔 < 𝑥.
If 𝑔 < 0: 𝑥 < −ℎ/𝑔.

𝑓(𝑥 + ℎ)𝑔 pow
If 𝑔 > 0 and integer: −∞ < 𝑥 < ∞.
If 𝑔 < 0 and integer: either −ℎ < 𝑥 or 𝑥 < −ℎ.
Otherwise: −ℎ < 𝑥.

To ensure convexity, we require that each 𝑧𝑖(𝑥) is either a sum of convex terms or a sum of concave
terms. The following table lists convexity for the relevant ranges for 𝑓 > 0 — changing the sign of 𝑓
switches concavity/convexity.

50 Chapter 4. Nonlinear Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

Separable function Operator name Convexity conditions
𝑓𝑥 ln(𝑥) ent Convex within safe bounds.
𝑓𝑒𝑔𝑥+ℎ exp Convex for all 𝑥.
𝑓 ln(𝑔𝑥 + ℎ) log Concave within safe bounds.

𝑓(𝑥 + ℎ)𝑔 pow
If 𝑔 is even integer: convex within
safe bounds.
If 𝑔 is odd integer:

• concave if (−∞,−ℎ),
• convex if (−ℎ,∞)

If 0 < 𝑔 < 1: concave within safe
bounds.
Otherwise: convex within safe
bounds.

4.1.2 SCopt Example

Subsequently, we will use the following example to demonstrate the solution of a separable convex
optimization problem using MOSEK

maximize exp(𝑥2) − ln(𝑥1)
subject to 𝑥2 ln(𝑥2) ≥ 0

𝑥
√
2

1 − 𝑥2 ≤ 0
𝑥1, 𝑥2 ≥ 1

2 .

(4.1)

This problem is obviously separable. Moreover, note that all nonlinear functions are well defined for 𝑥
values satisfying the variable bounds strictly, i.e.

𝑥1, 𝑥2 > 0.

This assures that function evaluation errors will not occur during the optimization process because
MOSEK will only evaluate ln(𝑥1) and 𝑥2 ln(𝑥2) for 𝑥1, 𝑥2 > 0.

The method employed above can often be used to make convex optimization problems separable even
if these are not formulated as such initially. The reader might object that this approach is inefficient
because additional constraints and variables are introduced to make the problem separable. However, in
our experience this drawback is offset largely by the much simpler structure of the nonlinear functions.
Particularly, the evaluation of the nonlinear functions, their gradients and Hessians is much easier in the
separable case.

The complete source code follows in Listing 4.1.

Listing 4.1: Implementation of problem (4.1).

import sys

import mosek

def streamprinter(text):
sys.stdout.write(text)
sys.stdout.flush()

def main ():
with mosek.Env() as env:

env.set_Stream (mosek.streamtype.log, streamprinter)
with env.Task(0,0) as task:

task.set_Stream (mosek.streamtype.log, streamprinter)

numvar = 2
numcon = 2

4.1. Separable Convex (SCopt) Interface 51

MOSEK Optimizer API for Python, Release 8.0.0.94

inf = 0.

bkc = [mosek.boundkey.up,
mosek.boundkey.lo]

blc = [-inf, 0.]
buc = [0., inf]

bkx = [mosek.boundkey.ra] * numvar
blx = [0.5] * numvar
bux = [1.0] * numvar

task.appendvars(numvar)
task.appendcons(numcon)

task.putvarboundslice(0, numvar, bkx, blx, bux)
task.putconboundslice(0, numcon, bkc, blc, buc)

task.putaij(1, 1, -1.0)

opro = [mosek.scopr.log, mosek.scopr.exp]
oprjo = [0, 1]
oprfo = [-1.0, 1.0]
oprgo = [1.0, 1.0]
oprho = [0.0, 0.0]

oprc = [mosek.scopr.ent, mosek.scopr.pow]
opric = [0, 1]
oprjc = [1, 0]
oprfc = [1.0, 1.0]
oprgc = [0.0, 0.5]
oprhc = [0.0, 0.0]

task.putSCeval(opro, oprjo, oprfo, oprgo, oprho,
oprc, opric, oprjc, oprfc, oprgc, oprhc)

task.optimize()

res = [0.0] * numvar
task.getsolutionslice(

mosek.soltype.itr,
mosek.solitem.xx,
0, numvar,
res)

print ("Solution is: %s" % res)
task.putintparam(mosek.iparam.write_ignore_incompatible_items,mosek.onoffkey.on)
task.writeSC("scprob.sc","scprob.opf")

main()

52 Chapter 4. Nonlinear Tutorials

CHAPTER

FIVE

ADVANCED TUTORIALS

5.1 The Progress Call-back

Some of the API function calls, notably task.optimize , may take a long time to complete. Therefore,
during the optimization a call-back function is called frequently, to provide information on the progress
of the call. From the call-back function it is possible

• to obtain information on the solution process,

• to report of the optimizer’s progress, and

• to ask MOSEK to terminate, if desired.

The call-back function arguments provide the following information:

• a code that identify the event that caused the call-back to be called,

• an handle to a user-defined data structure and

• the complete set of parameters used by the solver.

The user can force the solver to stop using the return value of the call-back.

Listing 5.1 shows how the progress call-back function can be used.

Listing 5.1: Progress call back example

import sys

import mosek
from mosek import *

def makeUserCallback(maxtime):
def userCallback(caller,

douinf,
intinf,
lintinf):

opttime = 0.0

if caller == callbackcode.begin_intpnt:
print ("Starting interior-point optimizer")

elif caller == callbackcode.intpnt:
itrn = intinf[iinfitem.intpnt_iter]
pobj = douinf[dinfitem.intpnt_primal_obj]
dobj = douinf[dinfitem.intpnt_dual_obj]
stime = douinf[dinfitem.intpnt_time]
opttime = douinf[dinfitem.optimizer_time]

print ("Iterations: %-3d" % itrn)
print (" Elapsed time: %6.2f(%.2f) " % (opttime,stime))
print (" Primal obj.: %-18.6e Dual obj.: %-18.6e" % (pobj,dobj))

53

MOSEK Optimizer API for Python, Release 8.0.0.94

elif caller == callbackcode.end_intpnt:
print ("Interior-point optimizer finished.")

elif caller == callbackcode.begin_primal_simplex:
print ("Primal simplex optimizer started.")

elif caller == callbackcode.update_primal_simplex:
itrn = intinf[iinfitem.sim_primal_iter]
pobj = douinf[dinfitem.sim_obj]
stime = douinf[dinfitem.sim_time]
opttime = douinf[dinfitem.optimizer_time]

print ("Iterations: %-3d" % itrn)
print (" Elapsed time: %6.2f(%.2f)" % (opttime,stime))
print (" Obj.: %-18.6e" % pobj)

elif caller == callbackcode.end_primal_simplex:
print ("Primal simplex optimizer finished.")

elif caller == callbackcode.begin_dual_simplex:
print ("Dual simplex optimizer started.")

elif caller == callbackcode.update_dual_simplex:
itrn = intinf[iinfitem.sim_dual_iter]
pobj = douinf[dinfitem.sim_obj]
stime = douinf[dinfitem.sim_time]
opttime = douinf[dinfitem.optimizer_time]
print ("Iterations: %-3d" % itrn)
print (" Elapsed time: %6.2f(%.2f)" % (opttime,stime))
print (" Obj.: %-18.6e" % pobj)

elif caller == callbackcode.end_dual_simplex:
print ("Dual simplex optimizer finished.")

elif caller == callbackcode.begin_bi:
print ("Basis identification started.")

elif caller == callbackcode.end_bi:
print ("Basis identification finished.")

else:
pass

if opttime >= maxtime:
mosek is spending too much time. Terminate it.
return 1

return 0
return userCallback

def msgPrinter(msg):
sys.stdout.write(msg)
sys.stdout.flush()

def main(args):
filename = "../data/25fv47.mps"
slvr = "intpnt"

if len(args) < 3:
print("Usage: callback (psim | dsim | intpnt) filename")

if len(args) > 1: slvr = args[1]
if len(args) > 2: filename = args[2]

with mosek.Env() as env:
with mosek.Task(env) as task:

task.readdata(filename)

task.set_Stream(streamtype.log, msgPrinter)

if slvr == 'psim':

54 Chapter 5. Advanced Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

task.putintparam(iparam.optimizer,optimizertype.primal_simplex)
elif slvr == "dsim":

task.putintparam(iparam.optimizer,optimizertype.dual_simplex)
elif slvr == "intpnt":

task.putintparam(iparam.optimizer,optimizertype.intpnt)

Turn all MOSEK logging off (note that errors and other messages
are still sent through the log stream)
task.putintparam(iparam.log, 0)

usercallback = makeUserCallback(maxtime = 3600)
task.set_Progress(usercallback)

task.optimize()

task.solutionsummary(streamtype.msg)

if __name__ == '__main__':
main(sys.argv)

Important: Due to the way the Python garbage collector works, it is necessary to hold a reference to
the callback function for the duration of the lifetime of the Task object. This means that a construction
such as

#NOTE: WRONG way to attach callback!
task.set_Progress(lambda caller, dinf, iinf, liinf: print "Caller : %d" % caller)

will not work.

5.2 Solving Linear Systems Involving the Basis Matrix

A linear optimization problem always has an optimal solution which is also a basic solution. In an optimal
basic solution there are exactly 𝑚 basic variables where 𝑚 is the number of rows in the constraint matrix
𝐴. Define

𝐵 ∈ R𝑚×𝑚

as a matrix consisting of the columns of 𝐴 corresponding to the basic variables.

The basis matrix 𝐵 is always non-singular, i.e.

det(𝐵) ̸= 0

or equivalently that 𝐵−1 exists. This implies that the linear systems

𝐵𝑥̄ = 𝑤 (5.1)

and

𝐵𝑇 𝑥̄ = 𝑤 (5.2)

each has a unique solution for all 𝑤 .

MOSEK provides functions for solving the linear systems (5.1) and (5.2) for an arbitrary 𝑤.

In the next sections we will show how to use MOSEK to

• identify the solution basis,

• solve arbitrary linear systems.

5.2. Solving Linear Systems Involving the Basis Matrix 55

MOSEK Optimizer API for Python, Release 8.0.0.94

5.2.1 Identifying the Basis

To use the solutions to (5.1) and (5.2) it is important to know how the basis matrix 𝐵 is constructed.

Internally MOSEK employs the linear optimization problem

maximize 𝑐𝑇𝑥
subject to 𝐴𝑥− 𝑥𝑐 = 0,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,
𝑙𝑐 ≤ 𝑥𝑐 ≤ 𝑢𝑐.

(5.3)

where

𝑥𝑐 ∈ R𝑚 and 𝑥 ∈ R𝑛.

The basis matrix is constructed of 𝑚 columns taken from[︀
𝐴 −𝐼

]︀
.

If variable 𝑥𝑗 is a basis variable, then the 𝑗 ’th column of 𝐴 denoted 𝑎:,𝑗 will appear in 𝐵.Similarly, if
𝑥𝑐
𝑖 is a basis variable, then the 𝑖 ’th column of −𝐼 will appear in the basis. The ordering of the basis

variables and therefore the ordering of the columns of 𝐵 is arbitrary. The ordering of the basis variables
may be retrieved by calling the function

task.initbasissolve(basis)

where basis is an array of variable indexes.

This function initializes data structures for later use and returns the indexes of the basic variables in the
array basis. The interpretation of the basis is as follows. If

basis[𝑖] < numcon,

then the 𝑖’th basis variable is 𝑥𝑐
𝑖 . Moreover, the 𝑖 ’th column in 𝐵 will be the 𝑖’th column of −𝐼. On the

other hand if

basis[𝑖] ≥ numcon,

then the 𝑖 ’th basis variable is variable

𝑥basis[𝑖]−numcon

and the 𝑖 ’th column of 𝐵 is the column

𝐴:,(basis[𝑖]−numcon).

For instance if basis[0] = 4 and numcon = 5 , then since basis[0] < numcon , the first basis variable
is 𝑥𝑐

4. Therefore, the first column of 𝐵 is the fourth column of −𝐼. Similarly, if basis[1] = 7, then the
second variable in the basis is 𝑥basis[1]−numcon = 𝑥2. Hence, the second column of 𝐵 is identical to 𝑎:,2.

An example

Consider the linear optimization problem:

minimize 𝑥0 + 𝑥1

subject to 𝑥0 + 2𝑥1 ≤ 2,
𝑥0 + 𝑥1 ≤ 6,

𝑥0, 𝑥1 ≥ 0.

(5.4)

Suppose a call to task.initbasissolve returns an array basis so that

56 Chapter 5. Advanced Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

basis[0] = 1,
basis[1] = 2.

Then the basis variables are 𝑥𝑐
1 and 𝑥0 and the corresponding basis matrix 𝐵 is[︂

0 1
−1 1

]︂
.

Please note the ordering of the columns in 𝐵 .

The program in Listing 5.2 demonstrates the use of task.solvewithbasis .

Listing 5.2: A program showing how to identify the basis.

import mosek

def streamprinter(text):
sys.stdout.write(text)
sys.stdout.flush()

def main():
numcon = 2
numvar = 2

Since the value infinity is never used, we define
'infinity' symbolic purposes only
infinity = 0

c = [1.0, 1.0]
ptrb = [0, 2]
ptre = [2, 3]
asub = [0, 1,

0, 1]
aval = [1.0, 1.0,

2.0, 1.0]
bkc = [mosek.boundkey.up,

mosek.boundkey.up]

blc = [-infinity,
-infinity]

buc = [2.0,
6.0]

bkx = [mosek.boundkey.lo,
mosek.boundkey.lo]

blx = [0.0,
0.0]

bux = [+infinity,
+infinity]

w1 = [2.0, 6.0]
w2 = [1.0, 0.0]
try:

with mosek.Env() as env:
with env.Task(0,0) as task:

task.set_Stream (mosek.streamtype.log, streamprinter)
task.inputdata(numcon,numvar,

c,
0.0,
ptrb,
ptre,
asub,
aval,

5.2. Solving Linear Systems Involving the Basis Matrix 57

MOSEK Optimizer API for Python, Release 8.0.0.94

bkc,
blc,
buc,
bkx,
blx,
bux)

task.putobjsense(mosek.objsense.maximize)
r = task.optimize()
if r != mosek.rescode.ok:

print ("Mosek warning:",r)

basis = [0] * numcon
task.initbasissolve(basis)

#List basis variables corresponding to columns of B
varsub = [0,1]

for i in range(numcon):
if basis[varsub[i]] < numcon:

print ("Basis variable no %d is xc%d" % (i,basis[i]))
else:

print ("Basis variable no %d is x%d" % (i,basis[i] - numcon))

solve Bx = w1
varsub contains index of non-zeros in b.
On return b contains the solution x and
varsub the index of the non-zeros in x.
nz = 2

nz = task.solvewithbasis(0, nz, varsub, w1)
print ("nz = %s" % nz)
print ("Solution to Bx = w1:")

for i in range(nz):
if basis[varsub[i]] < numcon:

print ("xc %s = %s" % (basis[varsub[i]],w1[varsub[i]]))
else:

print ("x%s = %s" % (basis[varsub[i]] - numcon, w1[varsub[i]]))

Solve B^Tx = w2
nz = 1
varsub[0] = 0

nz = task.solvewithbasis(1, nz, varsub, w2)

print ("Solution to B^Tx = w2:")

for i in range(nz):
if basis[varsub[i]] < numcon:

print ("xc %s = %s" % (basis[varsub[i]], w2[varsub[i]]))
else:

print ("x %s = %s" % (basis[varsub[i]] - numcon, w2[varsub[i]]))
except Exception as e:

print (e)

if __name__ == '__main__':
main()

In the example above the linear system is solved using the optimal basis for (5.4) and the original right-
hand side of the problem. Thus the solution to the linear system is the optimal solution to the problem.
When running the example program the following output is produced.

58 Chapter 5. Advanced Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

basis[0] = 1
Basis variable no 0 is xc1.
basis[1] = 2
Basis variable no 1 is x0.

Solution to Bx = b:

x0 = 2.000000e+00
xc1 = -4.000000e+00

Solution to B^Tx = c:

x1 = -1.000000e+00
x0 = 1.000000e+00

Please note that the ordering of the basis variables is[︂
𝑥𝑐
1

𝑥0

]︂
and thus the basis is given by:

𝐵 =

[︂
0 1
−1 1

]︂
It can be verified that [︂

𝑥𝑐
1

𝑥0

]︂
=

[︂
−4
2

]︂
is a solution to [︂

0 1
−1 1

]︂ [︂
𝑥𝑐
1

𝑥0

]︂
=

[︂
2
6

]︂
.

5.2.2 Solving Arbitrary Linear Systems

MOSEK can be used to solve an arbitrary (rectangular) linear system

𝐴𝑥 = 𝑏

using the task.solvewithbasis function without optimizing the problem as in the previous exam-
ple. This is done by setting up an 𝐴 matrix in the task, setting all variables to basic and calling the
task.solvewithbasis function with the 𝑏 vector as input. The solution is returned by the function.

Below we demonstrate how to solve the linear system[︂
0 1
−1 1

]︂ [︂
𝑥0

𝑥1

]︂
=

[︂
𝑏1
𝑏2

]︂
(5.5)

with 𝑏 = (1,−2) and 𝑏 = (7, 0) .

import mosek

def put_a(task,
aval,
asub,
ptrb,
ptre,
numvar,
basis):

5.2. Solving Linear Systems Involving the Basis Matrix 59

MOSEK Optimizer API for Python, Release 8.0.0.94

Since the value infinity is never used, we define
'infinity' symbolic purposes only
infinity = 0

skx = [mosek.stakey.bas] * numvar
skc = [mosek.stakey.fix] * numvar

task.appendvars(numvar)
task.appendcons(numvar)

for i in range(len(asub)):
task.putacol(i,asub[i],aval[i])

for i in range(numvar):
task.putconbound(i,mosek.boundkey.fx,0.0,0.0)

for i in range(numvar):
task.putvarbound(i,

mosek.boundkey.fr,
-infinity,
infinity)

Define a basic solution by specifying
status keys for variables & constraints.

for i in range(numvar):
task.putsolutioni (mosek.accmode.var,

i,
mosek.soltype.bas,
skx[i],
0.0,
0.0,
0.0,
0.0)

for i in range(numvar):
task.putsolutioni (mosek.accmode.con,

i,
mosek.soltype.bas,
skc[i],
0.0,
0.0,
0.0,
0.0)

task.initbasissolve(basis)

def main():
numcon = 2
numvar = 2

aval = [[-1.0],
[1.0, 1.0]]

asub = [[1],
[0, 1]]

ptrb = [0,1]
ptre = [1,3]

#int[] bsub = new int[numvar];

60 Chapter 5. Advanced Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

#double[] b = new double[numvar];
#int[] basis = new int[numvar];

with mosek.Env() as env:
with mosek.Task(env) as task:

Directs the log task stream to the user specified
method task_msg_obj.streamCB
task.set_Stream(mosek.streamtype.log,

lambda msg : sys.stdout.write(msg))
Put A matrix and factor A.
Call this function only once for a given task.

basis = [0] * numvar
b = [0.0, -2.0]
bsub = [0, 1]

put_a(task,
aval,
asub,
ptrb,
ptre,
numvar,
basis)

now solve rhs
b = [1, -2]
bsub = [0, 1]
nz = task.solvewithbasis(0,2,bsub,b)
print("\nSolution to Bx = b:\n")

Print solution and show correspondents
to original variables in the problem
for i in range(nz):

if basis[bsub[i]] < numcon:
print("This should never happen")

else:
print("x%d = %d" % (basis[bsub[i]] - numcon, b[bsub[i]]))

b[0] = 7
bsub[0] = 0

nz = task.solvewithbasis(0,1,bsub,b);

print("\nSolution to Bx = b:\n")
Print solution and show correspondents
to original variables in the problem
for i in range(nz):

if basis[bsub[i]] < numcon:
print ("This should never happen")

else:
print ("x%d = %d" % (basis[bsub[i]] - numcon, b[bsub[i]]))

if __name__ == "__main__":
try:

main()
except:

import traceback
traceback.print_exc()

The most important step in the above example is the definition of the basic solution using the
task.putsolutioni function, where we define the status key for each variable. The actual values

5.2. Solving Linear Systems Involving the Basis Matrix 61

MOSEK Optimizer API for Python, Release 8.0.0.94

of the variables are not important and can be selected arbitrarily, so we set them to zero. All variables
corresponding to columns in the linear system we want to solve are set to basic and the slack variables
for the constraints, which are all non-basic, are set to their bound.

The program produces the output:

Solution to Bx = b:

x1 = 1
x0 = 3

Solution to Bx = b:

x1 = 7
x0 = 7

and we can verify that 𝑥0 = 2, 𝑥1 = −4 is indeed a solution to (5.5).

5.3 Calling BLAS/LAPACK Routines from MOSEK

Sometimes users need to perform linear algebra operations that involve dense matrices and vectors.
Also MOSEK uses extensively high-performance linear algebra routines from the BLAS and LAPACK
packages and some of this routine are included in the package shipped to the users.

MOSEK makes available to the user some BLAS and LAPACK routines by MOSEK functions that

• use MOSEK data types and response code;

• keep BLAS/LAPACK naming convention.

Therefore the user can leverage on efficient linear algebra routines, with a simplified interface, with no
need for additional packages. In the Table 5.1 we list BLAS functions.

Table 5.1: BLAS routines available.

BLAS Name MOSEK function Math Expression
AXPY env.axpy 𝑦 = 𝛼𝑥 + 𝑦
DOT env.dot 𝑥𝑇 𝑦
GEMV env.gemv 𝑦 = 𝛼𝐴𝑥 + 𝛽𝑦
GEMM env.gemm 𝐶 = 𝛼𝐴𝐵 + 𝛽𝐶
SYRK env.syrk 𝐶 = 𝛼𝐴𝐴𝑇 + 𝛽𝐶

Function from LAPACK are listed in Table 5.2.

Table 5.2: LAPACK functions available from MOSEK

LAPACK Name MOSEK function Description
POTRF env.potrf Cholesky factorization of a semidefinite symmetric matrix
SYEVD env.syevd Eigen-values of a symmetric matrix
SYEIG env.syeig Eigen-values and eigen-vectors of a symmetric matrix

Click on the MOSEK function link to access additional information.

A working example

In Listing 5.3 we provide a simple working example. It has no practical meaning except to show how to
call the provided functions and how the input should be organized.

62 Chapter 5. Advanced Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

Listing 5.3: A working example on how to call BLAS and LAPACK routines from MOSEK.

import mosek

def print_matrix(x, r, c):

for i in range(r):
print([x[j*r + i] for j in range(c)])

with mosek.Env() as env:

n=3
m=2
k=3

alpha=2.0
beta=0.5

x=[1.0,1.0,1.0]
y=[1.0,2.0,3.0]
z=[1.0,1.0]
v=[0.0,0.0]
#A has m=2 rows and k=3 cols
A=[1.0,1.0,2.0,2.0, 3.,3.]
#B has k=3 rows and n=3 cols
B=[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]
C=[0.0 for i in range(n*m)]
D=[1.0,1.0,1.0,1.0]
Q=[1.0,0.0,0.0,2.0]

routines

xy = env.dot(n,x,y)
print("dot results= %f\n"%xy);

env.axpy(n,alpha,x,y)
print("\naxpy results is ")
print_matrix(y,1,len(y))

env.gemv(mosek.transpose.no, m, n, alpha, A, x, beta,z)
print("\ngemv results is ")
print_matrix(z,1,len(z))

env.gemm(mosek.transpose.no,mosek.transpose.no,m,n,k,alpha,A,B,beta,C)
print("\ngemm results is ")
print_matrix(C,m,n)

env.syrk(mosek.uplo.lo, mosek.transpose.no,m,k,alpha, A, beta,D)
print("\nsyrk results is")
print_matrix(D,m,m)

LAPACK routines

env.potrf(mosek.uplo.lo,m,Q)
print("\npotrf results is ")
print_matrix(Q,m,m)

env.syeig(mosek.uplo.lo,m,Q,v)
print("\nsyeig results is")

5.3. Calling BLAS/LAPACK Routines from MOSEK 63

MOSEK Optimizer API for Python, Release 8.0.0.94

print_matrix(v,1,m)

env.syevd(mosek.uplo.lo,m,Q,v)
print("\nsyevd results is")
print('v: ')
print_matrix(v,1,m)
print('Q: ')
print_matrix(Q,m,m)

print("Exiting...")

5.4 Computing a Sparse Cholesky Factorization

Given a positive semidefinite symmetric matrix

𝐴 ∈ R𝑛×𝑛

then it is well known there exists a matrix 𝐿 such that

𝐴 = 𝐿𝐿𝑇 .

If the matrix 𝐿 is a lower triagular matrix then it is called a Cholesky factorization.

Given 𝐴 is positive definite i.e. nonsingular then 𝐿 is also nonsingular. This implies that the linear
equation system

𝐴𝑥 = 𝑏

can be solved by first solving the lower triangular system

𝐿𝑦 = 𝑏

and then the upper triangular system

𝐿𝑇𝑥 = 𝑦.

For this reason only a Cholesky factorization is useful. Therefore, MOSEK provides function that can
compute a Cholesky factorization of a positive semidefinite matrix. In addition a function for performing
solves with a nonsingular lower triangular matrix and its tranpose is availble.

In practice 𝐴 may be very large e.g. 𝑛 is in the range of millions. However, then 𝐴 is typically
sparse which means that most of the elements in 𝐴 are zero. Fortunately the sparsity can be exploited
during computations of the Cholesky factorization to reduce the computational cost. How large the
computational savings are is dependent of the position of the zeros. This can be demonstrated using the
example

𝐴 =

⎡⎢⎢⎣
4 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

⎤⎥⎥⎦ . (5.6)

Now if we compute a Cholesky factorization with 5 digits of accuracy we obtain⎡⎢⎢⎣
2.0000 0 0 0
0.5000 0.8660 0 0
0.5000 −0.2887 0.8165 0
0.5000 −0.2887 −0.4082 0.7071

⎤⎥⎥⎦ .

64 Chapter 5. Advanced Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

Next let us permute the rows and columns symmetrically of 𝐴 i.e. we multiply 𝐴 by the permutation
matrix

𝑃 =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤⎥⎥⎦
as follows

𝑃𝐴𝑃𝑇 =

⎡⎢⎢⎣
1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 4

⎤⎥⎥⎦ .

Now the Cholesky factorization of

𝑃𝐴𝑃𝑇

is

𝐿 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

⎤⎥⎥⎦ .

which is sparser than of the original matrix.

Determining a permutation matrix that leads to the sparsest Cholesky factorization or the minimal
amount of work is NP hard. Hence the choice of a good permutation can only be determined heuristically
using for instance the minimum degree heuristic and variants. The function provided by MOSEK for
computing a Cholesky factorization has build in a permutation aka. reordering heuristic.

Next let us see how the Cholesky factorization of (5.6) can be computed using MOSEK. The complete
source code is in Listing 5.4.

Listing 5.4: How to use the sparse Cholesky factorization routine available in MOSEK.

import sys
import mosek

def sparsecholesky(env,
n,
anzc,
asubc,
aptrc,
avalc):

multiworker = 0 # Diasble multithreading since the problems are small.
order_meth = 1 # Permute/reorder to save computational work
tolsingular = 1.0e-14

try:
perm,diag,lnzc,lptrc,lensubnval,lsubc,lvalc = env.computesparsecholesky(multiworker,

order_meth,
tolsingular,
anzc,
aptrc,
asubc,
avalc)

print("L and D. Length=%d\n"% lensubnval);

5.4. Computing a Sparse Cholesky Factorization 65

MOSEK Optimizer API for Python, Release 8.0.0.94

for i in range(n):

print (' '.join(["%d perm=%d diag=%.4e :" % (i, perm[i], diag[i])] +
[" %.4e[%d]" % (lvalc[lptrc[i]+s],lsubc[lptrc[i]+s]) for s in␣

→˓range(lnzc[i])]
)

)

except:
raise

return perm,diag,lnzc,lptrc,lensubnval,lsubc,lvalc

print("Sparse Cholesky computation.")

Create the mosek environment.
with mosek.Env() as env:

with env.Task(0,0) as task:

Let A be
#
[4.0 1.0 1.0 1.0]
[1.0 1.0]
[1.0 1.0]
[1.0 1.0]
#
then
#
a. Compute a sparse Cholesky factorization A.
b. Solve the linear system A x = b using the Cholesky factor
#
Observe that anzc, aptrc, asubc and avalc only specify the lower triangular part.

n = 4
anzc = [4, 1, 1, 1]
asubc = [0, 1, 2, 3, 1, 2, 3]
aptrc = [0, 4, 5, 6]
avalc = [4.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
b = [13.0, 3.0, 4.0, 5.0]

print("First example with a definite A.")

perm, diag, lnzc, lptrc, lensubnval, lsubc, lvalc = sparsecholesky(env,
n,
anzc,
asubc,
aptrc,
avalc)

Permuted b is stored as x.
x = [b[p] for p in perm]

Compute x = inv(L)*x.
env.sparsetriangularsolvedense(mosek.transpose.no,

lnzc,
lptrc,
lsubc,
lvalc,

66 Chapter 5. Advanced Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

x)

Compute x = inv(L^T)*x.
env.sparsetriangularsolvedense(mosek.transpose.yes,

lnzc,
lptrc,
lsubc,
lvalc,
x)

print("\n\nSolution A x = b")
print('\n'.join(["x[%d]: %.2e"% (pp,xx) for pp,xx in zip(perm,x)]))

n = 3
anzc = [3, 2, 1]
asubc = [0, 1, 2, 1, 2, 2]
aptrc = [0, 3, 5]
avalc = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Let A be
#
[1.0 1.0 1.0]
[1.0 1.0 1.0]
[1.0 1.0 1.0]
#
then compute a sparse Cholesky factorization A. Observe A is NOT
positive definite.
#

print("Second example with a semidefinite A.")

perm, diag, lnzc, lptrc, lensubnval, lsubc, lvalc = sparsecholesky(env,
n,
anzc,
asubc,
aptrc,
avalc)

Here is the output when running the code

Sparse Cholesky computation.

First example with a definite A.
L and D. Length=7
0 perm=3 diag=0.0000e+000 : 1.0000e+000[0] 1.0000e+000[2]
1 perm=2 diag=0.0000e+000 : 1.0000e+000[1] 1.0000e+000[2]
2 perm=0 diag=0.0000e+000 : 1.4142e+000[2] 7.0711e-001[3]
3 perm=1 diag=0.0000e+000 : 7.0711e-001[3]

Solution A x = b
x[3]: 4.00e+000
x[2]: 3.00e+000
x[0]: 1.00e+000
x[1]: 2.00e+000

Second example with a semidefinite A.
L and D. Length=6
0 perm=0 diag=0.0000e+000 : 1.0000e+000[0] 1.0000e+000[1] 1.0000e+000[2]
1 perm=2 diag=1.0000e-014 : 1.0000e-007[1] 0.0000e+000[2]

5.4. Computing a Sparse Cholesky Factorization 67

MOSEK Optimizer API for Python, Release 8.0.0.94

2 perm=1 diag=1.0000e-014 : 1.0000e-007[2]

From the output the perm array has the value[︀
3 2 0 1

]︀
implying the permutation matrix

𝑃 =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎤⎥⎥⎦
has been employed. Now the Cholesky factorization of the permuted matrix is reported to be⎡⎢⎢⎣

1 0 0 0
0 1 0 0
1 1 1.4142 0
0 0 0.7071 0.7071

⎤⎥⎥⎦
using 5 figures of accuracy which can be verified to be correct.

After computing the Cholesky factorization has been computed it is used to solve the linear equation
system

𝐴𝑥 = 𝑏

where 𝑏 is [︀
13.0 3.0 4.0 5.0

]︀𝑇
.

The solutiuon is reported to be [︀
1 2 3 4

]︀𝑇
which is correct.

The second example in the source code shows what happens if a sparse Cholesky factorization of a
semidefinite matrix is computed. The example 𝐴 is

𝐴 =

⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ =

⎡⎣ 1
1
1

⎤⎦⎡⎣ 1
1
1

⎤⎦𝑇

(5.7)

which is a rank 1 matrix. The results is given by

𝑃𝐴𝑃𝑇 + 𝐷 = 𝐿𝐿𝑇

where

𝐷 =

⎡⎣ 1 0 0
0 1.0𝑒− 14 0
0 0 1.0𝑒− 14

⎤⎦ ,

𝐿 =

⎡⎣ 1 0 0
1 1.0𝑒− 7 0
1 0 1.0𝑒− 7

⎤⎦
and

𝑃 =

⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ .

68 Chapter 5. Advanced Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

Since 𝐴 is only positive semdefinite i.e. not of full rank then some of diagonal elements of 𝐴 are boosted
to make it truely positive definite. The amount of boosting is given as an argument to the function
computing the sparse Cholesky factorization and has been chosen to 1.0e-14.

Note that

𝑃𝐴𝑃𝑇 − 𝐿𝐿𝑇 = 𝐷

where 𝐷 is a small matrix so the computed Cholesky factorization is exact of slightly perturbed 𝐴 which
in general is the best we hope for given computations are performed finite precision.

We will end this section by a word of caution. Computing a Cholesky factorization of a matrix that is
not of full rank and that is not suffciently well conditioned may lead to incorrect results i.e. a matrix
that is indefinite may declared positive semidefinite and vice versa.

5.5 Converting a quadratically constrained problem to conic form

A conic quadratic constraint has the form

𝑥 ∈ 𝒬𝑛

in its most basic form where

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥1 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ .

Alternatively the conic constraint can be represented using a quadratic inequality
𝑛∑︁

𝑗=2

𝑥2
𝑗 − 𝑥2

1 ≤ 0.0 (5.8)

and the simple linear inequality

𝑥1 ≥ 0.0.

Therefore, it is possible to state conic quadratic problems using quadratic inequalities. Some drawbacks
of specifying conic quadratic problems using quadratic inequalities are

• the elegant duality theory for conic problems is lost.

• reporting accurate dual information for quadratic inequalities is hard and/or compuational expen-
sive.

• the left hand side of (5.8) is nonconvex so the formulation is stricly speaking not convex.

• a computational overhead is introduced when converting the quadratic inequalities to conic form
before optimizing.

• modelling directly on conic form usually leads to a better model [And13] i.e. a faster solution time
and better numerical properties.

In addition quadratic inequalities can not be used to speciffy the semidefinite cone or other more general
cones than quadratic cone. Despite the drawbacks it is not uncommon to state conic quadratic problems
using quadratic inequalities and therefore MOSEK has a function that translate certain quadratic-
cally constrained problems to conic form. Note that the MOSEK interior-point optimizer will do that
automatically for convex quadratic problems automatically. So quadratic to conic form conversion is
primarily useful for problems having conic quadratic constraints embedded.

MOSEK employs the following form of quadratic problems:

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘,𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

5.5. Converting a quadratically constrained problem to conic form 69

MOSEK Optimizer API for Python, Release 8.0.0.94

The reformulation is not unique. The approach followed by MOSEK is to introduce additional variables,
linear constraints and quadratic cones to obtain a larger but equivalent problem in which the original
variables are preserved.

In particular:

• all variables and constraints are kept in the problem,

• for each reformulated quadratic constraint there will be:

– one rotated quadratic cone for each quadratic constraint,

– one rotated quadratic cone if the objective function is quadratic,

– each quadratic constraint will contain no coefficients and upper/lower bounds will be set to
∞,−∞ respectively.

This allows the user to recover the original variable and constraint values, as well as their dual values,
with no conversion or additional effort.

Note: task.toconic modifies the input task in-place: this means that if the reformulation is not
possible, i.e. the problem is not conic representable, the state of the task is in general undefined. The
user should consider cloning the original task.

5.5.1 Quadratic Constraint Reformulation

Let us assume we want to convert the following quadratic constraint

𝑙 ≤ 1

2
𝑥𝑇𝑄𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑗𝑥𝑗 ≤ 𝑢

in conic form. We first check it must hold either 𝑙 = −∞ or 𝑢 = ∞, otherwise either the constraint can
be dropped, or the constraint is not convex. Thus let us consider the case

1

2
𝑥𝑇𝑄𝑥 +

𝑛−1∑︁
𝑗=0

𝑎𝑇𝑗 𝑥𝑗 ≤ 𝑢. (5.9)

Introducing an additional variable 𝑤 such that

𝑤 = 𝑢−
𝑛−1∑︁
𝑗=0

𝑎𝑇𝑗 𝑥𝑗 (5.10)

we obtain the equivalent form
1
2𝑥

𝑇𝑄𝑥 ≤ 𝑤,

𝑢−
∑︀𝑛−1

𝑗=0 𝑎𝑗𝑥𝑗 = 𝑤.

If 𝑄 is positive semidefinite, then there exists a matrix 𝐹 such that

𝑄 = 𝐹𝐹𝑇 (5.11)

and therefore we can write

‖𝐹𝑥‖2 ≤ 2𝑤,

𝑢−
∑︀𝑛−1

𝑗=0 𝑎𝑇𝑗 𝑥𝑗 = 𝑤.

Introducing an additional variable 𝑧 = 1, and setting 𝑦 = 𝐹𝑥 we obtain the conic formulation

(𝑤, 𝑧, 𝑦) ∈ 𝒬r ,
𝑧 = 1.
𝑦 = 𝐹𝑥

𝑤 = 𝑢−
∑︀𝑛−1

𝑗=0 𝑎𝑇𝑗 𝑥𝑗 .

(5.12)

Summarizing, for each quadratic constraint involving 𝑡 ≤ 𝑛 variables, MOSEK introduces

70 Chapter 5. Advanced Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

1. a rotated quadratic cone of dimension 𝑡 + 2,

2. two additional variables for the cone roots,

3. 𝑡 additional variables to map the remaining part of the cone,

4. 𝑡 linear constraints.

5.5.2 Some Examples

We report in this section few examples of reformulation of a QCQP problem in conic form. For each
problem we will show its definition before and after the reformulation, using the human-readable OPF
format .

Quadratic problem

We consider a simple quadratic problem of the form

min 1
2 (13𝑥2

0 + 17𝑥2
1 + 12𝑥2

2 + 24𝑥0𝑥1 + 12𝑥1𝑥2 − 4𝑥0𝑥2) − 22𝑥0 − 14.5𝑥1 + 12𝑥2 + 1
𝑠.𝑡.

−1 ≤ 𝑥𝑖 ≤ 1 𝑖 = 0, 1, 2

[comment]
An example of small QP from Boyd and Vandenberghe, "Convex Optimization", pag 189 ex 4.3
The solution is (1,0.5,-1)
[/comment]

[variables disallow_new_variables]
x0 x1 x2
[/variables]

[objective min]
0.5 (13 x0^2 + 17 x1^2 + 12 x2^2 + 24 x0 * x1 + 12 x1 * x2 - 4 x0 * x2) - 22 x0 - 14.5 x1 +␣
→˓12 x2 + 1

[/objective]

[bounds]
[b] -1 <= * <= 1 [/b]
[/bounds]

The objective function is convex, the solution is attained for 𝑥⋆ = (1, 0.5,−1). The conversion will
introduce first a variable 𝑥3 in the objective function such that 𝑥3 ≥ 1/2𝑥𝑇𝑄𝑥 and then convert the
latter directly in conic form. The converted problem follows:

min −22𝑥0 − 14.5𝑒𝑥1 + 12𝑥2 + 𝑥3 + 1
𝑠.𝑡.

3.61𝑥0 + 3.33𝑥1 − 0.55𝑥2 − 𝑥6 = 0
+2.29𝑥13.42𝑥2 − 𝑥7 = 0

0.81𝑥1 − 𝑥8 = 0
−𝑥3 + 𝑥4 = 0

𝑥5 = 1
(𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8) ∈ 𝒬∇

−1 ≤ 𝑥0, 𝑥1, 𝑥2 ≤ 1

The model generated by task.toconic is

[comment]
Written by MOSEK version 8.0.0.8
Date 25-05-15

5.5. Converting a quadratically constrained problem to conic form 71

MOSEK Optimizer API for Python, Release 8.0.0.94

Time 15:51:41
[/comment]

[variables disallow_new_variables]
x0000_x0 x0001_x1 x0002_x2 x0003 x0004
x0005 x0006 x0007 x0008
[/variables]

[objective minimize]
- 2.2e+01 x0000_x0 - 1.45e+01 x0001_x1 + 1.2e+01 x0002_x2 + x0003

+ 1e+00
[/objective]

[constraints]
[con c0000] 3.605551275463989e+00 x0000_x0 - 5.547001962252291e-01 x0002_x2 + 3.
→˓328201177351375e+00 x0001_x1 - x0006 = 0e+00 [/con]

[con c0001] 3.419401657060442e+00 x0002_x2 + 2.294598480395823e+00 x0001_x1 - x0007 = 0e+00 [/
→˓con]

[con c0002] 8.111071056538127e-01 x0001_x1 - x0008 = 0e+00 [/con]
[con c0003] - x0003 + x0004 = 0e+00 [/con]
[/constraints]

[bounds]
[b] 0 <= * [/b]
[b] -1e+00 <= x0000_x0,x0001_x1,x0002_x2 <= 1e+00 [/b]
[b] x0003 free [/b]
[b] x0005 = 1e+00 [/b]
[b] x0006,x0007,x0008 free [/b]
[cone rquad k0000] x0005, x0004, x0006, x0007, x0008 [/cone]
[/bounds]

We can clearly see that constraints c0000 to c0002 represent the linear mapping as in (5.11), while (5.10)
corresponds to c0003. The cone roots are x0005 and x0004.

5.6 MOSEK OptServer

MOSEK provides an easy way to offload optimization problem to a remote server in both synchronous
or asynchronous mode. This section describes the functionalities from the client side, i.e. how a user
can send a given optimization problem to a remote server where a optimization server is listening and
will run MOSEK to solve the problem.

5.6.1 Synchronous Remote Optimization

In synchoronous mdoe the client send the optimization problem to the optimization server and wait
for the optimization to end. Once the result has been received, the program can continue. This is the
simplest mode and requires very limited modifications to existing code: instead of task.optimize we
only need to use task.optimizermt instead, passing the host and port on which the server is running
and listening.

The rest of the code remains untouched.

Important: There is no way to recover a job in case the connection has been broken!

In Listing 5.5 we show how to modify tutorial in Section 3.1 so that the computation is off loaded to a
remote machine.

72 Chapter 5. Advanced Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

Listing 5.5: Using the OptServer in synchronous mode.

import mosek
import sys

def streamprinter(msg):
sys.stdout.write (msg)
sys.stdout.flush ()

if len(sys.argv) <= 3:
print ("Missing argument, syntax is:")
print (" opt_server_sync inputfile host port")

else:

inputfile = sys.argv[1]
host = sys.argv[2]
port = sys.argv[3]

Create the mosek environment.
with mosek.Env () as env:

Create a task object linked with the environment env.
We create it with 0 variables and 0 constraints initially,
since we do not know the size of the problem.
with env.Task (0, 0) as task :

task.set_Stream (mosek.streamtype.log, streamprinter)

We assume that a problem file was given as the first command
line argument (received in `argv')
task.readdata (inputfile)

Solve the problem remotely
task.optimizermt (host, port)

Print a summary of the solution
task.solutionsummary (mosek.streamtype.log)

5.6.2 Asynchronous Remote Optimization

Working in asynchronous mode involves more steps. In particular once that the optimization has started,
the user is responsible to check the status and when optimization ends, fetch the results. The user can
also stop the optimization anytime. The relevant functions are:

• task.asyncgetresult : Request a response from a remote job.

• task.asyncoptimize : Offload the optimization task to a solver server.

• task.asyncpoll : Requests information about the status of the remote job.

• task.asyncstop : Request that the job identified by the token is terminated.

In Listing 5.6 the code in Listing 5.5 is extended in order to run asynchronously: after that the opti-
mization is started, the program enters in a polling loop that regularly checks whether the result of the
optimization is available.

Listing 5.6: Using the OptServer in synchronous mode.

import mosek
import sys
import time

5.6. MOSEK OptServer 73

MOSEK Optimizer API for Python, Release 8.0.0.94

def streamprinter(msg):
sys.stdout.write (msg)
sys.stdout.flush ()

if len(sys.argv) != 5:
print ("Missing argument, syntax is:")
print (" opt-server-async inputfile host port numpolls")

else:

filename = sys.argv[1]
host = sys.argv[2]
port = sys.argv[3]
numpolls = int(sys.argv[4])
token = None

with mosek.Env () as env:

with env.Task (0, 0) as task:

print("reading task from file")
task.readdata (filename)

print("Solve the problem remotely (async)")
token = task.asyncoptimize(host, port)

print("Task token: ",token)

with env.Task(0,0) as task:

task.readdata (filename)

task.set_Stream (mosek.streamtype.log, streamprinter)

i = 0

while i < numpolls:

time.sleep(0.1)

print("poll %d...",i)
respavailable, trm, res = task.asyncpoll(host,

port,
token)

print("done!")

if respavailable:
print("solution available!")
respavailable, trm, res = task.asyncgetresult(host,

port,
token)

task.solutionsummary (mosek.streamtype.log)
break

i = i+1

if i == numpolls:
print("max number of polls reached, stopping host.")
task.asyncstop (host, port, token)

74 Chapter 5. Advanced Tutorials

MOSEK Optimizer API for Python, Release 8.0.0.94

5.6. MOSEK OptServer 75

MOSEK Optimizer API for Python, Release 8.0.0.94

76 Chapter 5. Advanced Tutorials

CHAPTER

SIX

GUIDELINES

6.1 Deployment

When redistributing a Python application using the MOSEK Optimizer API for Python 8.0.0.94, the
following libraries must be included:

64-bit Linux 64-bit Windows 32-bit Windows 64-bit Mac OS
libmosek64.so.8.0 mosek64_8_0.dll mosek32_8_0.dll libmosek64.dylib.8.0
libiomp5.lib libiomp5md.dll libomp5md.dll libiomp5.dylib
libcilkrts.so.5 cilkrts20.dll cilkrts20.dll libcilkrts.5.dylib
libmosekxx8_0.so mosekxx8_0.dll mosekxx8_0.dll libmosekxx8_0.dylib
libmosekscopt8_0.so mosekscopt8_0.dll mosekscopt8_0.dll libmosekscopt8_0.dylib

Furthermore, one (or both) of the directories

• python/2/mosek for Python 2.x applications, and

• python/3/mosek for Python 3.x applications.

must be included.

By default the MOSEK Python API will look for the binary libraries in the MOSEK module directory,
i.e. the directory containing __init__.py. Alternative, if the binary libraries reside in another directory,
the application can pre-load the mosekxx library from another located before mosek is imported, e.g.
like this

import ctypes ; ctypes.CDLL('my/path/to/mosekxx.dll')

6.2 Efficiency Considerations

Although MOSEK is implemented to handle memory efficiently, the user may have valuable knowledge
about a problem, which could be used to improve the performance of MOSEK This section discusses
some tricks and general advice that hopefully make MOSEK process your problem faster.

Avoiding memory fragmentation

MOSEK stores the optimization problem in internal data structures in the memory. Initially MOSEK
will allocate structures of a certain size, and as more items are added to the problem the structures are
reallocated. For large problems the same structures may be reallocated many times causing memory
fragmentation. One way to avoid this is to give MOSEK an estimated size of your problem using the
functions:

• task.putmaxnumvar . Estimate for the number of variables.

• task.putmaxnumcon . Estimate for the number of constraints.

• task.putmaxnumcone . Estimate for the number of cones.

77

MOSEK Optimizer API for Python, Release 8.0.0.94

• task.putmaxnumbarvar . Estimate for the number of semidefinite matrix variables.

• task.putmaxnumanz . Estimate for the number of non-zeros in 𝐴.

• task.putmaxnumqnz . Estimate for the number of non-zeros in the quadratic terms.

None of these functions change the problem, they only give hints to the eventual dimension of the
problem. If the problem ends up growing larger than this, the estimates are automatically increased.

Do not mix put- and get- functions

For instance, the functions task.putacol and task.getacol . MOSEK will queue put- commands
internally until a get- function is called. If every put- function call is followed by a get- function call,
the queue will have to be flushed often, decreasing efficiency.

In general get- commands should not be called often during problem setup.

Use the LIFO principle

When removing constraints and variables, try to use a LIFO approach, i.e. Last In First out. MOSEK
can more efficiently remove constraints and variables with a high index than a small index.

An alternative to removing a constraint or a variable is to fix it at 0, and set all relevant coefficients to
0. Generally this will not have any impact on the optimization speed.

Add more constraints and variables than you need (now)

The cost of adding one constraint or one variable is about the same as adding many of them. Therefore,
it may be worthwhile to add many variables instead of one. Initially fix the unused variable at zero, and
then later unfix them as needed. Similarly, you can add multiple free constraints and then use them as
needed.

Do not remove basic variables

When doing re-optimizations, instead of removing a basic variable it may be more efficient to fix the
variable at zero and then remove it when the problem is re-optimized and it has left the basis. This
makes it easier for MOSEK to restart the simplex optimizer.

Use one environment (env) only

If possible share the environment (env) between several tasks. For most applications you need to create
only a single env.

6.2.1 API overhead

The Python interface is a thin wrapper around a native MOSEK library. The layer between the Python
application and the native MOSEK library is made as thin as possible to minimize the overhead from
function calls.

The methods in Env and Task are all written in C and resides in the module pymosek. Each method
converts the call parameter data structures (i.e. creates a complete copy of the data), calls MOSEK
function and converts the returned values back into Python structures.

The following rules will often improve the performance of the MOSEK/ Python API:

78 Chapter 6. Guidelines

MOSEK Optimizer API for Python, Release 8.0.0.94

• Reuse Env and Task whenever possible : There may be some overhead involved in creating and
deleting task and environment objects, so if possible reuse these.

• Make sure to delete task and environment when not in use anymore. Using the with-construction
(available in Python 2.6 and later) will allow automatic deletion of the environment and task. If
this is not an option, use Env.__del__() and Task.__del__() to destroy the objects. Failing to
do this may cause memory leaks in some cases.

• Avoid input loops: Whenever possible imput data in large chunks or vectors instead of using loops.
For small put- and get- methods there is a significant overhead, so for example inputting one row
of the A-matrix at the time may be much slower than inputting the whole matrix.

For example, a loop with task.putarow may be replaced with one task.putarowlist , or a loop of
task.putqobjij may be replaced with task.putqobj .

6.3 The license system

MOSEK is a commercial product that always needs a valid license to work. A license is typically
provided as a license file that allows the user to access the subset of the MOSEK Optimization Suite
functionalities it is entitled for, and for the right amount of time. MOSEK uses a third party license
manager to implement license checking.

By default a license token remains checked out for the duration of the MOSEK session, i.e.

1. a license token is checked out when task.optimize is first called and

2. it is returned when the MOSEK environment is deleted.

Calling task.optimize from different threads using the same MOSEK environment only consumes one
license token.

To change the license systems behavior to returning the license token after each call to MOSEK set the
parameter iparam.cache_license to onoffkey.off .

Additionally license checkout and checkin can be controlled manually with the functions
env.checkinlicense and env.checkoutlicense .

6.3.1 Waiting for a free license

By default an error will be returned if no license token is available. By setting the parameter
iparam.license_wait MOSEK can be instructed to wait until a license token is available.

6.3.2 Manually stopping the license system

Usually the license system is stopped automatically when the MOSEK library is unloaded. However,
when the user explicitly unload the library using e.g windows FreeLibrary, the license system must be
stopped before the library is unloaded. This can be done by calling the function env.licensecleanup
as the last function call to MOSEK.

6.3. The license system 79

MOSEK Optimizer API for Python, Release 8.0.0.94

80 Chapter 6. Guidelines

CHAPTER

SEVEN

CASE STUDIES

In this section we present some case studies in which the Optimizer API for Python is used to solve
real-life applications. These examples involve some more advanced modeling skills and possibly some
input data. The user is strongly recommended to first read the basic tutorials before going through these
advanced case studies.

Case Studies Type Int. Keywords
Portofolio Optimization CQO NO Markowitz, Slippage, Market Impact

7.1 Portfolio Optimization

In this section the Markowitz portfolio optimization problem and variants are implemented using the
MOSEK optimizer API.

Subsequently the following MATLAB inspired notation will be employed. The : operator is used as
follows

𝑖 : 𝑗 = {𝑖, 𝑖 + 1, . . . , 𝑗}

and hence

𝑥2:4 =

⎡⎣ 𝑥2

𝑥3

𝑥4

⎤⎦
If 𝑥 and 𝑦 are two column vectors, then

[𝑥; 𝑦] =

[︂
𝑥
𝑦

]︂
Furthermore, if 𝑓 ∈ R𝑚×𝑛 then

𝑓(:) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑓1,1
𝑓2,1
...

𝑓𝑚−1,𝑛

...
𝑓𝑚,𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
i.e. 𝑓(:) stacks the columns of the matrix 𝑓 .

7.1.1 A Basic Portfolio Optimization Model

The classical Markowitz portfolio optimization problem considers investing in 𝑛 stocks or assets held
over a period of time. Let 𝑥𝑗 denote the amount invested in asset 𝑗, and assume a stochastic model
where the return of the assets is a random variable 𝑟 with known mean

𝜇 = E𝑟

81

MOSEK Optimizer API for Python, Release 8.0.0.94

and covariance

Σ = E(𝑟 − 𝜇)(𝑟 − 𝜇)𝑇 .

The return of the investment is also a random variable 𝑦 = 𝑟𝑇𝑥 with mean (or expected return)

E𝑦 = 𝜇𝑇𝑥

and variance (or risk)

(𝑦 −E𝑦)2 = 𝑥𝑇 Σ𝑥.

The problem facing the investor is to rebalance the portfolio to achieve a good compromise between risk
and expected return, e.g., maximize the expected return subject to a budget constraint and an upper
bound (denoted 𝛾) on the tolerable risk. This leads to the optimization problem

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

𝑥𝑇 Σ𝑥 ≤ 𝛾2,
𝑥 ≥ 0.

(7.1)

The variables 𝑥 denote the investment i.e. 𝑥𝑗 is the amount invested in asset 𝑗 and 𝑥0
𝑗 is the initial

holding of asset 𝑗. Finally, 𝑤 is the initial amount of cash available.

A popular choice is 𝑥0 = 0 and 𝑤 = 1 because then 𝑥𝑗 may be interpretated as the relative amount of
the total portfolio that is invested in asset 𝑗.

Since 𝑒 is the vector of all ones then

𝑒𝑇𝑥 =

𝑛∑︁
𝑗=1

𝑥𝑗

is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which is

𝑤 + 𝑒𝑇𝑥0.

This leads to the first constraint

𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0.

The second constraint

𝑥𝑇 Σ𝑥 ≤ 𝛾2

ensures that the variance, or the risk, is bounded by 𝛾2. Therefore, 𝛾 specifies an upper bound of the
standard deviation the investor is willing to undertake. Finally, the constraint

𝑥𝑗 ≥ 0

excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is
allowed.

The covariance matrix Σ is positive semidefinite by definition and therefore there exist a matrix 𝐺 such
that

Σ = 𝐺𝐺𝑇 . (7.2)

In general the choice of 𝐺 is not unique and one possible choice of 𝐺 is the Cholesky factorization of Σ.
However, in many cases another choice is better for efficiency reasons as discussed in Section 7.1.3 .

For a given 𝐺 we have that

𝑥𝑇 Σ𝑥 = 𝑥𝑇𝐺𝐺𝑇𝑥

=
⃦⃦
𝐺𝑇𝑥

⃦⃦2
.

82 Chapter 7. Case Studies

MOSEK Optimizer API for Python, Release 8.0.0.94

Hence, we may write the risk constraint as

𝛾 ≥
⃦⃦
𝐺𝑇𝑥

⃦⃦
or equivalently

[𝛾;𝐺𝑇𝑥] ∈ 𝒬𝑛+1.

where 𝒬𝑛+1 is the 𝑛 + 1 dimensional quadratic cone. Therefore, problem (7.1) can be written as

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

[𝛾;𝐺𝑇𝑥] ∈ 𝒬𝑛+1,
𝑥 ≥ 0,

(7.3)

which is a conic quadratic optimization problem that can easily be solved using MOSEK.

Subsequently we will use the example data

𝜇 =

⎡⎣ 0.1073
0.0737
0.0627

⎤⎦
and

Σ = 0.1

⎡⎣ 0.2778 0.0387 0.0021
0.0387 0.1112 −0.0020
0.0021 −0.0020 0.0115

⎤⎦
This implies

𝐺𝑇 =
√

0.1

⎡⎣ 0.5271 0.0734 0.0040
0 0.3253 −0.0070
0 0 0.1069

⎤⎦
using 5 figures of accuracy. Moreover, let

𝑥0 =

⎡⎣ 0.0
0.0
0.0

⎤⎦
and

𝑤 = 1.0.

The data has been taken from [CT07] .

Why a Conic Formulation?

Problem (7.1) is a convex quadratically constrained optimization problems that can be solved directly
using MOSEK, then why reformulate it as a conic quadratic optimization problem? The main reason
for choosing a conic model is that it is more robust and usually leads to a shorter solution times. For
instance it is not always easy to determine whether the 𝑄 matrix in (7.1) is positive semidefinite due to
the presence of rounding errors. It is also very easy to make a mistake so 𝑄 becomes indefinite. These
causes of problems are completely eliminated in the conic formulation.

Moreover, observe the constraint ⃦⃦
𝐺𝑇𝑥

⃦⃦
≤ 𝛾

is nicer than

𝑥𝑇 Σ𝑥 ≤ 𝛾2

for small and values of 𝛾. For instance assume a 𝛾 of 10000 then 𝛾2 would 1.0e8 which introduces
a scaling issue in the model. Hence, using conic formulation it is possible to work with the standard
deviation instead of the variance, which usually gives rise to a better scaled model.

7.1. Portfolio Optimization 83

MOSEK Optimizer API for Python, Release 8.0.0.94

Implementing the Portfolio Model

Model (7.3) can not be implemented as stated using the MOSEK optimizer API because the API
requires the problem to be on the form

maximize 𝑐𝑇 𝑥̂
subject to 𝑙𝑐 ≤ 𝐴𝑥̂ ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥̂ ≤ 𝑢𝑥,
𝑥̂ ∈ 𝒦.

(7.4)

where 𝑥̂ is referred to as the API variable.

The first step in bringing (7.3) to the form (7.4) is the reformulation

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

𝐺𝑇𝑥− 𝑡 = 0
[𝑠; 𝑡] ∈ 𝒬𝑛+1,
𝑥 ≥ 0,
𝑠 0.

(7.5)

where 𝑠 is an additional scalar variable and 𝑡 is a n dimensional vector variable. The next step is to
define a mapping of the variables

𝑥̂ = [𝑥; 𝑠; 𝑡] =

⎡⎣ 𝑥
𝑠
𝑡

⎤⎦ . (7.6)

Hence, the API variable 𝑥̂ is concatenation of model variables 𝑥, 𝑠 and 𝑡. In Table 7.1 the details of the
concatenation are specified.

Table 7.1: Storage layout of
the 𝑥̂ variable.

Variable Length Offset
𝑥 n 1
𝑠 1 n+1
𝑡 n n+2

For instance it can be seen that

𝑥̂𝑛+2 = 𝑡1.

because the offset of the 𝑡 variable is 𝑛 + 2.

Given the ordering of the variables specified by (7.6) the data should be defined as follows

𝑐 =
[︀
𝜇𝑇 0 0𝑛,1

]︀𝑇
,

𝐴 =

[︂
𝑒𝑇 0 0𝑛,1
𝐺𝑇 0𝑛,1 −𝐼𝑛

]︂
,

𝑙𝑐 =
[︀
𝑤 + 𝑒𝑇𝑥0 01,𝑛

]︀𝑇
,

𝑢𝑐 =
[︀
𝑤 + 𝑒𝑇𝑥0 01,𝑛

]︀𝑇
,

𝑙𝑥 =
[︀

01,𝑛 𝛾 −∞𝑛,1

]︀𝑇
,

𝑢𝑥 =
[︀
∞𝑛,1 𝛾 ∞𝑛,1

]︀𝑇
.

84 Chapter 7. Case Studies

MOSEK Optimizer API for Python, Release 8.0.0.94

The next step is to consider how the columns of 𝐴 is defined. The following pseudo code

𝑓𝑜𝑟 𝑗 = 1 : 𝑛
𝑥̂𝑗 = 𝑥𝑗

𝐴1,𝑗 = 1.0
𝐴2:(𝑛+1),𝑗 = 𝐺𝑇

𝑗,1:𝑛

𝑥̂𝑛+1 = 𝑠

𝑓𝑜𝑟 𝑗 = 1 : 𝑛
𝑥̂𝑛+1+𝑗 = 𝑡𝑗
𝐴𝑛+1+𝑗,𝑛+1+𝑗 = −1.0

show how to construct each column of 𝐴.

In the above discussion index origin 1 is employed, i.e., the first position in a vector is 1. The Python
programming language employs 0 as index origin and that should be kept in mind when reading the
example code.

import mosek

def streamprinter(text):
print("%s" % text),

if __name__ == '__main__':

n = 3
gamma = 0.05
mu = [0.1073, 0.0737, 0.0627]
GT = [[0.1667, 0.0232, 0.0013],

[0.0000, 0.1033, -0.0022],
[0.0000, 0.0000, 0.0338]]

x0 = [0.0, 0.0, 0.0]
w = 1.0

inf = 0.0 # This value has no significance

with mosek.Env() as env:
with env.Task(0,0) as task:

task.set_Stream(mosek.streamtype.log,streamprinter)

rtemp = w
for j in range(0,n):

rtemp += x0[j]

Constraints.
task.appendcons(1+n)
task.putconbound(0,mosek.boundkey.fx,rtemp,rtemp)
task.putconname(0,"budget")

task.putconboundlist(range(1+0,1+n),n*[mosek.boundkey.fx],n*[0.0],n*[0.0])
for j in range(1,1+n) :

task.putconname(j,"GT[%d]" % j)

Variables.
task.appendvars(1+2*n)

Offset of variables into the API variable.
offsetx = 0
offsets = n
offsett = n+1

7.1. Portfolio Optimization 85

MOSEK Optimizer API for Python, Release 8.0.0.94

x variables.
task.putclist(range(offsetx+0,offsetx+n),mu)
task.putaijlist(n*[0],range(offsetx+0,offsetx+n),n*[1.0])
for j in range(0,n):

task.putaijlist(n*[1+j],range(offsetx+0,offsetx+n),GT[j])

task.putvarboundlist(range(offsetx+0,offsetx+n),n*[mosek.boundkey.lo],n*[0.
→˓0],n*[inf])

for j in range(0,n):
task.putvarname(offsetx+j,"x[%d]" % (1+j))

s variable.
task.putvarbound(offsets+0,mosek.boundkey.fx,gamma,gamma)
task.putvarname(offsets+0,"s")

t variables.
task.putaijlist(range(1,n+1),range(offsett+0,offsett+n),n*[-1.0])
task.putvarboundlist(range(offsett+0,offsett+n),n*[mosek.boundkey.fr],n*[-

→˓inf],n*[inf])
for j in range(0,n):

task.putvarname(offsett+j,"t[%d]" % (1+j))

task.appendcone(mosek.conetype.quad,0.0, [offsets] + list(range(offsett,offsett+n)))
task.putconename(0,"stddev")

task.putobjsense(mosek.objsense.maximize)

Turn all log output off.
task.putintparam(mosek.iparam.log,1)

Dump the problem to a human readable OPF file.
#task.writedata("dump.opf")

task.optimize()

Display the solution summary for quick inspection of results.
task.solutionsummary(mosek.streamtype.msg)

expret = 0.0
x = [0.]*n
task.getxxslice(mosek.soltype.itr,offsetx+0,offsetx+n,x)
for j in range(0,n):

expret += mu[j]*x[j]

stddev = [0.]
task.getxxslice(mosek.soltype.itr,offsets+0,offsets+1,stddev)

print("\nExpected return %e for gamma %e\n" % (expret,stddev[0]))

The above code produce the result

Listing 7.1: Output from the solver.

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 7.4766497707e-002 Viol. con: 2e-008 var: 0e+000 cones: 3e-009
Dual. obj: 7.4766522618e-002 Viol. con: 0e+000 var: 4e-008 cones: 0e+000

Expected return 7.476650e-002 for gamma 5.000000e-002

The source code should be self-explanatory but a few comments are nevertheless in place.

86 Chapter 7. Case Studies

MOSEK Optimizer API for Python, Release 8.0.0.94

In the lines

Offset of variables into the API variable.
offsetx = 0
offsets = n
offsett = n+1

offsets into the MOSEK API variables are stored and those offsets are used later. The code

task.putclist(range(offsetx+0,offsetx+n),mu)
task.putaijlist(n*[0],range(offsetx+0,offsetx+n),n*[1.0])
for j in range(0,n):

task.putaijlist(n*[1+j],range(offsetx+0,offsetx+n),GT[j])

task.putvarboundlist(range(offsetx+0,offsetx+n),n*[mosek.boundkey.lo],n*[0.0],n*[inf])
for j in range(0,n):

task.putvarname(offsetx+j,"x[%d]" % (1+j))

sets up the data for x variables. For instance

task.putclist(range(offsetx+0,offsetx+n),mu)

inputs the objective coefficients for the x variables. Moreover, the code

for j in range(0,n):
task.putvarname(offsetx+j,"x[%d]" % (1+j))

assigns meaningful names to the API variables. This is not needed but it makes debugging easier.

Debugging Tips

Implementing an optimization model in optimizer can be cumbersome and error-prone and it is very
easy to make mistakes. In order to check the implemented code for mistakes it is very useful to dump
the problem to a file in a human readable form for visual inspection. The line

#task.writedata("dump.opf")

does that and this will produce a file with the content

Listing 7.2: Problem (7.5) stored in OPF format.

[comment]
Written by MOSEK version 7.0.0.86
Date 01-10-13
Time 08:43:21

[/comment]

[hints]
[hint NUMVAR] 7 [/hint]
[hint NUMCON] 4 [/hint]
[hint NUMANZ] 12 [/hint]
[hint NUMQNZ] 0 [/hint]
[hint NUMCONE] 1 [/hint]

[/hints]

[variables disallow_new_variables]
'x[1]' 'x[2]' 'x[3]' s 't[1]'
't[2]' 't[3]'

[/variables]

[objective maximize]
1.073e-001 'x[1]' + 7.37e-002 'x[2]' + 6.270000000000001e-002 'x[3]'

7.1. Portfolio Optimization 87

MOSEK Optimizer API for Python, Release 8.0.0.94

[/objective]

[constraints]
[con 'budget'] 'x[1]' + 'x[2]' + 'x[3]' = 1e+000 [/con]
[con 'GT[1]'] 1.667e-001 'x[1]' + 2.32e-002 'x[2]' + 1.3e-003 'x[3]' - 't[1]' = 0e+000 [/

→˓con]
[con 'GT[2]'] 1.033e-001 'x[2]' - 2.2e-003 'x[3]' - 't[2]' = 0e+000 [/con]
[con 'GT[3]'] 3.38e-002 'x[3]' - 't[3]' = 0e+000 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]
[b] s = 5e-002 [/b]
[b] 't[1]','t[2]','t[3]' free [/b]
[cone quad 'stddev'] s, 't[1]', 't[2]', 't[3]' [/cone]

[/bounds]

Observe that since the API variables have been given meaningful names it is easy to see the model is
correct.

7.1.2 The efficient Frontier

The portfolio computed by the Markowitz model is efficient in the sense that there is no other portfolio
giving a strictly higher return for the same amount of risk. An efficient portfolio is also sometimes called
a Pareto optimal portfolio. Clearly, an investor should only invest in efficient portfolios and therefore it
may be relevant to present the investor with all efficient portfolios so the investor can choose the portfolio
that has the desired tradeoff between return and risk.

Given a nonnegative 𝛼 then the problem

maximize 𝜇𝑇𝑥− 𝛼𝑠
subject to 𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,

[𝑠;𝐺𝑇𝑥] ∈ 𝒬𝑛+1,
𝑥 ≥ 0.

(7.7)

computes efficient portfolios. Note that the objective maximizes the expected return while maximizing
−𝛼 times the standard deviation. Hence, the standard deviation is minimized while 𝛼 specifies the
tradeoff between expected return and risk.

Ideally the problem (7.7) should be solved for all values 𝛼 ≥ 0 but in practice that is computationally
too costly.

Using the example data from Section 7.1.1 , the optimal values of return and risk for several 𝛼s are listed
below:

Listing 7.3: Results obtained solving problem (7.7) for different values of 𝛼.

alpha exp ret std dev
0.000e+000 1.073e-001 7.261e-001
2.500e-001 1.033e-001 1.499e-001
5.000e-001 6.976e-002 3.735e-002
7.500e-001 6.766e-002 3.383e-002
1.000e+000 6.679e-002 3.281e-002
1.500e+000 6.599e-002 3.214e-002
2.000e+000 6.560e-002 3.192e-002
2.500e+000 6.537e-002 3.181e-002
3.000e+000 6.522e-002 3.176e-002
3.500e+000 6.512e-002 3.173e-002
4.000e+000 6.503e-002 3.170e-002
4.500e+000 6.497e-002 3.169e-002

88 Chapter 7. Case Studies

MOSEK Optimizer API for Python, Release 8.0.0.94

The example code in Listing 7.4 demonstrates how to compute the efficient portfolios for several values
of 𝛼.

Listing 7.4: Code implementing model (7.7)

import mosek

def streamprinter(text):
print("%s" % text),

if __name__ == '__main__':

n = 3
gamma = 0.05
mu = [0.1073, 0.0737, 0.0627]
GT = [[0.1667, 0.0232, 0.0013],

[0.0000, 0.1033, -0.0022],
[0.0000, 0.0000, 0.0338]]

x0 = [0.0, 0.0, 0.0]
w = 1.0
alphas = [0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5]

inf = 0.0 # This value has no significance

with mosek.Env() as env:
with env.Task(0,0) as task:

task.set_Stream(mosek.streamtype.log,streamprinter)

rtemp = w
for j in range(0,n):

rtemp += x0[j]

Constraints.
task.appendcons(1+n)
task.putconbound(0,mosek.boundkey.fx,rtemp,rtemp)
task.putconname(0,"budget")

task.putconboundlist(range(1+0,1+n),n*[mosek.boundkey.fx],n*[0.0],n*[0.0])
for j in range(1,1+n) :

task.putconname(j,"GT[%d]" % j)

Variables.
task.appendvars(1+2*n)

offsetx = 0 # Offset of variable x into the API variable.
offsets = n # Offset of variable x into the API variable.
offsett = n+1 # Offset of variable t into the API variable.

x variables.
task.putclist(range(offsetx+0,offsetx+n),mu)
task.putaijlist(n*[0],range(offsetx+0,offsetx+n),n*[1.0])
for j in range(0,n):

task.putaijlist(n*[1+j],range(offsetx+0,offsetx+n),GT[j])

task.putvarboundlist(range(offsetx+0,offsetx+n),n*[mosek.boundkey.lo],n*[0.
→˓0],n*[inf])

for j in range(0,n):
task.putvarname(offsetx+j,"x[%d]" % (1+j))

s variable.
task.putvarbound(offsets+0,mosek.boundkey.fr,gamma,gamma)
task.putvarname(offsets+0,"s")

7.1. Portfolio Optimization 89

MOSEK Optimizer API for Python, Release 8.0.0.94

t variables.
task.putaijlist(range(1,n+1),range(offsett+0,offsett+n),n*[-1.0])
task.putvarboundlist(range(offsett+0,offsett+n),n*[mosek.boundkey.fr],n*[-

→˓inf],n*[inf])
for j in range(0,n):

task.putvarname(offsett+j,"t[%d]" % (1+j))

task.appendcone(mosek.conetype.quad,0.0,[offsets] + list(range(offsett,offsett+n)))
task.putconename(0,"stddev")

task.putobjsense(mosek.objsense.maximize)

Turn all log output off.
task.putintparam(mosek.iparam.log,0)

for alpha in alphas:
Dump the problem to a human readable OPF file.
#task.writedata("dump.opf")

task.putcj(offsets+0,-alpha);

task.optimize()

Display the solution summary for quick inspection of results.
task.solutionsummary(mosek.streamtype.msg)

solsta = task.getsolsta(mosek.soltype.itr)

if solsta in [mosek.solsta.optimal, mosek.solsta.near_optimal]:
expret = 0.0
x = [0.]*n
task.getxxslice(mosek.soltype.itr,offsetx+0,offsetx+n,x)
for j in range(0,n):

expret += mu[j]*x[j]

stddev = [0.]
task.getxxslice(mosek.soltype.itr,offsets+0,offsets+1,stddev)

print("\nExpected return %e for gamma %e" % (expret,stddev[0])),
else:

print("An error occurred when solving for alpha=%e\n" % alpha)

7.1.3 Improving the Computational Efficiency

In practice it is often important to solve the portfolio problem in a short amount of time; this section it
is discusses what can be done at the modelling stage to improve the computational efficiency.

The computational cost is of course to some extent dependent on the number of constraints and variables
in the optimization problem. However, in practice a more important factor is the number nonzeros used
to represent the problem. Indeed it is often better to focus at the number of nonzeros in 𝐺 (see (7.2))
and try to reduce that number by for instance changing the choice of 𝐺.

In other words, if the computational efficiency should be improved then it is always good idea to start
with focusing at the covariance matrix. As an example assume that

Σ = 𝐷 + 𝑉 𝑉 𝑇

where 𝐷 is positive definite diagonal matrix. Moreover, 𝑉 is a matrix with 𝑛 rows and 𝑝 columns. Such
a model for the covariance matrix is called a factor model factor model and usually 𝑝 tends be a small
number, say less than 100, independent of 𝑛.

90 Chapter 7. Case Studies

MOSEK Optimizer API for Python, Release 8.0.0.94

One possible choice for 𝐺 is the Cholesky factorization of Σ which requires storage proportional to
𝑛(𝑛 + 1)/2. However, another choice is

𝐺𝑇 =

[︂
𝐷1/2

𝑉 𝑇

]︂
because then

𝐺𝐺𝑇 = 𝐷 + 𝑉 𝑉 𝑇 .

This choice requires storage proportional to 𝑛 + 𝑝𝑛 which is much less than for the Cholesky choice of
𝐺. Indeed assuming 𝑝 is a constant then the difference in storage requirements is a factor of 𝑛.

The example above exploits the so-called factor structure and demonstrates that an alternative choice
of 𝐺 may lead to a significant reduction in the amount of storage used to represent the problem. This
will in most cases also lead to a significant reduction in the solution time.

The lesson to be learned is that it is important to investigate how the covariance is formed. Given this
knowledge it might be possible to make a special choice for 𝐺 that helps reducing the storage requirements
and enhance the computational efficiency.

7.1.4 Slippage Cost

The basic Markowitz portfolio model assumes that there are no costs associated with trading the assets
and that the returns of the assets is independent of the amount traded. None of those assumptions are
usually valid in practice. Therefore, a more realistic model is

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 +

∑︀𝑛
𝑗=1 𝐶𝑗(𝑥𝑗 − 𝑥0

𝑗) = 𝑤 + 𝑒𝑇𝑥0,

𝑥𝑇 Σ𝑥 ≤ 𝛾2,
𝑥 ≥ 0,

(7.8)

where the function

𝐶𝑗(𝑥𝑗 − 𝑥0
𝑗)

specifies the transaction costs when the holding of asset 𝑗 is changed from its initial value.

Market Impact Costs

If the initial wealth is fairly small and short selling is not allowed, then the holdings will be small.
Therefore, the amount traded of each asset must also be small. Hence, it is reasonable to assume that
the prices of the assets is independent of the amount traded. However, if a large volume of an assert is
sold or purchased it can be expected that the price change and hence the expected return also change.
This effect is called market impact costs. It is common to assume that market impact costs for asset 𝑗
can be modelled by

𝑚𝑗

√︁
|𝑥𝑗 − 𝑥0

𝑗 |

where 𝑚𝑗 is a constant that is estimated in some way. See [GK00] [p. 452] for details. To summarize
then

𝐶𝑗(𝑥𝑗 − 𝑥0
𝑗) = 𝑚𝑗 |𝑥𝑗 − 𝑥0

𝑗 |
√︁
|𝑥𝑗 − 𝑥0

𝑗 | = 𝑚𝑗 |𝑥𝑗 − 𝑥0
𝑗 |3/2.

From [MOSEKApS12] it is known

{(𝑐, 𝑧) : 𝑐 ≥ 𝑧3/2, 𝑧 ≥ 0} = {(𝑐, 𝑧) : [𝑣; 𝑐; 𝑧], [𝑧; 1/8; 𝑣] ∈ 𝒬3
𝑟}

7.1. Portfolio Optimization 91

MOSEK Optimizer API for Python, Release 8.0.0.94

where 𝒬3
𝑟 is the 3 dimensional rotated quadratic cone implying

𝑧𝑗 = |𝑥𝑗 − 𝑥0
𝑗 |,

[𝑣𝑗 ; 𝑐𝑗 ; 𝑧𝑗] , [𝑧𝑗 ; 1/8; 𝑣𝑗] ∈ 𝒬3
𝑟,∑︀𝑛

𝑗=1 𝐶𝑗(𝑥𝑗 − 𝑥0
𝑗) =

∑︀𝑛
𝑗=1 𝑐𝑗 .

Unfortunately this set of constraints is nonconvex due to the constraint

𝑧𝑗 = |𝑥𝑗 − 𝑥0
𝑗 | (7.9)

but in many cases that constraint can safely be replaced by the relaxed constraint

𝑧𝑗 ≥ |𝑥𝑗 − 𝑥0
𝑗 | (7.10)

which is convex. If for instance the universe of assets contains a risk free asset with a positive return
then

𝑧𝑗 > |𝑥𝑗 − 𝑥0
𝑗 | (7.11)

cannot hold for an optimal solution because that would imply the solution is not optimal.

Now assume that the optimal solution has the property that (7.11) holds then the market impact cost
within the model is larger than the true market impact cost and hence money are essentially considered
garbage and removed by generating transaction costs. This may happen if a portfolio with very small
risk is requested because then the only way to obtain a small risk is to get rid of some of the assets by
generating transaction costs. Here it is assumed this is not the case and hence the models (7.9) and
(7.10) are equivalent.

Formula (7.10) is replaced by constraints

𝑧𝑗 ≥ 𝑥𝑗 − 𝑥0
𝑗 ,

𝑧𝑗 ≥ −(𝑥𝑗 − 𝑥0
𝑗).

(7.12)

Now we have

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 + 𝑚𝑇 𝑐 = 𝑤 + 𝑒𝑇𝑥0,

𝑧𝑗 ≥ 𝑥𝑗 − 𝑥0
𝑗 , 𝑗 = 1, . . . , 𝑛,

𝑧𝑗 ≥ 𝑥0
𝑗 − 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛,

[𝛾;𝐺𝑇𝑥] ∈ 𝒬𝑛+1,
[𝑣𝑗 ; 𝑐𝑗 ; 𝑧𝑗] ∈ 𝒬3

𝑟, 𝑗 = 1, . . . , 𝑛,
[𝑧𝑗 ; 1/8; 𝑣𝑗] ∈ 𝒬3

𝑟, 𝑗 = 1, . . . , 𝑛,
𝑥 ≥ 0.

(7.13)

The revised budget constraint

𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0 −𝑚𝑇 𝑐

specifies that the total investment must be equal to the initial wealth minus the transaction costs.
Moreover, observe the variables 𝑣 and 𝑧 are some auxiliary variables that model the market impact cost.
Indeed it holds

𝑧𝑗 ≥ |𝑥𝑗 − 𝑥0
𝑗 |

and

𝑐𝑗 ≥ 𝑧
3/2
𝑗 .

Before proceeding it should be mentioned that transaction costs of the form

𝑐𝑗 ≥ 𝑧
𝑝/𝑞
𝑗

92 Chapter 7. Case Studies

MOSEK Optimizer API for Python, Release 8.0.0.94

where 𝑝 and 𝑞 are both integers and 𝑝 ≥ 𝑞 can be modelled using quadratic cones. See [MOSEKApS12]
for details.

One more reformulation of (7.13) is needed,

maximize 𝜇𝑇𝑥
subject to 𝑒𝑇𝑥 + 𝑚𝑇 𝑐 = 𝑤 + 𝑒𝑇𝑥0,

𝐺𝑇𝑥− 𝑡 = 0,
𝑧𝑗 − 𝑥𝑗 ≥ −𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
𝑧𝑗 + 𝑥𝑗 ≥ 𝑥0

𝑗 , 𝑗 = 1, . . . , 𝑛,
[𝑣𝑗 ; 𝑐𝑗 ; 𝑧𝑗] − 𝑓𝑗,1:3 = 0, 𝑗 = 1, . . . , 𝑛,
[𝑧𝑗 ; 0; 𝑣𝑗] − 𝑔𝑗,1:3 = [0;−1/8; 0], 𝑗 = 1, . . . , 𝑛,

[𝑠; 𝑡] ∈ 𝒬𝑛+1,
𝑓𝑇
𝑗,1:3 ∈ 𝒬3

𝑟, 𝑗 = 1, . . . , 𝑛,
𝑔𝑇𝑗,1:3 ∈ 𝒬3

𝑟, 𝑗 = 1, . . . , 𝑛,
𝑥 ≥ 0,
𝑠 = 𝛾,

(7.14)

where 𝑓, 𝑔 ∈ R𝑛×3. These additional variables 𝑓 and 𝑔 are only introduced to bring the problem on the
API standard form.

The formulation (7.14)) is not the most compact possible. However, the MOSEK presolve will auto-
matically make it more compact and since it is easier to implement (7.14) than a more compact form
then the form (7.14) is preferred.

The first step in developing the optimizer API implementation is to chose an ordering of the variables.
In this case the ordering

𝑥̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥
𝑠
𝑡
𝑐
𝑣
𝑧
𝑓𝑇 (:)
𝑔𝑇 (:)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
will be used. Note 𝑓𝑇 (:) means the rows of 𝑓 are transposed and stacked on top of each other to form a
long column vector. Table 7.2 shows the mapping between the 𝑥̂ and the model variables.

Table 7.2: Storage layout for
the 𝑥̂

Variable Length Offset
𝑥 n 1
𝑠 1 n+1
𝑡 n n+2
𝑐 n 2n+2
𝑣 n 3n+2
𝑧 n 4n+2
𝑓(:)𝑇 3n 7n+2
𝑔(:)𝑇 3n 10n+2

The next step is to consider how the columns of 𝐴 is defined. Reusing the idea in Section 7.1.1 then the

7.1. Portfolio Optimization 93

MOSEK Optimizer API for Python, Release 8.0.0.94

following pseudo code describes the setup of 𝐴.

𝑓𝑜𝑟 𝑗 = 1 : 𝑛
𝑥̂𝑗 = 𝑥𝑗

𝐴1,𝑗 = 1.0
𝐴2:𝑛+1,𝑗 = 𝐺𝑇

𝑗,1:𝑛

𝐴𝑛+1+𝑗,𝑗 = −1.0
𝐴2𝑛+1+𝑗,𝑗 = 1.0

𝑥̂𝑛+1 = 𝑠

𝑓𝑜𝑟 𝑗 = 1 : 𝑛
𝑥̂𝑛+1+𝑗 = 𝑡𝑗
𝐴1+𝑗,𝑛+1+𝑗 = −1.0

𝑓𝑜𝑟 𝑗 = 1 : 𝑛
𝑥̂2𝑛+1+𝑗 = 𝑐𝑗
𝐴1,2𝑛+1+𝑗 = 𝑚𝑗

𝐴3𝑛+1+3(𝑗−1)+2,2𝑛+1+𝑗 = 1.0

𝑓𝑜𝑟 𝑗 = 1 : 𝑛
𝑥̂3𝑛+1+𝑗 = 𝑣𝑗
𝐴3𝑛+1+3(𝑗−1)+1,3𝑛+1+𝑗 = 1.0
𝐴6𝑛+1+3(𝑗−1)+3,3𝑛+1+𝑗 = 1.0

𝑓𝑜𝑟 𝑗 = 1 : 𝑛
𝑥̂4𝑛+1+𝑗 = 𝑧𝑗
𝐴1+𝑛+𝑗,4𝑛+1+𝑗 = 1.0
𝐴1+2𝑛+𝑗,4𝑛+1+𝑗 = 1.0
𝐴3𝑛+1+3(𝑗−1)+3,4𝑛+1+𝑗 = 1.0
𝐴6𝑛+1+3(𝑗−1)+1,4𝑛+1+𝑗 = 1.0

𝑓𝑜𝑟 𝑗 = 1 : 𝑛
𝑥̂7𝑛+1+3(𝑗−1)+1 = 𝑓𝑗,1
𝐴3𝑛+1+3(𝑗−1)+1,7𝑛+(3(𝑗−1)+1 = −1.0
𝑥̂7𝑛+1+3(𝑗−1)+2 = 𝑓𝑗,2
𝐴3𝑛+1+3(𝑗−1)+2,7𝑛+(3(𝑗−1)+2 = −1.0
𝑥̂7𝑛+1+3(𝑗−1)+3 = 𝑓𝑗,3
𝐴3𝑛+1+3(𝑗−1)+3,7𝑛+(3(𝑗−1)+3 = −1.0

𝑓𝑜𝑟 𝑗 = 1 : 𝑛
𝑥̂10𝑛+1+3(𝑗−1)+1 = 𝑔𝑗,1
𝐴6𝑛+1+3(𝑗−1)+1,7𝑛+(3(𝑗−1)+1 = −1.0
𝑥̂10𝑛+1+3(𝑗−1)+2 = 𝑔𝑗,2
𝐴6𝑛+1+3(𝑗−1)+2,7𝑛+(3(𝑗−1)+2 = −1.0
𝑥̂10𝑛+1+3(𝑗−1)+3 = 𝑔𝑗,3
𝐴6𝑛+1+3(𝑗−1)+3,7𝑛+(3(𝑗−1)+3 = −1.0

The example code in Listing 7.5 demonstrates how to implement the model (7.14).

Listing 7.5: Code implementing model (7.14).

import mosek

def streamprinter(text):
print("%s" % text),

if __name__ == '__main__':

94 Chapter 7. Case Studies

MOSEK Optimizer API for Python, Release 8.0.0.94

n = 3
gamma = 0.05
mu = [0.1073, 0.0737, 0.0627]
GT = [[0.1667, 0.0232, 0.0013],

[0.0000, 0.1033, -0.0022],
[0.0000, 0.0000, 0.0338]]

x0 = [0.0, 0.0, 0.0]
w = 1.0
m = [0.01, 0.01, 0.01]

This value has no significance.
inf = 0.0

with mosek.Env() as env:
with env.Task(0,0) as task:

task.set_Stream(mosek.streamtype.log,streamprinter)

rtemp = w
for j in range(0,n):

rtemp += x0[j]

Constraints.
task.appendcons(1+9*n)
task.putconbound(0,mosek.boundkey.fx,rtemp,rtemp)
task.putconname(0,"budget")

task.putconboundlist(range(1+0,1+n),n*[mosek.boundkey.fx],n*[0.0],n*[0.0])
for j in range(1,1+n) :

task.putconname(j,"GT[%d]" % j)

task.putconboundlist(range(1+n,1+2*n),n*[mosek.boundkey.lo],[-x0[j] for j in␣
→˓range(0,n)],n*[inf])

for i in range(0,n):
task.putconname(1+n+i,"zabs1[%d]" % (1+i))

task.putconboundlist(range(1+2*n,1+3*n),n*[mosek.boundkey.lo],x0,n*[inf])
for i in range(0,n):

task.putconname(1+2*n+i,"zabs2[%d]" % (1+i))

task.putconboundlist(range(1+3*n,1+3*n+3*n),3*n*[mosek.boundkey.fx],3*n*[0.],3*n*[0.
→˓0])

for i in range(0,n):
for k in range(0,n):

task.putconname(1+3*n+3*i+k,"f[%d,%d]" % (1+i,1+k))

task.putconboundlist(range(1+6*n,1+9*n),3*n*[mosek.boundkey.fx],
3*[0.0, -1.0/8.0, 0.0],3*[0.0, -1.0/8.0, 0.0])

for i in range(0,n) :
for k in range(0,n):

task.putconname(1+6*n+3*i+k,"g[%d,%d]" % (1+i,1+k))

Offset of variables into the API variable.
offsetx = 0
offsets = n
offsett = n+1
offsetc = 2*n+1
offsetv = 3*n+1
offsetz = 4*n+1
offsetf = 5*n+1
offsetg = 8*n+1

Variables.
task.appendvars(1+11*n)

7.1. Portfolio Optimization 95

MOSEK Optimizer API for Python, Release 8.0.0.94

x variables.
task.putclist(range(offsetx+0,offsetx+n),mu)
task.putaijlist(n*[0],range(offsetx+0,offsetx+n),n*[1.0])
for j in range(0,n):

task.putaijlist(n*[1+j],range(offsetx+0,offsetx+n),GT[j])
task.putaij(1+n+j,offsetx+j,-1.0)
task.putaij(1+2*n+j,offsetx+j,1.0)

task.putvarboundlist(range(offsetx+0,offsetx+n),n*[mosek.boundkey.lo],n*[0.
→˓0],n*[inf])

for j in range(0,n):
task.putvarname(offsetx+j,"x[%d]" % (1+j))

s variable.
task.putvarbound(offsets+0,mosek.boundkey.fx,gamma,gamma)
task.putvarname(offsets+0,"s")

t variables.
task.putaijlist(range(1,n+1),range(offsett+0,offsett+n),n*[-1.0])
task.putvarboundlist(range(offsett+0,offsett+n),n*[mosek.boundkey.fr],n*[-

→˓inf],n*[inf])
for j in range(0,n):

task.putvarname(offsett+j,"t[%d]" % (1+j))

c variables.
task.putaijlist(n*[0],range(offsetc,offsetc+n),m)
task.putaijlist(range(1+3*n+1,1+6*n+1,3),range(offsetc,offsetc+n),n*[1.0])
task.putvarboundlist(range(offsetc,offsetc+n),n*[mosek.boundkey.fr],n*[-inf],n*[inf])
for j in range(0,n):

task.putvarname(offsetc+j,"c[%d]" % (1+j))

v variables.
task.putaijlist(range(1+3*n+0,1+6*n+0,3),range(offsetv,offsetv+n),n*[1.0])
task.putaijlist(range(1+6*n+2,1+9*n+2,3),range(offsetv,offsetv+n),n*[1.0])
task.putvarboundlist(range(offsetv,offsetv+n),n*[mosek.boundkey.fr],n*[-inf],n*[inf])
for j in range(0,n):

task.putvarname(offsetv+j,"v[%d]" % (1+j))

z variables.
task.putaijlist(range(1+1*n,1+2*n),range(offsetz,offsetz+n),n*[1.0])
task.putaijlist(range(1+2*n,1+3*n),range(offsetz,offsetz+n),n*[1.0])
task.putaijlist(range(1+3*n+2,1+6*n+2,3),range(offsetz,offsetz+n),n*[1.0])
task.putaijlist(range(1+6*n+0,1+9*n+0,3),range(offsetz,offsetz+n),n*[1.0])
task.putvarboundlist(range(offsetz,offsetz+n),n*[mosek.boundkey.fr],n*[-inf],n*[inf])
for j in range(0,n):

task.putvarname(offsetz+j,"z[%d]" % (1+j))

f variables.
for j in range(0,n):

for k in range(0,n):
task.putaij(1+3*n+3*j+k,offsetf+3*j+k,-1.0)
task.putvarbound(offsetf+3*j+k,mosek.boundkey.fr,-inf,inf)
task.putvarname(offsetf+3*j+k,"f[%d,%d]" % (1+j,1+k))

g variables.
for j in range(0,n):

for k in range(0,n):
task.putaij(1+6*n+3*j+k,offsetg+3*j+k,-1.0)
task.putvarbound(offsetg+3*j+k,mosek.boundkey.fr,-inf,inf)
task.putvarname(offsetg+3*j+k,"g[%d,%d]" % (1+j,1+k))

task.appendcone(mosek.conetype.quad,0.0,[offsets] + list(range(offsett,offsett+n)))

96 Chapter 7. Case Studies

MOSEK Optimizer API for Python, Release 8.0.0.94

task.putconename(0,"stddev")

for k in range(0,n):
task.appendconeseq(mosek.conetype.rquad,0.0,3,offsetf+3*k)
task.putconename(1+k,"f[%d]" % (1+k))

for k in range(0,n):
task.appendconeseq(mosek.conetype.rquad,0.0,3,offsetg+3*k)
task.putconename(1+n+k,"g[%d]" % (1+k))

task.putobjsense(mosek.objsense.maximize)

Turn all log output off.
task.putintparam(mosek.iparam.log,0)

Dump the problem to a human readable OPF file.
#task.writedata("dump.opf")

task.optimize()

Display the solution summary for quick inspection of results.
task.solutionsummary(mosek.streamtype.msg)

expret = 0.0
x = [0.]*n
task.getxxslice(mosek.soltype.itr,offsetx+0,offsetx+n,x)
for j in range(0,n):

expret += mu[j]*x[j]

stddev = [0.]
task.getxxslice(mosek.soltype.itr,offsets+0,offsets+1,stddev)

print("\nExpected return %e for gamma %e\n" % (expret,stddev[0]))

The example code above produces the result

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 7.4390654948e-002 Viol. con: 2e-007 var: 0e+000 cones: 2e-009
Dual. obj: 7.4390665143e-002 Viol. con: 2e-008 var: 2e-008 cones: 0e+000
Expected return 7,439065E-002 for gamma 5,000000E-002

If the problem is dumped to an OPF formatted file, then it has the following content.

Listing 7.6: OPF file for problem (7.14).

[comment]
Written by MOSEK version 7.0.0.86
Date 01-10-13
Time 08:59:30

[/comment]

[hints]
[hint NUMVAR] 34 [/hint]
[hint NUMCON] 28 [/hint]
[hint NUMANZ] 60 [/hint]
[hint NUMQNZ] 0 [/hint]
[hint NUMCONE] 7 [/hint]

[/hints]

[variables disallow_new_variables]

7.1. Portfolio Optimization 97

MOSEK Optimizer API for Python, Release 8.0.0.94

'x[1]' 'x[2]' 'x[3]' s 't[1]'
't[2]' 't[3]' 'c[1]' 'c[2]' 'c[3]'
'v[1]' 'v[2]' 'v[3]' 'z[1]' 'z[2]'
'z[3]' 'f[1,1]' 'f[1,2]' 'f[1,3]' 'f[2,1]'
'f[2,2]' 'f[2,3]' 'f[3,1]' 'f[3,2]' 'f[3,3]'
'g[1,1]' 'g[1,2]' 'g[1,3]' 'g[2,1]' 'g[2,2]'
'g[2,3]' 'g[3,1]' 'g[3,2]' 'g[3,3]'

[/variables]

[objective maximize]
1.073e-001 'x[1]' + 7.37e-002 'x[2]' + 6.270000000000001e-002 'x[3]'

[/objective]

[constraints]
[con 'budget'] 'x[1]' + 'x[2]' + 'x[3]' + 1e-002 'c[1]' + 1e-002 'c[2]'

+ 1e-002 'c[3]' = 1e+000 [/con]
[con 'GT[1]'] 1.667e-001 'x[1]' + 2.32e-002 'x[2]' + 1.3e-003 'x[3]' - 't[1]' = 0e+000 [/

→˓con]
[con 'GT[2]'] 1.033e-001 'x[2]' - 2.2e-003 'x[3]' - 't[2]' = 0e+000 [/con]
[con 'GT[3]'] 3.38e-002 'x[3]' - 't[3]' = 0e+000 [/con]
[con 'zabs1[1]'] 0e+000 <= - 'x[1]' + 'z[1]' [/con]
[con 'zabs1[2]'] 0e+000 <= - 'x[2]' + 'z[2]' [/con]
[con 'zabs1[3]'] 0e+000 <= - 'x[3]' + 'z[3]' [/con]
[con 'zabs2[1]'] 0e+000 <= 'x[1]' + 'z[1]' [/con]
[con 'zabs2[2]'] 0e+000 <= 'x[2]' + 'z[2]' [/con]
[con 'zabs2[3]'] 0e+000 <= 'x[3]' + 'z[3]' [/con]
[con 'f[1,1]'] 'v[1]' - 'f[1,1]' = 0e+000 [/con]
[con 'f[1,2]'] 'c[1]' - 'f[1,2]' = 0e+000 [/con]
[con 'f[1,3]'] 'z[1]' - 'f[1,3]' = 0e+000 [/con]
[con 'f[2,1]'] 'v[2]' - 'f[2,1]' = 0e+000 [/con]
[con 'f[2,2]'] 'c[2]' - 'f[2,2]' = 0e+000 [/con]
[con 'f[2,3]'] 'z[2]' - 'f[2,3]' = 0e+000 [/con]
[con 'f[3,1]'] 'v[3]' - 'f[3,1]' = 0e+000 [/con]
[con 'f[3,2]'] 'c[3]' - 'f[3,2]' = 0e+000 [/con]
[con 'f[3,3]'] 'z[3]' - 'f[3,3]' = 0e+000 [/con]
[con 'g[1,1]'] 'z[1]' - 'g[1,1]' = 0e+000 [/con]
[con 'g[1,2]'] - 'g[1,2]' = -1.25e-001 [/con]
[con 'g[1,3]'] 'v[1]' - 'g[1,3]' = 0e+000 [/con]
[con 'g[2,1]'] 'z[2]' - 'g[2,1]' = 0e+000 [/con]
[con 'g[2,2]'] - 'g[2,2]' = -1.25e-001 [/con]
[con 'g[2,3]'] 'v[2]' - 'g[2,3]' = 0e+000 [/con]
[con 'g[3,1]'] 'z[3]' - 'g[3,1]' = 0e+000 [/con]
[con 'g[3,2]'] - 'g[3,2]' = -1.25e-001 [/con]
[con 'g[3,3]'] 'v[3]' - 'g[3,3]' = 0e+000 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]
[b] s = 5e-002 [/b]
[b] 't[1]','t[2]','t[3]','c[1]','c[2]','c[3]' free [/b]
[b] 'v[1]','v[2]','v[3]','z[1]','z[2]','z[3]' free [/b]
[b] 'f[1,1]','f[1,2]','f[1,3]','f[2,1]','f[2,2]','f[2,3]' free [/b]
[b] 'f[3,1]','f[3,2]','f[3,3]','g[1,1]','g[1,2]','g[1,3]' free [/b]
[b] 'g[2,1]','g[2,2]','g[2,3]','g[3,1]','g[3,2]','g[3,3]' free [/b]
[cone quad 'stddev'] s, 't[1]', 't[2]', 't[3]' [/cone]
[cone rquad 'f[1]'] 'f[1,1]', 'f[1,2]', 'f[1,3]' [/cone]
[cone rquad 'f[2]'] 'f[2,1]', 'f[2,2]', 'f[2,3]' [/cone]
[cone rquad 'f[3]'] 'f[3,1]', 'f[3,2]', 'f[3,3]' [/cone]
[cone rquad 'g[1]'] 'g[1,1]', 'g[1,2]', 'g[1,3]' [/cone]
[cone rquad 'g[2]'] 'g[2,1]', 'g[2,2]', 'g[2,3]' [/cone]
[cone rquad 'g[3]'] 'g[3,1]', 'g[3,2]', 'g[3,3]' [/cone]

[/bounds]

98 Chapter 7. Case Studies

MOSEK Optimizer API for Python, Release 8.0.0.94

The file verifies that the correct problem has been setup.

7.1. Portfolio Optimization 99

MOSEK Optimizer API for Python, Release 8.0.0.94

100 Chapter 7. Case Studies

CHAPTER

EIGHT

ERRORS AND WARNINGS

Interaction between MOSEK and the user is not always succesfull and critical situation may arise for
several reasons: wrong input data, unexpected numerical issues, not enough memory, etc. MOSEK
reports these events to the user making the following distinction:

• Warning : it informs the user about a non critical but important event that will not prevent the
solver execution. When a warning arises the final results may not be the expected.

• Error : it informs the user about a critical and possibly unrecoverable event. The required operation
will not be performed correctly.

Therefore errors and warnings must be handled carefully to use the solver in a safe way.

8.1 Warnings

Warning messages generated by MOSEK should in general never be ignored. Despite not being critical,
they provide useful information and often are the key to understand how to improve the solver perfor-
mance or solve numerical issues. For this reason, it is a good practice to start working with a verbose
output on the screen (see Section 9) in order to spot possible warnings.

Typically warnings involve

• Numerical criticalities in the optimization model: for instance if very large upper bound on a
constraint is specified, the solver will notify the user with a message like the following

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified␣
→˓for constraint 'C69200' (46020).

• Wrong parameter values

Ideally the solver should not rise any warning. The user should work on the optimization model and the
way the solver is called in order to remove all warnings. We recommend to ignore warnings only if

• they are well understood by the user and therefore deliberately ignored;

• they are related to non critical operations (as for instance variable naming) and the results obtained
are correct.

In these cases, warnings can be suppressed by setting the iparam.max_num_warnings parameter to zero.

8.2 Errors

Errors are the result of

• wrong input data (too large variable index for instance)

• system limitation (for instance not enough memory available)

• bugs in the API (see Section 1.2)

101

MOSEK Optimizer API for Python, Release 8.0.0.94

Most functions in the MOSEK Optimizer API for Python return a response code which indicates
whether an error occurred. It is recommended to check to the response code and in case it is indicating
an error then an appropriate action should be taken.

8.2.1 Checking for Memory Leaks and Overwrites

If you suspect that MOSEK or your own application incorrectly overwrites memory or leaks memory,
we suggest you use external tools such as Intel Inspector for C and .NET, or Valgrind to pinpoint the
cause of the problem.

8.2.2 Debugging Tips

Turn on logging

While developing a new application it is recommended to turn on logging, so that error and diagnostics
messages are displayed.

See example in Section 3.2 for instructions on turning log output on. You should also always cache and
handle any exceptions thrown by MOSEK.

Please refer to Section 9 for further information.

Dump problem to OPF file

If something is wrong with a problem or a solution, one option is to output the problem to an OPF file
and inspect it by hand. Use the task.writedata function to write a task to a file immediately before
optimizing, for example as follows:

task.writedata('taskdump.opf')
task.optimizetrm()

This will write the problem in task to the file taskdump.opf. Inspecting the text file taskdump.opf
may reveal what is wrong in the problem setup.

102 Chapter 8. Errors and Warnings

https://software.intel.com/intel-inspector-xe
http://www.valgrind.org/

CHAPTER

NINE

MANAGING I/O

The main purpose of this chapter is to give an overview on the logging and I/O features provided by the
MOSEK package.

• Section 9.1 contains information about the log streams provided by MOSEK.

• File I/O is discussed in Section 9.2 .

• How to tune the logging verbosity is the topic of Section 9.3 .

9.1 Stream I/O

MOSEK execution produces a certain amount of loggging at environment and task level. This means
that the logging from each environement and task can be isolated from the others.

The log messages are partitioned in three streams:

• messages

• warnings

• errors

These streams are aggregated in the log stream. See streamtype .

Each stream can be redirected either to a user defined function or to a file.

Log stream to function

Link a custom function to a stream is particularly useful to generate specialize output.

Text written to specific MOSEK streams can be intercepted by attaching a stream handler to the
specific stream. A stream handler is simply a function that accepts one string argument, for instance

def myStream(msg):
sys.stdout.write(msg)
sys.stdout.flush()

To attach a stream callback to a Task , use:

task.set_Stream(streamtype.log,myStream)

In this example we attached to the log stream; see streamtype for other options.

To attach a stream callback to a Task , use:

The stream can be detached by calling

task.set_Stream(None)

103

MOSEK Optimizer API for Python, Release 8.0.0.94

Note: As for Progress callbacks, it is necessary to hold a reference to the callback function for the
duration of the lifetime of the Task or Env object.

Log stream to file

A stream can be redirected to a file passing to the solver the file name. The solver creates the file anew
or append the log to an existing one. The file is closed when the task/environment is destroyed.

9.2 File I/O

MOSEK supports a range of problem and solution formats listed in Section 17 . One such format is
MOSEK‘s native binary Task format which supports all features that MOSEK supports.

The file format used in I/O operations is deduced from extension - as in problemname.task - unless the
parameter iparam.write_data_format is specified to something else. Problem files with an additional
.gz extension - as in problemname.task.gz - are moreover assumed to use GZIP compression, and are
automatically compressed, respectively decompressed, when written or read.

Example

If something is wrong with a problem or a solution, one option is to output the problem to the human-
readable OPF format and inspect it by hand. For instance, one may use the task.writedata function
to write the problem to a file immediately before optimizing it:

task.writedata("data.opf")
task.optimize()

This will write the problem in task to the file data.opf.

9.3 Verbosity

The logging verbosity can be controlled by setting the relevant paramenters, as for instance

• iparam.log ,

• iparam.log_intpnt ,

• iparam.log_mio ,

• iparam.log_cut_second_opt ,

• iparam.log_sim , and

• iparam.log_sim_minor .

Each parameter control the output level of a specific functionality or algorithm. The main switch is
iparam.log which affect the whole output. The actual log level for a specific functionality is determined
as the minimum between iparam.log and the relevant parameter. For instance, the log level for the
output produce by the interior-point algorithm is tuned by the iparam.log_intpnt : the actual log level
is defined by the minimum between iparam.log and iparam.log_intpnt .

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose
logging is supposed to be of interest during debugging and tuning, and it is consider the default setting.
When output is no more of interest, user can easily disable using iparam.log .

104 Chapter 9. Managing I/O

MOSEK Optimizer API for Python, Release 8.0.0.94

Moreover, it must be understood that larger values of iparam.log do not necessarily result in an
increased output.

By default MOSEK will reduce the amount of log information after the first optimization on a given
task. To get full log output on subsequent optimizations set iparam.log_cut_second_opt to zero.

9.3. Verbosity 105

MOSEK Optimizer API for Python, Release 8.0.0.94

106 Chapter 9. Managing I/O

CHAPTER

TEN

PROBLEM FORMULATION AND SOLUTIONS

In this chapter we will discuss the following issues:

• The formal definitions of the problem types that MOSEK can solve.

• The solution information produced by MOSEK.

• The information produced by MOSEK if the problem is infeasible.

10.1 Linear Optimization

A linear optimization problem can be written as

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

(10.1)

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part of the objective function.

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

A primal solution (𝑥) is (primal) feasible if it satisfies all constraints in (10.1). If (10.1) has at least one
primal feasible solution, then (10.1) is said to be (primal) feasible.

In case (10.1) does not have a feasible solution, the problem is said to be (primal) infeasible

10.1.1 Duality for Linear Optimization

Corresponding to the primal problem (10.1), there is a dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

(10.2)

107

MOSEK Optimizer API for Python, Release 8.0.0.94

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at 0,
and we use the convention that the product of the bound value and the corresponding dual variable is
0. E.g.

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙)𝑗 = 0 and 𝑙𝑥𝑗 · (𝑠𝑥𝑙)𝑗 = 0.

This is equivalent to removing variable (𝑠𝑥𝑙)𝑗 from the dual problem. A solution

(𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢)

to the dual problem is feasible if it satisfies all the constraints in (10.2). If (10.2) has at least one
feasible solution, then (10.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

A Primal-dual Feasible Solution

A solution

(𝑥, 𝑦, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢)

is denoted a primal-dual feasible solution, if (𝑥) is a solution to the primal problem (10.1) and
(𝑦, 𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢) is a solution to the corresponding dual problem (10.2).

The Duality Gap

Let

(𝑥*, 𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*)

be a primal-dual feasible solution, and let

(𝑥𝑐)* := 𝐴𝑥*.

For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

𝑐𝑇𝑥* + 𝑐𝑓 −
{︀

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* + 𝑐𝑓

}︀
=
∑︀𝑚−1

𝑖=0 [(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) + (𝑠𝑐𝑢)*𝑖 (𝑢𝑐

𝑖 − (𝑥𝑐
𝑖)

*)]

+
∑︀𝑛−1

𝑗=0

[︀
(𝑠𝑥𝑙)*𝑗 (𝑥𝑗 − 𝑙𝑥𝑗) + (𝑠𝑥𝑢)*𝑗 (𝑢𝑥

𝑗 − 𝑥*
𝑗)
]︀
≥ 0

(10.3)

where the first relation can be obtained by transposing and multiplying the dual constraints (10.2) by
𝑥* and (𝑥𝑐)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

An Optimal Solution

It is well-known that a linear optimization problem has an optimal solution if and only if there exist fea-
sible primal and dual solutions so that the duality gap is zero, or, equivalently, that the complementarity
conditions

(𝑠𝑐𝑙)
*
𝑖 ((𝑥𝑐

𝑖)
* − 𝑙𝑐𝑖) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑐𝑢)*𝑖 (𝑢𝑐
𝑖 − (𝑥𝑐

𝑖)
*) = 0, 𝑖 = 0, . . . ,𝑚− 1,

(𝑠𝑥𝑙)*𝑗 (𝑥*
𝑗 − 𝑙𝑥𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

(𝑠𝑥𝑢)*𝑗 (𝑢𝑥
𝑗 − 𝑥*

𝑗) = 0, 𝑗 = 0, . . . , 𝑛− 1,

are satisfied.

If (10.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and dual
solution are reported, including a status indicating the exact state of the solution.

108 Chapter 10. Problem Formulation and Solutions

MOSEK Optimizer API for Python, Release 8.0.0.94

10.1.2 Infeasibility for Linear Optimization

Primal Infeasible Problems

If the problem (10.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

(10.4)

such that the objective value is strictly positive, i.e. a solution

(𝑦*, (𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*)

to (10.4) so that

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* > 0.

Such a solution implies that (10.4) is unbounded, and that its dual is infeasible. As the constraints to
the dual of (10.4) are identical to the constraints of problem (10.1), we thus have that problem (10.1) is
also infeasible.

Dual Infeasible Problems

If the problem (10.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize 𝑐𝑇𝑥

subject to 𝑙̂𝑐 ≤ 𝐴𝑥 ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,

(10.5)

where

𝑙̂𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
and

𝑙̂𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
such that

𝑐𝑇𝑥 < 0.

Such a solution implies that (10.5) is unbounded, and that its dual is infeasible. As the constraints to
the dual of (10.5) are identical to the constraints of problem (10.2), we thus have that problem (10.2) is
also infeasible.

Primal and Dual Infeasible Case

In case that both the primal problem (10.1) and the dual problem (10.2) are infeasible, MOSEK will
report only one of the two possible certificates — which one is not defined (MOSEK returns the first
certificate found).

10.1. Linear Optimization 109

MOSEK Optimizer API for Python, Release 8.0.0.94

Minimalization vs. Maximalization

When the objective sense of problem (10.1) is maximization, i.e.

maximize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (10.2). The dual problem thus takes the form

minimize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0.

This means that the duality gap, defined in (10.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0,

(10.6)

such that the objective value is strictly negative

(𝑙𝑐)𝑇 (𝑠𝑐𝑙)
* − (𝑢𝑐)𝑇 (𝑠𝑐𝑢)* + (𝑙𝑥)𝑇 (𝑠𝑥𝑙)* − (𝑢𝑥)𝑇 (𝑠𝑥𝑢)* < 0.

Similarly, the certificate of dual infeasibility is an 𝑥 satisfying the requirements of (10.5) such that
𝑐𝑇𝑥 > 0.

10.2 Conic Quadratic Optimization

Conic quadratic optimization is an extension of linear optimization (see Section 10.1) allowing conic
domains to be specified for subsets of the problem variables. A conic quadratic optimization problem
can be written as

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,

(10.7)

where set 𝒦 is a Cartesian product of convex cones, namely 𝒦 = 𝒦1 × · · · × 𝒦𝑝. Having the domain
restriction, 𝑥 ∈ 𝒦, is thus equivalent to

𝑥𝑡 ∈ 𝒦𝑡 ⊆ R𝑛𝑡 ,

where 𝑥 = (𝑥1, . . . , 𝑥𝑝) is a partition of the problem variables. Please note that the 𝑛-dimensional
Euclidean space R𝑛 is a cone itself, so simple linear variables are still allowed.

MOSEK supports only a limited number of cones, specifically:

• The R𝑛 set.

• The quadratic cone:

𝒬𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 : 𝑥1 ≥

⎯⎸⎸⎷ 𝑛∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ .

• The rotated quadratic cone:

110 Chapter 10. Problem Formulation and Solutions

MOSEK Optimizer API for Python, Release 8.0.0.94

𝒬𝑛
r =

⎧⎨⎩𝑥 ∈ R𝑛 : 2𝑥1𝑥2 ≥
𝑛∑︁

𝑗=3

𝑥2
𝑗 , 𝑥1 ≥ 0, 𝑥2 ≥ 0

⎫⎬⎭ .

Although these cones may seem to provide only limited expressive power they can be used to model a
wide range of problems as demonstrated in [MOSEKApS12] .

10.2.1 Duality for Conic Quadratic Optimization

The dual problem corresponding to the conic quadratic optimization problem (10.7) is given by

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 𝑐

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*,

(10.8)

where the dual cone 𝒦* is a Cartesian product of the cones

𝒦* = 𝒦*
1 × · · · × 𝒦*

𝑝,

where each 𝒦*
𝑡 is the dual cone of 𝒦𝑡. For the cone types MOSEK can handle, the relation between the

primal and dual cone is given as follows:

• The R𝑛 set:

𝒦𝑡 = R𝑛𝑡 ⇔ 𝒦*
𝑡 = {𝑠 ∈ R𝑛𝑡 : 𝑠 = 0} .

• The quadratic cone:

𝒦𝑡 = 𝒬𝑛𝑡 ⇔ 𝒦*
𝑡 = 𝒬𝑛𝑡 =

⎧⎨⎩𝑠 ∈ R𝑛𝑡 : 𝑠1 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=2

𝑠2𝑗

⎫⎬⎭ .

• The rotated quadratic cone:

𝒦𝑡 = 𝒬𝑛𝑡
r ⇔ 𝒦*

𝑡 = 𝒬𝑛𝑡
r =

⎧⎨⎩𝑠 ∈ R𝑛𝑡 : 2𝑠1𝑠2 ≥
𝑛𝑡∑︁
𝑗=3

𝑠2𝑗 , 𝑠1 ≥ 0, 𝑠2 ≥ 0

⎫⎬⎭ .

Please note that the dual problem of the dual problem is identical to the original primal problem.

10.2.2 Infeasibility for Conic Quadratic Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. This works
exactly as for linear problems (see Section 10.1.2).

Primal Infeasible Problems

If the problem (10.7) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual
solution reported is the certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*,

such that the objective value is strictly positive.

10.2. Conic Quadratic Optimization 111

MOSEK Optimizer API for Python, Release 8.0.0.94

Dual infeasible problems

If the problem (10.8) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal
solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize 𝑐𝑇𝑥

subject to 𝑙̂𝑐 ≤ 𝐴𝑥 ≤ 𝑢̂𝑐,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,
𝑥 ∈ 𝒦,

where

𝑙̂𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
and

𝑙̂𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
such that the objective value is strictly negative.

10.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic quadratic optimization (see Section 10.2) allowing
positive semidefinite matrix variables to be used in addition to the usual scalar variables. A semidefinite
optimization problem can be written as

minimize
∑︀𝑛−1

𝑗=0 𝑐𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
+ 𝑐𝑓

subject to 𝑙𝑐𝑖 ≤
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢𝑐

𝑖 , 𝑖 = 0, . . . ,𝑚− 1

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1

𝑥 ∈ 𝒦, 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 0, . . . , 𝑝− 1

(10.9)

where the problem has 𝑝 symmetric positive semidefinite variables 𝑋𝑗 ∈ 𝒮𝑟𝑗
+ of dimension 𝑟𝑗 with

symmetric coefficient matrices 𝐶𝑗 ∈ 𝒮𝑟𝑗 and 𝐴𝑖,𝑗 ∈ 𝒮𝑟𝑗 . We use standard notation for the matrix inner
product, i.e., for 𝑈, 𝑉 ∈ R𝑚×𝑛 we have

⟨𝑈, 𝑉 ⟩ :=

𝑚−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝑈𝑖𝑗𝑉𝑖𝑗 .

With semidefinite optimization we can model a wide range of problems as demonstrated in
[MOSEKApS12] .

10.3.1 Duality for Semidefinite Optimization

The dual problem corresponding to the semidefinite optimization problem (10.9) is given by

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to
𝑐−𝐴𝑇 𝑦 + 𝑠𝑥𝑢 − 𝑠𝑥𝑙 = 𝑠𝑥𝑛,
𝐶𝑗 −

∑︀𝑚
𝑖=0 𝑦𝑖𝐴𝑖𝑗 = 𝑆𝑗 , 𝑗 = 0, . . . , 𝑝− 1

𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 𝑦,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*, 𝑆𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 0, . . . , 𝑝− 1

(10.10)

112 Chapter 10. Problem Formulation and Solutions

MOSEK Optimizer API for Python, Release 8.0.0.94

where 𝐴 ∈ R𝑚×𝑛, 𝐴𝑖𝑗 = 𝑎𝑖𝑗 , which is similar to the dual problem for conic quadratic optimization (see
Section 10.2.1), except for the addition of dual constraints(︃

𝐶𝑗 −
𝑚∑︁
𝑖=0

𝑦𝑖𝐴𝑖𝑗

)︃
∈ 𝒮𝑟𝑗

+ .

Note that the dual of the dual problem is identical to the original primal problem.

10.3.2 Infeasibility for Semidefinite Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works
exactly as for linear problems (see Section 10.1.2).

Primal Infeasible Problems

If the problem (10.9) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual
solution reported is a certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢
subject to

𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 0,∑︀𝑚−1
𝑖=0 𝑦𝑖𝐴𝑖𝑗 + 𝑆𝑗 = 0, 𝑗 = 0, . . . , 𝑝− 1

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*, 𝑆𝑗 ∈ 𝒮𝑟𝑗
+ , 𝑗 = 0, . . . , 𝑝− 1

such that the objective value is strictly positive.

Dual Infeasible Problems

If the problem (10.10) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal
solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize
∑︀𝑛−1

𝑗=0 𝑐𝑗𝑥𝑗 +
∑︀𝑝−1

𝑗=0

⟨︀
𝐶𝑗 , 𝑋𝑗

⟩︀
subject to 𝑙̂𝑐𝑖 ≤

∑︀𝑛
𝑗=1 𝑎𝑖𝑗𝑥𝑗 +

∑︀𝑝−1
𝑗=0

⟨︀
𝐴𝑖𝑗 , 𝑋𝑗

⟩︀
≤ 𝑢̂𝑐

𝑖 , 𝑖 = 0, . . . ,𝑚− 1

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,
𝑥 ∈ 𝒦, 𝑋𝑗 ∈ 𝒮𝑟𝑗

+ , 𝑗 = 0, . . . , 𝑝− 1

where

𝑙̂𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 >;−∞,
−∞ otherwise, and 𝑢̂𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 <;∞,
∞ otherwise,

and

𝑙̂𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 >;−∞,
−∞ otherwise, and 𝑢̂𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 <;∞,
∞ otherwise,

such that the objective value is strictly negative.

10.3. Semidefinite Optimization 113

MOSEK Optimizer API for Python, Release 8.0.0.94

10.4 Quadratic and Quadratically Constrained Optimization

A convex quadratic and quadratically constrained optimization problem is an optimization problem of
the form

minimize 1
2𝑥

𝑇𝑄𝑜𝑥 + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐𝑘 ≤ 1
2𝑥

𝑇𝑄𝑘𝑥 +
∑︀𝑛−1

𝑗=0 𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1,

𝑙𝑥𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗 , 𝑗 = 0, . . . , 𝑛− 1,

(10.11)

where 𝑄𝑜 and all 𝑄𝑘 are symmetric matrices. Moreover for convexity, 𝑄𝑜 must be a positive semidefinite
matrix and 𝑄𝑘 must satisfy

−∞ < 𝑙𝑐𝑘 ⇒ 𝑄𝑘 is negative semidefinite,
𝑢𝑐
𝑘 < ∞ ⇒ 𝑄𝑘 is positive semidefinite,

−∞ < 𝑙𝑐𝑘 ≤ 𝑢𝑐
𝑘 < ∞ ⇒ 𝑄𝑘 = 0.

The convexity requirement is very important and MOSEK checks whether it is fullfiled.

10.4.1 A Recommendation

Any convex quadratic optimization problem can be reformulated as a conic quadratic optimization prob-
lem, see [MOSEKApS12] and in particular [And13] . In fact MOSEK does such conversion internally
as a part of the solution process for the following reasons:

• the conic optimizer is numerically more robust than the one for quadratic problems.

• the conic optimizer is usually faster because quadratic cones are simpler than quadratic functions,
even though the conic reformulation usually has more constraints and variables than the original
quadratic formulation.

• it is easy to dualize the conic formuation if deemed worthwhile potentially leading to (huge) com-
putational savings.

However, instead of relying on the automatic reformulation we recommend to formulate the problem as
conic problem from scratch because:

• it saves the computational overhead of the reformulation including the convexity check. A conic
problem is convex by construction and hence no convexity check is neeeded for conic problems.

• usually the modeller can do a better reformulation than the automatic method because the modeller
can exploit the knowledge of what is being modelled.

To summarize we recommend to formulate quadratic problems and in particular quadratically constrained
problems directly in conic form.

10.4.2 Duality for Quadratic and Quadratically Constrained Optimization

The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(10.11) is given by

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 1
2𝑥

𝑇
{︁∑︀𝑚−1

𝑘=0 𝑦𝑘𝑄
𝑘 −𝑄𝑜

}︁
𝑥 + 𝑐𝑓

subject to
𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 +

{︁∑︀𝑚−1
𝑘=0 𝑦𝑘𝑄

𝑘 −𝑄𝑜
}︁
𝑥 = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

(10.12)

The dual problem is related to the dual problem for linear optimization (see Section 10.1.1), but depends
on the variable 𝑥 which in general can not be eliminated. In the solutions reported by MOSEK, the
value of 𝑥 is the same for the primal problem (10.11) and the dual problem (10.12).

114 Chapter 10. Problem Formulation and Solutions

MOSEK Optimizer API for Python, Release 8.0.0.94

10.4.3 Infeasibility for Quadratic and Quadratically Constrained Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. This works
exactly as for linear problems (see Section 10.1.2).

Primal Infeasible Problems

If the problem (10.11) with all 𝑄𝑘 = 0 is infeasible, MOSEK will report a certificate of primal infeasi-
bility. As the constraints are the same as for a linear problem, the certificate of infeasibility is the same
as for linear optimization (see Section 10.1.2.1).

Dual Infeasible Problems

If the problem (10.12) with all 𝑄𝑘 = 0 is infeasible, MOSEK will report a certificate of dual infeasibility.
The primal solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize 𝑐𝑇𝑥

subject to 𝑙̂𝑐 ≤ 𝐴𝑥 ≤ 𝑢̂𝑐,
0 ≤ 𝑄𝑜𝑥 ≤ 0,

𝑙̂𝑥 ≤ 𝑥 ≤ 𝑢̂𝑥,

where

𝑙̂𝑐𝑖 =

{︂
0 if 𝑙𝑐𝑖 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑐

𝑖 :=

{︂
0 if 𝑢𝑐

𝑖 < ∞,
∞ otherwise,

}︂
and

𝑙̂𝑥𝑗 =

{︂
0 if 𝑙𝑥𝑗 > −∞,
−∞ otherwise,

}︂
and 𝑢̂𝑥

𝑗 :=

{︂
0 if 𝑢𝑥

𝑗 < ∞,
∞ otherwise,

}︂
such that the objective value is strictly negative.

10.5 General Convex Optimization

MOSEK is capable of solving smooth (twice differentiable) convex nonlinear optimization problems of
the form

minimize 𝑓(𝑥) + 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝑔(𝑥) + 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

where

• 𝑚 is the number of constraints.

• 𝑛 is the number of decision variables.

• 𝑥 ∈ R𝑛 is a vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear part objective function.

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

10.5. General Convex Optimization 115

MOSEK Optimizer API for Python, Release 8.0.0.94

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝑓 : R𝑛 → R is a nonlinear function.

• 𝑔 : R𝑛 → R𝑚 is a nonlinear vector function.

This means that the 𝑖-th constraint has the form

𝑙𝑐𝑖 ≤ 𝑔𝑖(𝑥) +

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖 .

The linear term 𝐴𝑥 is included in 𝑔(𝑥) since it can be handled much more efficiently as a separate entity
when optimizing.

The nonlinear functions 𝑓 and 𝑔 must be smooth in all 𝑥 ∈ [𝑙𝑥;𝑢𝑥]. Moreover, 𝑓(𝑥) must be a convex
function and 𝑔𝑖(𝑥) must satisfy

−∞ < 𝑙𝑐𝑖 ⇒ 𝑔𝑖(𝑥) is concave,
𝑢𝑐
𝑖 < ∞ ⇒ 𝑔𝑖(𝑥) is convex,

−∞ < 𝑙𝑐𝑖 ≤ 𝑢𝑐
𝑖 < ∞ ⇒ 𝑔𝑖(𝑥) = 0.

10.5.1 Duality for General convex Optimization

Similar to the linear case, MOSEK reports dual information in the general nonlinear case. Indeed in
this case the Lagrange function is defined by

𝐿(𝑥, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢) := 𝑓(𝑥) + 𝑐𝑇𝑥 + 𝑐𝑓

−(𝑠𝑐𝑙)
𝑇 (𝑔(𝑥) + 𝐴𝑥− 𝑙𝑐) − (𝑠𝑐𝑢)𝑇 (𝑢𝑐 − 𝑔(𝑥) −𝐴𝑥)

−(𝑠𝑥𝑙)𝑇 (𝑥− 𝑙𝑥) − (𝑠𝑥𝑢)𝑇 (𝑢𝑥 − 𝑥),

and the dual problem is given by

maximize 𝐿(𝑥, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢)

subject to ∇𝑥𝐿(𝑥, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢)𝑇 = 0,

𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

which is equivalent to

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

+𝑓(𝑥) − 𝑔(𝑥)𝑇 𝑦 − (∇𝑓(𝑥)𝑇 −∇𝑔(𝑥)𝑇 𝑦)𝑇𝑥
subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 − (∇𝑓(𝑥)𝑇 −∇𝑔(𝑥)𝑇 𝑦) = 𝑐,

−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

In this context we use the following definition for scalar functions

∇𝑓(𝑥) =
[︁
𝜕𝑓(𝑥)
𝜕𝑥1

, . . . , 𝜕𝑓(𝑥)
𝜕𝑥𝑛

]︁
,

and accordingly for vector functions

∇𝑔(𝑥) =

⎡⎢⎣ ∇𝑔1(𝑥)
...

∇𝑔𝑚(𝑥)

⎤⎥⎦ .

116 Chapter 10. Problem Formulation and Solutions

CHAPTER

ELEVEN

THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

The most essential part of MOSEK is the optimizers. Each optimizer is designed to solve a particular
class of problems, i.e. linear, conic, or general nonlinear problems. The purpose of the present chapter
is to discuss which optimizers are available for the continuous problem classes and how the performance
of an optimizer can be tuned, if needed. This chapter deals with the optimizers for continuous problems
with no integer variables.

When the optimizer is called, it roughly performs the following steps:

1. Presolve: Preprocessing to reduce the size of the problem.

2. Dualizer : Choosing whether to solve the primal or the dual form of the problem.

3. Scaling : Scaling the problem for better numerical stability.

4. Optimize: Solve the problem using selected method.

The first three preprocessing steps are transparent to the user, but useful to know about for tuning
purposes. In general, the purpose of the preprocessing steps is to make the actual optimization more
efficient and robust.

Using multiple threads

The interior-point optimizers in MOSEK have been parallelized. This means that if you solve linear,
quadratic, conic, or general convex optimization problem using the interior-point optimizer, you can take
advantage of multiple CPU’s.

By default MOSEK will automatically select the number of threads to be employed when solving
the problem. However, the number of threads employed can be changed by setting the parameter
iparam.num_threads . This should never exceed the number of cores on the computer.

The speed-up obtained when using multiple threads is highly problem and hardware dependent, and
consequently, it is advisable to compare single threaded and multi threaded performance for the given
problem type to determine the optimal settings.

For small problems, using multiple threads is not be worthwhile and may even be counter productive.

11.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

1. remove redundant constraints,

2. eliminate fixed variables,

3. remove linear dependencies,

4. substitute out (implied) free variables, and

117

MOSEK Optimizer API for Python, Release 8.0.0.94

5. reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [AA95] and [AGMX96] .

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes too
much time or memory compared to the reduction in problem size gained it may be disabled. This is
done by setting the parameter iparam.presolve_use to presolvemode.off .

The two most time-consuming steps of the presolve are

• the eliminator, and

• the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare cases
the presolved problem may be harder to solve then the original problem. The presolve may also be
infeasible although the original problem is not.

If it is suspected that presolved problem is much harder to solve than the original then it is suggested
to first turn the eliminator off by setting the parameter iparam.presolve_eliminator_max_num_tries
to 0. If that does not help, then trying to turn presolve off may help.

Since all computations are done in finite prescision then the presolve employs some tolerances when
concluding a variable is fixed or constraint is redundant. If it happens that MOSEK incorrectly con-
cludes a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters
dparam.presolve_tol_x and dparam.presolve_tol_s . However, if reducing the parameters actually
helps then this should be taken as an indication that the problem is badly formulated.

Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

𝑦 =
∑︀

𝑗 𝑥𝑗 ,

𝑦, 𝑥 ≥ 0,

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the
eliminator consumes too much time or memory compared to the reduction in problem size gained it may
be disabled. This can be done by setting the parameter iparam.presolve_eliminator_max_num_tries
to 0. In rare cases the eliminator may cause that the problem becomes much hard to solve.

Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equalities.
For instance, the three linear equalities

𝑥1 + 𝑥2 + 𝑥3 = 1,
𝑥1 + 0.5𝑥2 = 0.5,
0.5𝑥2 + 𝑥3 = 0.5

contain exactly one linear dependency. This implies that one of the constraints can be dropped without
changing the set of feasible solutions. Removing linear dependencies is in general a good idea since it
reduces the size of the problem. Moreover, the linear dependencies are likely to introduce numerical
problems in the optimization phase.

118 Chapter 11. The Optimizers for Continuous Problems

MOSEK Optimizer API for Python, Release 8.0.0.94

It is best practise to build models without linear dependencies. If the linear dependencies are removed
at the modeling stage, the linear dependency check can safely be disabled by setting the parameter
iparam.presolve_lindep_use to onoffkey.off .

Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is most efficient to solve the primal or dual
problem. The form (primal or dual) solved is displayed in the MOSEK log. Should the internal heuristics
not choose the most efficient form of the problem it may be worthwhile to set the dualizer manually by
setting the parameters:

• iparam.intpnt_solve_form : In case of the interior-point optimizer.

• iparam.sim_solve_form : In case of the simplex optimizer.

Note that currently only linear problems may be dualized.

Scaling

Problems containing data with large and/or small coefficients, say 1.0𝑒 + 9 or 1.0𝑒 − 7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result
in the optimizer relying on inaccurate calculations. Since computers work in finite precision, extreme
coefficients should be avoided. In general, data around the same order of magnitude is preferred, and
we will refer to a problem, satisfying this loose property, as being well-scaled. If the problem is not well
scaled, MOSEK will try to scale (multiply) constraints and variables by suitable constants. MOSEK
solves the scaled problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution of this issue is to reformulate the problem, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point and simplex
optimizers can be controlled with the parameters iparam.intpnt_scaling and iparam.sim_scaling
respectively.

11.2 Linear Optimization

11.2.1 Optimizer Selection

Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternatives are simplex methods. The optimizer can be selected using the parameter
iparam.optimizer .

11.2.2 The Interior-point Optimizer

The purpose of this section is to provide information about the algorithm employed in MOSEK interior-
point optimizer.

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
of standard form

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0.
(11.1)

11.2. Linear Optimization 119

MOSEK Optimizer API for Python, Release 8.0.0.94

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then converts it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (11.1) has an optimal solution, is primal infeasible or
is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason that
MOSEK solves the so-called homogeneous model

𝐴𝑥− 𝑏𝜏 = 0,
𝐴𝑇 𝑦 + 𝑠− 𝑐𝜏 = 0,

−𝑐𝑇𝑥 + 𝑏𝑇 𝑦 − 𝜅 = 0,
𝑥, 𝑠, 𝜏, 𝜅 ≥ 0,

(11.2)

where 𝑦 and 𝑠 correspond to the dual variables in (11.1), and 𝜏 and 𝜅 are two additional scalar variables.
Note that the homogeneous model (11.2) always has solution since

(𝑥, 𝑦, 𝑠, 𝜏, 𝜅) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one.

Any solution

(𝑥*, 𝑦*, 𝑠*, 𝜏*, 𝜅*)

to the homogeneous model (11.2) satisfies

𝑥*
𝑗𝑠

*
𝑗 = 0 and 𝜏*𝜅* = 0.

Moreover, there is always a solution that has the property

𝜏* + 𝜅* > 0.

First, assume that 𝜏* > 0 . It follows that

𝐴𝑥*

𝜏* = 𝑏,

𝐴𝑇 𝑦*

𝜏* + 𝑠*

𝜏* = 𝑐,

−𝑐𝑇 𝑥*

𝜏* + 𝑏𝑇 𝑦*

𝜏* = 0,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

This shows that 𝑥*

𝜏* is a primal optimal solution and (𝑦*

𝜏* ,
𝑠*

𝜏*) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(𝑥, 𝑦, 𝑠) =

{︂
𝑥*

𝜏*
,
𝑦*

𝜏*
,
𝑠*

𝜏*

}︂
is a primal-dual optimal solution.

On other hand, if 𝜅* > 0 then

𝐴𝑥* = 0,
𝐴𝑇 𝑦* + 𝑠* = 0,

−𝑐𝑇𝑥* + 𝑏𝑇 𝑦* = 𝜅*,
𝑥*, 𝑠*, 𝜏*, 𝜅* ≥ 0.

This implies that at least one of

−𝑐𝑇𝑥* > 0 (11.3)

or

𝑏𝑇 𝑦* > 0 (11.4)

is satisfied. If (11.3) is satisfied then 𝑥* is a certificate of dual infeasibility, whereas if (11.4) is satisfied
then 𝑦* is a certificate of dual infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required
for a solution to the original problem is obtained. A solution to the homogeneous model can be computed
using a primal-dual interior-point algorithm [And09] .

120 Chapter 11. The Optimizers for Continuous Problems

MOSEK Optimizer API for Python, Release 8.0.0.94

Interior-point Termination Criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal
solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion
has to be employed.

In every iteration, 𝑘, of the interior-point algorithm a trial solution

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘)

to homogeneous model is generated where

𝑥𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘 > 0.

Whenever the trial solution satisfies the criterion⃦⃦⃦
𝐴𝑥𝑘

𝜏𝑘 − 𝑏
⃦⃦⃦
∞

≤ 𝜖𝑝(1 + ‖𝑏‖∞),⃦⃦⃦
𝐴𝑇 𝑦𝑘

𝜏𝑘 + 𝑠𝑘

𝜏𝑘 − 𝑐
⃦⃦⃦
∞

≤ 𝜖𝑑(1 + ‖𝑐‖∞), and

min
(︁

(𝑥𝑘)𝑇 𝑠𝑘

(𝜏𝑘)2
, | 𝑐

𝑇 𝑥𝑘

𝜏𝑘 − 𝑏𝑇 𝑦𝑘

𝜏𝑘 |
)︁

≤ 𝜖𝑔 max

(︂
1,

min(|𝑐𝑇 𝑥𝑘|,|𝑏𝑇 𝑦𝑘|)
𝜏𝑘

)︂
,

(11.5)

the interior-point optimizer is terminated and

(𝑥𝑘, 𝑦𝑘, 𝑠𝑘)

𝜏𝑘

is reported as the primal-dual optimal solution. The interpretation of (11.5) is that the optimizer is
terminated if

• 𝑥𝑘

𝜏𝑘 is approximately primal feasible,

•
{︁

𝑦𝑘

𝜏𝑘 ,
𝑠𝑘

𝜏𝑘

}︁
is approximately dual feasible, and

• the duality gap is almost zero.

On the other hand, if the trial solution satisfies

−𝜖𝑖𝑐
𝑇𝑥𝑘 >

‖𝑐‖∞
max (1, ‖𝑏‖∞)

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞

then the problem is declared dual infeasible and 𝑥𝑘 is reported as a certificate of dual infeasibility. The
motivation for this stopping criterion is as follows: First assume that

⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ = 0 ; then 𝑥𝑘 is an exact

certificate of dual infeasibility. Next assume that this is not the case, i.e.⃦⃦
𝐴𝑥𝑘

⃦⃦
∞ > 0,

and define

𝑥̄ := 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝐴𝑥𝑘‖∞ ‖𝑐‖∞
𝑥𝑘.

It is easy to verify that

‖𝐴𝑥̄‖∞ = 𝜖𝑖
max (1, ‖𝑏‖∞)

‖𝑐‖∞
and − 𝑐𝑇 𝑥̄ > 1,

which shows 𝑥̄ is an approximate certificate of dual infeasibility where 𝜀𝑖 controls the quality of the
approximation. A smaller value means a better approximation.

Finally, if

𝜖𝑖𝑏
𝑇 𝑦𝑘 >

‖𝑏‖∞
max (1, ‖𝑐‖∞)

⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘

⃦⃦
∞

11.2. Linear Optimization 121

MOSEK Optimizer API for Python, Release 8.0.0.94

then 𝑦𝑘 is reported as a certificate of primal infeasibility.

It is possible to adjust the tolerances 𝜀𝑝, 𝜀𝑑, 𝜀𝑔 and 𝜀𝑖 using parameters; see Table 11.1 for details.

Table 11.1: Parameters employed in termination crite-
rion

ToleranceParameter name
𝜀𝑝 dparam.intpnt_tol_pfeas
𝜀𝑑 dparam.intpnt_tol_dfeas
𝜀𝑔 dparam.intpnt_tol_rel_gap
𝜀𝑖 dparam.intpnt_tol_infeas

The default values of the termination tolerances are chosen such that for a majority of problems appearing
in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances usually
is not worthwhile. However, an inspection of (11.5) reveals that quality of the solution is dependent on
‖𝑏‖∞ and ‖𝑐‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal and
dual feasibility at the same rate [And09] . This means that if the optimizer is stopped prematurely then
it is very unlikely that either the primal or dual solution is feasible. Another consequence is that in most
cases all the tolerances, 𝜀𝑝, 𝜀𝑑 and 𝜀𝑔, have to be relaxed together to achieve an effect.

In some cases the interior-point method terminates having found a solution not too far from meeting the
optimality condition (11.5). A solution is defined as near optimal if scaling 𝜀𝑝, 𝜀𝑑 and 𝜀𝑔 by any number
𝜀𝑛 ∈ [1.0,+∞] conditions (11.5) are satisfied.

A near optimal solution is therefore of lower quality but still potentially valuable. If for instance the
solver stalls, i.e. it can make no more significant progress towards the optimal solution, a near optimal
solution could be available and be good enough for the user.

The basis identification discussed in Section 11.2.2.2 requires an optimal solution to work well; hence
basis identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

Basis Identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique
primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing
step that computes an optimal basic solution starting from the optimal interior-point solution. More
information about the basis identification procedure may be found in [AY96] . In the following we provide
an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:

• a basic solution is often more accurate than an interior-point solution,

• a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,

• a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is partic-
ularly appealing when solving continuous relaxation of mixed integer problems, as well as in all
applications in which sparser solutions are preferred.

To illustrate how the basis identification routine works, we use the following trivial example:

minimize 𝑥 + 𝑦
subject to 𝑥 + 𝑦 = 1,

𝑥, 𝑦 ≥ 0.

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions
namely

(𝑥*
1, 𝑦

*
1) = (1, 0),

(𝑥*
2, 𝑦

*
2) = (0, 1).

122 Chapter 11. The Optimizers for Continuous Problems

MOSEK Optimizer API for Python, Release 8.0.0.94

The interior point algorithm will actually converge to the center of the optimal set, i.e. to (𝑥*, 𝑦*) =
(1/2, 1/2) (to see this in MOSEK deactivate Presolve).

In practice, when the algorithm gets close to the optimal solution, it is possible to construct in polynomial
time an initial basis for the simplex algorithm from the current interior point solution. This basis is used
to warm-start the simplex algorithm that will provide the optimal basic solution.

In most cases the constructed basis is optimal, or very few iterations are required by the simplex algorithm
to make it optimal and hence the final clean phase be short. However, in some cases for nasty problems
e.g. ill-conditioned problems the additional simplex clean up phase may take of lot a time.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the basis
identification procedure can be turned off. The parameters

• iparam.intpnt_basis ,

• iparam.bi_ignore_max_iter , and

• iparam.bi_ignore_num_error

control when basis identification is performed.

The type of simplex algorithm to be used can be tuned by the iparam.bi_clean_optimizer pa-
rameter i.e. primal or dual simplex, and the maximum number of iterations can be set by the
iparam.bi_max_iterations .

Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

The Interior-point Log

Below is a typical log output from the interior-point optimizer presented:

Optimizer - threads : 1
Optimizer - solved problem : the dual
Optimizer - Constraints : 2
Optimizer - Cones : 0
Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3
Factor - dense dim. : 0 flops : 7.00e+001
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.0e+000 0.00
1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.5e+000 0.00
2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-001 0.00
3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-002 0.01
4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-004 0.01
5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-008 0.01
6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-012 0.01

The first line displays the number of threads used by the optimizer and second line tells that the optimizer
chose to solve the dual problem rather than the primal problem. The next line displays the problem
dimensions as seen by the optimizer, and the Factor... lines show various statistics. This is followed
by the iteration log.

Using the same notation as in Section 11.2.2 the columns of the iteration log have the following meaning:

• ITE: Iteration index.

• PFEAS:
⃦⃦
𝐴𝑥𝑘 − 𝑏𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically towards to

zero but may stall at low level due to rounding errors.

• DFEAS:
⃦⃦
𝐴𝑇 𝑦𝑘 + 𝑠𝑘 − 𝑐𝜏𝑘

⃦⃦
∞ . The numbers in this column should converge monotonically toward

to zero but may stall at low level due to rounding errors.

11.2. Linear Optimization 123

MOSEK Optimizer API for Python, Release 8.0.0.94

• GFEAS: | − 𝑐𝑇𝑥𝑘 + 𝑏𝑇 𝑦𝑘 − 𝜅𝑘| . The numbers in this column should converge monotonically toward
to zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to −1 if that is not the case.

• POBJ: 𝑐𝑇𝑥𝑘/𝜏𝑘. An estimate for the primal objective value.

• DOBJ: 𝑏𝑇 𝑦𝑘/𝜏𝑘. An estimate for the dual objective value.

• MU: (𝑥𝑘)𝑇 𝑠𝑘+𝜏𝑘𝜅𝑘

𝑛+1 . The numbers in this column should always converge monotonically to zero.

• TIME: Time spend since the optimization started.

11.2.3 The simplex Based Optimizer

An alternative to the interior-point optimizer is the simplex optimizer.

The simplex optimizer uses a different method that allows exploiting an initial guess for the optimal
solution to reduce the solution time. Depending on the problem it may be faster or slower to use an
initial guess; see section 11.2.4 for a discussion.

MOSEK provides both a primal and a dual variant of the simplex optimizer — we will return to this
later.

Simplex Termination Criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certifi-
cate. A basic solution is optimal when it is primal and dual feasible; see Section 10.1 and 10.1.1 for
a definition of the primal and dual problem. Due to the fact that computations are performed in fi-
nite precision MOSEK allows violation of primal and dual feasibility within certain tolerances. The
user can control the allowed primal and dual tolerances with the parameters dparam.basis_tol_x and
dparam.basis_tol_s .

Starting From an Existing Solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a warm-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will warm-start automatically.

Setting the parameter iparam.optimizer to optimizertype.free_simplex instructs MOSEK to se-
lect automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to choose
the best optimizer for the given problem and the available solution.

By default MOSEK uses presolve when performing a warm-start. If the optimizer only needs very few
iterations to find the optimal solution it may be better to turn off the presolve.

Numerical Difficulties in the Simplex Optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK counts a “numerical unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are implemented to avoid long sequences where
the optimizer tries to recover from an unstable situation.

Set-backs are, for example, repeated singularities when factorizing the basis matrix, repeated loss of
feasibility, degeneracy problems (no progress in objective) and other events indicating numerical difficul-
ties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in such

124 Chapter 11. The Optimizers for Continuous Problems

MOSEK Optimizer API for Python, Release 8.0.0.94

a situation try to reformulate into a better scaled problem. Then, if a lot of set-backs still occur, trying
one or more of the following suggestions may be worthwhile:

• Raise tolerances for allowed primal or dual feasibility: Hence, increase the value of

– dparam.basis_tol_x , and

– dparam.basis_tol_s .

• Raise or lower pivot tolerance: Change the dparam.simplex_abs_tol_piv parameter.

• Switch optimizer: Try another optimizer.

• Switch off crash: Set both iparam.sim_primal_crash and iparam.sim_dual_crash to 0.

• Experiment with other pricing strategies: Try different values for the parameters

– iparam.sim_primal_selection and

– iparam.sim_dual_selection .

• If you are using warm-starts, in rare cases switching off this feature may improve stability. This is
controlled by the iparam.sim_hotstart parameter.

• Increase maximum set backs allowed controlled by iparam.sim_max_num_setbacks .

• If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See
the parameter iparam.sim_degen for details.

11.2.4 The Interior-point or the Simplex Optimizer?

Given a linear optimization problem, which optimizer is the best: The primal simplex, the dual simplex
or the interior-point optimizer?

It is impossible to provide a general answer to this question. However, the interior-point optimizer
behaves more predictably: it tends to use between 20 and 100 iterations, almost independently of problem
size, but cannot perform warm-start, while simplex can take advantage of an initial solution, but is less
predictable for cold-start. The interior-point optimizer is used by default.

11.2.5 The Primal or the Dual Simplex Variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer
is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and
computational improvements, which, in our experience, makes it faster on average than the primal
simplex optimizer. Still, it depends much on the problem structure and size.

Setting the iparam.optimizer parameter to optimizertype.free_simplex instructs MOSEK to
choose which simplex optimizer to use automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, you should try
all the optimizers.

11.3 Conic Optimization

11.3.1 The Interior-point Optimizer

For conic optimization problems only an interior-point type optimizer is available. The interior-point
optimizer is an implementation of the so-called homogeneous and self-dual algorithm. For a detailed
description of the algorithm, please see [ART03] .

11.3. Conic Optimization 125

MOSEK Optimizer API for Python, Release 8.0.0.94

Interior-point Termination Criteria

The parameters controlling when the conic interior-point optimizer terminates are shown in Table 11.2.

Table 11.2: Parameters employed in termination criterion.

Parameter name Purpose
dparam.intpnt_co_tol_pfeas Controls primal feasibility
dparam.intpnt_co_tol_dfeas Controls dual feasibility
dparam.intpnt_co_tol_rel_gap Controls relative gap
dparam.intpnt_tol_infeas Controls when the problem is declared infeasible
dparam.intpnt_co_tol_mu_red Controls when the complementarity is reduced enough

11.4 Nonlinear Convex Optimization

11.4.1 The Interior-point Optimizer

For quadratic, quadratically constrained, and general convex optimization problems an interior-point
type optimizer is available. The interior-point optimizer is an implementation of the homogeneous and
self-dual algorithm. For a detailed description of the algorithm, please see [AY98] , [AY99] .

The Convexity Requirement

Continuous nonlinear problems are required to be convex. For quadratic problems MOSEK test this
requirement before optimizing. Specifying a non-convex problem results in an error message.

The following parameters are available to control the convexity check:

• iparam.check_convexity : Turn convexity check on/off.

• dparam.check_convexity_rel_tol : Tolerance for convexity check.

• iparam.log_check_convexity : Turn on more log information for debugging.

The Differentiabilty Requirement

The nonlinear optimizer in MOSEK requires both first order and second order derivatives. This of
course implies care should be taken when solving problems involving non-differentiable functions.

For instance, the function

𝑓(𝑥) = 𝑥2

is differentiable everywhere whereas the function

𝑓(𝑥) =
√
𝑥

is only differentiable for 𝑥 > 0 . In order to make sure that MOSEK evaluates the functions at points
where they are differentiable, the function domains must be defined by setting appropriate variable
bounds.

In general, if a variable is not ranged MOSEK will only evaluate that variable at points strictly within
the bounds. Hence, imposing the bound

𝑥 ≥ 0

in the case of
√
𝑥 is sufficient to guarantee that the function will only be evaluated in points where it is

differentiable.

126 Chapter 11. The Optimizers for Continuous Problems

MOSEK Optimizer API for Python, Release 8.0.0.94

However, if a function is differentiable on a closed range, specifying the variable bounds is not sufficient.
Consider the function

𝑓(𝑥) =
1

𝑥
+

1

1 − 𝑥
. (11.6)

In this case the bounds

0 ≤ 𝑥 ≤ 1

will not guarantee that MOSEK only evaluates the function for 𝑥 between 0 and 1 . To force MOSEK
to strictly satisfy both bounds on ranged variables set the parameter iparam.intpnt_starting_point
to startpointtype.satisfy_bounds .

For efficiency reasons it may be better to reformulate the problem than to force MOSEK to observe
ranged bounds strictly. For instance, (11.6) can be reformulated as follows

𝑓(𝑥) = 1
𝑥 + 1

𝑦

0 = 1 − 𝑥− 𝑦
0 ≤ 𝑥
0 ≤ 𝑦.

Interior-point Termination Criteria

The parameters controlling when the general convex interior-point optimizer terminates are shown in
Table 11.3.

Table 11.3: Parameters employed in termination criteria.

Parameter name Purpose
dparam.intpnt_nl_tol_pfeas Controls primal feasibility
dparam.intpnt_nl_tol_dfeas Controls dual feasibility
dparam.intpnt_nl_tol_rel_gap Controls relative gap
dparam.intpnt_tol_infeas Controls when the problem is declared infeasible
dparam.intpnt_nl_tol_mu_red Controls when the complementarity is reduced enough

11.5 Using Multiple Threads in an Optimizer

If multiple cores are available then it is possible for MOSEK to take advantage of them to speed up
the computation. However, please note the speedup achieved is going to be dependent on the problem
characteristics e.g. the size of problem. Typically for smallish problems no speedup is obtained by
exploiting multiple cores. In fact forcing MOSEK to use one core can increase speed because parallel
overhead is avoided.

11.5.1 Thread Safety

The MOSEK API is thread-safe provided that a task is only modified or accessed from one thread at
any given time. Also accessing two or more separate tasks from threads at the same time is safe. Sharing
an environment between threads is safe.

11.5.2 Determinism

The optimizers are run-to-run deterministic which means if a problem is solved twice on the same
computer using the same parameter setting and exactly the same input then exactly the same results is
obtained. One qualification is that no time limits must be imposed because the time taken to perform
an operation on a computer is dependent on many factors such as the current workload.

11.5. Using Multiple Threads in an Optimizer 127

MOSEK Optimizer API for Python, Release 8.0.0.94

11.5.3 The Parallelized Interior-point Optimizer

By default the interior-point optimizer exploits multiple cores using multithreading. Hence, big tasks
such as large dense matrix multiplication may be divided into several independent smaller tasks that
can be computed independently. However, there is a computational overhead associated with exploiting
multiple threads e.g. cost of the additional coordination etc. Therefore, it may be advantageous to turn
off the mutithreading for smallish problem using the parameter iparam.intpnt_multi_thread .

Moreover, when the interior-point optimizer is allowed to exploit multiple threads, then the parameter
iparam.num_threads controls the maximum number of threads (and therefore the number of cores) that
MOSEK will employ.

128 Chapter 11. The Optimizers for Continuous Problems

CHAPTER

TWELVE

THE OPTIMIZER FOR MIXED-INTEGER PROBLEMS

A problem is a mixed-integer optimization problem when one or more of the variables are constrained
to be integer valued. MOSEK can solve mixed-integer

• linear,

• quadratic and quadratically constrained, and

• conic qudratic

problems.

Readers unfamiliar with integer optimization are recommended to consult some relevant literature, e.g.
the book [Wol98] by Wolsey.

12.1 Some Concepts and Facts Related to Mixed-integer Opti-
mization

It is important to understand that in a worst-case scenario, the time required to solve integer optimization
problems grows exponentially with the size of the problem. For instance, assume that a problem contains
𝑛 binary variables, then the time required to solve the problem in the worst case may be proportional
to 2𝑛 . The value of 2𝑛 is huge even for moderate values of 𝑛 .

In practice this implies that the focus should be on computing a near optimal solution quickly rather
than on locating an optimal solution. Even if the problem is only solved approximately, it is important
to know how far the approximate solution is from an optimal one. In order to say something about the
quality of an approximate solution the concept of relaxation is important.

The mixed-integer optimization problem

𝑧* = minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0
𝑥𝑗 ∈ Z, ∀𝑗 ∈ 𝒥 ,

(12.1)

has the continuous relaxation

𝑧 = minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0
(12.2)

The continuos relaxation is identical to the mixed-integer problem with the restriction that some variables
must be integers removed.

There are two important observations about the continuous relaxation. First, the continuous relaxation
is usually much faster to optimize than the mixed-integer problem. Secondly if 𝑥̂ is any feasible solution
to (12.1) and

𝑧 := 𝑐𝑇 𝑥̂

129

MOSEK Optimizer API for Python, Release 8.0.0.94

then

𝑧 ≤ 𝑧* ≤ 𝑧.

This is an important observation since if it is only possible to find a near optimal solution within a
reasonable time frame then the quality of the solution can nevertheless be evaluated. The value 𝑧 is a
lower bound on the optimal objective value. This implies that the obtained solution is no further away
from the optimum than 𝑧 − 𝑧 in terms of the objective value.

Whenever a mixed-integer problem is solved MOSEK reports this lower bound so that the quality of
the reported solution can be evaluated.

12.2 The Mixed-integer Optimizer

The mixed-integer optimizer can handle problems with linear, quadratic objective and constraints and
conic constraints. However, a problem can not contain both quadratic objective or constraints and conic
constraints.

The mixed-integer optimizer is specialized for solving linear and conic optimization problems. It can also
solve pure quadratic and quadratically constrained problems; these problems are automatically converted
to conic problems before being solved.

The mixed-integer optimizer is run-to-run deterministic. This means that if a problem is solved twice
on the same computer with identical options then the obtained solution will be bit-for-bit identical for
the two runs. However, if a time limit is set then this may not be case since the time taken to solve
a problem is not deterministic. The mixed-integer optimizer is parallelized i.e. it can exploit multiple
cores during the optimization.

The solution process can be split into these phases:

1. Presolve: In this phase the optimizer tries to reduce the size of the problem and improve
the formulation using preprocessing techniques. The presolve stage can be turned off using the
iparam.presolve_use parameter

2. Cut generation: Valid inequalities (cuts) are added to improve the lower bound

3. Heuristic: Using heuristics the optimizer tries to guess a good feasible solution. Heuristics can
be controlled by the parameter iparam.mio_heuristic_level

4. Search: The optimal solution is located by branching on integer variables

12.3 Termination Criterion

In general, it is time consuming to find an exact feasible and optimal solution to an integer optimization
problem, though in many practical cases it may be possible to find a sufficiently good solution. Therefore,
the mixed-integer optimizer employs a relaxed feasibility and optimality criterion to determine when a
satisfactory solution is located.

A candidate solution that is feasible for the continuous relaxation is said to be an integer feasible solution
if the criterion

min(𝑥𝑗 − ⌊𝑥𝑗⌋, ⌈𝑥𝑗⌉ − 𝑥𝑗) ≤ 𝛿1 ∀𝑗 ∈ 𝒥

is satisfied, meaning that 𝑥𝑗 is at most 𝛿1 from the nearest integer.

Whenever the integer optimizer locates an integer feasible solution it will check if the criterion

𝑧 − 𝑧 ≤ max(𝛿2, 𝛿3 max(10−10, |𝑧|))

130 Chapter 12. The Optimizer for Mixed-integer Problems

MOSEK Optimizer API for Python, Release 8.0.0.94

is satisfied. If this is the case, the integer optimizer terminates and reports the integer feasible solution
as an optimal solution. Please note that 𝑧 is a valid lower bound determined by the integer optimizer
during the solution process, i.e.

𝑧 ≤ 𝑧*.

The lower bound 𝑧 normally increases during the solution process.

12.3.1 Relaxed Termination

If an optimal solution cannot be located within a reasonable time, it may be advantageous to employ a
relaxed termination criterion after some time. Whenever the integer optimizer locates an integer feasible
solution and has spent at least the number of seconds defined by the dparam.mio_disable_term_time
parameter on solving the problem, it will check whether the criterion

𝑧 − 𝑧 ≤ max(𝛿4, 𝛿5 max(10−10, |𝑧|))

is satisfied. If it is satisfied, the optimizer will report that the candidate solution is near optimal and
then terminate. Please note that since this criterion depends on timing, the optimizer will not be run to
run deterministic.

12.4 Parameters Affecting the Termination of the Integer Opti-
mizer.

All 𝛿 tolerances can be adjusted using suitable parameters — see Table 12.1.

Table 12.1: Tolerances for the mixed-integer op-
timizer.

Tolerance Parameter name
𝛿1 dparam.mio_tol_abs_relax_int
𝛿2 dparam.mio_tol_abs_gap
𝛿3 dparam.mio_tol_rel_gap
𝛿4 dparam.mio_near_tol_abs_gap
𝛿5 dparam.mio_near_tol_rel_gap

In Table 12.2 some other parameters affecting the integer optimizer termination criterion are shown.
Please note that if the effect of a parameter is delayed, the associated termination criterion is applied
only after some time, specified by the dparam.mio_disable_term_time parameter.

Table 12.2: Other parameters affecting the integer optimizer termination criterion.

Parameter name De-
layed

Explanation

iparam.mio_max_num_branches Yes Maximum number of branches allowed.
iparam.mio_max_num_relaxs Yes Maximum number of relaxations allowed.
iparam.mio_max_num_solutions Yes Maximum number of feasible integer solutions

allowed.

12.5 How to Speed Up the Solution Process

As mentioned previously, in many cases it is not possible to find an optimal solution to an integer
optimization problem in a reasonable amount of time. Some suggestions to reduce the solution time are:

12.4. Parameters Affecting the Termination of the Integer Optimizer. 131

MOSEK Optimizer API for Python, Release 8.0.0.94

• Relax the termination criterion: In case the run time is not acceptable, the first thing to do is to
relax the termination criterion — see Section 12.3 for details.

• Specify a good initial solution: In many cases a good feasible solution is either known or easily
computed using problem specific knowledge. If a good feasible solution is known, it is usually
worthwhile to use this as a starting point for the integer optimizer.

• Improve the formulation: A mixed-integer optimization problem may be impossible to solve in one
form and quite easy in another form. However, it is beyond the scope of this manual to discuss good
formulations for mixed-integer problems. For discussions on this topic see for example [Wol98] .

12.6 Understanding Solution Quality

To determine the quality of the solution one should check the following:

• The solution status key returned by MOSEK

• The optimality gap: A measure of how much the located solution can deviate from the optimal
solution to the problem

• Feasibility. How much the solution violates the constraints of the problem

The optimality gap is a measure for how close the solution is to the optimal solution. The optimality
gap is given by

𝜖 = |(objective value of feasible solution) − (objective bound)|.

The objective value of the solution is guarantied to be within 𝜖 of the optimal solution.

The optimality gap can be retrieved through the solution item dinfitem.mio_obj_abs_gap . Often it
is more meaningful to look at the optimality gap normalized with the magnitude of the solution. The
relative optimality gap is available in dinfitem.mio_obj_rel_gap .

132 Chapter 12. The Optimizer for Mixed-integer Problems

CHAPTER

THIRTEEN

PROBLEM ANALYZER

The problem analyzer prints a detailed survey of the

• linear constraints and objective

• quadratic constraints

• conic constraints

• variables

of the model.

In the initial stages of model formulation the problem analyzer may be used as a quick way of verifying
that the model has been built or imported correctly. In later stages it can help revealing special structures
within the model that may be used to tune the optimizer’s performance or to identify the causes of
numerical difficulties.

Analyzing the problem

Constraints Bounds Variables
upper bd: 421 ranged : all cont: 421
fixed : 58 bin : 421

Objective, min cx
range: min |c|: 0.00000 min |c|>0: 11.0000 max |c|: 500.000

distrib: |c| vars
0 421

[11, 100) 150
[100, 500] 271

Constraint matrix A has
479 rows (constraints)
842 columns (variables)

2091 (0.518449%) nonzero entries (coefficients)

Row nonzeros, A_i
range: min A_i: 2 (0.23753%) max A_i: 34 (4.038%)

distrib: A_i rows rows% acc%
2 421 87.89 87.89

[8, 15] 20 4.18 92.07
[16, 31] 30 6.26 98.33
[32, 34] 8 1.67 100.00

Column nonzeros, A|j
range: min A|j: 2 (0.417537%) max A|j: 3 (0.626305%)

distrib: A|j cols cols% acc%
2 435 51.66 51.66

133

MOSEK Optimizer API for Python, Release 8.0.0.94

3 407 48.34 100.00

A nonzeros, A(ij)
range: min |A(ij)|: 1.00000 max |A(ij)|: 100.000

distrib: A(ij) coeffs
[1, 10) 1670

[10, 100] 421

Constraint bounds, lb <= Ax <= ub
distrib: |b| lbs ubs

0 421
[1, 10] 58 58

Variable bounds, lb <= x <= ub
distrib: |b| lbs ubs

0 842
[1, 10) 421

[10, 100] 421

The survey is divided into six different sections, each described below. To keep the presentation short
with focus on key elements the analyzer generally attempts to display information on issues relevant for
the current model only: E.g., if the model does not have any conic constraints (this is the case in the
example above) or any integer variables, those parts of the analysis will not appear.

13.1 General Characteristics

The first part of the survey consists of a brief summary of the model’s linear and quadratic constraints
(indexed by 𝑖) and variables (indexed by 𝑗). The summary is divided into three subsections:

Constraints

• upper bd The number of upper bounded constraints,
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖

• lower bd The number of lower bounded constraints, 𝑙𝑐𝑖 ≤
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗

• ranged The number of ranged constraints, 𝑙𝑐𝑖 ≤
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖

• fixed The number of fixed constraints, 𝑙𝑐𝑖 =
∑︀𝑛−1

𝑗=0 𝑎𝑖𝑗𝑥𝑗 = 𝑢𝑐
𝑖

• free The number of free constraints

Bounds

• upper bd The number of upper bounded variables, 𝑥𝑗 ≤ 𝑢𝑥
𝑗

• lower bd The number of lower bounded variables, 𝑙𝑥𝑘 ≤ 𝑥𝑗

• ranged The number of ranged variables, 𝑙𝑥𝑘 ≤ 𝑥𝑗 ≤ 𝑢𝑥
𝑗

• fixed The number of fixed variables, 𝑙𝑥𝑘 = 𝑥𝑗 = 𝑢𝑥
𝑗

• free The number of free variables

134 Chapter 13. Problem Analyzer

MOSEK Optimizer API for Python, Release 8.0.0.94

Variables

• cont The number of continuous variables, 𝑥𝑗 ∈ R

• bin The number of binary variables, 𝑥𝑗 ∈ {0, 1}

• int The number of general integer variables, 𝑥𝑗 ∈ Z

Only constraints, bounds and domains actually in the model will be reported on; if all entities in a section
turn out to be of the same kind, the number will be replaced by all for brevity.

13.2 Objective

The second part of the survey focuses on (the linear part of) the objective, summarizing the optimization
sense and the coefficients’ absolute value range and distribution. The number of 0 (zero) coefficients is
singled out (if any such variables are in the problem).

The range is displayed using three terms:

• min |c| The minimum absolute value among all coeffecients

• min |c|>0 The minimum absolute value among the nonzero coefficients

• max |c| The maximum absolute value among the coefficients

If some of these extrema turn out to be equal, the display is shortened accordingly:

• If min |c| is greater than zero, the min |c|>0 term is obsolete and will not be displayed

• If only one or two different coefficients occur this will be displayed using all and an explicit listing
of the coefficients

The absolute value distribution is displayed as a table summarizing the numbers by orders of magnitude
(with a ratio of 10). Again, the number of variables with a coefficient of 0 (if any) is singled out. Each line
of the table is headed by an interval (half-open intervals including their lower bounds), and is followed
by the number of variables with their objective coefficient in this interval. Intervals with no elements are
skipped.

13.3 Linear Constraints

The third part of the survey displays information on the nonzero coefficients of the linear constraint
matrix.

Following a brief summary of the matrix dimensions and the number of nonzero coefficients in total,
three sections provide further details on how the nonzero coefficients are distributed by row-wise count
(A_i), by column-wise count (A|j), and by absolute value (|A(ij)|). Each section is headed by a brief
display of the distribution’s range (min and max), and for the row/column-wise counts the corresponding
densities are displayed too (in parentheses).

The distribution tables single out three particularly interesting counts: zero, one, and two nonzeros per
row/column; the remaining row/column nonzeros are displayed by orders of magnitude (ratio 2). For
each interval the relative and accumulated relative counts are also displayed.

Note that constraints may have both linear and quadratic terms, but the empty rows and columns
reported in this part of the survey relate to the linear terms only. If empty rows and/or columns
are found in the linear constraint matrix, the problem is analyzed further in order to determine if the
corresponding constraints have any quadratic terms or the corresponding variables are used in conic or
quadratic constraints.

The distribution of the absolute values, |A(ij)|, is displayed just as for the objective coefficients de-
scribed above.

13.2. Objective 135

MOSEK Optimizer API for Python, Release 8.0.0.94

13.4 Constraint and Variable Bounds

The fourth part of the survey displays distributions for the absolute values of the finite lower and upper
bounds for both constraints and variables. The number of bounds at 0 is singled out and, otherwise,
displayed by orders of magnitude (with a ratio of 10).

13.5 Quadratic Constraints

The fifth part of the survey displays distributions for the nonzero elements in the gradient of the quadratic
constraints, i.e. the nonzero row counts for the column vectors 𝑄𝑥 . The table is similar to the tables
for the linear constraints’ nonzero row and column counts described in the survey’s third part.

Note: Quadratic constraints may also have a linear part, but that will be included in the linear
constraints survey; this means that if a problem has one or more pure quadratic constraints, part three
of the survey will report anleq al number of linear constraint rows with 0 (zero) nonzeros. Likewise,
variables that appear in quadratic terms only will be reported as empty columns (0 nonzeros) in the
linear constraint report.

13.6 Conic Constraints

The last part of the survey summarizes the model’s conic constraints. For each of the two types of cones,
quadratic and rotated quadratic, the total number of cones are reported, and the distribution of the
cones’ dimensions are displayed using intervals. Cone dimensions of 2, 3, and 4 are singled out.

136 Chapter 13. Problem Analyzer

CHAPTER

FOURTEEN

ANALYZING INFEASIBLE PROBLEMS

When developing and implementing a new optimization model, the first attempts will often be either
infeasible, due to specification of inconsistent constraints, or unbounded, if important constraints have
been left out.

In this section we will

• go over an example demonstrating how to locate infeasible constraints using the MOSEK infeasi-
bility report tool,

• discuss in more general terms which properties may cause infeasibilities, and

• present the more formal theory of infeasible and unbounded problems.

14.1 Example: Primal Infeasibility

A problem is said to be primal infeasible if no solution exists that satisfies all the constraints of the
problem.

As an example of a primal infeasible problem consider the problem of minimizing the cost of transporta-
tion between a number of production plants and stores: Each plant produces a fixed number of goods,
and each store has a fixed demand that must be met. Supply, demand and cost of transportation per
unit are given in Fig. 14.1.

Supply Demand

1

2

5

2

1

2

1

Plant 1

Plant 2

Plant 3
Store 4

Store 3

Store 2

Store 1

1000

1000

200

500

500

200
1100

Fig. 14.1: Supply, demand and cost of transportation.

The problem represented in Fig. 14.1 is infeasible, since the total demand

2300 = 1100 + 200 + 500 + 500

137

MOSEK Optimizer API for Python, Release 8.0.0.94

exceeds the total supply

2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant 𝑖 to store 𝑗 by 𝑥𝑖𝑗 , the problem can be
formulated as the LP:

minimize 𝑥11 + 2𝑥12 + 5𝑥23 + 2𝑥24 + 𝑥31 + 2𝑥33 + 𝑥34

subject to 𝑥11 + 𝑥12 ≤ 200,
𝑥23 + 𝑥24 ≤ 1000,

𝑥31 + 𝑥33 + 𝑥34 ≤ 1000,
𝑥11 + 𝑥31 = 1100,

𝑥12 = 200,
𝑥23 + 𝑥33 = 500,

𝑥24 + 𝑥34 = 500,
𝑥𝑖𝑗 ≥ 0.

(14.1)

Solving problem (14.1) using MOSEK will result in a solution, a solution status and a problem status.
Among the log output from the execution of MOSEK on the above problem are the lines:

Basic solution
Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER

The first line indicates that the problem status is primal infeasible. The second line says that a certificate
of the infeasibility was found. The certificate is returned in place of the solution to the problem.

14.2 Locating the cause of Primal Infeasibility

Usually a primal infeasible problem status is caused by a mistake in formulating the problem and therefore
the question arises: What is the cause of the infeasible status? When trying to answer this question, it
is often advantageous to follow these steps:

• Remove the objective function. This does not change the infeasibility status but simplifies the
problem, eliminating any possibility of issues related to the objective function.

• Consider whether your problem has some necessary conditions for feasibility and examine if these
are satisfied, e.g. total supply should be greater than or equal to total demand.

• Verify that coefficients and bounds are reasonably sized in your problem.

If the problem is still primal infeasible, some of the constraints must be relaxed or removed completely.
The MOSEK infeasibility report (Section 14.4) may assist you in finding the constraints causing the
infeasibility.

Possible ways of relaxing your problem nclude:

• Increasing (decreasing) upper (lower) bounds on variables and constraints.

• Removing suspected constraints from the problem.

Returning to the transportation example, we discover that removing the fifth constraint

𝑥12 = 200

makes the problem feasible.

138 Chapter 14. Analyzing Infeasible Problems

MOSEK Optimizer API for Python, Release 8.0.0.94

14.3 Locating the Cause of Dual Infeasibility

A problem may also be dual infeasible. In this case the primal problem is often unbounded, meaning that
feasbile solutions exists such that the objective tends towards infinity. An example of a dual infeasible
and primal unbounded problem is:

minimize 𝑥1

subject to 𝑥1 ≤ 5.

To resolve a dual infeasibility the primal problem must be made more restricted by

• Adding upper or lower bounds on variables or constraints.

• Removing variables.

• Changing the objective.

14.3.1 A cautionary note

The problem

minimize 0
subject to 0 ≤ 𝑥1,

𝑥𝑗 ≤ 𝑥𝑗+1, 𝑗 = 1, . . . , 𝑛− 1,
𝑥𝑛 ≤ −1

is clearly infeasible. Moreover, if any one of the constraints is dropped, then the problem becomes
feasible.

This illustrates the worst case scenario where all, or at least a significant portion of the constraints
are involved in causing infeasibility. Hence, it may not always be easy or possible to pinpoint a few
constraints responsible for infeasibility.

14.4 The Infeasibility Report

MOSEK includes functionality for diagnosing the cause of a primal or a dual infeasibility. It can be
turned on by setting the iparam.infeas_report_auto to onoffkey.on . This causes MOSEK to print
a report on variables and constraints involved in the infeasibility.

The iparam.infeas_report_level parameter controls the amount of information presented in the
infeasibility report. The default value is 1.

14.4.1 Example: Primal Infeasibility

We will keep working with the problem (14.1) written in LP format:

Listing 14.1: The code for problem (14.1).

\
\ An example of an infeasible linear problem.
\
minimize
obj: + 1 x11 + 2 x12

+ 5 x23 + 2 x24
+ 1 x31 + 2 x33 + 1 x34

st
s0: + x11 + x12 <= 200
s1: + x23 + x24 <= 1000
s2: + x31 + x33 + x34 <= 1000

14.3. Locating the Cause of Dual Infeasibility 139

MOSEK Optimizer API for Python, Release 8.0.0.94

d1: + x11 + x31 = 1100
d2: + x12 = 200
d3: + x23 + x33 = 500
d4: + x24 + x34 = 500

bounds
end

14.4.2 Example: Dual Infeasibility

The following problem is dual to (14.1) and therefore it is dual infeasible.

Listing 14.2: The dual of problem (14.1).

maximize + 200 y1 + 1000 y2 + 1000 y3 + 1100 y4 + 200 y5 + 500 y6 + 500 y7
subject to

x11: y1+y4 < 1
x12: y1+y5 < 2
x23: y2+y6 < 5
x24: y2+y7 < 2
x31: y3+y4 < 1
x33: y3+y6 < 2
x34: y3+y7 < 1

bounds
-inf <= y1 < 0
-inf <= y2 < 0
-inf <= y3 < 0
y4 free
y5 free
y6 free
y7 free

end

This can be verified by proving that

(𝑦1, . . . , 𝑦7) = (−1, 0,−1, 1, 1, 0, 0)

is a certificate of dual infeasibility (see Section 10.1.2.2) as we can see from this report:

MOSEK DUAL INFEASIBILITY REPORT.

Problem status: The problem is dual infeasible

The following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound
5 x33 -1.000000e+00 NONE 2.000000e+00
6 x34 -1.000000e+00 NONE 1.000000e+00

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound
0 y1 -1.000000e+00 2.000000e+02 NONE 0.000000e+00
2 y3 -1.000000e+00 1.000000e+03 NONE 0.000000e+00
3 y4 1.000000e+00 1.100000e+03 NONE NONE
4 y5 1.000000e+00 2.000000e+02 NONE NONE

Interior-point solution summary
Problem status : DUAL_INFEASIBLE
Solution status : DUAL_INFEASIBLE_CER
Primal. obj: 1.0000000000e+02 nrm: 1e+00 Viol. con: 0e+00 var: 0e+00

140 Chapter 14. Analyzing Infeasible Problems

MOSEK Optimizer API for Python, Release 8.0.0.94

Let 𝑦* denote the reported primal solution. MOSEK states

• that the problem is dual infeasible,

• that the reported solution is a certificate of dual infeasibility, and

• that the infeasibility measure for 𝑦* is approximately zero.

Since the original objective was maximization, we have that 𝑐𝑇 𝑦* > 0. See Section 10.1.2 for how to
interpret the parameter values in the infeasibility report for a linear program. We see that the variables
y1, y3, y4, y5 and the constraints x33 and x34 contribute to infeasibility with non-zero values in the
Activity column.

One possible strategy to fix the infeasibility is to modify the problem so that the certificate of infeasibility
becomes invalid. In this case we could do one the following things:

• Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.

• Increase the object coefficient of y3. Changing the coefficients sufficiently will invalidate the in-
equality 𝑐𝑇 𝑦* > 0 and thus the certificate.

• Add lower bounds on x11 or x31. This will directly invalidate the certificate of infeasibility.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes dual feasible — the reason for infeasibility may simply move, resulting a problem that
is still infeasible, but for a different reason.

More often, the reported certificate can be used to give a hint about errors or inconsistencies in the
model that produced the problem.

14.5 Theory Concerning Infeasible Problems

This section discusses the theory of infeasibility certificates and how MOSEK uses a certificate to
produce an infeasibility report. In general, MOSEK solves the problem

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥

(14.2)

where the corresponding dual problem is

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢
+(𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0.

(14.3)

We use the convension that for any bound that is not finite, the corresponding dual variable is fixed at
zero (and thus will have no influence on the dual problem). For example

𝑙𝑥𝑗 = −∞ ⇒ (𝑠𝑥𝑙)𝑗 = 0

14.6 The Certificate of Primal Infeasibility

A certificate of primal infeasibility is any solution to the homogenized dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢
+(𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 0,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≤ 0.

14.5. Theory Concerning Infeasible Problems 141

MOSEK Optimizer API for Python, Release 8.0.0.94

with a positive objective value. That is, (𝑠𝑐*𝑙 , 𝑠𝑐*𝑢 , 𝑠𝑥*𝑙 , 𝑠𝑥*𝑢) is a certificate of primal infeasibility if

(𝑙𝑐)𝑇 𝑠𝑐*𝑙 − (𝑢𝑐)𝑇 𝑠𝑐*𝑢 + (𝑙𝑥)𝑇 𝑠𝑥*𝑙 − (𝑢𝑥)𝑇 𝑠𝑥*𝑢 > 0

and

𝐴𝑇 𝑦 + 𝑠𝑥*𝑙 − 𝑠𝑥*𝑢 = 0,
−𝑦 + 𝑠𝑐*𝑙 − 𝑠𝑐*𝑢 = 0,
𝑠𝑐*𝑙 , 𝑠𝑐*𝑢 , 𝑠𝑥*𝑙 , 𝑠𝑥*𝑢 ≤ 0.

The well-known Farkas Lemma tells us that (14.2) is infeasible if and only if a certificate of primal
infeasibility exists.

Let (𝑠𝑐*𝑙 , 𝑠𝑐*𝑢 , 𝑠𝑥*𝑙 , 𝑠𝑥*𝑢) be a certificate of primal infeasibility then

(𝑠𝑐*𝑙)𝑖 > 0((𝑠𝑐*𝑢)𝑖 > 0)

implies that the lower (upper) bound on the 𝑖 th constraint is important for the infeasibility. Furthermore,

(𝑠𝑥*𝑙)𝑗 > 0((𝑠𝑥*𝑢)𝑖 > 0)

implies that the lower (upper) bound on the 𝑗 th variable is important for the infeasibility.

14.7 The certificate of dual infeasibility

A certificate of dual infeasibility is any solution to the problem

minimize 𝑐𝑇𝑥
subject to 𝑙̄𝑐 ≤ 𝐴𝑥 ≤ 𝑢̄𝑐,

𝑙̄𝑥 ≤ 𝑥 ≤ 𝑢̄𝑥

with negative objective value, where we use the definitions

𝑙̄𝑐𝑖 :=

{︂
0, 𝑙𝑐𝑖 > −∞,
−∞, otherwise,

}︂
, 𝑢̄𝑐

𝑖 :=

{︂
0, 𝑢𝑐

𝑖 < ∞,
∞, otherwise,

}︂
and

𝑙̄𝑥𝑖 :=

{︂
0, 𝑙𝑥𝑖 > −∞,
−∞, otherwise,

}︂
and 𝑢̄𝑥

𝑖 :=

{︂
0, 𝑢𝑥

𝑖 < ∞,
∞, otherwise.

}︂
Stated differently, a certificate of dual infeasibility is any 𝑥* such that

𝑐𝑇𝑥* < 0,
𝑙̄𝑐 ≤ 𝐴𝑥* ≤ 𝑢̄𝑐,
𝑙̄𝑥 ≤ 𝑥* ≤ 𝑢̄𝑥

(14.4)

The well-known Farkas Lemma tells us that (14.3) is infeasible if and only if a certificate of dual infea-
sibility exists.

Note that if 𝑥* is a certificate of dual infeasibility then for any 𝑗 such that

𝑥*
𝑗 ≤ 0,

variable 𝑗 is involved in the dual infeasibility.

142 Chapter 14. Analyzing Infeasible Problems

CHAPTER

FIFTEEN

SENSITIVITY ANALYSIS

Given an optimization problem it is often useful to obtain information about how the optimal objective
value changes when the problem parameters are perturbed. E.g, assume that a bound represents the
capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it is
worthwhile knowing what the value of additional capacity is. This is precisely the type of questions the
sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called sensitivity
analysis.

References

The book [Chv83] discusses the classical sensitivity analysis in Chapter 10 whereas the book [RTV97]
presents a modern introduction to sensitivity analysis. Finally, it is recommended to read the short
paper [Wal00] to avoid some of the pitfalls associated with sensitivity analysis.

Warning: Currently, sensitivity analysis is only available for continuous linear optimization prob-
lems. Moreover, MOSEK can only deal with perturbations of bounds and objective function coeffi-
cients.

15.1 Sensitivity Analysis for Linear Problems

15.1.1 The Optimal Objective Value Function

Assume that we are given the problem

𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐) = minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,
(15.1)

and we want to know how the optimal objective value changes as 𝑙𝑐𝑖 is perturbed. To answer this question
we define the perturbed problem for 𝑙𝑐𝑖 as follows

𝑓𝑙𝑐𝑖 (𝛽) = minimize 𝑐𝑇𝑥
subject to 𝑙𝑐 + 𝛽𝑒𝑖 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

where 𝑒𝑖 is the 𝑖-th column of the identity matrix. The function

𝑓𝑙𝑐𝑖 (𝛽) (15.2)

shows the optimal objective value as a function of 𝛽. Please note that a change in 𝛽 corresponds to a
perturbation in 𝑙𝑐𝑖 and hence (15.2) shows the optimal objective value as a function of varying 𝑙𝑐𝑖 with
the other bounds fixed.

143

MOSEK Optimizer API for Python, Release 8.0.0.94

It is possible to prove that the function (15.2) is a piecewise linear and convex function, i.e. its graph
may look like in Fig. 15.1 and Fig. 15.2.

f()β

0 ββ β1 2

Fig. 15.1: 𝛽 = 0 is in the interior of linearity interval.

Clearly, if the function 𝑓𝑙𝑐𝑖 (𝛽) does not change much when 𝛽 is changed, then we can conclude that the
optimal objective value is insensitive to changes in 𝑙𝑐𝑖 . Therefore, we are interested in the rate of change
in 𝑓𝑙𝑐𝑖 (𝛽) for small changes in 𝛽 — specifically the gradient

𝑓 ′
𝑙𝑐𝑖

(0),

which is called the shadow price related to 𝑙𝑐𝑖 . The shadow price specifies how the objective value changes
for small changes of 𝛽 around zero. Moreover, we are interested in the linearity interval

𝛽 ∈ [𝛽1, 𝛽2]

for which

𝑓 ′
𝑙𝑐𝑖

(𝛽) = 𝑓 ′
𝑙𝑐𝑖

(0).

Since 𝑓𝑙𝑐𝑖 is not a smooth function 𝑓 ′
𝑙𝑐𝑖

may not be defined at 0, as illustrated in Fig. 15.2. In this case
we can define a left and a right shadow price and a left and a right linearity interval.

The function 𝑓𝑙𝑐𝑖 considered only changes in 𝑙𝑐𝑖 . We can define similar functions for the remaining
parameters of the 𝑧 defined in (15.1) as well:

𝑓𝑙𝑐𝑖 (𝛽) = 𝑧(𝑙𝑐 + 𝛽𝑒𝑖, 𝑢
𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐), 𝑖 = 1, . . . ,𝑚,

𝑓𝑢𝑐
𝑖
(𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐 + 𝛽𝑒𝑖, 𝑙

𝑥, 𝑢𝑥, 𝑐), 𝑖 = 1, . . . ,𝑚,
𝑓𝑙𝑥𝑗 (𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥 + 𝛽𝑒𝑗 , 𝑢

𝑥, 𝑐), 𝑗 = 1, . . . , 𝑛,

𝑓𝑢𝑥
𝑗
(𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥 + 𝛽𝑒𝑗 , 𝑐), 𝑗 = 1, . . . , 𝑛,

𝑓𝑐𝑗 (𝛽) = 𝑧(𝑙𝑐, 𝑢𝑐, 𝑙𝑥, 𝑢𝑥, 𝑐 + 𝛽𝑒𝑗), 𝑗 = 1, . . . , 𝑛.

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the
parameters 𝑢𝑐

𝑖 etc.

144 Chapter 15. Sensitivity Analysis

MOSEK Optimizer API for Python, Release 8.0.0.94

f()β

0 βββ 21

Fig. 15.2: 𝛽 = 0 is a breakpoint.

Equality Constraints

In MOSEK a constraint can be specified as either an equality constraint or a ranged constraint. If some
constraint 𝑒𝑐𝑖 is an equality constraint, we define the optimal value function for this constraint as

𝑓𝑒𝑐𝑖 (𝛽) = 𝑧(𝑙𝑐 + 𝛽𝑒𝑖, 𝑢
𝑐 + 𝛽𝑒𝑖, 𝑙

𝑥, 𝑢𝑥, 𝑐)

Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed simul-
taneously. Therefore, MOSEK will handle sensitivity analysis differently for a ranged constraint with
𝑙𝑐𝑖 = 𝑢𝑐

𝑖 and for an equality constraint.

15.1.2 The Basis Type Sensitivity Analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [Chv83] ,
is based on an optimal basic solution or, equivalently, on an optimal basis. This method may produce
misleading results [RTV97] but is computationally cheap. Therefore, and for historical reasons, this
method is available in MOSEK.

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic solution which
provides a partition of variables into basic and non-basic variables, the basis type sensitivity analysis
computes the linearity interval [𝛽1, 𝛽2] so that the basis remains optimal for the perturbed problem. A
shadow price associated with the linearity interval is also computed. However, it is well-known that
an optimal basic solution may not be unique and therefore the result depends on the optimal basic
solution employed in the sensitivity analysis. This implies that the computed interval is only a subset
of the largest interval for which the shadow price is constant. Furthermore, the optimal objective value
function might have a breakpoint for 𝛽 = 0. In this case the basis type sensitivity method will only
provide a subset of either the left or the right linearity interval.

In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete
information. Hence, the results of the basis type sensitivity analysis should be used with care.

15.1. Sensitivity Analysis for Linear Problems 145

MOSEK Optimizer API for Python, Release 8.0.0.94

15.1.3 The Optimal Partition Type Sensitivity Analysis

Another method for computing the complete linearity interval is called the optimal partition type sen-
sitivity analysis. The main drawback of the optimal partition type sensitivity analysis is that it is
computationally expensive compared to the basis type analysis. This type of sensitivity analysis is
currently provided as an experimental feature in MOSEK.

Given the optimal primal and dual solutions to (15.1), i.e. 𝑥* and ((𝑠𝑐𝑙)
, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*) the optimal

objective value is given by

𝑧* := 𝑐𝑇𝑥*.

The left and right shadow prices 𝜎1 and 𝜎2 for 𝑙𝑐𝑖 are given by this pair of optimization problems:

𝜎1 = minimize 𝑒𝑇𝑖 𝑠
𝑐
𝑙

subject to 𝐴𝑇 (𝑠𝑐𝑙 − 𝑠𝑐𝑢) + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
(𝑙𝑐)𝑇 (𝑠𝑐𝑙) − (𝑢𝑐)𝑇 (𝑠𝑐𝑢) + (𝑙𝑥)𝑇 (𝑠𝑥𝑙) − (𝑢𝑥)𝑇 (𝑠𝑥𝑢) = 𝑧*,

𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑐
𝑙 , 𝑠

𝑥
𝑢 ≥ 0

and

𝜎2 = maximize 𝑒𝑇𝑖 𝑠
𝑐
𝑙

subject to 𝐴𝑇 (𝑠𝑐𝑙 − 𝑠𝑐𝑢) + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
(𝑙𝑐)𝑇 (𝑠𝑐𝑙) − (𝑢𝑐)𝑇 (𝑠𝑐𝑢) + (𝑙𝑥)𝑇 (𝑠𝑥𝑙) − (𝑢𝑥)𝑇 (𝑠𝑥𝑢) = 𝑧*,

𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑐
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

These two optimization problems make it easy to interpret the shadow price. Indeed, if
((𝑠𝑐𝑙)

, (𝑠𝑐𝑢), (𝑠𝑥𝑙)*, (𝑠𝑥𝑢)*) is an arbitrary optimal solution then

(𝑠𝑐𝑙)
*
𝑖 ∈ [𝜎1, 𝜎2].

Next, the linearity interval [𝛽1, 𝛽2] for 𝑙𝑐𝑖 is computed by solving the two optimization problems

𝛽1 = minimize 𝛽
subject to 𝑙𝑐 + 𝛽𝑒𝑖 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑐𝑇𝑥− 𝜎1𝛽 = 𝑧*,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

and

𝛽2 = maximize 𝛽
subject to 𝑙𝑐 + 𝛽𝑒𝑖 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑐𝑇𝑥− 𝜎2𝛽 = 𝑧*,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

The linearity intervals and shadow prices for 𝑢𝑐
𝑖 , 𝑙

𝑥
𝑗 , and 𝑢𝑥

𝑗 are computed similarly to 𝑙𝑐𝑖 .

The left and right shadow prices for 𝑐𝑗 denoted 𝜎1 and 𝜎2 respectively are computed as follows:

𝜎1 = minimize 𝑒𝑇𝑗 𝑥
subject to 𝑙𝑐 + 𝛽𝑒𝑖 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑐𝑇𝑥 = 𝑧*,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

and

𝜎2 = maximize 𝑒𝑇𝑗 𝑥
subject to 𝑙𝑐 + 𝛽𝑒𝑖 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

𝑐𝑇𝑥 = 𝑧*,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

Once again the above two optimization problems make it easy to interpret the shadow prices. Indeed, if
𝑥* is an arbitrary primal optimal solution, then

𝑥*
𝑗 ∈ [𝜎1, 𝜎2].

146 Chapter 15. Sensitivity Analysis

MOSEK Optimizer API for Python, Release 8.0.0.94

The linearity interval [𝛽1, 𝛽2] for a 𝑐𝑗 is computed as follows:

𝛽1 = minimize 𝛽
subject to 𝐴𝑇 (𝑠𝑐𝑙 − 𝑠𝑐𝑢) + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐 + 𝛽𝑒𝑗 ,

(𝑙𝑐)𝑇 (𝑠𝑐𝑙) − (𝑢𝑐)𝑇 (𝑠𝑐𝑢) + (𝑙𝑥)𝑇 (𝑠𝑥𝑙) − (𝑢𝑥)𝑇 (𝑠𝑥𝑢) − 𝜎1𝛽 ≤ 𝑧*,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑐
𝑙 , 𝑠

𝑥
𝑢 ≥ 0

and

𝛽2 = maximize 𝛽
subject to 𝐴𝑇 (𝑠𝑐𝑙 − 𝑠𝑐𝑢) + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐 + 𝛽𝑒𝑗 ,

(𝑙𝑐)𝑇 (𝑠𝑐𝑙) − (𝑢𝑐)𝑇 (𝑠𝑐𝑢) + (𝑙𝑥)𝑇 (𝑠𝑥𝑙) − (𝑢𝑥)𝑇 (𝑠𝑥𝑢) − 𝜎2𝛽 ≤ 𝑧*,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑐
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

15.1.4 Example: Sensitivity Analysis

As an example we will use the following transportation problem. Consider the problem of minimizing the
transportation cost between a number of production plants and stores. Each plant supplies a number of
goods and each store has a given demand that must be met. Supply, demand and cost of transportation
per unit are shown in Fig. 15.3.

Supply Demand

1

2

5

2

1

2

1

Plant 1

Plant 2

Plant 3
Store 4

Store 3

Store 2

Store 1

1000

500

500

800

100

400

1200

Fig. 15.3: Supply, demand and cost of transportation.

If we denote the number of transported goods from location 𝑖 to location 𝑗 by 𝑥𝑖𝑗 , problem can be
formulated as the linear optimization problem of minimizing

1𝑥11 + 2𝑥12 + 5𝑥23 + 2𝑥24 + 1𝑥31 + 2𝑥33 + 1𝑥34

subject to

𝑥11 + 𝑥12 ≤ 400,
𝑥23 + 𝑥24 ≤ 1200,

𝑥31 + 𝑥33 + 𝑥34 ≤ 1000,
𝑥11 + 𝑥31 = 800,

𝑥12 = 100,
𝑥23 + 𝑥33 = 500,

𝑥24 + 𝑥34 = 500,
𝑥11, 𝑥12, 𝑥23, 𝑥24, 𝑥31, 𝑥33, 𝑥34 ≥ 0.

(15.3)

The sensitivity parameters are shown in Table 15.1 and Table 15.2 for the basis type analysis and in
Table 15.3 and Table 15.4 for the optimal partition type analysis.

15.1. Sensitivity Analysis for Linear Problems 147

MOSEK Optimizer API for Python, Release 8.0.0.94

Table 15.1: Ranges and shadow prices re-
lated to bounds on constraints and variables:
results for the basis type sensitivity analysis.

Con. 𝛽1 𝛽2 𝜎1 𝜎2

1 −300.00 0.00 3.00 3.00
2 −700.00 +∞ 0.00 0.00
3 −500.00 0.00 3.00 3.00
4 −0.00 500.00 4.00 4.00
5 −0.00 300.00 5.00 5.00
6 −0.00 700.00 5.00 5.00
7 −500.00 700.00 2.00 2.00
Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑥11 −∞ 300.00 0.00 0.00
𝑥12 −∞ 100.00 0.00 0.00
𝑥23 −∞ 0.00 0.00 0.00
𝑥24 −∞ 500.00 0.00 0.00
𝑥31 −∞ 500.00 0.00 0.00
𝑥33 −∞ 500.00 0.00 0.00
𝑥34 −0.000000 500.00 2.00 2.00

Table 15.2: Ranges and shadow prices re-
lated to bounds on constraints and variables:
results for the optimal partition type sensitiv-
ity analysis.

Con. 𝛽1 𝛽2 𝜎1 𝜎2

1 −300.00 500.00 3.00 1.00
2 −700.00 +∞ −0.00 −0.00
3 −500.00 500.00 3.00 1.00
4 −500.00 500.00 2.00 4.00
5 −100.00 300.00 3.00 5.00
6 −500.00 700.00 3.00 5.00
7 −500.00 700.00 2.00 2.00
Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑥11 −∞ 300.00 0.00 0.00
𝑥12 −∞ 100.00 0.00 0.00
𝑥23 −∞ 500.00 0.00 2.00
𝑥24 −∞ 500.00 0.00 0.00
𝑥31 −∞ 500.00 0.00 0.00
𝑥33 −∞ 500.00 0.00 0.00
𝑥34 −∞ 500.00 0.00 2.00

148 Chapter 15. Sensitivity Analysis

MOSEK Optimizer API for Python, Release 8.0.0.94

Table 15.3: Ranges and shadow prices re-
lated to the objective coefficients: results
for the basis type sensitivity analysis.

Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑐1 −∞ 3.00 300.00 300.00
𝑐2 −∞ ∞ 100.00 100.00
𝑐3 −2.00 ∞ 0.00 0.00
𝑐4 −∞ 2.00 500.00 500.00
𝑐5 −3.00 ∞ 500.00 500.00
𝑐6 −∞ 2.00 500.00 500.00
𝑐7 −2.00 ∞ 0.00 0.00

Table 15.4: Ranges and shadow prices re-
lated to the objective coefficients: results
for the optimal partition type sensitivity
analysis.

Var. 𝛽1 𝛽2 𝜎1 𝜎2

𝑐1 −∞ 3.00 300.00 300.00
𝑐2 −∞ ∞ 100.00 100.00
𝑐3 −2.00 ∞ 0.00 0.00
𝑐4 −∞ 2.00 500.00 500.00
𝑐5 −3.00 ∞ 500.00 500.00
𝑐6 −∞ 2.00 500.00 500.00
𝑐7 −2.00 ∞ 0.00 0.00

Examining the results from the optimal partition type sensitivity analysis we see that for constraint
number 1 we have 𝜎1 = 3, 𝜎2 = 1 and 𝛽1 = −300, 𝛽2 = 500. Therefore, we have a left linearity interval
of [−300, 0] and a right interval of [0, 500]. The corresponding left and right shadow prices are 3 and 1
respectively. This implies that if the upper bound on constraint 1 increases by

𝛽 ∈ [0, 𝛽1] = [0, 500]

then the optimal objective value will decrease by the value

𝜎2𝛽 = 1𝛽.

Correspondingly, if the upper bound on constraint 1 is decreased by

𝛽 ∈ [0, 300]

then the optimal objective value will increase by the value

𝜎1𝛽 = 3𝛽.

15.2 Sensitivity Analysis with MOSEK

MOSEK provides the functions task.primalsensitivity and task.dualsensitivity for performing
sensitivity analysis. The code in Listing 15.1 gives an example of its use.

15.2. Sensitivity Analysis with MOSEK 149

MOSEK Optimizer API for Python, Release 8.0.0.94

Listing 15.1: Example of sensitivity analysis with the MOSEK Optimizer API for Python.

import sys
import mosek

Since the actual value of Infinity is ignores, we define it solely
for symbolic purposes:
inf = 0.0

Define a stream printer to grab output from MOSEK
def streamprinter(text):

sys.stdout.write(text)
sys.stdout.flush()

We might write everything directly as a script, but it looks nicer
to create a function.
def main ():

Create a MOSEK environment
with mosek.Env () as env:

Attach a printer to the environment
env.set_Stream (mosek.streamtype.log, streamprinter)

Create a task
with env.Task(0,0) as task:

Attach a printer to the task
task.set_Stream (mosek.streamtype.log, streamprinter)

Set up data

bkc = [mosek.boundkey.up,mosek.boundkey.up,
mosek.boundkey.up,mosek.boundkey.fx,
mosek.boundkey.fx,mosek.boundkey.fx,
mosek.boundkey.fx]

blc = [-inf, -inf, -inf, 800., 100., 500., 500.]
buc = [400., 1200., 1000., 800., 100., 500., 500.]

bkx = [mosek.boundkey.lo,mosek.boundkey.lo,
mosek.boundkey.lo,mosek.boundkey.lo,
mosek.boundkey.lo,mosek.boundkey.lo,
mosek.boundkey.lo]

c = [1.0,2.0,5.0,2.0,1.0,2.0,1.0]
blx = [0.0,0.0,0.0,0.0,0.0,0.0,0.0]
bux = [inf,inf,inf,inf,inf,inf,inf]

ptrb = [0,2,4,6, 8,10,12]
ptre = [2,4,6,8,10,12,14]
sub = [0,3,0,4,1,5,1,6,2,3,2,5,2,6]

val = [1.0,1.0,1.0,1.0,1.0,1.0,1.0,
1.0,1.0,1.0,1.0,1.0,1.0,1.0]

numcon = len(bkc)
numvar = len(bkx)
numanz = len(val)

Input linear data
task.inputdata(numcon,numvar,

c,0.0,

150 Chapter 15. Sensitivity Analysis

MOSEK Optimizer API for Python, Release 8.0.0.94

ptrb, ptre, sub, val,
bkc, blc, buc,
bkx, blx, bux)

Set objective sense
task.putobjsense(mosek.objsense.minimize)

Optimize
task.optimize();

Analyze upper bound on c1 and the equality constraint on c4
subi = [0, 3]
marki = [mosek.mark.up, mosek.mark.up]

Analyze lower bound on the variables x12 and x31
subj = [1, 4]
markj = [mosek.mark.lo, mosek.mark.lo]

leftpricei = [0., 0.]
rightpricei = [0., 0.]
leftrangei = [0., 0.]
rightrangei = [0., 0.]
leftpricej = [0., 0.]
rightpricej = [0., 0.]
leftrangej = [0., 0.]
rightrangej = [0., 0.]

task.primalsensitivity(subi,
marki,
subj,
markj,
leftpricei,
rightpricei,
leftrangei,
rightrangei,
leftpricej,
rightpricej,
leftrangej,
rightrangej)

print ('Results from sensitivity analysis on bounds:')
print ('\tleftprice | rightprice | leftrange | rightrange ')
print ('For constraints:')

for i in range(2):
print ('\t%10f %10f %10f %10f' % (leftpricei[i],

rightpricei[i],
leftrangei[i],
rightrangei[i]))

print ('For variables:')
for i in range(2):

print ('\t%10f %10f %10f %10f' % (leftpricej[i],
rightpricej[i],
leftrangej[i],
rightrangej[i]))

leftprice = [0., 0.]
rightprice = [0., 0.]
leftrange = [0., 0.]
rightrange = [0., 0.]
subc = [2, 5]

15.2. Sensitivity Analysis with MOSEK 151

MOSEK Optimizer API for Python, Release 8.0.0.94

task.dualsensitivity(subc,
leftprice,
rightprice,
leftrange,
rightrange)

print ('Results from sensitivity analysis on objective coefficients:')

for i in range(2):
print ('\t%10f %10f %10f %10f' % (leftprice[i],

rightprice[i],
leftrange[i],
rightrange[i]))

return None

call the main function
try:

main ()
except mosek.Exception as e:

print ("ERROR: %s" % str(e.errno))
if e.msg is not None:

print ("\t%s" % e.msg)
sys.exit(1)

except:
import traceback
traceback.print_exc()
sys.exit(1)

152 Chapter 15. Sensitivity Analysis

CHAPTER

SIXTEEN

API REFERENCE

This section contains the complete reference of the MOSEK Optimizer API for Python. It is organized
as follows:

• General API conventions.

• API functionalities either grouped by topic or accessable via the complete class list:

– Env

– Task

• Exceptions

• SCopt interface

• Optimizer parameters

• Response codes

• Constants

16.1 API Conventions

16.1.1 Naming Conventions for Arguments

In the definition of the MOSEK Optimizer API for Python a consistent naming convention has been
used. This implies that whenever for example numcon is an argument in a function definition it indicates
the number of constraints. In Table 16.1 the variable names used to specify the problem parameters are
listed.

153

MOSEK Optimizer API for Python, Release 8.0.0.94

Table 16.1: Naming convensions used in the MOSEK Optimizer API for
Python.

API name API type Dimension Related problem parameter
numcon int 𝑚
numvar int 𝑛
numcone int 𝑡
numqonz int 𝑞𝑜𝑖𝑗
qosubi int[] numqonz 𝑞𝑜𝑖𝑗
qosubj int[] numqonz 𝑞𝑜𝑖𝑗
qoval float[] numqonz 𝑞𝑜𝑖𝑗
c float[] numvar 𝑐𝑗
cfix float 𝑐𝑓

numqcnz int 𝑞𝑘𝑖𝑗
qcsubk int[] qcnz 𝑞𝑘𝑖𝑗
qcsubi int[] qcnz 𝑞𝑘𝑖𝑗
qcsubj int[] qcnz 𝑞𝑘𝑖𝑗
qcval float[] qcnz 𝑞𝑘𝑖𝑗
aptrb int[] numvar 𝑎𝑖𝑗
aptre int[] numvar 𝑎𝑖𝑗
asub int[] aptre[numvar-1] 𝑎𝑖𝑗
aval float[] aptre[numvar-1] 𝑎𝑖𝑗
bkc int[] numcon 𝑙𝑐𝑘 and 𝑢𝑐

𝑘

blc float[] numcon 𝑙𝑐𝑘
buc float[] numcon 𝑢𝑐

𝑘

bkx int[] numvar 𝑙𝑥𝑘 and 𝑢𝑥
𝑘

blx float[] numvar 𝑙𝑥𝑘
bux float[] numvar 𝑢𝑥

𝑘

The relation between the variable names and the problem parameters is as follows:

• The quadratic terms in the objective: 𝑞𝑜qosubi[t],qosubj[t] = qoval[t], 𝑡 = 0, . . . , numqonz− 1.

• The linear terms in the objective : 𝑐𝑗 = c[j], 𝑗 = 0, . . . , numvar− 1

• The fixed term in the objective : 𝑐𝑓 = cfix.

• The quadratic terms in the constraints: 𝑞
qcsubk[t]
qcsubi[t],qcsubj[t] = qcval[t], 𝑡 = 0, . . . , numqcnz− 1

• The linear terms in the constraints: 𝑎asub[t],j = aval[t], 𝑡 = ptrb[j], . . . , ptre[j] − 1, 𝑗 =
0, . . . , numvar− 1

The bounds on the constraints are specified using the variables bkc, blc, and buc. The components of
the integer array bkc specify the bound type according to Table 16.2

Table 16.2: Symbolic key for variable and constraint bounds.

Symbolic constant Lower bound Upper bound
boundkey.fx finite identical to the lower bound
boundkey.fr minus infinity plus infinity
boundkey.lo finite plus infinity
boundkey.ra finite finite
boundkey.up minus infinity finite

For instance bkc[2]=boundkey.lo means that −∞ < 𝑙𝑐2 and 𝑢𝑐
2 = ∞. Finally, the numerical values of

the bounds are given by

𝑙𝑐𝑘 = blc[k], 𝑘 = 0, . . . , numcon− 1

154 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

and

𝑢𝑐
𝑘 = buc[k], 𝑘 = 0, . . . , numcon− 1.

The bounds on the variables are specified using the variables bkx, blx, and bux. The components in the
integer array bkx specify the bound type according to Table Table 16.2. The numerical values for the
lower bounds on the variables are given by

𝑙𝑥𝑗 = blx[j], 𝑗 = 0, . . . , numvar− 1.

The numerical values for the upper bounds on the variables are given by

𝑢𝑥
𝑗 = bux[j], 𝑗 = 0, . . . , numvar− 1.

Bounds

A bound on a variable or on a constraint in MOSEK consists of a bound key, as defined in Table 16.2,
a lower bound value and an upper bound value. Even if a variable or constraint is bounded only from
below, e.g. 𝑥 ≥ 0 , both bounds are inputted or extracted; the value inputted as upper bound for (𝑥 ≥ 0)
is ignored.

16.1.2 Vector Formats

Three different vector formats are used in the MOSEK API:

Full vector

This is simply an array where the first element corresponds to the first item, the second element to the
second item etc. For example to get the linear coefficients of the objective in task, one would write

c = zeros(numvar,float)
task.getc(c)

where numvar is the number of variables in the problem.

Vector slice

A vector slice is a range of values. For example, to get the bounds associated constraint 3 through 10
(both inclusive) one would write

upper_bound = zeros(8,float)
lower_bound = zeros(8,float)
bound_key = array([None] * 8)

task.getboundslice(accmode.con, 2, 10,
bound_key,lower_bound,upper_bound)

Please note that items in MOSEK are numbered from 0 , so that the index of the first item is 0 , and
the index of the 𝑛’th item is 𝑛− 1.

Sparse vector

A sparse vector is given as an array of indexes and an array of values. For example, to input a set of
bounds associated with constraints number 1, 6, 3, and 9, one might write

16.1. API Conventions 155

MOSEK Optimizer API for Python, Release 8.0.0.94

bound_index = [1, 6, 3, 9]
bound_key = [boundkey.fr,boundkey.lo,boundkey.up,boundkey.fx]
lower_bound = [0.0, -10.0, 0.0, 5.0]
upper_bound = [0.0, 0.0, 6.0, 5.0]
task.putboundlist(accmode.con, bound_index,

bound_key,lower_bound,upper_bound)

Note that the list of indexes need not be ordered.

16.1.3 Matrix Formats

The coefficient matrices in a problem are inputted and extracted in a sparse format, either as complete
or a partial matrices. Basically there are two different formats for this.

Unordered Triplets

In unordered triplet format each entry is defined as a row index, a column index and a coefficient. For
example, to input the 𝐴 matrix coefficients for 𝑎1,2 = 1.1, 𝑎3,3 = 4.3 , and 𝑎5,4 = 0.2 , one would write
as follows:

subi = array([1, 3, 5])
subj = array([2, 3, 4])
cof = array([1.1, 4.3, 0.2])
task.putaijlist(subi,subj,cof)

Please note that in some cases (like task.putaijlist) only the specified indexes remain modified —
all other are unchanged. In other cases (such as task.putqconk) the triplet format is used to modify
all entries — entries that are not specified are set to 0.

Column or Row Ordered Sparse Matrix

In a sparse matrix format only the non-zero entries of the matrix are stored. MOSEK uses a sparse
packed matrix format ordered either by columns or rows. In the column-wise format the position of the
non-zeros are given as a list of row indexes. In the row-wise format the position of the non-zeros are
given as a list of column indexes. Values of the non-zero entries are given in column or row order.

Column ordered sparse matrix

A sparse matrix in column ordered format consists of:

• asub: List of row indexes.

• aval: List of non-zero entries of 𝐴 ordered by columns.

• ptrb: Where ptrb[j] is the position of the first value/index in aval / asub for column 𝑗.

• ptre: Where ptre[j] is the position of the last value/index plus one in aval / asub for column 𝑗.

The values of a matrix 𝐴 with numcol columns are assigned so that for

𝑗 = 0, . . . , 𝑛𝑢𝑚𝑐𝑜𝑙 − 1.

We define

𝑎asub[𝑘],𝑗 = aval[𝑘], 𝑘 = ptrb[𝑗], . . . , ptre[𝑗] − 1.

156 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

As an example consider the matrix

𝐴 =

⎡⎢⎢⎣
1.1 1.3 1.4

2.2 2.5
3.1 3.4

4.4

⎤⎥⎥⎦ (16.1)

which can be represented in the column ordered sparse matrix format as

ptrb = [0, 2, 3, 5, 7],
ptre = [2, 3, 5, 7, 8],
asub = [0, 2, 1, 0, 3, 0, 2, 1],
aval = [1.1, 3.1, 2.2, 1.3, 4.4, 1.4, 3.4, 2.5].

Fig. 16.1 illustrates how the matrix 𝐴 in (16.1) is represented in column ordered sparse matrix format.

ptrb

ptre

asub

aval

0 2 3 5

2 3 5 7

0 2 1 0 3 0 1 2

1.1 3.1 2.2 1.3 4.4 1.4 3.4 2.5

Column 0 Column 1

Fig. 16.1: The matrix 𝐴 (16.1) represented in column ordered packed sparse matrix format.

Row ordered sparse matrix

The matrix 𝐴 (16.1) can also be represented in the row ordered sparse matrix format as:

ptrb = [0, 3, 5, 7],
ptre = [3, 5, 7, 8],
asub = [0, 2, 3, 1, 4, 0, 3, 2],
aval = [1.1, 1.3, 1.4, 2.2, 2.5, 3.1, 3.4, 4.4].

16.2 Functions grouped by topic

16.2.1 Bounds

• task.getconbound

• task.getvarbound

• task.getbound

• task.getconboundslice

• task.getvarboundslice

• task.getboundslice

• task.putboundslice

• task.putbound

16.2. Functions grouped by topic 157

MOSEK Optimizer API for Python, Release 8.0.0.94

• task.putboundlist

• task.putconboundlist

• task.putvarboundlist

16.2.2 Diagnosing infeasibility

• task.getinfeasiblesubproblem

16.2.3 Inputting solution values

• task.putskc

• task.putskx

• task.putxc

• task.putxx

• task.puty

• task.putslc

• task.putsuc

• task.putslx

• task.putsux

• task.putsnx

• task.putskcslice

• task.putskxslice

• task.putxcslice

• task.putxxslice

• task.putyslice

• task.putslcslice

• task.putsucslice

• task.putslxslice

• task.putsuxslice

• task.putsnxslice

• task.putsolution

• task.putsolutioni

16.2.4 Linear algebra utility functions for performing linear algebra operations

• env.computesparsecholesky

• env.sparsetriangularsolvedense

158 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

16.2.5 Management of parameters

• task.getnumparam

• task.isdouparname

• task.isintparname

• task.isstrparname

• task.setdefaults

16.2.6 Management of the environment

• env.checkoutlicense

• env.checkinlicense

• env.putlicensedebug

• env.putlicensecode

• env.putlicensewait

• env.putlicensepath

16.2.7 Memory allocation and deallocation

• task.checkmem

• task.getmemusage

16.2.8 Naming

• task.getbarvarnamelen

• task.getbarvarname

• task.getbarvarnameindex

• task.putconname

• task.putvarname

• task.putconename

• task.getvarnamelen

• task.getvarname

• task.getconnamelen

• task.getconname

• task.getconnameindex

• task.getvarnameindex

• task.getconenamelen

• task.getconename

• task.getconenameindex

• task.getobjname

• task.gettasknamelen

• task.gettaskname

16.2. Functions grouped by topic 159

MOSEK Optimizer API for Python, Release 8.0.0.94

• task.putobjname

• task.puttaskname

16.2.9 Obtain information about the solutions.

• task.getdualobj

• task.getsolsta

• task.getprosta

• task.getsolutioninfo

• task.solutiondef

16.2.10 Obtaining solution values

• task.getsolution

• task.getsolutioni

• task.getskc

• task.getskx

• task.getxc

• task.getxx

• task.gety

• task.getslc

• task.getsuc

• task.getslx

• task.getsux

• task.getsnx

• task.getskcslice

• task.getskxslice

• task.getxcslice

• task.getxxslice

• task.getyslice

• task.getslcslice

• task.getsucslice

• task.getslxslice

• task.getsuxslice

• task.getsnxslice

• task.getsolutionslice

• task.getreducedcosts

160 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

16.2.11 Obtaining task parameters values

• task.getdouparam

• task.getintparam

• task.getstrparam

• task.getstrparamlen

16.2.12 Operate on data associated with objective.

• task.putcfix

• task.putobjsense

• task.getobjsense

16.2.13 Operate on data associated with scalar variables

• task.appendvars

• task.removevars

• task.getaij

• task.getacolnumnz

• task.getacol

• task.getarownumnz

• task.getarow

• task.getaslice

• task.getarowslicetrip

• task.getacolslicetrip

• task.getc

• task.getcfix

• task.getcslice

• task.getmaxnumanz

• task.getmaxnumvar

• task.getnumanz

• task.getnumanz64

• task.getnumintvar

• task.getnumqconknz

• task.getnumqobjnz

• task.getnumvar

• task.getlenbarvarj

• task.getqconk

• task.getqobj

• task.getqobjij

• task.getvartype

16.2. Functions grouped by topic 161

MOSEK Optimizer API for Python, Release 8.0.0.94

• task.getvartypelist

• task.commitchanges

• task.putaij

• task.putacol

• task.putarow

• task.putarowslice

• task.putarowlist

• task.putacolslice

• task.putacollist

• task.putvarbound

• task.putvarboundslice

• task.putclist

• task.putcslice

• task.getsymmatinfo

• task.getnumsymmat

• task.getsparsesymmat

• task.putmaxnumvar

• task.putmaxnumanz

• task.putmaxnumqnz

• task.getmaxnumqnz

• task.putqcon

• task.putqconk

• task.putqobj

• task.putqobjij

• task.putvartype

• task.putvartypelist

16.2.14 Operate on data associated with symmetric matrix variables

• task.removebarvars

• task.appendbarvars

• task.getmaxnumbarvar

• task.getdimbarvarj

• task.getbarcidxj

• task.appendsparsesymmat

• task.putmaxnumbarvar

162 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

16.2.15 Operate on data associated with the conic constraints

• task.removecones

• task.appendcone

• task.appendconeseq

• task.appendconesseq

• task.getcone

• task.getconeinfo

• task.getnumcone

• task.getnumconemem

• task.putcone

16.2.16 Operate on data associated with the constraints

• task.appendcons

• task.removecons

• task.getmaxnumcon

• task.getnumcon

• task.putconbound

• task.putconboundslice

16.2.17 Operation associated with the basis matrix

• task.initbasissolve

• task.solvewithbasis

• task.basiscond

16.2.18 Optimization

• task.optimize

16.2.19 Optimizer statistics

• task.getdouinf

• task.getintinf

• task.getlintinf

16.2.20 Output stream functions

• task.linkfiletostream

• env.linkfiletostream

16.2. Functions grouped by topic 163

MOSEK Optimizer API for Python, Release 8.0.0.94

16.2.21 Reading and writing data files

• task.readdataformat

• task.readdata

• task.readparamfile

• task.readsolution

• task.writedata

• task.writeparamfile

• task.writesolution

• task.writejsonsol

16.2.22 Sensitivity analysis

• task.primalsensitivity

• task.sensitivityreport

• task.dualsensitivity

16.2.23 Setting task parameter values

• task.putdouparam

• task.putintparam

• task.putnadouparam

• task.putnaintparam

• task.putnastrparam

• task.putparam

• task.putstrparam

16.2.24 Task diagnostics

• task.analyzeproblem

• task.getprobtype

• task.printdata

• task.readsummary

• task.optimizersummary

• task.checkconvexity

• env.echointro

16.2.25 Task management.

• task.inputdata

• task.putmaxnumcon

• task.putmaxnumcone

• task.getmaxnumcone

164 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

• task.deletesolution

• env.getcodedesc

16.3 The Interface for Separable Convex Optimization

SCopt is an easy-to-use interface to the nonlinear optimizer when solving separable convex problems. As
currently implemented, SCopt is not capable of handling arbitrary nonlinear expressions. In fact SCopt
can handle only the nonlinear expressions 𝑥 log(𝑥), 𝑒𝑥, log(𝑥), and 𝑥𝑔. However, it should be fairly easy
to extend the interface to other nonlinear function of a single variable if needed.

16.3.1 Design Principles of SCopt

All the linear data of the problem, such as 𝑐 and 𝐴, is inputted to MOSEK as usual, i.e. using the
relevant functions in the MOSEK API.

The nonlinear part of the problem is specified using some arrays which indicate the type of the nonlinear
expressions and where these should be added.

For example given the three int arrays — oprc, opric, and oprjc — and the three double arrays —
oprfc, oprgc and oprhc — the nonlinear expressions in the constraints can be coded in those arrays
using the following table:

oprc[k] opric[k] oprjc[k] oprfc[k] oprgc[k] oprhc[k] Expression added to constraint
𝑖

0 i j 𝑓 𝑔 ℎ 𝑓𝑥𝑗 ln(𝑥𝑗)
1 i j 𝑓 𝑔 ℎ 𝑓𝑒𝑔𝑥𝑗+ℎ

2 i j 𝑓 𝑔 ℎ 𝑓 ln(𝑔𝑥𝑗 + ℎ)
3 i j 𝑓 𝑔 ℎ 𝑓(𝑥𝑗 + ℎ)𝑔

Hence, oprc[k] specifies the nonlinear expression type, opric[k] indicates to which constraint the
nonlinear expression should be added. oprfc[k], oprgc[k] and oprhc[k] are parameters used when the
nonlinear expression is evaluated. This implies that nonlinear expressions can be added to an arbitrary
constraint and hence you can create multiple nonlinear constraints.

Using the same method all the nonlinear terms in the objective can be specified using opro[k], oprjo[k],
oprfo[k], oprgo[k] and oprho[k] as shown below:

opro[k] oprjo[k] oprfo[k] oprgo[k] oprho[k] Expression added in objective
0 j 𝑓 𝑔 ℎ 𝑓𝑥𝑗 ln(𝑥𝑗)
1 j 𝑓 𝑔 ℎ 𝑓𝑒𝑔𝑥𝑗+ℎ

2 j 𝑓 𝑔 ℎ 𝑓 ln(𝑔𝑥𝑗 + ℎ)
3 j 𝑓 𝑔 ℎ 𝑓(𝑥𝑗 + ℎ)𝑔

16.4 Parameters

All parameters (alphabetical order)

• double parameters

• integer parameters

• string parameters

Parameters grouped by topic

Note: some parameters may appear in more than one group.

16.3. The Interface for Separable Convex Optimization 165

MOSEK Optimizer API for Python, Release 8.0.0.94

• Conic interior-point method

• License manager

• Logging

• Presolve

• Primal simplex optimizer

• Dual simplex optimizer

• Data input/output

• Overall solver

• Data check

• Basis identification

• Simplex optimizer

• Output information

• Solution input/output

• Infeasibility report

• Nonlinear convex method

• Analysis

• Mixed-integer optimization

• Termination criterion

• Optimization system

• Progress call-back

• Interior-point method

• Debugging

16.4.1 Parameters List (alphabetically)

Double Parameters

dparam.ana_sol_infeas_tol
If a constraint violates its bound with an amount larger than this value, the constraint name, index
and violation will be printed by the solution analyzer.

Accepted Values: [0.0 ;+inf]

Default Value: 1e-6

Groups: Analysis

dparam.basis_rel_tol_s
Maximum relative dual bound violation allowed in an optimal basic solution.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e-12

Groups: Simplex optimizer , Termination criterion

dparam.basis_tol_s
Maximum absolute dual bound violation in an optimal basic solution.

Accepted Values: [1.0e-9 ;+inf]

Default Value: 1.0e-6

166 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Groups: Simplex optimizer , Termination criterion

dparam.basis_tol_x
Maximum absolute primal bound violation allowed in an optimal basic solution.

Accepted Values: [1.0e-9 ;+inf]

Default Value: 1.0e-6

Groups: Simplex optimizer , Termination criterion

dparam.check_convexity_rel_tol
This parameter controls when the full convexity check declares a problem to be non-convex. In-
creasing this tolerance relaxes the criteria for declaring the problem non-convex.

A problem is declared non-convex if negative (positive) pivot elements are detected in the Cholesky
factor of a matrix which is required to be PSD (NSD). This parameter controls how much this non-
negativity requirement may be violated.

If 𝑑𝑖 is the pivot element for column 𝑖, then the matrix 𝑄 is considered to not be PSD if:

𝑑𝑖 ≤ −|𝑄𝑖𝑖|check_convexity_rel_tol

Accepted Values: [0 ;+inf]

Default Value: 1e-10

Groups: Interior-point method

dparam.data_sym_mat_tol
Absolute zero tolerance for elements in in suymmetric matrixes. If any value in a symmetric matrix
is smaller than this parameter in absolute terms MOSEK will treat the values as zero and generate
a warning.

Accepted Values: [1.0e-16 ;1.0e-6]

Default Value: 1.0e-12

Groups: Data check

dparam.data_sym_mat_tol_huge
An element in a symmetric matrix which is larger than this value in absolute size causes an error.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e20

Groups: Data check

dparam.data_sym_mat_tol_large
An element in a symmetric matrix which is larger than this value in absolute size causes a warning
message to be printed.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e10

Groups: Data check

dparam.data_tol_aij
Absolute zero tolerance for elements in 𝐴. If any value 𝐴𝑖𝑗 is smaller than this parameter in
absolute terms MOSEK will treat the values as zero and generate a warning.

Accepted Values: [1.0e-16 ;1.0e-6]

Default Value: 1.0e-12

Groups: Data check

16.4. Parameters 167

MOSEK Optimizer API for Python, Release 8.0.0.94

dparam.data_tol_aij_huge
An element in 𝐴 which is larger than this value in absolute size causes an error.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e20

Groups: Data check

dparam.data_tol_aij_large
An element in 𝐴 which is larger than this value in absolute size causes a warning message to be
printed.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e10

Groups: Data check

dparam.data_tol_bound_inf
Any bound which in absolute value is greater than this parameter is considered infinite.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e16

Groups: Data check

dparam.data_tol_bound_wrn
If a bound value is larger than this value in absolute size, then a warning message is issued.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e8

Groups: Data check

dparam.data_tol_cj_large
An element in 𝑐 which is larger than this value in absolute terms causes a warning message to be
printed.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e8

Groups: Data check

dparam.data_tol_c_huge
An element in 𝑐 which is larger than the value of this parameter in absolute terms is considered to
be huge and generates an error.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e16

Groups: Data check

dparam.data_tol_qij
Absolute zero tolerance for elements in 𝑄 matrices.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e-16

Groups: Data check

dparam.data_tol_x
Zero tolerance for constraints and variables i.e. if the distance between the lower and upper bound
is less than this value, then the lower and upper bound is considered identical.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e-8

168 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Groups: Data check

dparam.intpnt_co_tol_dfeas
Dual feasibility tolerance used by the conic interior-point optimizer.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-8

Groups: Interior-point method , Termination criterion, Conic interior-point method

dparam.intpnt_co_tol_infeas
Controls when the conic interior-point optimizer declares the model primal or dual infeasible. A
small number means the optimizer gets more conservative about declaring the model infeasible.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-10

Groups: Interior-point method , Termination criterion, Conic interior-point method

dparam.intpnt_co_tol_mu_red
Relative complementarity gap feasibility tolerance used by the conic interior-point optimizer.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-8

Groups: Interior-point method , Termination criterion, Conic interior-point method

dparam.intpnt_co_tol_near_rel
If MOSEK cannot compute a solution that has the prescribed accuracy, then it will multiply the
termination tolerances with value of this parameter. If the solution then satisfies the termination
criteria, then the solution is denoted near optimal, near feasible and so forth.

Accepted Values: [1.0 ;+inf]

Default Value: 1000

Groups: Interior-point method , Termination criterion, Conic interior-point method

dparam.intpnt_co_tol_pfeas
Primal feasibility tolerance used by the conic interior-point optimizer.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-8

Groups: Interior-point method , Termination criterion, Conic interior-point method

dparam.intpnt_co_tol_rel_gap
Relative gap termination tolerance used by the conic interior-point optimizer.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-7

Groups: Interior-point method , Termination criterion, Conic interior-point method

dparam.intpnt_nl_merit_bal
Controls if the complementarity and infeasibility is converging to zero at about equal rates.

Accepted Values: [0.0 ;0.99]

Default Value: 1.0e-4

Groups: Interior-point method , Nonlinear convex method

dparam.intpnt_nl_tol_dfeas
Dual feasibility tolerance used when a nonlinear model is solved.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-8

16.4. Parameters 169

MOSEK Optimizer API for Python, Release 8.0.0.94

Groups: Interior-point method , Termination criterion, Nonlinear convex method

dparam.intpnt_nl_tol_mu_red
Relative complementarity gap tolerance.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-12

Groups: Interior-point method , Termination criterion, Nonlinear convex method

dparam.intpnt_nl_tol_near_rel
If the MOSEK nonlinear interior-point optimizer cannot compute a solution that has the pre-
scribed accuracy, then it will multiply the termination tolerances with value of this parameter. If
the solution then satisfies the termination criteria, then the solution is denoted near optimal, near
feasible and so forth.

Accepted Values: [1.0 ;+inf]

Default Value: 1000.0

Groups: Interior-point method , Termination criterion, Nonlinear convex method

dparam.intpnt_nl_tol_pfeas
Primal feasibility tolerance used when a nonlinear model is solved.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-8

Groups: Interior-point method , Termination criterion, Nonlinear convex method

dparam.intpnt_nl_tol_rel_gap
Relative gap termination tolerance for nonlinear problems.

Accepted Values: [1.0e-14 ;+inf]

Default Value: 1.0e-6

Groups: Termination criterion, Interior-point method , Nonlinear convex method

dparam.intpnt_nl_tol_rel_step
Relative step size to the boundary for general nonlinear optimization problems.

Accepted Values: [1.0e-4 ;0.9999999]

Default Value: 0.995

Groups: Interior-point method , Nonlinear convex method

dparam.intpnt_qo_tol_dfeas
Dual feasibility tolerance used when the interior-point optimizer is applied to a quadratic optimiza-
tion problem..

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-8

Groups: Interior-point method , Termination criterion

dparam.intpnt_qo_tol_infeas
Controls when the conic interior-point optimizer declares the model primal or dual infeasible. A
small number means the optimizer gets more conservative about declaring the model infeasible.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-10

Groups: Interior-point method , Termination criterion

170 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

dparam.intpnt_qo_tol_mu_red
Relative complementarity gap feasibility tolerance used when interior-point optimizer is applied to
a quadratic optimization problem.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-8

Groups: Interior-point method , Termination criterion

dparam.intpnt_qo_tol_near_rel
If MOSEK cannot compute a solution that has the prescribed accuracy, then it will multiply the
termination tolerances with value of this parameter. If the solution then satisfies the termination
criteria, then the solution is denoted near optimal, near feasible and so forth.

Accepted Values: [1.0 ;+inf]

Default Value: 1000

Groups: Interior-point method , Termination criterion

dparam.intpnt_qo_tol_pfeas
Primal feasibility tolerance used when the interior-point optimizer is applied to a quadratic opti-
mization problem.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-8

Groups: Interior-point method , Termination criterion

dparam.intpnt_qo_tol_rel_gap
Relative gap termination tolerance used when the interior-point optimizer is applied to a quadratic
optimization problem.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-8

Groups: Interior-point method , Termination criterion

dparam.intpnt_tol_dfeas
Dual feasibility tolerance used for linear and quadratic optimization problems.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-8

Groups: Interior-point method , Termination criterion

dparam.intpnt_tol_dsafe
Controls the initial dual starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it might
be worthwhile to increase this value.

Accepted Values: [1.0e-4 ;+inf]

Default Value: 1.0

Groups: Interior-point method

dparam.intpnt_tol_infeas
Controls when the optimizer declares the model primal or dual infeasible. A small number means
the optimizer gets more conservative about declaring the model infeasible. A value of 0.0 means
the optimizer must have an exact certificate of infeasibility and this is very unlikely to happen.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-10

Groups: Interior-point method , Termination criterion, Nonlinear convex method

16.4. Parameters 171

MOSEK Optimizer API for Python, Release 8.0.0.94

dparam.intpnt_tol_mu_red
Relative complementarity gap tolerance.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-16

Groups: Interior-point method , Termination criterion

dparam.intpnt_tol_path
Controls how close the interior-point optimizer follows the central path. A large value of this
parameter means the central is followed very closely. On numerical unstable problems it may be
worthwhile to increase this parameter.

Accepted Values: [0.0 ;0.9999]

Default Value: 1.0e-8

Groups: Interior-point method

dparam.intpnt_tol_pfeas
Primal feasibility tolerance used for linear and quadratic optimization problems.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-8

Groups: Interior-point method , Termination criterion

dparam.intpnt_tol_psafe
Controls the initial primal starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it may be
worthwhile to increase this value.

Accepted Values: [1.0e-4 ;+inf]

Default Value: 1.0

Groups: Interior-point method

dparam.intpnt_tol_rel_gap
Relative gap termination tolerance.

Accepted Values: [1.0e-14 ;+inf]

Default Value: 1.0e-8

Groups: Termination criterion, Interior-point method

dparam.intpnt_tol_rel_step
Relative step size to the boundary for linear and quadratic optimization problems.

Accepted Values: [1.0e-4 ;0.999999]

Default Value: 0.9999

Groups: Interior-point method

dparam.intpnt_tol_step_size
If the step size falls below the value of this parameter, then the interior-point optimizer assumes
that it is stalled. In other words the interior-point optimizer does not make any progress and
therefore it is better stop.

Accepted Values: [0.0 ;1.0]

Default Value: 1.0e-6

Groups: Interior-point method

dparam.lower_obj_cut
If either a primal or dual feasible solution is found proving that the optimal objective value is

172 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

outside, the interval [dparam.lower_obj_cut , dparam.upper_obj_cut], then MOSEK is ter-
minated.

Accepted Values: [-inf ;+inf]

Default Value: -1.0e30

Groups: Termination criterion

dparam.lower_obj_cut_finite_trh
If the lower objective cut is less than the value of this parameter value, then the lower objective
cut i.e. dparam.lower_obj_cut is treated as −∞.

Accepted Values: [-inf ;+inf]

Default Value: -0.5e30

Groups: Termination criterion

dparam.mio_disable_term_time
This parameter specifies the number of seconds 𝑛 during which the termination criteria governed
by

•iparam.mio_max_num_relaxs

•iparam.mio_max_num_branches

•dparam.mio_near_tol_abs_gap

•dparam.mio_near_tol_rel_gap

is disabled since the beginning of the optimization.

A negative value is identical to infinity i.e. the termination criteria are never checked.

Accepted Values: [-inf ;+inf]

Default Value: -1.0

Groups: Mixed-integer optimization, Termination criterion

dparam.mio_max_time
This parameter limits the maximum time spent by the mixed-integer optimizer. A negative number
means infinity.

Accepted Values: [-inf ;+inf]

Default Value: -1.0

Groups: Mixed-integer optimization, Termination criterion

dparam.mio_near_tol_abs_gap
Relaxed absolute optimality tolerance employed by the mixed-integer optimizer. This termination
criteria is delayed. See dparam.mio_disable_term_time for details.

Accepted Values: [0.0 ;+inf]

Default Value: 0.0

Groups: Mixed-integer optimization

dparam.mio_near_tol_rel_gap
The mixed-integer optimizer is terminated when this tolerance is satisfied. This termination criteria
is delayed. See dparam.mio_disable_term_time for details.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e-3

Groups: Mixed-integer optimization, Termination criterion

16.4. Parameters 173

MOSEK Optimizer API for Python, Release 8.0.0.94

dparam.mio_rel_gap_const
This value is used to compute the relative gap for the solution to an integer optimization problem.

Accepted Values: [1.0e-15 ;+inf]

Default Value: 1.0e-10

Groups: Mixed-integer optimization, Termination criterion

dparam.mio_tol_abs_gap
Absolute optimality tolerance employed by the mixed-integer optimizer.

Accepted Values: [0.0 ;+inf]

Default Value: 0.0

Groups: Mixed-integer optimization

dparam.mio_tol_abs_relax_int
Absolute relaxation tolerance of the integer constraints. I.e. min(|𝑥| − ⌊𝑥⌋, ⌈𝑥⌉ − |𝑥|) is less than
the tolerance then the integer restrictions assumed to be satisfied.

Accepted Values: [1e-9 ;+inf]

Default Value: 1.0e-5

Groups: Mixed-integer optimization

dparam.mio_tol_feas
Feasibility tolerance for mixed integer solver.

Accepted Values: [1e-9 ;1e-3]

Default Value: 1.0e-6

Groups: Mixed-integer optimization

dparam.mio_tol_rel_dual_bound_improvement
If the relative improvement of the dual bound is smaller than this value, the solver will terminate
the root cut generation. A value of 0.0 means that the value is selected automatically.

Accepted Values: [0.0 ;1.0]

Default Value: 0.0

Groups: Mixed-integer optimization

dparam.mio_tol_rel_gap
Relative optimality tolerance employed by the mixed-integer optimizer.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e-4

Groups: Mixed-integer optimization, Termination criterion

dparam.optimizer_max_time
Maximum amount of time the optimizer is allowed to spent on the optimization. A negative number
means infinity.

Accepted Values: [-inf ;+inf]

Default Value: -1.0

Groups: Termination criterion

dparam.presolve_tol_abs_lindep
Absolute tolerance employed by the linear dependency checker.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e-6

Groups: Presolve

174 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

dparam.presolve_tol_aij
Absolute zero tolerance employed for 𝑎𝑖𝑗 in the presolve.

Accepted Values: [1.0e-15 ;+inf]

Default Value: 1.0e-12

Groups: Presolve

dparam.presolve_tol_rel_lindep
Relative tolerance employed by the linear dependency checker.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e-10

Groups: Presolve

dparam.presolve_tol_s
Absolute zero tolerance employed for 𝑠𝑖 in the presolve.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e-8

Groups: Presolve

dparam.presolve_tol_x
Absolute zero tolerance employed for 𝑥𝑗 in the presolve.

Accepted Values: [0.0 ;+inf]

Default Value: 1.0e-8

Groups: Presolve

dparam.qcqo_reformulate_rel_drop_tol
This parameter determines when columns are dropped in incomplete Cholesky factorization during
reformulation of quadratic problems.

Accepted Values: [0 ;+inf]

Default Value: 1e-15

Groups: Interior-point method

dparam.semidefinite_tol_approx
Tolerance to define a matrix to be positive semidefinite.

Accepted Values: [1.0e-15 ;+inf]

Default Value: 1.0e-10

Groups: Data check

dparam.simplex_abs_tol_piv
Absolute pivot tolerance employed by the simplex optimizers.

Accepted Values: [1.0e-12 ;+inf]

Default Value: 1.0e-7

Groups: Simplex optimizer

dparam.sim_lu_tol_rel_piv
Relative pivot tolerance employed when computing the LU factorization of the basis in the simplex
optimizers and in the basis identification procedure.

A value closer to 1.0 generally improves numerical stability but typically also implies an increase
in the computational work.

Accepted Values: [1.0e-6 ;0.999999]

Default Value: 0.01

16.4. Parameters 175

MOSEK Optimizer API for Python, Release 8.0.0.94

Groups: Basis identification, Simplex optimizer

dparam.upper_obj_cut
If either a primal or dual feasible solution is found proving that the optimal objective value is
outside, the interval [dparam.lower_obj_cut , dparam.upper_obj_cut], then MOSEK is ter-
minated.

Accepted Values: [-inf ;+inf]

Default Value: 1.0e30

Groups: Termination criterion

dparam.upper_obj_cut_finite_trh
If the upper objective cut is greater than the value of this parameter, then the upper objective cut
dparam.upper_obj_cut is treated as ∞.

Accepted Values: [-inf ;+inf]

Default Value: 0.5e30

Groups: Termination criterion

Integer Parameters

iparam.ana_sol_basis
Controls whether the basis matrix is analyzed in solution analyzer.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Analysis

iparam.ana_sol_print_violated
Controls whether a list of violated constraints is printed when calling task.analyzesolution .

All constraints violated by more than the value set by the parameter dparam.ana_sol_infeas_tol
will be printed.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Analysis

iparam.auto_sort_a_before_opt
Controls whether the elements in each column of 𝐴 are sorted before an optimization is performed.
This is not required but makes the optimization more deterministic.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Debugging

iparam.auto_update_sol_info
Controls whether the solution information items are automatically updated after an optimization
is performed.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Optimization system

iparam.basis_solve_use_plus_one
If a slack variable is in the basis, then the corresponding column in the basis is a unit vector with
-1 in the right position. However, if this parameter is set to onoffkey.on , -1 is replaced by 1.

176 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

This has significance for the results returned by the task.solvewithbasis function.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Simplex optimizer

iparam.bi_clean_optimizer
Controls which simplex optimizer is used in the clean-up phase.

Accepted Values: optimizertype

Default Value: optimizertype.free

Groups: Basis identification, Overall solver

iparam.bi_ignore_max_iter
If the parameter iparam.intpnt_basis has the value basindtype.no_error and the interior-
point optimizer has terminated due to maximum number of iterations, then basis identification is
performed if this parameter has the value onoffkey.on .

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Interior-point method , Basis identification

iparam.bi_ignore_num_error
If the parameter iparam.intpnt_basis has the value basindtype.no_error and the interior-
point optimizer has terminated due to a numerical problem, then basis identification is performed
if this parameter has the value onoffkey.on .

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Interior-point method , Basis identification

iparam.bi_max_iterations
Controls the maximum number of simplex iterations allowed to optimize a basis after the basis
identification.

Accepted Values: [0 ;+inf]

Default Value: 1000000

Groups: Basis identification, Termination criterion

iparam.cache_license
Specifies if the license is kept checked out for the lifetime of the mosek environment (onoffkey.on)
or returned to the server immediately after the optimization (onoffkey.off).

By default the license is checked out for the lifetime of the MOSEK environment by the first call
to task.optimize .

Check-in and check-out of licenses have an overhead. Frequent communication with the license
server should be avoided.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: License manager

iparam.check_convexity
Specify the level of convexity check on quadratic problems

Accepted Values: checkconvexitytype

Default Value: checkconvexitytype.full

Groups: Data check , Nonlinear convex method

16.4. Parameters 177

MOSEK Optimizer API for Python, Release 8.0.0.94

iparam.compress_statfile
Control compression of stat files.

Accepted Values: onoffkey

Default Value: onoffkey.on

iparam.infeas_generic_names
Controls whether generic names are used when an infeasible subproblem is created.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Infeasibility report

iparam.infeas_prefer_primal
If both certificates of primal and dual infeasibility are supplied then only the primal is used when
this option is turned on.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Overall solver

iparam.infeas_report_auto
Controls whether an infeasibility report is automatically produced after the optimization if the
problem is primal or dual infeasible.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Data input/output , Solution input/output

iparam.infeas_report_level
Controls the amount of information presented in an infeasibility report. Higher values imply more
information.

Accepted Values: [0 ;+inf]

Default Value: 1

Groups: Infeasibility report , Output information

iparam.intpnt_basis
Controls whether the interior-point optimizer also computes an optimal basis.

Accepted Values: basindtype

Default Value: basindtype.always

Groups: Interior-point method , Basis identification

iparam.intpnt_diff_step
Controls whether different step sizes are allowed in the primal and dual space.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Interior-point method

iparam.intpnt_hotstart
Currently not in use.

Accepted Values: intpnthotstart

Default Value: intpnthotstart.none

Groups: Interior-point method

178 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

iparam.intpnt_max_iterations
Controls the maximum number of iterations allowed in the interior-point optimizer.

Accepted Values: [0 ;+inf]

Default Value: 400

Groups: Interior-point method , Termination criterion

iparam.intpnt_max_num_cor
Controls the maximum number of correctors allowed by the multiple corrector procedure. A neg-
ative value means that MOSEK is making the choice.

Accepted Values: [-1 ;+inf]

Default Value: -1

Groups: Interior-point method

iparam.intpnt_max_num_refinement_steps
Maximum number of steps to be used by the iterative refinement of the search direction. A negative
value implies that the optimizer chooses the maximum number of iterative refinement steps.

Accepted Values: [-inf ;+inf]

Default Value: -1

Groups: Interior-point method

iparam.intpnt_multi_thread
Controls whether the interior-point optimizers are allowed to employ multiple threads if more
threads is available.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Optimization system

iparam.intpnt_off_col_trh
Controls how many offending columns are detected in the Jacobian of the constraint matrix.

0 no detection
1 aggressive detection
> 1 higher values mean less aggressive detection

Accepted Values: [0 ;+inf]

Default Value: 40

Groups: Interior-point method

iparam.intpnt_order_method
Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton
equation system.

Accepted Values: orderingtype

Default Value: orderingtype.free

Groups: Interior-point method

iparam.intpnt_regularization_use
Controls whether regularization is allowed.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Interior-point method

16.4. Parameters 179

MOSEK Optimizer API for Python, Release 8.0.0.94

iparam.intpnt_scaling
Controls how the problem is scaled before the interior-point optimizer is used.

Accepted Values: scalingtype

Default Value: scalingtype.free

Groups: Interior-point method

iparam.intpnt_solve_form
Controls whether the primal or the dual problem is solved.

Accepted Values: solveform

Default Value: solveform.free

Groups: Interior-point method

iparam.intpnt_starting_point
Starting point used by the interior-point optimizer.

Accepted Values: startpointtype

Default Value: startpointtype.free

Groups: Interior-point method

iparam.license_debug
This option is used to turn on debugging of the license manager.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: License manager

iparam.license_pause_time
If iparam.license_wait= onoffkey.on and no license is available, then MOSEK sleeps a num-
ber of milliseconds between each check of whether a license has become free.

Accepted Values: [0 ;1000000]

Default Value: 100

Groups: License manager

iparam.license_suppress_expire_wrns
Controls whether license features expire warnings are suppressed.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: License manager , Output information

iparam.license_trh_expiry_wrn
If a license feature expires in a numbers days less than the value of this parameter then a warning
will be issued.

Accepted Values: [0 ;+inf]

Default Value: 7

iparam.license_wait
If all licenses are in use MOSEK returns with an error code. However, by turning on this parameter
MOSEK will wait for an available license.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Overall solver , Optimization system, License manager

180 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

iparam.log
Controls the amount of log information. The value 0 implies that all log information is suppressed.
A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems the value of
this parameter is reduced by the value of iparam.log_cut_second_opt for the second and any
subsequent optimizations.

Accepted Values: [0 ;+inf]

Default Value: 10

Groups: Output information, Logging

iparam.log_ana_pro
Controls amount of output from the problem analyzer.

Accepted Values: [0 ;+inf]

Default Value: 1

Groups: Analysis, Logging

iparam.log_bi
Controls the amount of output printed by the basis identification procedure. A higher level implies
that more information is logged.

Accepted Values: [0 ;+inf]

Default Value: 4

Groups: Basis identification, Output information, Logging

iparam.log_bi_freq
Controls how frequent the optimizer outputs information about the basis identification and how
frequent the user-defined call-back function is called.

Accepted Values: [0 ;+inf]

Default Value: 2500

Groups: Basis identification, Output information, Logging

iparam.log_check_convexity
Controls logging in convexity check on quadratic problems. Set to a positive value to turn logging
on. If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a list
of negative (positive) pivot elements is printed. The absolute value of the pivot elements is also
shown.

Accepted Values: [0 ;+inf]

Default Value: 0

Groups: Data check , Nonlinear convex method

iparam.log_cut_second_opt
If a task is employed to solve a sequence of optimization problems, then the value of the log levels
is reduced by the value of this parameter. E.g iparam.log and iparam.log_sim are reduced by
the value of this parameter for the second and any subsequent optimizations.

Accepted Values: [0 ;+inf]

Default Value: 1

Groups: Output information, Logging

iparam.log_expand
Controls the amount of logging when a data item such as the maximum number constrains is
expanded.

Accepted Values: [0 ;+inf]

16.4. Parameters 181

MOSEK Optimizer API for Python, Release 8.0.0.94

Default Value: 0

Groups: Output information, Logging

iparam.log_factor
If turned on, then the factor log lines are added to the log.

Accepted Values: [0 ;+inf]

Default Value: 1

Groups: Output information, Logging

iparam.log_feas_repair
Controls the amount of output printed when performing feasibility repair. A value higher than one
means extensive logging.

Accepted Values: [0 ;+inf]

Default Value: 1

Groups: Output information, Logging

iparam.log_file
If turned on, then some log info is printed when a file is written or read.

Accepted Values: [0 ;+inf]

Default Value: 1

Groups: Data input/output , Output information, Logging

iparam.log_head
If turned on, then a header line is added to the log.

Accepted Values: [0 ;+inf]

Default Value: 1

Groups: Output information, Logging

iparam.log_infeas_ana
Controls amount of output printed by the infeasibility analyzer procedures. A higher level implies
that more information is logged.

Accepted Values: [0 ;+inf]

Default Value: 1

Groups: Infeasibility report , Output information, Logging

iparam.log_intpnt
Controls amount of output printed by the interior-point optimizer. A higher level implies that
more information is logged.

Accepted Values: [0 ;+inf]

Default Value: 4

Groups: Interior-point method , Output information, Logging

iparam.log_mio
Controls the log level for the mixed-integer optimizer. A higher level implies that more information
is logged.

Accepted Values: [0 ;+inf]

Default Value: 4

Groups: Mixed-integer optimization, Output information, Logging

182 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

iparam.log_mio_freq
Controls how frequent the mixed-integer optimizer prints the log line. It will print line every time
iparam.log_mio_freq relaxations have been solved.

Accepted Values: [-inf ;+inf]

Default Value: 10

Groups: Mixed-integer optimization, Output information, Logging

iparam.log_optimizer
Controls the amount of general optimizer information that is logged.

Accepted Values: [0 ;+inf]

Default Value: 1

Groups: Output information, Logging

iparam.log_order
If turned on, then factor lines are added to the log.

Accepted Values: [0 ;+inf]

Default Value: 1

Groups: Output information, Logging

iparam.log_presolve
Controls amount of output printed by the presolve procedure. A higher level implies that more
information is logged.

Accepted Values: [0 ;+inf]

Default Value: 1

Groups: Interior-point method , Logging

iparam.log_response
Controls amount of output printed when response codes are reported. A higher level implies that
more information is logged.

Accepted Values: [0 ;+inf]

Default Value: 0

Groups: Output information, Logging

iparam.log_sensitivity
Controls the amount of logging during the sensitivity analysis.

0.Means no logging information is produced.

1.Timing information is printed.

2.Sensitivity results are printed.

Accepted Values: [0 ;+inf]

Default Value: 1

Groups: Output information, Logging

iparam.log_sensitivity_opt
Controls the amount of logging from the optimizers employed during the sensitivity analysis. 0
means no logging information is produced.

Accepted Values: [0 ;+inf]

Default Value: 0

Groups: Output information, Logging

16.4. Parameters 183

MOSEK Optimizer API for Python, Release 8.0.0.94

iparam.log_sim
Controls amount of output printed by the simplex optimizer. A higher level implies that more
information is logged.

Accepted Values: [0 ;+inf]

Default Value: 4

Groups: Simplex optimizer , Output information, Logging

iparam.log_sim_freq
Controls how frequent the simplex optimizer outputs information about the optimization and how
frequent the user-defined call-back function is called.

Accepted Values: [0 ;+inf]

Default Value: 1000

Groups: Simplex optimizer , Output information, Logging

iparam.log_sim_minor
Currently not in use.

Accepted Values: [0 ;+inf]

Default Value: 1

Groups: Simplex optimizer , Output information

iparam.log_storage
When turned on, MOSEK prints messages regarding the storage usage and allocation.

Accepted Values: [0 ;+inf]

Default Value: 0

Groups: Output information, Optimization system, Logging

iparam.max_num_warnings
Each warning is shown a limit number times controlled by this parameter. A negative value is
identical to infinite number of times.

Accepted Values: [-inf ;+inf]

Default Value: 10

Groups: Output information

iparam.mio_branch_dir
Controls whether the mixed-integer optimizer is branching up or down by default.

Accepted Values: branchdir

Default Value: branchdir.free

Groups: Mixed-integer optimization

iparam.mio_construct_sol
If set to onoffkey.on and all integer variables have been given a value for which a feasible mixed
integer solution exists, then MOSEK generates an initial solution to the mixed integer problem
by fixing all integer values and solving the remaining problem.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Mixed-integer optimization

iparam.mio_cut_clique
Controls whether clique cuts should be generated.

Accepted Values: onoffkey

184 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Default Value: onoffkey.on

Groups: Mixed-integer optimization

iparam.mio_cut_cmir
Controls whether mixed integer rounding cuts should be generated.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Mixed-integer optimization

iparam.mio_cut_gmi
Controls whether GMI cuts should be generated.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Mixed-integer optimization

iparam.mio_cut_implied_bound
Controls whether implied bound cuts should be generated.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Mixed-integer optimization

iparam.mio_cut_knapsack_cover
Controls whether knapsack cover cuts should be generated.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Mixed-integer optimization

iparam.mio_cut_selection_level
Controls how aggressively generated cuts are selected to be included in the relaxation.

-1. The optimizer chooses the level of cut selection

0.Generated cuts less likely to be added to the relaxation

1.Cuts are more aggressively selected to be included in the relaxation

Accepted Values: [-1 ;+1]

Default Value: -1

Groups: Mixed-integer optimization

iparam.mio_heuristic_level
Controls the heuristic employed by the mixed-integer optimizer to locate an initial good integer
feasible solution. A value of zero means the heuristic is not used at all. A larger value than 0 means
that a gradually more sophisticated heuristic is used which is computationally more expensive. A
negative value implies that the optimizer chooses the heuristic. Normally a value around 3 to 5
should be optimal.

Accepted Values: [-inf ;+inf]

Default Value: -1

Groups: Mixed-integer optimization

iparam.mio_max_num_branches
Maximum number of branches allowed during the branch and bound search. A negative value
means infinite.

Accepted Values: [-inf ;+inf]

16.4. Parameters 185

MOSEK Optimizer API for Python, Release 8.0.0.94

Default Value: -1

Groups: Mixed-integer optimization, Termination criterion

iparam.mio_max_num_relaxs
Maximum number of relaxations allowed during the branch and bound search. A negative value
means infinite.

Accepted Values: [-inf ;+inf]

Default Value: -1

Groups: Mixed-integer optimization

iparam.mio_max_num_solutions
The mixed-integer optimizer can be terminated after a certain number of different feasible solutions
has been located. If this parameter has the value 𝑛 > 0, then the mixed-integer optimizer will be
terminated when 𝑛 feasible solutions have been located.

Accepted Values: [-inf ;+inf]

Default Value: -1

Groups: Mixed-integer optimization, Termination criterion

iparam.mio_mode
Controls whether the optimizer includes the integer restrictions when solving a (mixed) integer
optimization problem.

Accepted Values: miomode

Default Value: miomode.satisfied

Groups: Overall solver

iparam.mio_mt_user_cb
It true user callbacks are called from each thread used by this optimizer. If false the user callback
is only called from a single thread.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Optimization system

iparam.mio_node_optimizer
Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

Accepted Values: optimizertype

Default Value: optimizertype.free

Groups: Mixed-integer optimization

iparam.mio_node_selection
Controls the node selection strategy employed by the mixed-integer optimizer.

Accepted Values: mionodeseltype

Default Value: mionodeseltype.free

Groups: Mixed-integer optimization

iparam.mio_perspective_reformulate
Enables or disables perspective reformulation in presolve.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Mixed-integer optimization

186 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

iparam.mio_probing_level
Controls the amount of probing employed by the mixed-integer optimizer in presolve.

-1. The optimizer chooses the level of probing employed

0.Probing is disabled

1.A low amount of probing is employed

2.A medium amount of probing is employed

3.A high amount of probing is employed

Accepted Values: [-inf ;+inf]

Default Value: -1

Groups: Mixed-integer optimization

iparam.mio_rins_max_nodes
Controls the maximum number of nodes allowed in each call to the RINS heuristic. The default
value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

Accepted Values: [-1 ;+inf]

Default Value: -1

Groups: Mixed-integer optimization

iparam.mio_root_optimizer
Controls which optimizer is employed at the root node in the mixed-integer optimizer.

Accepted Values: optimizertype

Default Value: optimizertype.free

Groups: Mixed-integer optimization

iparam.mio_root_repeat_presolve_level
Controls whether presolve can be repeated at root node.

•-1 The optimizer chooses whether presolve is repeated

•0 Never repeat presolve

•1 Always repeat presolve

Accepted Values: [-1 ;1]

Default Value: -1

Groups: Mixed-integer optimization

iparam.mio_vb_detection_level
Controls how much effort is put into detecting variable bounds.

-1. The optimizer chooses

0.No variable bounds are detected

1.Only detect variable bounds that are directly represented in the problem

2.Detect variable bounds in probing

Accepted Values: [-1 ;+2]

Default Value: -1

Groups: Mixed-integer optimization

iparam.mt_spincount
Set the number of iterations to spin before sleeping.

Accepted Values: [0 ;1000000000]

16.4. Parameters 187

MOSEK Optimizer API for Python, Release 8.0.0.94

Default Value: 0

Groups: Optimization system

iparam.num_threads
Controls the number of threads employed by the optimizer. If set to 0 the number of threads used
will be equal to the number of cores detected on the machine.

Accepted Values: [0 ;+inf]

Default Value: 0

Groups: Optimization system

iparam.opf_max_terms_per_line
The maximum number of terms (linear and quadratic) per line when an OPF file is written.

Accepted Values: [0 ;+inf]

Default Value: 5

Groups: Data input/output

iparam.opf_write_header
Write a text header with date and MOSEK version in an OPF file.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output

iparam.opf_write_hints
Write a hint section with problem dimensions in the beginning of an OPF file.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output

iparam.opf_write_parameters
Write a parameter section in an OPF file.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Data input/output

iparam.opf_write_problem
Write objective, constraints, bounds etc. to an OPF file.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output

iparam.opf_write_solutions
Enable inclusion of solutions in the OPF files.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Data input/output

iparam.opf_write_sol_bas
If iparam.opf_write_solutions is onoffkey.on and a basic solution is defined, include the basic
solution in OPF files.

Accepted Values: onoffkey

188 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Default Value: onoffkey.on

Groups: Data input/output

iparam.opf_write_sol_itg
If iparam.opf_write_solutions is onoffkey.on and an integer solution is defined, write the
integer solution in OPF files.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output

iparam.opf_write_sol_itr
If iparam.opf_write_solutions is onoffkey.on and an interior solution is defined, write the
interior solution in OPF files.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output

iparam.optimizer
The parameter controls which optimizer is used to optimize the task.

Accepted Values: optimizertype

Default Value: optimizertype.free

Groups: Overall solver

iparam.param_read_case_name
If turned on, then names in the parameter file are case sensitive.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output

iparam.param_read_ign_error
If turned on, then errors in parameter settings is ignored.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Data input/output

iparam.presolve_eliminator_max_fill
Controls the maximum amount of fill-in that can be created by one pivot in the elimination phase
of the presolve. A negative value menas the parameter value is selected automatically.

Accepted Values: [-inf ;+inf]

Default Value: -1

Groups: Presolve

iparam.presolve_eliminator_max_num_tries
Control the maximum number of times the eliminator is tried.

Accepted Values: [-inf ;+inf]

Default Value: -1

Groups: Presolve

iparam.presolve_level
Currently not used.

Accepted Values: [-inf ;+inf]

16.4. Parameters 189

MOSEK Optimizer API for Python, Release 8.0.0.94

Default Value: -1

Groups: Overall solver , Presolve

iparam.presolve_lindep_abs_work_trh
The linear dependency check is potentially computationally expensive.

Accepted Values: [-inf ;+inf]

Default Value: 100

Groups: Presolve

iparam.presolve_lindep_rel_work_trh
The linear dependency check is potentially computationally expensive.

Accepted Values: [-inf ;+inf]

Default Value: 100

Groups: Presolve

iparam.presolve_lindep_use
Controls whether the linear constraints are checked for linear dependencies.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Presolve

iparam.presolve_max_num_reductions
Controls the maximum number of reductions performed by the presolve. The value of the parameter
is normally only changed in connection with debugging. A negative value implies that an infinite
number of reductions are allowed.

Accepted Values: [-inf ;+inf]

Default Value: -1

iparam.presolve_use
Controls whether the presolve is applied to a problem before it is optimized.

Accepted Values: presolvemode

Default Value: presolvemode.free

Groups: Overall solver , Presolve

iparam.primal_repair_optimizer
Controls which optimizer that is used to find the optimal repair.

Accepted Values: optimizertype

Default Value: optimizertype.free

Groups: Overall solver

iparam.read_data_compressed
If this option is turned on,it is assumed that the data file is compressed.

Accepted Values: compresstype

Default Value: compresstype.free

Groups: Data input/output

iparam.read_data_format
Format of the data file to be read.

Accepted Values: dataformat

Default Value: dataformat.extension

190 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Groups: Data input/output

iparam.read_debug
Turns on additional debugging information when reading files.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Data input/output

iparam.read_keep_free_con
Controls whether the free constraints are included in the problem.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Data input/output

iparam.read_lp_drop_new_vars_in_bou
If this option is turned on, MOSEK will drop variables that are defined for the first time in the
bounds section.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Data input/output

iparam.read_lp_quoted_names
If a name is in quotes when reading an LP file, the quotes will be removed.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output

iparam.read_mps_format
Controls how strictly the MPS file reader interprets the MPS format.

Accepted Values: mpsformat

Default Value: mpsformat.free

Groups: Data input/output

iparam.read_mps_width
Controls the maximal number of characters allowed in one line of the MPS file.

Accepted Values: [80 ;+inf]

Default Value: 1024

Groups: Data input/output

iparam.read_task_ignore_param
Controls whether MOSEK should ignore the parameter setting defined in the task file and use
the default parameter setting instead.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Data input/output

iparam.sensitivity_all
If set to onoffkey.on , then task.sensitivityreport analyzes all bounds and variables instead
of reading a specification from the file.

Accepted Values: onoffkey

Default Value: onoffkey.off

16.4. Parameters 191

MOSEK Optimizer API for Python, Release 8.0.0.94

Groups: Overall solver

iparam.sensitivity_optimizer
Controls which optimizer is used for optimal partition sensitivity analysis.

Accepted Values: optimizertype

Default Value: optimizertype.free_simplex

Groups: Overall solver , Simplex optimizer

iparam.sensitivity_type
Controls which type of sensitivity analysis is to be performed.

Accepted Values: sensitivitytype

Default Value: sensitivitytype.basis

Groups: Overall solver

iparam.sim_basis_factor_use
Controls whether a (LU) factorization of the basis is used in a hot-start. Forcing a refactorization
sometimes improves the stability of the simplex optimizers, but in most cases there is a performance
penalty.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Simplex optimizer

iparam.sim_degen
Controls how aggressively degeneration is handled.

Accepted Values: simdegen

Default Value: simdegen.free

Groups: Simplex optimizer

iparam.sim_dual_crash
Controls whether crashing is performed in the dual simplex optimizer.

If this parameter is set to 𝑥, then a crash will be performed if a basis consists of more than (100−𝑥)
mod 𝑓𝑣 entries, where 𝑓𝑣 is the number of fixed variables.

Accepted Values: [0 ;+inf]

Default Value: 90

Groups: Dual simplex optimizer

iparam.sim_dual_phaseone_method
An experimental feature.

Accepted Values: [0 ;10]

Default Value: 0

Groups: Simplex optimizer

iparam.sim_dual_restrict_selection
The dual simplex optimizer can use a so-called restricted selection/pricing strategy to chooses the
outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer first
choose a subset of all the potential outgoing variables. Next, for some time it will choose the
outgoing variable only among the subset. From time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be more aggressive in its restriction
strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

Accepted Values: [0 ;100]

Default Value: 50

192 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Groups: Dual simplex optimizer

iparam.sim_dual_selection
Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex
optimizer.

Accepted Values: simseltype

Default Value: simseltype.free

Groups: Dual simplex optimizer

iparam.sim_exploit_dupvec
Controls if the simplex optimizers are allowed to exploit duplicated columns.

Accepted Values: simdupvec

Default Value: simdupvec.off

Groups: Simplex optimizer

iparam.sim_hotstart
Controls the type of hot-start that the simplex optimizer perform.

Accepted Values: simhotstart

Default Value: simhotstart.free

Groups: Simplex optimizer

iparam.sim_hotstart_lu
Determines if the simplex optimizer should exploit the initial factorization.

Accepted Values: onoffkey

Default Value: onoffkey.on

iparam.sim_integer
An experimental feature.

Accepted Values: [0 ;10]

Default Value: 0

Groups: Simplex optimizer

iparam.sim_max_iterations
Maximum number of iterations that can be used by a simplex optimizer.

Accepted Values: [0 ;+inf]

Default Value: 10000000

Groups: Simplex optimizer , Termination criterion

iparam.sim_max_num_setbacks
Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event where
the optimizer moves in the wrong direction. This is impossible in theory but may happen due to
numerical problems.

Accepted Values: [0 ;+inf]

Default Value: 250

Groups: Simplex optimizer

iparam.sim_non_singular
Controls if the simplex optimizer ensures a non-singular basis, if possible.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Simplex optimizer

16.4. Parameters 193

MOSEK Optimizer API for Python, Release 8.0.0.94

iparam.sim_primal_crash
Controls whether crashing is performed in the primal simplex optimizer.

In general, if a basis consists of more than (100-this parameter value)% fixed variables, then a crash
will be performed.

Accepted Values: [0 ;+inf]

Default Value: 90

Groups: Primal simplex optimizer

iparam.sim_primal_phaseone_method
An experimental feature.

Accepted Values: [0 ;10]

Default Value: 0

Groups: Simplex optimizer

iparam.sim_primal_restrict_selection
The primal simplex optimizer can use a so-called restricted selection/pricing strategy to chooses
the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer
first choose a subset of all the potential incoming variables. Next, for some time it will choose the
incoming variable only among the subset. From time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be more aggressive in its restriction
strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

Accepted Values: [0 ;100]

Default Value: 50

Groups: Primal simplex optimizer

iparam.sim_primal_selection
Controls the choice of the incoming variable, known as the selection strategy, in the primal simplex
optimizer.

Accepted Values: simseltype

Default Value: simseltype.free

Groups: Primal simplex optimizer

iparam.sim_refactor_freq
Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines
the best point of refactorization.

It is strongly recommended NOT to change this parameter.

Accepted Values: [0 ;+inf]

Default Value: 0

Groups: Simplex optimizer

iparam.sim_reformulation
Controls if the simplex optimizers are allowed to reformulate the problem.

Accepted Values: simreform

Default Value: simreform.off

Groups: Simplex optimizer

iparam.sim_save_lu
Controls if the LU factorization stored should be replaced with the LU factorization corresponding
to the initial basis.

Accepted Values: onoffkey

194 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Default Value: onoffkey.off

Groups: Simplex optimizer

iparam.sim_scaling
Controls how much effort is used in scaling the problem before a simplex optimizer is used.

Accepted Values: scalingtype

Default Value: scalingtype.free

Groups: Simplex optimizer

iparam.sim_scaling_method
Controls how the problem is scaled before a simplex optimizer is used.

Accepted Values: scalingmethod

Default Value: scalingmethod.pow2

Groups: Simplex optimizer

iparam.sim_solve_form
Controls whether the primal or the dual problem is solved by the primal-/dual-simplex optimizer.

Accepted Values: solveform

Default Value: solveform.free

Groups: Simplex optimizer

iparam.sim_stability_priority
Controls how high priority the numerical stability should be given.

Accepted Values: [0 ;100]

Default Value: 50

Groups: Simplex optimizer

iparam.sim_switch_optimizer
The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem.
This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized,
then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on
and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal
(dual) one, then it is switched to the dual (primal).

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Simplex optimizer

iparam.solution_callback
Indicates whether solution call-backs will be performed during the optimization.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Progress call-back , Overall solver

iparam.sol_filter_keep_basic
If turned on, then basic and super basic constraints and variables are written to the solution file
independent of the filter setting.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Solution input/output

16.4. Parameters 195

MOSEK Optimizer API for Python, Release 8.0.0.94

iparam.sol_filter_keep_ranged
If turned on, then ranged constraints and variables are written to the solution file independent of
the filter setting.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Solution input/output

iparam.sol_read_name_width
When a solution is read by MOSEK and some constraint, variable or cone names contain blanks,
then a maximum name width much be specified. A negative value implies that no name contain
blanks.

Accepted Values: [-inf ;+inf]

Default Value: -1

Groups: Data input/output , Solution input/output

iparam.sol_read_width
Controls the maximal acceptable width of line in the solutions when read by MOSEK.

Accepted Values: [0 ;+inf]

Default Value: 1024

Groups: Data input/output , Solution input/output

iparam.timing_level
Controls the a amount of timing performed inside MOSEK.

Accepted Values: [0 ;+inf]

Default Value: 1

Groups: Optimization system

iparam.write_bas_constraints
Controls whether the constraint section is written to the basic solution file.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output , Solution input/output

iparam.write_bas_head
Controls whether the header section is written to the basic solution file.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output , Solution input/output

iparam.write_bas_variables
Controls whether the variables section is written to the basic solution file.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output , Solution input/output

iparam.write_data_compressed
Controls whether the data file is compressed while it is written. 0 means no compression while
higher values mean more compression.

Accepted Values: [0 ;+inf]

Default Value: 0

196 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Groups: Data input/output

iparam.write_data_format
Controls the data format when a task is written using task.writedata .

Accepted Values: dataformat

Default Value: dataformat.extension

Groups: Data input/output

iparam.write_data_param
If this option is turned on the parameter settings are written to the data file as parameters.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Data input/output

iparam.write_free_con
Controls whether the free constraints are written to the data file.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output

iparam.write_generic_names
Controls whether the generic names or user-defined names are used in the data file.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Data input/output

iparam.write_generic_names_io
Index origin used in generic names.

Accepted Values: [0 ;+inf]

Default Value: 1

Groups: Data input/output

iparam.write_ignore_incompatible_items
Controls if the writer ignores incompatible problem items when writing files.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Data input/output

iparam.write_int_constraints
Controls whether the constraint section is written to the integer solution file.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output , Solution input/output

iparam.write_int_head
Controls whether the header section is written to the integer solution file.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output , Solution input/output

16.4. Parameters 197

MOSEK Optimizer API for Python, Release 8.0.0.94

iparam.write_int_variables
Controls whether the variables section is written to the integer solution file.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output , Solution input/output

iparam.write_lp_full_obj
Write all variables, including the ones with 0-coefficients, in the objective.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output

iparam.write_lp_line_width
Maximum width of line in an LP file written by MOSEK.

Accepted Values: [40 ;+inf]

Default Value: 80

Groups: Data input/output

iparam.write_lp_quoted_names
If this option is turned on, then MOSEK will quote invalid LP names when writing an LP file.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output

iparam.write_lp_strict_format
Controls whether LP output files satisfy the LP format strictly.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Data input/output

iparam.write_lp_terms_per_line
Maximum number of terms on a single line in an LP file written by MOSEK. 0 means unlimited.

Accepted Values: [0 ;+inf]

Default Value: 10

Groups: Data input/output

iparam.write_mps_format
Controls in which format the MPS is written.

Accepted Values: mpsformat

Default Value: mpsformat.free

Groups: Data input/output

iparam.write_mps_int
Controls if marker records are written to the MPS file to indicate whether variables are integer
restricted.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output

198 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

iparam.write_precision
Controls the precision with which double numbers are printed in the MPS data file. In general it
is not worthwhile to use a value higher than 15.

Accepted Values: [0 ;+inf]

Default Value: 15

Groups: Data input/output

iparam.write_sol_barvariables
Controls whether the symmetric matrix variables section is written to the solution file.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output , Solution input/output

iparam.write_sol_constraints
Controls whether the constraint section is written to the solution file.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output , Solution input/output

iparam.write_sol_head
Controls whether the header section is written to the solution file.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output , Solution input/output

iparam.write_sol_ignore_invalid_names
Even if the names are invalid MPS names, then they are employed when writing the solution file.

Accepted Values: onoffkey

Default Value: onoffkey.off

Groups: Data input/output , Solution input/output

iparam.write_sol_variables
Controls whether the variables section is written to the solution file.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output , Solution input/output

iparam.write_task_inc_sol
Controls whether the solutions are stored in the task file too.

Accepted Values: onoffkey

Default Value: onoffkey.on

Groups: Data input/output

iparam.write_xml_mode
Controls if linear coefficients should be written by row or column when writing in the XML file
format.

Accepted Values: xmlwriteroutputtype

Default Value: xmlwriteroutputtype.row

Groups: Data input/output

16.4. Parameters 199

MOSEK Optimizer API for Python, Release 8.0.0.94

String Parameters

sparam.bas_sol_file_name
Name of the bas solution file.

Accepted Values: Any valid file name.

Groups: Data input/output , Solution input/output

sparam.data_file_name
Data are read and written to this file.

Accepted Values: Any valid file name.

Groups: Data input/output

sparam.debug_file_name
MOSEK debug file.

Accepted Values: Any valid file name.

Groups: Data input/output

sparam.int_sol_file_name
Name of the int solution file.

Accepted Values: Any valid file name.

Groups: Data input/output , Solution input/output

sparam.itr_sol_file_name
Name of the itr solution file.

Accepted Values: Any valid file name.

Groups: Data input/output , Solution input/output

sparam.mio_debug_string
For internal use only.

Accepted Values: Any valid string.

Groups: Data input/output

sparam.param_comment_sign
Only the first character in this string is used. It is considered as a start of comment sign in the
MOSEK parameter file. Spaces are ignored in the string.

Accepted Values: Any valid string.

Default Value: %%

Groups: Data input/output

sparam.param_read_file_name
Modifications to the parameter database is read from this file.

Accepted Values: Any valid file name.

Groups: Data input/output

sparam.param_write_file_name
The parameter database is written to this file.

Accepted Values: Any valid file name.

Groups: Data input/output

sparam.read_mps_bou_name
Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is used.

Accepted Values: Any valid MPS name.

200 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Groups: Data input/output

sparam.read_mps_obj_name
Name of the free constraint used as objective function. An empty name means that the first
constraint is used as objective function.

Accepted Values: Any valid MPS name.

Groups: Data input/output

sparam.read_mps_ran_name
Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

Accepted Values: Any valid MPS name.

Groups: Data input/output

sparam.read_mps_rhs_name
Name of the RHS used. An empty name means that the first RHS vector is used.

Accepted Values: Any valid MPS name.

Groups: Data input/output

sparam.remote_access_token
An access token used to submit tasks to a remote MOSEK server. An access token is a random
32-byte string encoded in base64, i.e. it is a 44 character ASCII string.

Accepted Values: Any valid string.

sparam.sensitivity_file_name
If defined task.sensitivityreport reads this file as a sensitivity analysis data file specifying the
type of analysis to be done.

Accepted Values: Any valid string.

Groups: Data input/output

sparam.sensitivity_res_file_name
If this is a nonempty string, then task.sensitivityreport writes results to this file.

Accepted Values: Any valid string.

Groups: Data input/output

sparam.sol_filter_xc_low
A filter used to determine which constraints should be listed in the solution file. A value of 0.5 means
that all constraints having xc[i]>0.5 should be listed, whereas +0.5 means that all constraints
having xc[i]>=blc[i]+0.5 should be listed. An empty filter means that no filter is applied.

Accepted Values: Any valid filter.

Groups: Data input/output , Solution input/output

sparam.sol_filter_xc_upr
A filter used to determine which constraints should be listed in the solution file. A value of 0.5
means that all constraints having xc[i]<0.5 should be listed, whereas -0.5 means all constraints
having xc[i]<=buc[i]-0.5 should be listed. An empty filter means that no filter is applied.

Accepted Values: Any valid filter.

Groups: Data input/output , Solution input/output

sparam.sol_filter_xx_low
A filter used to determine which variables should be listed in the solution file. A value of “0.5” means
that all constraints having xx[j]>=0.5 should be listed, whereas “+0.5” means that all constraints
having xx[j]>=blx[j]+0.5 should be listed. An empty filter means no filter is applied.

Accepted Values: Any valid filter.

Groups: Data input/output , Solution input/output

16.4. Parameters 201

MOSEK Optimizer API for Python, Release 8.0.0.94

sparam.sol_filter_xx_upr
A filter used to determine which variables should be listed in the solution file. A value of “0.5”
means that all constraints having xx[j]<0.5 should be printed, whereas “-0.5” means all constraints
having xx[j]<=bux[j]-0.5 should be listed. An empty filter means no filter is applied.

Accepted Values: Any valid file name.

Groups: Data input/output , Solution input/output

sparam.stat_file_name
Statistics file name.

Accepted Values: Any valid file name.

Groups: Data input/output

sparam.stat_key
Key used when writing the summary file.

Accepted Values: Any valid XML string.

Groups: Data input/output

sparam.stat_name
Name used when writing the statistics file.

Accepted Values: Any valid XML string.

Groups: Data input/output

sparam.write_lp_gen_var_name
Sometimes when an LP file is written additional variables must be inserted. They will have the
prefix denoted by this parameter.

Accepted Values: Any valid string.

Default Value: xmskgen

Groups: Data input/output

16.4.2 Conic interior-point method parameters.

• dparam.intpnt_co_tol_dfeas

• dparam.intpnt_co_tol_infeas

• dparam.intpnt_co_tol_mu_red

• dparam.intpnt_co_tol_near_rel

• dparam.intpnt_co_tol_pfeas

• dparam.intpnt_co_tol_rel_gap

16.4.3 License manager parameters.

• iparam.cache_license

• iparam.license_debug

• iparam.license_pause_time

• iparam.license_suppress_expire_wrns

• iparam.license_wait

202 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

16.4.4 Logging parameters.

• iparam.log

• iparam.log_ana_pro

• iparam.log_bi

• iparam.log_bi_freq

• iparam.log_cut_second_opt

• iparam.log_expand

• iparam.log_factor

• iparam.log_feas_repair

• iparam.log_file

• iparam.log_head

• iparam.log_infeas_ana

• iparam.log_intpnt

• iparam.log_mio

• iparam.log_mio_freq

• iparam.log_optimizer

• iparam.log_order

• iparam.log_presolve

• iparam.log_response

• iparam.log_sensitivity

• iparam.log_sensitivity_opt

• iparam.log_sim

• iparam.log_sim_freq

• iparam.log_storage

16.4.5 Presolve parameters.

• iparam.presolve_eliminator_max_fill

• iparam.presolve_eliminator_max_num_tries

• iparam.presolve_level

• iparam.presolve_lindep_abs_work_trh

• iparam.presolve_lindep_rel_work_trh

• iparam.presolve_lindep_use

• dparam.presolve_tol_abs_lindep

• dparam.presolve_tol_aij

• dparam.presolve_tol_rel_lindep

• dparam.presolve_tol_s

• dparam.presolve_tol_x

• iparam.presolve_use

16.4. Parameters 203

MOSEK Optimizer API for Python, Release 8.0.0.94

16.4.6 Primal simplex optimizer parameters.

• iparam.sim_primal_crash

• iparam.sim_primal_restrict_selection

• iparam.sim_primal_selection

16.4.7 Dual simplex optimizer parameters.

• iparam.sim_dual_crash

• iparam.sim_dual_restrict_selection

• iparam.sim_dual_selection

16.4.8 Data input/output parameters.

• sparam.bas_sol_file_name

• sparam.data_file_name

• sparam.debug_file_name

• iparam.infeas_report_auto

• sparam.int_sol_file_name

• sparam.itr_sol_file_name

• iparam.log_file

• sparam.mio_debug_string

• iparam.opf_max_terms_per_line

• iparam.opf_write_header

• iparam.opf_write_hints

• iparam.opf_write_parameters

• iparam.opf_write_problem

• iparam.opf_write_sol_bas

• iparam.opf_write_sol_itg

• iparam.opf_write_sol_itr

• iparam.opf_write_solutions

• sparam.param_comment_sign

• iparam.param_read_case_name

• sparam.param_read_file_name

• iparam.param_read_ign_error

• sparam.param_write_file_name

• iparam.read_data_compressed

• iparam.read_data_format

• iparam.read_debug

• iparam.read_keep_free_con

• iparam.read_lp_drop_new_vars_in_bou

204 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

• iparam.read_lp_quoted_names

• sparam.read_mps_bou_name

• iparam.read_mps_format

• sparam.read_mps_obj_name

• sparam.read_mps_ran_name

• sparam.read_mps_rhs_name

• iparam.read_mps_width

• iparam.read_task_ignore_param

• sparam.sensitivity_file_name

• sparam.sensitivity_res_file_name

• sparam.sol_filter_xc_low

• sparam.sol_filter_xc_upr

• sparam.sol_filter_xx_low

• sparam.sol_filter_xx_upr

• iparam.sol_read_name_width

• iparam.sol_read_width

• sparam.stat_file_name

• sparam.stat_key

• sparam.stat_name

• iparam.write_bas_constraints

• iparam.write_bas_head

• iparam.write_bas_variables

• iparam.write_data_compressed

• iparam.write_data_format

• iparam.write_data_param

• iparam.write_free_con

• iparam.write_generic_names

• iparam.write_generic_names_io

• iparam.write_ignore_incompatible_items

• iparam.write_int_constraints

• iparam.write_int_head

• iparam.write_int_variables

• iparam.write_lp_full_obj

• sparam.write_lp_gen_var_name

• iparam.write_lp_line_width

• iparam.write_lp_quoted_names

• iparam.write_lp_strict_format

• iparam.write_lp_terms_per_line

• iparam.write_mps_format

16.4. Parameters 205

MOSEK Optimizer API for Python, Release 8.0.0.94

• iparam.write_mps_int

• iparam.write_precision

• iparam.write_sol_barvariables

• iparam.write_sol_constraints

• iparam.write_sol_head

• iparam.write_sol_ignore_invalid_names

• iparam.write_sol_variables

• iparam.write_task_inc_sol

• iparam.write_xml_mode

16.4.9 Overall solver parameters.

• iparam.bi_clean_optimizer

• iparam.infeas_prefer_primal

• iparam.license_wait

• iparam.mio_mode

• iparam.optimizer

• iparam.presolve_level

• iparam.presolve_use

• iparam.primal_repair_optimizer

• iparam.sensitivity_all

• iparam.sensitivity_optimizer

• iparam.sensitivity_type

• iparam.solution_callback

16.4.10 Data check parameters.

• iparam.check_convexity

• dparam.data_sym_mat_tol

• dparam.data_sym_mat_tol_huge

• dparam.data_sym_mat_tol_large

• dparam.data_tol_aij

• dparam.data_tol_aij_huge

• dparam.data_tol_aij_large

• dparam.data_tol_bound_inf

• dparam.data_tol_bound_wrn

• dparam.data_tol_c_huge

• dparam.data_tol_cj_large

• dparam.data_tol_qij

• dparam.data_tol_x

206 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

• iparam.log_check_convexity

• dparam.semidefinite_tol_approx

16.4.11 Basis identification parameters.

• iparam.bi_clean_optimizer

• iparam.bi_ignore_max_iter

• iparam.bi_ignore_num_error

• iparam.bi_max_iterations

• iparam.intpnt_basis

• iparam.log_bi

• iparam.log_bi_freq

• dparam.sim_lu_tol_rel_piv

16.4.12 Simplex optimizer parameters.

• dparam.basis_rel_tol_s

• iparam.basis_solve_use_plus_one

• dparam.basis_tol_s

• dparam.basis_tol_x

• iparam.log_sim

• iparam.log_sim_freq

• iparam.log_sim_minor

• iparam.sensitivity_optimizer

• iparam.sim_basis_factor_use

• iparam.sim_degen

• iparam.sim_dual_phaseone_method

• iparam.sim_exploit_dupvec

• iparam.sim_hotstart

• iparam.sim_integer

• dparam.sim_lu_tol_rel_piv

• iparam.sim_max_iterations

• iparam.sim_max_num_setbacks

• iparam.sim_non_singular

• iparam.sim_primal_phaseone_method

• iparam.sim_refactor_freq

• iparam.sim_reformulation

• iparam.sim_save_lu

• iparam.sim_scaling

• iparam.sim_scaling_method

16.4. Parameters 207

MOSEK Optimizer API for Python, Release 8.0.0.94

• iparam.sim_solve_form

• iparam.sim_stability_priority

• iparam.sim_switch_optimizer

• dparam.simplex_abs_tol_piv

16.4.13 Output information parameters.

• iparam.infeas_report_level

• iparam.license_suppress_expire_wrns

• iparam.log

• iparam.log_bi

• iparam.log_bi_freq

• iparam.log_cut_second_opt

• iparam.log_expand

• iparam.log_factor

• iparam.log_feas_repair

• iparam.log_file

• iparam.log_head

• iparam.log_infeas_ana

• iparam.log_intpnt

• iparam.log_mio

• iparam.log_mio_freq

• iparam.log_optimizer

• iparam.log_order

• iparam.log_response

• iparam.log_sensitivity

• iparam.log_sensitivity_opt

• iparam.log_sim

• iparam.log_sim_freq

• iparam.log_sim_minor

• iparam.log_storage

• iparam.max_num_warnings

16.4.14 Solution input/output parameters.

• sparam.bas_sol_file_name

• iparam.infeas_report_auto

• sparam.int_sol_file_name

• sparam.itr_sol_file_name

• iparam.sol_filter_keep_basic

208 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

• iparam.sol_filter_keep_ranged

• sparam.sol_filter_xc_low

• sparam.sol_filter_xc_upr

• sparam.sol_filter_xx_low

• sparam.sol_filter_xx_upr

• iparam.sol_read_name_width

• iparam.sol_read_width

• iparam.write_bas_constraints

• iparam.write_bas_head

• iparam.write_bas_variables

• iparam.write_int_constraints

• iparam.write_int_head

• iparam.write_int_variables

• iparam.write_sol_barvariables

• iparam.write_sol_constraints

• iparam.write_sol_head

• iparam.write_sol_ignore_invalid_names

• iparam.write_sol_variables

16.4.15 Infeasibility report parameters.

• iparam.infeas_generic_names

• iparam.infeas_report_level

• iparam.log_infeas_ana

16.4.16 Nonlinear convex method parameters.

• iparam.check_convexity

• dparam.intpnt_nl_merit_bal

• dparam.intpnt_nl_tol_dfeas

• dparam.intpnt_nl_tol_mu_red

• dparam.intpnt_nl_tol_near_rel

• dparam.intpnt_nl_tol_pfeas

• dparam.intpnt_nl_tol_rel_gap

• dparam.intpnt_nl_tol_rel_step

• dparam.intpnt_tol_infeas

• iparam.log_check_convexity

16.4. Parameters 209

MOSEK Optimizer API for Python, Release 8.0.0.94

16.4.17 Analysis parameters.

• iparam.ana_sol_basis

• dparam.ana_sol_infeas_tol

• iparam.ana_sol_print_violated

• iparam.log_ana_pro

16.4.18 Mixed-integer optimization parameters.

• iparam.log_mio

• iparam.log_mio_freq

• iparam.mio_branch_dir

• iparam.mio_construct_sol

• iparam.mio_cut_clique

• iparam.mio_cut_cmir

• iparam.mio_cut_gmi

• iparam.mio_cut_implied_bound

• iparam.mio_cut_knapsack_cover

• iparam.mio_cut_selection_level

• dparam.mio_disable_term_time

• iparam.mio_heuristic_level

• iparam.mio_max_num_branches

• iparam.mio_max_num_relaxs

• iparam.mio_max_num_solutions

• dparam.mio_max_time

• dparam.mio_near_tol_abs_gap

• dparam.mio_near_tol_rel_gap

• iparam.mio_node_optimizer

• iparam.mio_node_selection

• iparam.mio_perspective_reformulate

• iparam.mio_probing_level

• dparam.mio_rel_gap_const

• iparam.mio_rins_max_nodes

• iparam.mio_root_optimizer

• iparam.mio_root_repeat_presolve_level

• dparam.mio_tol_abs_gap

• dparam.mio_tol_abs_relax_int

• dparam.mio_tol_feas

• dparam.mio_tol_rel_dual_bound_improvement

• dparam.mio_tol_rel_gap

210 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

• iparam.mio_vb_detection_level

16.4.19 Termination criterion parameters.

• dparam.basis_rel_tol_s

• dparam.basis_tol_s

• dparam.basis_tol_x

• iparam.bi_max_iterations

• dparam.intpnt_co_tol_dfeas

• dparam.intpnt_co_tol_infeas

• dparam.intpnt_co_tol_mu_red

• dparam.intpnt_co_tol_near_rel

• dparam.intpnt_co_tol_pfeas

• dparam.intpnt_co_tol_rel_gap

• iparam.intpnt_max_iterations

• dparam.intpnt_nl_tol_dfeas

• dparam.intpnt_nl_tol_mu_red

• dparam.intpnt_nl_tol_near_rel

• dparam.intpnt_nl_tol_pfeas

• dparam.intpnt_nl_tol_rel_gap

• dparam.intpnt_qo_tol_dfeas

• dparam.intpnt_qo_tol_infeas

• dparam.intpnt_qo_tol_mu_red

• dparam.intpnt_qo_tol_near_rel

• dparam.intpnt_qo_tol_pfeas

• dparam.intpnt_qo_tol_rel_gap

• dparam.intpnt_tol_dfeas

• dparam.intpnt_tol_infeas

• dparam.intpnt_tol_mu_red

• dparam.intpnt_tol_pfeas

• dparam.intpnt_tol_rel_gap

• dparam.lower_obj_cut

• dparam.lower_obj_cut_finite_trh

• dparam.mio_disable_term_time

• iparam.mio_max_num_branches

• iparam.mio_max_num_solutions

• dparam.mio_max_time

• dparam.mio_near_tol_rel_gap

• dparam.mio_rel_gap_const

• dparam.mio_tol_rel_gap

16.4. Parameters 211

MOSEK Optimizer API for Python, Release 8.0.0.94

• dparam.optimizer_max_time

• iparam.sim_max_iterations

• dparam.upper_obj_cut

• dparam.upper_obj_cut_finite_trh

16.4.20 Optimization system parameters.

• iparam.auto_update_sol_info

• iparam.intpnt_multi_thread

• iparam.license_wait

• iparam.log_storage

• iparam.mio_mt_user_cb

• iparam.mt_spincount

• iparam.num_threads

• iparam.timing_level

16.4.21 Progress call-back parameters.

• iparam.solution_callback

16.4.22 Interior-point method parameters.

• iparam.bi_ignore_max_iter

• iparam.bi_ignore_num_error

• dparam.check_convexity_rel_tol

• iparam.intpnt_basis

• dparam.intpnt_co_tol_dfeas

• dparam.intpnt_co_tol_infeas

• dparam.intpnt_co_tol_mu_red

• dparam.intpnt_co_tol_near_rel

• dparam.intpnt_co_tol_pfeas

• dparam.intpnt_co_tol_rel_gap

• iparam.intpnt_diff_step

• iparam.intpnt_hotstart

• iparam.intpnt_max_iterations

• iparam.intpnt_max_num_cor

• iparam.intpnt_max_num_refinement_steps

• dparam.intpnt_nl_merit_bal

• dparam.intpnt_nl_tol_dfeas

• dparam.intpnt_nl_tol_mu_red

• dparam.intpnt_nl_tol_near_rel

212 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

• dparam.intpnt_nl_tol_pfeas

• dparam.intpnt_nl_tol_rel_gap

• dparam.intpnt_nl_tol_rel_step

• iparam.intpnt_off_col_trh

• iparam.intpnt_order_method

• dparam.intpnt_qo_tol_dfeas

• dparam.intpnt_qo_tol_infeas

• dparam.intpnt_qo_tol_mu_red

• dparam.intpnt_qo_tol_near_rel

• dparam.intpnt_qo_tol_pfeas

• dparam.intpnt_qo_tol_rel_gap

• iparam.intpnt_regularization_use

• iparam.intpnt_scaling

• iparam.intpnt_solve_form

• iparam.intpnt_starting_point

• dparam.intpnt_tol_dfeas

• dparam.intpnt_tol_dsafe

• dparam.intpnt_tol_infeas

• dparam.intpnt_tol_mu_red

• dparam.intpnt_tol_path

• dparam.intpnt_tol_pfeas

• dparam.intpnt_tol_psafe

• dparam.intpnt_tol_rel_gap

• dparam.intpnt_tol_rel_step

• dparam.intpnt_tol_step_size

• iparam.log_intpnt

• iparam.log_presolve

• dparam.qcqo_reformulate_rel_drop_tol

16.4.23 Debugging parameters.

• iparam.auto_sort_a_before_opt

16.5 Response codes

• Termination codes

• Error codes

• Warning codes

16.5. Response codes 213

MOSEK Optimizer API for Python, Release 8.0.0.94

16.5.1 Termination Codes

rescode.ok (0)
No error occurred.

rescode.trm_internal (10030)
The optimizer terminated due to some internal reason. Please contact MOSEK support.

rescode.trm_internal_stop (10031)
The optimizer terminated for internal reasons. Please contact MOSEK support.

rescode.trm_max_iterations (10000)
The optimizer terminated at the maximum number of iterations.

rescode.trm_max_num_setbacks (10020)
The optimizer terminated as the maximum number of set-backs was reached. This indicates %
serious numerical problems and a possibly badly formulated problem.

rescode.trm_max_time (10001)
The optimizer terminated at the maximum amount of time.

rescode.trm_mio_near_abs_gap (10004)
The mixed-integer optimizer terminated because the near optimal absolute gap tolerance was sat-
isfied.

rescode.trm_mio_near_rel_gap (10003)
The mixed-integer optimizer terminated because the near optimal relative gap tolerance was sat-
isfied.

rescode.trm_mio_num_branches (10009)
The mixed-integer optimizer terminated as to the maximum number of branches was reached.

rescode.trm_mio_num_relaxs (10008)
The mixed-integer optimizer terminated as the maximum number of relaxations was reached.

rescode.trm_num_max_num_int_solutions (10015)
The mixed-integer optimizer terminated as the maximum number of feasible solutions was reached.

rescode.trm_numerical_problem (10025)
The optimizer terminated due to numerical problems.

rescode.trm_objective_range (10002)
The optimizer terminated on the bound of the objective range.

rescode.trm_stall (10006)
The optimizer is terminated due to slow progress.

Stalling means that numerical problems prevent the optimizer from making reasonable progress
and that it make no sense to continue. In many cases this happens if the problem is badly scaled
or otherwise ill-conditioned. There is no guarantee that the solution will be (near) feasible or near
optimal. However, often stalling happens near the optimum, and the returned solution may be of
good quality. Therefore, it is recommended to check the status of then solution. If the solution
near optimal the solution is most likely good enough for most practical purposes.

Please note that if a linear optimization problem is solved using the interior-point optimizer with
basis identification turned on, the returned basic solution likely to have high accuracy, even though
the optimizer stalled.

Some common causes of stalling are a) badly scaled models, b) near feasible or near infeasible
problems and c) a non-convex problems. Case c) is only relevant for general non-linear problems.
It is not possible in general for MOSEK to check if a specific problems is convex since such a
check would be NP hard in itself. This implies that care should be taken when solving problems
involving general user defined functions.

rescode.trm_user_callback (10007)
The optimizer terminated due to the return of the user-defined call-back function.

214 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

16.5.2 Error Codes

rescode.err_ad_invalid_codelist (3102)
The code list data was invalid.

rescode.err_api_array_too_small (3001)
An input array was too short.

rescode.err_api_cb_connect (3002)
Failed to connect a callback object.

rescode.err_api_fatal_error (3005)
An internal error occurred in the API. Please report this problem.

rescode.err_api_internal (3999)
An internal fatal error occurred in an interface function.

rescode.err_arg_is_too_large (1227)
The value of a argument is too small.

rescode.err_arg_is_too_small (1226)
The value of a argument is too small.

rescode.err_argument_dimension (1201)
A function argument is of incorrect dimension.

rescode.err_argument_is_too_large (5005)
The value of a function argument is too large.

rescode.err_argument_lenneq (1197)
Incorrect length of arguments.

rescode.err_argument_perm_array (1299)
An invalid permutation array is specified.

rescode.err_argument_type (1198)
Incorrect argument type.

rescode.err_bar_var_dim (3920)
The dimension of a symmetric matrix variable has to greater than 0.

rescode.err_basis (1266)
An invalid basis is specified. Either too many or too few basis variables are specified.

rescode.err_basis_factor (1610)
The factorization of the basis is invalid.

rescode.err_basis_singular (1615)
The basis is singular and hence cannot be factored.

rescode.err_blank_name (1070)
An all blank name has been specified.

rescode.err_cannot_clone_nl (2505)
A task with a nonlinear function call-back cannot be cloned.

rescode.err_cannot_handle_nl (2506)
A function cannot handle a task with nonlinear function call-backs.

rescode.err_cbf_duplicate_acoord (7116)
Duplicate index in ACOORD.

rescode.err_cbf_duplicate_bcoord (7115)
Duplicate index in BCOORD.

rescode.err_cbf_duplicate_con (7108)
Duplicate CON keyword.

16.5. Response codes 215

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_cbf_duplicate_int (7110)
Duplicate INT keyword.

rescode.err_cbf_duplicate_obj (7107)
Duplicate OBJ keyword.

rescode.err_cbf_duplicate_objacoord (7114)
Duplicate index in OBJCOORD.

rescode.err_cbf_duplicate_var (7109)
Duplicate VAR keyword.

rescode.err_cbf_invalid_con_type (7112)
Invalid constraint type.

rescode.err_cbf_invalid_domain_dimension (7113)
Invalid domain dimension.

rescode.err_cbf_invalid_int_index (7121)
Invalid INT index.

rescode.err_cbf_invalid_var_type (7111)
Invalid variable type.

rescode.err_cbf_no_variables (7102)
No variables are specified.

rescode.err_cbf_no_version_specified (7105)
No version specified.

rescode.err_cbf_obj_sense (7101)
An invalid objective sense is specified.

rescode.err_cbf_parse (7100)
An error occurred while parsing an CBF file.

rescode.err_cbf_syntax (7106)
Invalid syntax.

rescode.err_cbf_too_few_constraints (7118)
Too few constraints defined.

rescode.err_cbf_too_few_ints (7119)
Too few ints are specified.

rescode.err_cbf_too_few_variables (7117)
Too few variables defined.

rescode.err_cbf_too_many_constraints (7103)
Too many constraints specified.

rescode.err_cbf_too_many_ints (7120)
Too many ints are specified.

rescode.err_cbf_too_many_variables (7104)
Too many variables specified.

rescode.err_cbf_unsupported (7122)
Unsupported feature is present.

rescode.err_con_q_not_nsd (1294)
The quadratic constraint matrix is not negative semidefinite as expected for a con-
straint with finite lower bound. This results in a nonconvex problem. The parameter
dparam.check_convexity_rel_tol can be used to relax the convexity check.

rescode.err_con_q_not_psd (1293)
The quadratic constraint matrix is not positive semidefinite as expected for a con-
straint with finite upper bound. This results in a nonconvex problem. The parameter
dparam.check_convexity_rel_tol can be used to relax the convexity check.

216 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_cone_index (1300)
An index of a non-existing cone has been specified.

rescode.err_cone_overlap (1302)
One or more of the variables in the cone to be added is already member of another cone. Now
assume the variable is 𝑥𝑗 then add a new variable say 𝑥𝑘 and the constraint

𝑥𝑗 = 𝑥𝑘

and then let 𝑥𝑘 be member of the cone to be appended.

rescode.err_cone_overlap_append (1307)
The cone to be appended has one variable which is already member of another cone.

rescode.err_cone_rep_var (1303)
A variable is included multiple times in the cone.

rescode.err_cone_size (1301)
A cone with too few members is specified.

rescode.err_cone_type (1305)
Invalid cone type specified.

rescode.err_cone_type_str (1306)
Invalid cone type specified.

rescode.err_data_file_ext (1055)
The data file format cannot be determined from the file name.

rescode.err_dup_name (1071)
The same name was used multiple times for the same problem item type.

rescode.err_duplicate_aij (1385)
An element in the A matrix is specified twice.

rescode.err_duplicate_barvariable_names (4502)
Two barvariable names are identical.

rescode.err_duplicate_cone_names (4503)
Two cone names are identical.

rescode.err_duplicate_constraint_names (4500)
Two constraint names are identical.

rescode.err_duplicate_variable_names (4501)
Two variable names are identical.

rescode.err_end_of_file (1059)
End of file reached.

rescode.err_factor (1650)
An error occurred while factorizing a matrix.

rescode.err_feasrepair_cannot_relax (1700)
An optimization problem cannot be relaxed. This is the case e.g. for general nonlinear optimization
problems.

rescode.err_feasrepair_inconsistent_bound (1702)
The upper bound is less than the lower bound for a variable or a constraint. Please correct this
before running the feasibility repair.

rescode.err_feasrepair_solving_relaxed (1701)
The relaxed problem could not be solved to optimality. Please consult the log file for further details.

rescode.err_file_license (1007)
Invalid license file.

rescode.err_file_open (1052)
Error while opening a file.

16.5. Response codes 217

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_file_read (1053)
File read error.

rescode.err_file_write (1054)
File write error.

rescode.err_first (1261)
Invalid first.

rescode.err_firsti (1285)
Invalid firsti.

rescode.err_firstj (1287)
Invalid firstj.

rescode.err_fixed_bound_values (1425)
A fixed constraint/variable has been specified using the bound keys but the numerical value of the
lower and upper bound is different.

rescode.err_flexlm (1014)
The FLEXlm license manager reported an error.

rescode.err_global_inv_conic_problem (1503)
The global optimizer can only be applied to problems without semidefinite variables.

rescode.err_huge_aij (1380)
A numerically huge value is specified for an 𝑎𝑖,𝑗 element in 𝐴. The parameter
dparam.data_tol_aij_huge controls when an 𝑎𝑖,𝑗 is considered huge.

rescode.err_huge_c (1375)
A huge value in absolute size is specified for one 𝑐𝑗 .

rescode.err_identical_tasks (3101)
Some tasks related to this function call were identical. Unique tasks were expected.

rescode.err_in_argument (1200)
A function argument is incorrect.

rescode.err_index (1235)
An index is out of range.

rescode.err_index_arr_is_too_large (1222)
An index in an array argument is too large.

rescode.err_index_arr_is_too_small (1221)
An index in an array argument is too small.

rescode.err_index_is_too_large (1204)
An index in an argument is too large.

rescode.err_index_is_too_small (1203)
An index in an argument is too small.

rescode.err_inf_dou_index (1219)
A double information index is out of range for the specified type.

rescode.err_inf_dou_name (1230)
A double information name is invalid.

rescode.err_inf_int_index (1220)
An integer information index is out of range for the specified type.

rescode.err_inf_int_name (1231)
An integer information name is invalid.

rescode.err_inf_lint_index (1225)
A long integer information index is out of range for the specified type.

218 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_inf_lint_name (1234)
A long integer information name is invalid.

rescode.err_inf_type (1232)
The information type is invalid.

rescode.err_infeas_undefined (3910)
The requested value is not defined for this solution type.

rescode.err_infinite_bound (1400)
A numerically huge bound value is specified.

rescode.err_int64_to_int32_cast (3800)
An 32 bit integer could not cast to a 64 bit integer.

rescode.err_internal (3000)
An internal error occurred. Please report this problem.

rescode.err_internal_test_failed (3500)
An internal unit test function failed.

rescode.err_inv_aptre (1253)
aptre[j] is strictly smaller than aptrb[j] for some j.

rescode.err_inv_bk (1255)
Invalid bound key.

rescode.err_inv_bkc (1256)
Invalid bound key is specified for a constraint.

rescode.err_inv_bkx (1257)
An invalid bound key is specified for a variable.

rescode.err_inv_cone_type (1272)
Invalid cone type code is encountered.

rescode.err_inv_cone_type_str (1271)
Invalid cone type string encountered.

rescode.err_inv_marki (2501)
Invalid value in marki.

rescode.err_inv_markj (2502)
Invalid value in markj.

rescode.err_inv_name_item (1280)
An invalid name item code is used.

rescode.err_inv_numi (2503)
Invalid numi.

rescode.err_inv_numj (2504)
Invalid numj.

rescode.err_inv_optimizer (1550)
An invalid optimizer has been chosen for the problem. This means that the simplex or the conic
optimizer is chosen to optimize a nonlinear problem.

rescode.err_inv_problem (1500)
Invalid problem type. Probably a nonconvex problem has been specified.

rescode.err_inv_qcon_subi (1405)
Invalid value in qcsubi.

rescode.err_inv_qcon_subj (1406)
Invalid value in qcsubj.

rescode.err_inv_qcon_subk (1404)
Invalid value in qcsubk.

16.5. Response codes 219

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_inv_qcon_val (1407)
Invalid value in qcval.

rescode.err_inv_qobj_subi (1401)
Invalid value in qosubi.

rescode.err_inv_qobj_subj (1402)
Invalid value in qosubj.

rescode.err_inv_qobj_val (1403)
Invalid value in qoval.

rescode.err_inv_sk (1270)
Invalid status key code.

rescode.err_inv_sk_str (1269)
Invalid status key string encountered.

rescode.err_inv_skc (1267)
Invalid value in skc.

rescode.err_inv_skn (1274)
Invalid value in skn.

rescode.err_inv_skx (1268)
Invalid value in skx.

rescode.err_inv_var_type (1258)
An invalid variable type is specified for a variable.

rescode.err_invalid_accmode (2520)
An invalid access mode is specified.

rescode.err_invalid_aij (1473)
𝑎𝑖,𝑗 contains an invalid floating point value, i.e. a NaN or an infinite value.

rescode.err_invalid_ampl_stub (3700)
Invalid AMPL stub.

rescode.err_invalid_barvar_name (1079)
An invalid symmetric matrix variable name is used.

rescode.err_invalid_compression (1800)
Invalid compression type.

rescode.err_invalid_con_name (1076)
An invalid constraint name is used.

rescode.err_invalid_cone_name (1078)
An invalid cone name is used.

rescode.err_invalid_file_format_for_cones (4005)
The file format does not support a problem with conic constraints.

rescode.err_invalid_file_format_for_general_nl (4010)
The file format does not support a problem with general nonlinear terms.

rescode.err_invalid_file_format_for_sym_mat (4000)
The file format does not support a problem with symmetric matrix variables.

rescode.err_invalid_file_name (1056)
An invalid file name has been specified.

rescode.err_invalid_format_type (1283)
Invalid format type.

rescode.err_invalid_idx (1246)
A specified index is invalid.

220 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_invalid_iomode (1801)
Invalid io mode.

rescode.err_invalid_max_num (1247)
A specified index is invalid.

rescode.err_invalid_name_in_sol_file (1170)
An invalid name occurred in a solution file.

rescode.err_invalid_obj_name (1075)
An invalid objective name is specified.

rescode.err_invalid_objective_sense (1445)
An invalid objective sense is specified.

rescode.err_invalid_problem_type (6000)
An invalid problem type.

rescode.err_invalid_sol_file_name (1057)
An invalid file name has been specified.

rescode.err_invalid_stream (1062)
An invalid stream is referenced.

rescode.err_invalid_surplus (1275)
Invalid surplus.

rescode.err_invalid_sym_mat_dim (3950)
A sparse symmetric matrix of invalid dimension is specified.

rescode.err_invalid_task (1064)
The task is invalid.

rescode.err_invalid_utf8 (2900)
An invalid UTF8 string is encountered.

rescode.err_invalid_var_name (1077)
An invalid variable name is used.

rescode.err_invalid_wchar (2901)
An invalid wchar string is encountered.

rescode.err_invalid_whichsol (1228)
whichsol is invalid.

rescode.err_json_data (1179)
Inconsistent data in JSON Task file

rescode.err_json_format (1178)
Error in an JSON Task file

rescode.err_json_missing_data (1180)
Missing data section in JSON task file.

rescode.err_json_number_overflow (1177)
Invalid number entry - wrong type or value overflow.

rescode.err_json_string (1176)
Error in JSON string.

rescode.err_json_syntax (1175)
Syntax error in an JSON data

rescode.err_last (1262)
Invalid index last. A given index was out of expected range.

rescode.err_lasti (1286)
Invalid lasti.

16.5. Response codes 221

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_lastj (1288)
Invalid lastj.

rescode.err_lau_arg_k (7012)
Invalid argument k.

rescode.err_lau_arg_m (7010)
Invalid argument m.

rescode.err_lau_arg_n (7011)
Invalid argument n.

rescode.err_lau_arg_trans (7018)
Invalid argument trans.

rescode.err_lau_arg_transa (7015)
Invalid argument transa.

rescode.err_lau_arg_transb (7016)
Invalid argument transb.

rescode.err_lau_arg_uplo (7017)
Invalid argument uplo.

rescode.err_lau_invalid_lower_triangular_matrix (7002)
An invalid lower triangular matrix.

rescode.err_lau_invalid_sparse_symmetric_matrix (7019)
An invalid sparse symmetric matrix is specfified. Note only the lower triangular part with no
duplicates is specifed.

rescode.err_lau_not_positive_definite (7001)
A matrix is not positive definite.

rescode.err_lau_singular_matrix (7000)
A matrix is singular.

rescode.err_lau_unknown (7005)
An unknown error.

rescode.err_license (1000)
Invalid license.

rescode.err_license_cannot_allocate (1020)
The license system cannot allocate the memory required.

rescode.err_license_cannot_connect (1021)
MOSEK cannot connect to the license server. Most likely the license server is not up and running.

rescode.err_license_expired (1001)
The license has expired.

rescode.err_license_feature (1018)
A requested feature is not available in the license file(s). Most likely due to an incorrect license
system setup.

rescode.err_license_invalid_hostid (1025)
The host ID specified in the license file does not match the host ID of the computer.

rescode.err_license_max (1016)
Maximum number of licenses is reached.

rescode.
The MOSEKLM license manager daemon is not up and running.

rescode.err_license_no_server_line (1028)
There is no SERVER line in the license file. All non-zero license count features need at least one
SERVER line.

222 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_license_no_server_support (1027)
The license server does not support the requested feature. Possible reasons for this error include:

•The feature has expired.

•The feature’s start date is later than today’s date.

•The version requested is higher than feature’s the highest supported version.

•A corrupted license file.

Try restarting the license and inspect the license server debug file, usually called lmgrd.log.

rescode.err_license_server (1015)
The license server is not responding.

rescode.err_license_server_version (1026)
The version specified in the checkout request is greater than the highest version number the daemon
supports.

rescode.err_license_version (1002)
The license is valid for another version of MOSEK.

rescode.err_link_file_dll (1040)
A file cannot be linked to a stream in the DLL version.

rescode.err_living_tasks (1066)
All tasks associated with an enviroment must be deleted before the environment is deleted. There
are still some undeleted tasks.

rescode.err_lower_bound_is_a_nan (1390)
The lower bound specified is not a number (nan).

rescode.err_lp_dup_slack_name (1152)
The name of the slack variable added to a ranged constraint already exists.

rescode.err_lp_empty (1151)
The problem cannot be written to an LP formatted file.

rescode.err_lp_file_format (1157)
Syntax error in an LP file.

rescode.err_lp_format (1160)
Syntax error in an LP file.

rescode.err_lp_free_constraint (1155)
Free constraints cannot be written in LP file format.

rescode.err_lp_incompatible (1150)
The problem cannot be written to an LP formatted file.

rescode.err_lp_invalid_con_name (1171)
A constraint name is invalid when used in an LP formatted file.

rescode.err_lp_invalid_var_name (1154)
A variable name is invalid when used in an LP formatted file.

rescode.err_lp_write_conic_problem (1163)
The problem contains cones that cannot be written to an LP formatted file.

rescode.err_lp_write_geco_problem (1164)
The problem contains general convex terms that cannot be written to an LP formatted file.

rescode.err_lu_max_num_tries (2800)
Could not compute the LU factors of the matrix within the maximum number of allowed tries.

rescode.err_max_len_is_too_small (1289)
An maximum length that is too small has been specified.

16.5. Response codes 223

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_maxnumbarvar (1242)
The maximum number of semidefinite variables specified is smaller than the number of semidefinite
variables in the task.

rescode.err_maxnumcon (1240)
The maximum number of constraints specified is smaller than the number of constraints in the
task.

rescode.err_maxnumcone (1304)
The value specified for maxnumcone is too small.

rescode.err_maxnumqnz (1243)
The maximum number of non-zeros specified for the 𝑄 matrices is smaller than the number of
non-zeros in the current 𝑄 matrices.

rescode.err_maxnumvar (1241)
The maximum number of variables specified is smaller than the number of variables in the task.

rescode.err_mio_internal (5010)
A fatal error occurred in the mixed integer optimizer. Please contact MOSEK support.

rescode.err_mio_invalid_node_optimizer (7131)
An invalid node optimizer was selected for the problem type.

rescode.err_mio_invalid_root_optimizer (7130)
An invalid root optimizer was selected for the problem type.

rescode.err_mio_no_optimizer (1551)
No optimizer is available for the current class of integer optimization problems.

rescode.err_mio_not_loaded (1553)
The mixed-integer optimizer is not loaded.

rescode.err_missing_license_file (1008)
MOSEK cannot license file or a token server. See the MOSEK installation manual for details.

rescode.err_mixed_conic_and_nl (1501)
The problem contains nonlinear terms conic constraints. The requested operation cannot be applied
to this type of problem.

rescode.err_mps_cone_overlap (1118)
A variable is specified to be a member of several cones.

rescode.err_mps_cone_repeat (1119)
A variable is repeated within the CSECTION.

rescode.err_mps_cone_type (1117)
Invalid cone type specified in a CSECTION.

rescode.err_mps_duplicate_q_element (1121)
Duplicate elements is specfied in a 𝑄 matrix.

rescode.err_mps_file (1100)
An error occurred while reading an MPS file.

rescode.err_mps_inv_bound_key (1108)
An invalid bound key occurred in an MPS file.

rescode.err_mps_inv_con_key (1107)
An invalid constraint key occurred in an MPS file.

rescode.err_mps_inv_field (1101)
A field in the MPS file is invalid. Probably it is too wide.

rescode.err_mps_inv_marker (1102)
An invalid marker has been specified in the MPS file.

rescode.err_mps_inv_sec_name (1109)
An invalid section name occurred in an MPS file.

224 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_mps_inv_sec_order (1115)
The sections in the MPS data file are not in the correct order.

rescode.err_mps_invalid_obj_name (1128)
An invalid objective name is specified.

rescode.err_mps_invalid_objsense (1122)
An invalid objective sense is specified.

rescode.err_mps_mul_con_name (1112)
A constraint name was specified multiple times in the ROWS section.

rescode.err_mps_mul_csec (1116)
Multiple CSECTIONs are given the same name.

rescode.err_mps_mul_qobj (1114)
The Q term in the objective is specified multiple times in the MPS data file.

rescode.err_mps_mul_qsec (1113)
Multiple QSECTIONs are specified for a constraint in the MPS data file.

rescode.err_mps_no_objective (1110)
No objective is defined in an MPS file.

rescode.err_mps_non_symmetric_q (1120)
A non symmetric matrice has been speciefied.

rescode.err_mps_null_con_name (1103)
An empty constraint name is used in an MPS file.

rescode.err_mps_null_var_name (1104)
An empty variable name is used in an MPS file.

rescode.err_mps_splitted_var (1111)
All elements in a column of the 𝐴 matrix must be specified consecutively. Hence, it is illegal to
specify non-zero elements in 𝐴 for variable 1, then for variable 2 and then variable 1 again.

rescode.err_mps_tab_in_field2 (1125)
A tab char occurred in field 2.

rescode.err_mps_tab_in_field3 (1126)
A tab char occurred in field 3.

rescode.err_mps_tab_in_field5 (1127)
A tab char occurred in field 5.

rescode.err_mps_undef_con_name (1105)
An undefined constraint name occurred in an MPS file.

rescode.err_mps_undef_var_name (1106)
An undefined variable name occurred in an MPS file.

rescode.err_mul_a_element (1254)
An element in 𝐴 is defined multiple times.

rescode.err_name_is_null (1760)
The name buffer is a NULL pointer.

rescode.err_name_max_len (1750)
A name is longer than the buffer that is supposed to hold it.

rescode.err_nan_in_blc (1461)
𝑙𝑐 contains an invalid floating point value, i.e. a NaN.

rescode.err_nan_in_blx (1471)
𝑙𝑥 contains an invalid floating point value, i.e. a NaN.

rescode.err_nan_in_buc (1462)
𝑢𝑐 contains an invalid floating point value, i.e. a NaN.

16.5. Response codes 225

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_nan_in_bux (1472)
𝑢𝑥 contains an invalid floating point value, i.e. a NaN.

rescode.err_nan_in_c (1470)
𝑐 contains an invalid floating point value, i.e. a NaN.

rescode.err_nan_in_double_data (1450)
An invalid floating point value was used in some double data.

rescode.err_negative_append (1264)
Cannot append a negative number.

rescode.err_negative_surplus (1263)
Negative surplus.

rescode.err_newer_dll (1036)
The dynamic link library is newer than the specified version.

rescode.err_no_bars_for_solution (3916)
There is no 𝑠 available for the solution specified. In particular note there are no 𝑠 defined for the
basic and integer solutions.

rescode.err_no_barx_for_solution (3915)
There is no 𝑋 available for the solution specified. In particular note there are no 𝑋 defined for the
basic and integer solutions.

rescode.err_no_basis_sol (1600)
No basic solution is defined.

rescode.err_no_dual_for_itg_sol (2950)
No dual information is available for the integer solution.

rescode.err_no_dual_infeas_cer (2001)
A certificate of infeasibility is not available.

rescode.err_no_init_env (1063)
env is not initialized.

rescode.err_no_optimizer_var_type (1552)
No optimizer is available for this class of optimization problems.

rescode.err_no_primal_infeas_cer (2000)
A certificate of primal infeasibility is not available.

rescode.err_no_snx_for_bas_sol (2953)
𝑠𝑥𝑛 is not available for the basis solution.

rescode.err_no_solution_in_callback (2500)
The required solution is not available.

rescode.err_non_unique_array (5000)
An array does not contain unique elements.

rescode.err_nonconvex (1291)
The optimization problem is nonconvex.

rescode.err_nonlinear_equality (1290)
The model contains a nonlinear equality which defines a nonconvex set.

rescode.err_nonlinear_functions_not_allowed (1428)
An operation that is invalid for problems with nonlinear functions defined has been attempted.

rescode.err_nonlinear_ranged (1292)
Nonlinear constraints with finite lower and upper bound always define a nonconvex feasible set.

rescode.err_nr_arguments (1199)
Incorrect number of function arguments.

226 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_null_env (1060)
env is a NULL pointer.

rescode.err_null_pointer (1065)
An argument to a function is unexpectedly a NULL pointer.

rescode.err_null_task (1061)
task is a NULL pointer.

rescode.err_numconlim (1250)
Maximum number of constraints limit is exceeded.

rescode.err_numvarlim (1251)
Maximum number of variables limit is exceeded.

rescode.err_obj_q_not_nsd (1296)
The quadratic coefficient matrix in the objective is not negative semidefinite as expected for a
maximization problem. The parameter dparam.check_convexity_rel_tol can be used to relax
the convexity check.

rescode.err_obj_q_not_psd (1295)
The quadratic coefficient matrix in the objective is not positive semidefinite as expected for a
minimization problem. The parameter dparam.check_convexity_rel_tol can be used to relax
the convexity check.

rescode.err_objective_range (1260)
Empty objective range.

rescode.err_older_dll (1035)
The dynamic link library is older than the specified version.

rescode.err_open_dl (1030)
A dynamic link library could not be opened.

rescode.err_opf_format (1168)
Syntax error in an OPF file

rescode.err_opf_new_variable (1169)
Introducing new variables is now allowed. When a [variables] section is present, it is not allowed
to introduce new variables later in the problem.

rescode.err_opf_premature_eof (1172)
Premature end of file in an OPF file.

rescode.err_optimizer_license (1013)
The optimizer required is not licensed.

rescode.err_overflow (1590)
A computation produced an overflow i.e. a very large number.

rescode.err_param_index (1210)
Parameter index is out of range.

rescode.err_param_is_too_large (1215)
The parameter value is too large.

rescode.err_param_is_too_small (1216)
The parameter value is too small.

rescode.err_param_name (1205)
The parameter name is not correct.

rescode.err_param_name_dou (1206)
The parameter name is not correct for a double parameter.

rescode.err_param_name_int (1207)
The parameter name is not correct for an integer parameter.

16.5. Response codes 227

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_param_name_str (1208)
The parameter name is not correct for a string parameter.

rescode.err_param_type (1218)
The parameter type is invalid.

rescode.err_param_value_str (1217)
The parameter value string is incorrect.

rescode.err_platform_not_licensed (1019)
A requested license feature is not available for the required platform.

rescode.err_postsolve (1580)
An error occurred during the postsolve. Please contact MOSEK support.

rescode.err_pro_item (1281)
An invalid problem is used.

rescode.err_prob_license (1006)
The software is not licensed to solve the problem.

rescode.err_qcon_subi_too_large (1409)
Invalid value in qcsubi.

rescode.err_qcon_subi_too_small (1408)
Invalid value in qcsubi.

rescode.err_qcon_upper_triangle (1417)
An element in the upper triangle of a 𝑄𝑘 is specified. Only elements in the lower triangle should
be specified.

rescode.err_qobj_upper_triangle (1415)
An element in the upper triangle of 𝑄𝑜 is specified. Only elements in the lower triangle should be
specified.

rescode.err_read_format (1090)
The specified format cannot be read.

rescode.err_read_lp_missing_end_tag (1159)
Syntax error in LP file. Possibly missing End tag.

rescode.err_read_lp_nonexisting_name (1162)
A variable never occurred in objective or constraints.

rescode.err_remove_cone_variable (1310)
A variable cannot be removed because it will make a cone invalid.

rescode.err_repair_invalid_problem (1710)
The feasibility repair does not support the specified problem type.

rescode.err_repair_optimization_failed (1711)
Computation the optimal relaxation failed. The cause may have been numerical problems.

rescode.err_sen_bound_invalid_lo (3054)
Analysis of lower bound requested for an index, where no lower bound exists.

rescode.err_sen_bound_invalid_up (3053)
Analysis of upper bound requested for an index, where no upper bound exists.

rescode.err_sen_format (3050)
Syntax error in sensitivity analysis file.

rescode.err_sen_index_invalid (3055)
Invalid range given in the sensitivity file.

rescode.err_sen_index_range (3052)
Index out of range in the sensitivity analysis file.

228 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_sen_invalid_regexp (3056)
Syntax error in regexp or regexp longer than 1024.

rescode.err_sen_numerical (3058)
Numerical difficulties encountered performing the sensitivity analysis.

rescode.err_sen_solution_status (3057)
No optimal solution found to the original problem given for sensitivity analysis.

rescode.err_sen_undef_name (3051)
An undefined name was encountered in the sensitivity analysis file.

rescode.err_sen_unhandled_problem_type (3080)
Sensitivity analysis cannot be performed for the specified problem. Sensitivity analysis is only
possible for linear problems.

rescode.err_server_connect (8000)
Failed to connect to remote solver server. The server string or the port string were invalid, or the
server did not accept connection.

rescode.err_server_protocol (8001)
Unexpected message or data from solver server.

rescode.err_server_status (8002)
Server returned non-ok HTTP status code

rescode.err_server_token (8003)
The job ID specified is incorrect or invalid

rescode.err_size_license (1005)
The problem is bigger than the license.

rescode.err_size_license_con (1010)
The problem has too many constraints to be solved with the available license.

rescode.err_size_license_intvar (1012)
The problem contains too many integer variables to be solved with the available license.

rescode.err_size_license_numcores (3900)
The computer contains more cpu cores than the license allows for.

rescode.err_size_license_var (1011)
The problem has too many variables to be solved with the available license.

rescode.err_sol_file_invalid_number (1350)
An invalid number is specified in a solution file.

rescode.err_solitem (1237)
The solution item number solitem is invalid. Please note that solitem.snx is invalid for the
basic solution.

rescode.err_solver_probtype (1259)
Problem type does not match the chosen optimizer.

rescode.err_space (1051)
Out of space.

rescode.err_space_leaking (1080)
MOSEK is leaking memory. This can be due to either an incorrect use of MOSEK or a bug.

rescode.err_space_no_info (1081)
No available information about the space usage.

rescode.err_sym_mat_duplicate (3944)
A value in a symmetric matric as been specified more than once.

rescode.err_sym_mat_huge (1482)
A symmetric matrix contains a huge value in absolute size. The parameter
dparam.data_sym_mat_tol_huge controls when an 𝑒𝑖,𝑗 is considered huge.

16.5. Response codes 229

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_sym_mat_invalid (1480)
A symmetric matrix contains an invalid floating point value, i.e. a NaN or an infinite value.

rescode.err_sym_mat_invalid_col_index (3941)
A column index specified for sparse symmetric matrix is invalid.

rescode.err_sym_mat_invalid_row_index (3940)
A row index specified for sparse symmetric matrix is invalid.

rescode.err_sym_mat_invalid_value (3943)
The numerical value specified in a sparse symmetric matrix is not a value floating value.

rescode.err_sym_mat_not_lower_tringular (3942)
Only the lower triangular part of sparse symmetric matrix should be specified.

rescode.err_task_incompatible (2560)
The Task file is incompatible with this platform. This results from reading a file on a 32 bit
platform generated on a 64 bit platform.

rescode.err_task_invalid (2561)
The Task file is invalid.

rescode.err_task_write (2562)
Failed to write the task file.

rescode.err_thread_cond_init (1049)
Could not initialize a condition.

rescode.err_thread_create (1048)
Could not create a thread. This error may occur if a large number of environments are created
and not deleted again. In any case it is a good practice to minimize the number of environments
created.

rescode.err_thread_mutex_init (1045)
Could not initialize a mutex.

rescode.err_thread_mutex_lock (1046)
Could not lock a mutex.

rescode.err_thread_mutex_unlock (1047)
Could not unlock a mutex.

rescode.err_toconic_constr_not_conic (7153)
The constraint is not conic representable.

rescode.err_toconic_constr_q_not_psd (7150)
The matrix defining the quadratric part of constraint is not positive semidefinite.

rescode.err_toconic_constraint_fx (7151)
The quadratic constraint is an equality, thus not convex.

rescode.err_toconic_constraint_ra (7152)
The quadratic constraint has finite lower and upper bound, and therefore it is not convex.

rescode.err_toconic_objective_not_psd (7155)
The matrix defining the quadratric part of the objective function is not positive semidefinite.

rescode.err_too_small_max_num_nz (1245)
The maximum number of non-zeros specified is too small.

rescode.err_too_small_maxnumanz (1252)
The maximum number of non-zeros specified for 𝐴 is smaller than the number of non-zeros in the
current 𝐴.

rescode.err_unb_step_size (3100)
A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes
unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen
only if the problem is badly formulated. Please contact MOSEK support if this error occurs.

230 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_undef_solution (1265)
MOSEK has the following solution types:

•an interior-point solution,

•an basic solution,

•and an integer solution.

Each optimizer may set one or more of these solutions; e.g by default a successful optimization
with the interior-point optimizer defines the interior-point solution, and, for linear problems, also
the basic solution. This error occurs when asking for a solution or for information about a solution
that is not defined.

rescode.err_undefined_objective_sense (1446)
The objective sense has not been specified before the optimization.

rescode.err_unhandled_solution_status (6010)
Unhandled solution status.

rescode.err_unknown (1050)
Unknown error.

rescode.err_upper_bound_is_a_nan (1391)
The upper bound specified is not a number (nan).

rescode.err_upper_triangle (6020)
An element in the upper triangle of a lower triangular matrix is specified.

rescode.err_user_func_ret (1430)
An user function reported an error.

rescode.err_user_func_ret_data (1431)
An user function returned invalid data.

rescode.err_user_nlo_eval (1433)
The user-defined nonlinear function reported an error.

rescode.err_user_nlo_eval_hessubi (1440)
The user-defined nonlinear function reported an invalid subscript in the Hessian.

rescode.err_user_nlo_eval_hessubj (1441)
The user-defined nonlinear function reported an invalid subscript in the Hessian.

rescode.err_user_nlo_func (1432)
The user-defined nonlinear function reported an error.

rescode.err_whichitem_not_allowed (1238)
whichitem is unacceptable.

rescode.err_whichsol (1236)
The solution defined by whichsol does not exists.

rescode.err_write_lp_format (1158)
Problem cannot be written as an LP file.

rescode.err_write_lp_non_unique_name (1161)
An auto-generated name is not unique.

rescode.err_write_mps_invalid_name (1153)
An invalid name is created while writing an MPS file. Usually this will make the MPS file unread-
able.

rescode.err_write_opf_invalid_var_name (1156)
Empty variable names cannot be written to OPF files.

rescode.err_writing_file (1166)
An error occurred while writing file

16.5. Response codes 231

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_xml_invalid_problem_type (3600)
The problem type is not supported by the XML format.

rescode.err_y_is_undefined (1449)
The solution item 𝑦 is undefined.

16.5.3 Warning Codes

rescode.wrn_ana_almost_int_bounds (904)
This warning is issued by the problem analyzer if a constraint is bound nearly integral.

rescode.wrn_ana_c_zero (901)
This warning is issued by the problem analyzer, if the coefficients in the linear part of the objective
are all zero.

rescode.wrn_ana_close_bounds (903)
This warning is issued by problem analyzer, if ranged constraints or variables with very close upper
and lower bounds are detected. One should consider treating such constraints as equalities and
such variables as constants.

rescode.wrn_ana_empty_cols (902)
This warning is issued by the problem analyzer, if columns, in which all coefficients are zero, are
found.

rescode.wrn_ana_large_bounds (900)
This warning is issued by the problem analyzer, if one or more constraint or variable bounds are
very large. One should consider omitting these bounds entirely by setting them to +inf or -inf.

rescode.wrn_construct_invalid_sol_itg (807)
The initial value for one or more of the integer variables is not feasible.

rescode.wrn_construct_no_sol_itg (810)
The construct solution requires an integer solution.

rescode.wrn_construct_solution_infeas (805)
After fixing the integer variables at the suggested values then the problem is infeasible.

rescode.wrn_dropped_nz_qobj (201)
One or more non-zero elements were dropped in the Q matrix in the objective.

rescode.wrn_duplicate_barvariable_names (852)
Two barvariable names are identical.

rescode.wrn_duplicate_cone_names (853)
Two cone names are identical.

rescode.wrn_duplicate_constraint_names (850)
Two constraint names are identical.

rescode.wrn_duplicate_variable_names (851)
Two variable names are identical.

rescode.wrn_eliminator_space (801)
The eliminator is skipped at least once due to lack of space.

rescode.wrn_empty_name (502)
A variable or constraint name is empty. The output file may be invalid.

rescode.wrn_ignore_integer (250)
Ignored integer constraints.

rescode.wrn_incomplete_linear_dependency_check (800)
The linear dependency check(s) is incomplete. Normally this is not an important warning unless
the optimization problem has been formulated with linear dependencies. Linear dependencies may
prevent MOSEK from solving the problem.

232 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.wrn_large_aij (62)
A numerically large value is specified for an 𝑎𝑖,𝑗 element in 𝐴. The parameter
dparam.data_tol_aij_large controls when an 𝑎𝑖,𝑗 is considered large.

rescode.wrn_large_bound (51)
A numerically large bound value is specified.

rescode.wrn_large_cj (57)
A numerically large value is specified for one 𝑐𝑗 .

rescode.wrn_large_con_fx (54)
An equality constraint is fixed to a numerically large value. This can cause numerical problems.

rescode.wrn_large_lo_bound (52)
A numerically large lower bound value is specified.

rescode.wrn_large_up_bound (53)
A numerically large upper bound value is specified.

rescode.wrn_license_expire (500)
The license expires.

rescode.wrn_license_feature_expire (505)
The license expires.

rescode.wrn_license_server (501)
The license server is not responding.

rescode.wrn_lp_drop_variable (85)
Ignored a variable because the variable was not previously defined. Usually this implies that a
variable appears in the bound section but not in the objective or the constraints.

rescode.wrn_lp_old_quad_format (80)
Missing ‘/2’ after quadratic expressions in bound or objective.

rescode.wrn_mio_infeasible_final (270)
The final mixed-integer problem with all the integer variables fixed at their optimal values is
infeasible.

rescode.wrn_mps_split_bou_vector (72)
A BOUNDS vector is split into several nonadjacent parts in an MPS file.

rescode.wrn_mps_split_ran_vector (71)
A RANGE vector is split into several nonadjacent parts in an MPS file.

rescode.wrn_mps_split_rhs_vector (70)
An RHS vector is split into several nonadjacent parts in an MPS file.

rescode.wrn_name_max_len (65)
A name is longer than the buffer that is supposed to hold it.

rescode.wrn_no_dualizer (950)
No automatic dualizer is available for the specified problem. The primal problem is solved.

rescode.wrn_no_global_optimizer (251)
No global optimizer is available.

rescode.wrn_no_nonlinear_function_write (450)
The problem contains a general nonlinear function in either the objective or the constraints. Such
a nonlinear function cannot be written to a disk file. Note that quadratic terms when inputted
explicitly can be written to disk.

rescode.wrn_nz_in_upr_tri (200)
Non-zero elements specified in the upper triangle of a matrix were ignored.

rescode.wrn_open_param_file (50)
The parameter file could not be opened.

16.5. Response codes 233

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.wrn_param_ignored_cmio (516)
A parameter was ignored by the conic mixed integer optimizer.

rescode.wrn_param_name_dou (510)
The parameter name is not recognized as a double parameter.

rescode.wrn_param_name_int (511)
The parameter name is not recognized as a integer parameter.

rescode.wrn_param_name_str (512)
The parameter name is not recognized as a string parameter.

rescode.wrn_param_str_value (515)
The string is not recognized as a symbolic value for the parameter.

rescode.wrn_presolve_outofspace (802)
The presolve is incomplete due to lack of space.

rescode.wrn_quad_cones_with_root_fixed_at_zero (930)
For at least one quadratic cone the root is fixed at (nearly) zero. This may cause problems such as
a very large dual solution. Therefore, it is recommended to remove such cones before optimizing
the problems, or to fix all the variables in the cone to 0.

rescode.wrn_rquad_cones_with_root_fixed_at_zero (931)
For at least one rotated quadratic cone at least one of the root variables are fixed at (nearly) zero.
This may cause problems such as a very large dual solution. Therefore, it is recommended to
remove such cones before optimizing the problems, or to fix all the variables in the cone to 0.

rescode.wrn_sol_file_ignored_con (351)
One or more lines in the constraint section were ignored when reading a solution file.

rescode.wrn_sol_file_ignored_var (352)
One or more lines in the variable section were ignored when reading a solution file.

rescode.wrn_sol_filter (300)
Invalid solution filter is specified.

rescode.wrn_spar_max_len (66)
A value for a string parameter is longer than the buffer that is supposed to hold it.

rescode.wrn_sym_mat_large (960)
A numerically large value is specified for an 𝑒𝑖,𝑗 element in 𝐸. The parameter
dparam.data_sym_mat_tol_large controls when an 𝑒𝑖,𝑗 is considered large.

rescode.wrn_too_few_basis_vars (400)
An incomplete basis has been specified. Too few basis variables are specified.

rescode.wrn_too_many_basis_vars (405)
A basis with too many variables has been specified.

rescode.wrn_undef_sol_file_name (350)
Undefined name occurred in a solution.

rescode.wrn_using_generic_names (503)
Generic names are used because a name is not valid. For instance when writing an LP file the
names must not contain blanks or start with a digit.

rescode.wrn_write_changed_names (803)
Some names were changed because they were invalid for the output file format.

rescode.wrn_write_discarded_cfix (804)
The fixed objective term could not be converted to a variable and was discarded in the output file.

rescode.wrn_zero_aij (63)
One or more zero elements are specified in A.

234 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.wrn_zeros_in_sparse_col (710)
One or more (near) zero elements are specified in a sparse column of a matrix. It is redundant to
specify zero elements. Hence, it may indicate an error.

rescode.wrn_zeros_in_sparse_row (705)
One or more (near) zero elements are specified in a sparse row of a matrix. Since, it is redundant
to specify zero elements then it may indicate an error.

16.6 Enumerations

language
Language selection constants

language.eng
English language selection

language.dan
Danish language selection

accmode
Constraint or variable access modes

accmode.var
Access data by columns (variable oriented)

accmode.con
Access data by rows (constraint oriented)

basindtype
Basis identification

basindtype.never
Never do basis identification.

basindtype.always
Basis identification is always performed even if the interior-point optimizer terminates abnor-
mally.

basindtype.no_error
Basis identification is performed if the interior-point optimizer terminates without an error.

basindtype.if_feasible
Basis identification is not performed if the interior-point optimizer terminates with a problem
status saying that the problem is primal or dual infeasible.

basindtype.reservered
Not currently in use.

boundkey
Bound keys

boundkey.lo
The constraint or variable has a finite lower bound and an infinite upper bound.

boundkey.up
The constraint or variable has an infinite lower bound and an finite upper bound.

boundkey.fx
The constraint or variable is fixed.

boundkey.fr
The constraint or variable is free.

boundkey.ra
The constraint or variable is ranged.

16.6. Enumerations 235

MOSEK Optimizer API for Python, Release 8.0.0.94

mark
Mark

mark.lo
The lower bound is selected for sensitivity analysis.

mark.up
The upper bound is selected for sensitivity analysis.

simdegen
Degeneracy strategies

simdegen.none
The simplex optimizer should use no degeneration strategy.

simdegen.free
The simplex optimizer chooses the degeneration strategy.

simdegen.aggressive
The simplex optimizer should use an aggressive degeneration strategy.

simdegen.moderate
The simplex optimizer should use a moderate degeneration strategy.

simdegen.minimum
The simplex optimizer should use a minimum degeneration strategy.

transpose
Transposed matrix.

transpose.no
No transpose is applied.

transpose.yes
A transpose is applied.

uplo
Triangular part of a symmetric matrix.

uplo.lo
Lower part.

uplo.up
Upper part

simreform
Problem reformulation.

simreform.on
Allow the simplex optimizer to reformulate the problem.

simreform.off
Disallow the simplex optimizer to reformulate the problem.

simreform.free
The simplex optimizer can choose freely.

simreform.aggressive
The simplex optimizer should use an aggressive reformulation strategy.

simdupvec
Exploit duplicate columns.

simdupvec.on
Allow the simplex optimizer to exploit duplicated columns.

simdupvec.off
Disallow the simplex optimizer to exploit duplicated columns.

236 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

simdupvec.free
The simplex optimizer can choose freely.

simhotstart
Hot-start type employed by the simplex optimizer

simhotstart.none
The simplex optimizer performs a coldstart.

simhotstart.free
The simplex optimize chooses the hot-start type.

simhotstart.status_keys
Only the status keys of the constraints and variables are used to choose the type of hot-start.

intpnthotstart
Hot-start type employed by the interior-point optimizers.

intpnthotstart.none
The interior-point optimizer performs a coldstart.

intpnthotstart.primal
The interior-point optimizer exploits the primal solution only.

intpnthotstart.dual
The interior-point optimizer exploits the dual solution only.

intpnthotstart.primal_dual
The interior-point optimizer exploits both the primal and dual solution.

callbackcode
Progress call-back codes

callbackcode.begin_root_cutgen
The call-back function is called when root cut generation is started.

callbackcode.im_root_cutgen
The call-back is called from within root cut generation at an intermediate stage.

callbackcode.end_root_cutgen
The call-back function is called when root cut generation is is terminated.

callbackcode.begin_optimizer
The call-back function is called when the optimizer is started.

callbackcode.end_optimizer
The call-back function is called when the optimizer is terminated.

callbackcode.begin_presolve
The call-back function is called when the presolve is started.

callbackcode.update_presolve
The call-back function is called from within the presolve procedure.

callbackcode.im_presolve
The call-back function is called from within the presolve procedure at an intermediate stage.

callbackcode.end_presolve
The call-back function is called when the presolve is completed.

callbackcode.begin_intpnt
The call-back function is called when the interior-point optimizer is started.

callbackcode.intpnt
The call-back function is called from within the interior-point optimizer after the information
database has been updated.

16.6. Enumerations 237

MOSEK Optimizer API for Python, Release 8.0.0.94

callbackcode.im_intpnt
The call-back function is called at an intermediate stage within the interior-point optimizer
where the information database has not been updated.

callbackcode.end_intpnt
The call-back function is called when the interior-point optimizer is terminated.

callbackcode.begin_conic
The call-back function is called when the conic optimizer is started.

callbackcode.conic
The call-back function is called from within the conic optimizer after the information database
has been updated.

callbackcode.im_conic
The call-back function is called at an intermediate stage within the conic optimizer where the
information database has not been updated.

callbackcode.end_conic
The call-back function is called when the conic optimizer is terminated.

callbackcode.primal_simplex
The call-back function is called from within the primal simplex optimizer.

callbackcode.dual_simplex
The call-back function is called from within the dual simplex optimizer.

callbackcode.begin_bi
The basis identification procedure has been started.

callbackcode.im_bi
The call-back function is called from within the basis identification procedure at an interme-
diate point.

callbackcode.end_bi
The call-back function is called when the basis identification procedure is terminated.

callbackcode.begin_primal_bi
The call-back function is called from within the basis identification procedure when the primal
phase is started.

callbackcode.im_primal_bi
The call-back function is called from within the basis identification procedure at an interme-
diate point in the primal phase.

callbackcode.update_primal_bi
The call-back function is called from within the basis identification procedure at an interme-
diate point in the primal phase.

callbackcode.end_primal_bi
The call-back function is called from within the basis identification procedure when the primal
phase is terminated.

callbackcode.begin_dual_bi
The call-back function is called from within the basis identification procedure when the dual
phase is started.

callbackcode.im_dual_bi
The call-back function is called from within the basis identification procedure at an interme-
diate point in the dual phase.

callbackcode.update_dual_bi
The call-back function is called from within the basis identification procedure at an interme-
diate point in the dual phase.

238 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

callbackcode.end_dual_bi
The call-back function is called from within the basis identification procedure when the dual
phase is terminated.

callbackcode.begin_simplex_bi
The call-back function is called from within the basis identification procedure when the simplex
clean-up phase is started.

callbackcode.im_simplex_bi
The call-back function is called from within the basis identification procedure at an interme-
diate point in the simplex clean-up phase. The frequency of the call-backs is controlled by the
iparam.log_sim_freq parameter.

callbackcode.begin_primal_simplex_bi
The call-back function is called from within the basis identification procedure when the primal
simplex clean-up phase is started.

callbackcode.update_primal_simplex_bi
The call-back function is called from within the basis identification procedure at an interme-
diate point in the primal simplex clean-up phase. The frequency of the call-backs is controlled
by the iparam.log_sim_freq parameter.

callbackcode.end_primal_simplex_bi
The call-back function is called from within the basis identification procedure when the primal
clean-up phase is terminated.

callbackcode.begin_primal_dual_simplex_bi
The call-back function is called from within the basis identification procedure when the primal-
dual simplex clean-up phase is started.

callbackcode.update_primal_dual_simplex_bi
The call-back function is called from within the basis identification procedure at an inter-
mediate point in the primal-dual simplex clean-up phase. The frequency of the call-backs is
controlled by the iparam.log_sim_freq parameter.

callbackcode.end_primal_dual_simplex_bi
The call-back function is called from within the basis identification procedure when the primal-
dual clean-up phase is terminated.

callbackcode.begin_dual_simplex_bi
The call-back function is called from within the basis identification procedure when the dual
simplex clean-up phase is started.

callbackcode.update_dual_simplex_bi
The call-back function is called from within the basis identification procedure at an interme-
diate point in the dual simplex clean-up phase. The frequency of the call-backs is controlled
by the iparam.log_sim_freq parameter.

callbackcode.end_dual_simplex_bi
The call-back function is called from within the basis identification procedure when the dual
clean-up phase is terminated.

callbackcode.end_simplex_bi
The call-back function is called from within the basis identification procedure when the simplex
clean-up phase is terminated.

callbackcode.begin_mio
The call-back function is called when the mixed-integer optimizer is started.

callbackcode.im_mio
The call-back function is called at an intermediate point in the mixed-integer optimizer.

callbackcode.new_int_mio
The call-back function is called after a new integer solution has been located by the mixed-
integer optimizer.

16.6. Enumerations 239

MOSEK Optimizer API for Python, Release 8.0.0.94

callbackcode.end_mio
The call-back function is called when the mixed-integer optimizer is terminated.

callbackcode.begin_simplex
The call-back function is called when the simplex optimizer is started.

callbackcode.begin_dual_simplex
The call-back function is called when the dual simplex optimizer started.

callbackcode.im_dual_simplex
The call-back function is called at an intermediate point in the dual simplex optimizer.

callbackcode.update_dual_simplex
The call-back function is called in the dual simplex optimizer.

callbackcode.end_dual_simplex
The call-back function is called when the dual simplex optimizer is terminated.

callbackcode.begin_primal_simplex
The call-back function is called when the primal simplex optimizer is started.

callbackcode.im_primal_simplex
The call-back function is called at an intermediate point in the primal simplex optimizer.

callbackcode.update_primal_simplex
The call-back function is called in the primal simplex optimizer.

callbackcode.end_primal_simplex
The call-back function is called when the primal simplex optimizer is terminated.

callbackcode.begin_primal_dual_simplex
The call-back function is called when the primal-dual simplex optimizer is started.

callbackcode.im_primal_dual_simplex
The call-back function is called at an intermediate point in the primal-dual simplex optimizer.

callbackcode.update_primal_dual_simplex
The call-back function is called in the primal-dual simplex optimizer.

callbackcode.end_primal_dual_simplex
The call-back function is called when the primal-dual simplex optimizer is terminated.

callbackcode.end_simplex
The call-back function is called when the simplex optimizer is terminated.

callbackcode.begin_infeas_ana
The call-back function is called when the infeasibility analyzer is started.

callbackcode.end_infeas_ana
The call-back function is called when the infeasibility analyzer is terminated.

callbackcode.im_primal_sensivity
The call-back function is called at an intermediate stage of the primal sensitivity analysis.

callbackcode.im_dual_sensivity
The call-back function is called at an intermediate stage of the dual sensitivity analysis.

callbackcode.im_mio_intpnt
The call-back function is called at an intermediate point in the mixed-integer optimizer while
running the interior-point optimizer.

callbackcode.im_mio_primal_simplex
The call-back function is called at an intermediate point in the mixed-integer optimizer while
running the primal simplex optimizer.

callbackcode.im_mio_dual_simplex
The call-back function is called at an intermediate point in the mixed-integer optimizer while
running the dual simplex optimizer.

240 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

callbackcode.begin_primal_setup_bi
The call-back function is called when the primal BI setup is started.

callbackcode.end_primal_setup_bi
The call-back function is called when the primal BI setup is terminated.

callbackcode.begin_dual_setup_bi
The call-back function is called when the dual BI phase is started.

callbackcode.end_dual_setup_bi
The call-back function is called when the dual BI phase is terminated.

callbackcode.begin_primal_sensitivity
Primal sensitivity analysis is started.

callbackcode.end_primal_sensitivity
Primal sensitivity analysis is terminated.

callbackcode.begin_dual_sensitivity
Dual sensitivity analysis is started.

callbackcode.end_dual_sensitivity
Dual sensitivity analysis is terminated.

callbackcode.begin_license_wait
Begin waiting for license.

callbackcode.end_license_wait
End waiting for license.

callbackcode.im_license_wait
MOSEK is waiting for a license.

callbackcode.begin_qcqo_reformulate
Begin QCQO reformulation.

callbackcode.end_qcqo_reformulate
End QCQO reformulation.

callbackcode.im_qo_reformulate
The call-back function is called at an intermediate stage of the conic quadratic reformulation.

callbackcode.begin_to_conic
Begin conic reformulation.

callbackcode.end_to_conic
End conic reformulation.

callbackcode.begin_full_convexity_check
Begin full convexity check.

callbackcode.end_full_convexity_check
End full convexity check.

callbackcode.im_full_convexity_check
The call-back function is called at an intermediate stage of the full convexity check.

callbackcode.begin_primal_repair
Begin primal feasibility repair.

callbackcode.end_primal_repair
End primal feasibility repair.

callbackcode.begin_read
MOSEK has started reading a problem file.

callbackcode.im_read
Intermediate stage in reading.

16.6. Enumerations 241

MOSEK Optimizer API for Python, Release 8.0.0.94

callbackcode.end_read
MOSEK has finished reading a problem file.

callbackcode.begin_write
MOSEK has started writing a problem file.

callbackcode.end_write
MOSEK has finished writing a problem file.

callbackcode.read_opf_section
A chunk of 𝑄 non-zeros has been read from a problem file.

callbackcode.im_lu
The call-back function is called from within the LU factorization procedure at an intermediate
point.

callbackcode.im_order
The call-back function is called from within the matrix ordering procedure at an intermediate
point.

callbackcode.im_simplex
The call-back function is called from within the simplex optimizer at an intermediate point.

callbackcode.read_opf
The call-back function is called from the OPF reader.

callbackcode.write_opf
The call-back function is called from the OPF writer.

callbackcode.solving_remote
The call-back function is called while the task is being solved on a remote server.

checkconvexitytype
Types of convexity checks.

checkconvexitytype.none
No convexity check.

checkconvexitytype.simple
Perform simple and fast convexity check.

checkconvexitytype.full
Perform a full convexity check.

compresstype
Compression types

compresstype.none
No compression is used.

compresstype.free
The type of compression used is chosen automatically.

compresstype.gzip
The type of compression used is gzip compatible.

conetype
Cone types

conetype.quad
The cone is a quadratic cone.

conetype.rquad
The cone is a rotated quadratic cone.

nametype
Name types

242 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

nametype.gen
General names. However, no duplicate and blank names are allowed.

nametype.mps
MPS type names.

nametype.lp
LP type names.

symmattype
Cone types

symmattype.sparse
Sparse symmetric matrix.

dataformat
Data format types

dataformat.extension
The file extension is used to determine the data file format.

dataformat.mps
The data file is MPS formatted.

dataformat.lp
The data file is LP formatted.

dataformat.op
The data file is an optimization problem formatted file.

dataformat.xml
The data file is an XML formatted file.

dataformat.free_mps
The data a free MPS formatted file.

dataformat.task
Generic task dump file.

dataformat.cb
Conic benchmark format,

dataformat.json_task
JSON based task format.

dinfitem
Double information items

dinfitem.bi_time
Time spent within the basis identification procedure since its invocation.

dinfitem.bi_primal_time
Time spent within the primal phase of the basis identification procedure since its invocation.

dinfitem.bi_dual_time
Time spent within the dual phase basis identification procedure since its invocation.

dinfitem.bi_clean_time
Time spent within the clean-up phase of the basis identification procedure since its invocation.

dinfitem.bi_clean_primal_time
Time spent within the primal clean-up optimizer of the basis identification procedure since
its invocation.

dinfitem.bi_clean_primal_dual_time
Time spent within the primal-dual clean-up optimizer of the basis identification procedure
since its invocation.

16.6. Enumerations 243

MOSEK Optimizer API for Python, Release 8.0.0.94

dinfitem.bi_clean_dual_time
Time spent within the dual clean-up optimizer of the basis identification procedure since its
invocation.

dinfitem.intpnt_time
Time spent within the interior-point optimizer since its invocation.

dinfitem.intpnt_order_time
Order time (in seconds).

dinfitem.intpnt_primal_obj
Primal objective value reported by the interior-point optimizer.

dinfitem.intpnt_dual_obj
Dual objective value reported by the interior-point optimizer.

dinfitem.intpnt_primal_feas
Primal feasibility measure reported by the interior-point optimizers. (For the interior-point
optimizer this measure does not directly related to the original problem because a homoge-
neous model is employed).

dinfitem.intpnt_dual_feas
Dual feasibility measure reported by the interior-point optimizer. (For the interior-point op-
timizer this measure does not directly related to the original problem because a homogeneous
model is employed.)

dinfitem.intpnt_opt_status
This measure should converge to +1 if the problem has a primal-dual optimal solution, and
converge to −1 if problem is (strictly) primal or dual infeasible. If the measure converges to
another constant, or fails to settle, the problem is usually ill-posed.

dinfitem.sim_time
Time spent in the simplex optimizer since invoking it.

dinfitem.sim_primal_time
Time spent in the primal simplex optimizer since invoking it.

dinfitem.sim_dual_time
Time spent in the dual simplex optimizer since invoking it.

dinfitem.sim_primal_dual_time
Time spent in the primal-dual simplex optimizer since invoking it.

dinfitem.sim_obj
Objective value reported by the simplex optimizer.

dinfitem.sim_feas
Feasibility measure reported by the simplex optimizer.

dinfitem.mio_time
Time spent in the mixed-integer optimizer.

dinfitem.mio_root_presolve_time
Time spent in while presolving the root relaxation.

dinfitem.mio_root_optimizer_time
Time spent in the optimizer while solving the root relaxation.

dinfitem.mio_optimizer_time
Total time spent in the optimizer.

dinfitem.mio_heuristic_time
Total time spent in the optimizer.

dinfitem.to_conic_time
Time spent in the last to conic reformulation.

244 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

dinfitem.mio_construct_solution_obj
If MOSEK has successfully constructed an integer feasible solution, then this item contains
the optimal objective value corresponding to the feasible solution.

dinfitem.mio_obj_int
The primal objective value corresponding to the best integer feasible solution. Please
note that at least one integer feasible solution must have located i.e. check |
iinfitem.mio_num_int_solutions |.

dinfitem.mio_obj_bound
The best known bound on the objective function. This value is undefined until at least one
relaxation has been solved: To see if this is the case check that | iinfitem.mio_num_relax |
is strictly positive.

dinfitem.mio_obj_rel_gap
Given that the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the relative gap defined by

|(objective value of feasible solution) − (objective bound)|
max(𝛿, |(objective value of feasible solution)|)

.

where 𝛿 is given by the parameter dparam.mio_rel_gap_const . Otherwise it has the value
−1.0.

dinfitem.mio_obj_abs_gap
Given the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the absolute gap defined by

|(objective value of feasible solution) − (objective bound)|.

Otherwise it has the value -1.0.

dinfitem.mio_user_obj_cut
If the objective cut is used, then this information item has the value of the cut.

dinfitem.mio_cmir_separation_time
Seperation time for CMIR cuts.

dinfitem.mio_clique_separation_time
Seperation time for clique cuts.

dinfitem.mio_knapsack_cover_separation_time
Seperation time for knapsack cover.

dinfitem.mio_gmi_separation_time
Seperation time for GMI cuts.

dinfitem.mio_implied_bound_time
Seperation time for implied bound cuts.

dinfitem.mio_root_cutgen_time
Total time for cut generation.

dinfitem.mio_probing_time
Total time for probing.

dinfitem.optimizer_time
Total time spent in the optimizer since it was invoked.

dinfitem.presolve_time
Total time (in seconds) spent in the presolve since it was invoked.

dinfitem.mio_dual_bound_after_presolve
Value of the dual bound after presolve but before cut generation.

dinfitem.presolve_eli_time
Total time spent in the eliminator since the presolve was invoked.

16.6. Enumerations 245

MOSEK Optimizer API for Python, Release 8.0.0.94

dinfitem.presolve_lindep_time
Total time spent in the linear dependency checker since the presolve was invoked.

dinfitem.rd_time
Time spent reading the data file.

dinfitem.sol_itr_primal_obj
Primal objective value of the interior-point solution.

dinfitem.sol_itr_pviolcon
Maximal primal bound violation for 𝑥𝑐 in the interior-point solution.

dinfitem.sol_itr_pviolvar
Maximal primal bound violation for 𝑥𝑥 in the interior-point solution.

dinfitem.sol_itr_pviolbarvar
Maximal primal bound violation for 𝑋 in the interior-point solution.

dinfitem.sol_itr_pviolcones
Maximal primal violation for primal conic constraints in the interior-point solution.

dinfitem.sol_itr_dual_obj
Dual objective value of the interior-point solution.

dinfitem.sol_itr_dviolcon
Maximal dual bound violation for 𝑥𝑐 in the interior-point solution.

dinfitem.sol_itr_dviolvar
Maximal dual bound violation for 𝑥𝑥 in the interior-point solution.

dinfitem.sol_itr_dviolbarvar
Maximal dual bound violation for 𝑋 in the interior-point solution.

dinfitem.sol_itr_dviolcones
Maximal dual violation for dual conic constraints in the interior-point solution.

dinfitem.sol_itr_nrm_xc
Infinity norm of 𝑥𝑐 in the interior-point solution.

dinfitem.sol_itr_nrm_xx
Infinity norm of 𝑥𝑥 in the interior-point solution.

dinfitem.sol_itr_nrm_barx
Infinity norm of 𝑋 in the interior-point solution.

dinfitem.sol_itr_nrm_y
Infinity norm of 𝑦 in the interior-point solution.

dinfitem.sol_itr_nrm_slc
Infinity norm of 𝑠𝑐𝑙 in the interior-point solution.

dinfitem.sol_itr_nrm_suc
Infinity norm of 𝑠𝑐𝑢 in the interior-point solution.

dinfitem.sol_itr_nrm_slx
Infinity norm of 𝑠𝑥𝑙 in the interior-point solution.

dinfitem.sol_itr_nrm_sux
Infinity norm of 𝑠𝑋𝑢 in the interior-point solution.

dinfitem.sol_itr_nrm_snx
Infinity norm of 𝑠𝑥𝑛 in the interior-point solution.

dinfitem.sol_itr_nrm_bars
Infinity norm of 𝑆 in the interior-point solution.

dinfitem.sol_bas_primal_obj
Primal objective value of the basic solution.

246 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

dinfitem.sol_bas_pviolcon
Maximal primal bound violation for 𝑥𝑐 in the basic solution.

dinfitem.sol_bas_pviolvar
Maximal primal bound violation for 𝑥𝑥 in the basic solution.

dinfitem.sol_bas_dual_obj
Dual objective value of the basic solution.

dinfitem.sol_bas_dviolcon
Maximal dual bound violation for 𝑥𝑐 in the basic solution.

dinfitem.sol_bas_dviolvar
Maximal dual bound violation for 𝑥𝑥 in the basic solution.

dinfitem.sol_bas_nrm_xc
Infinity norm of 𝑥𝑐 in the basic solution.

dinfitem.sol_bas_nrm_xx
Infinity norm of 𝑥𝑥 in the basic solution.

dinfitem.sol_bas_nrm_barx
Infinity norm of 𝑋 in the basic solution.

dinfitem.sol_bas_nrm_y
Infinity norm of 𝑦 in the basic solution.

dinfitem.sol_bas_nrm_slc
Infinity norm of 𝑠𝑐𝑙 in the basic solution.

dinfitem.sol_bas_nrm_suc
Infinity norm of 𝑠𝑐𝑢 in the basic solution.

dinfitem.sol_bas_nrm_slx
Infinity norm of 𝑠𝑥𝑙 in the basic solution.

dinfitem.sol_bas_nrm_sux
Infinity norm of 𝑠𝑋𝑢 in the basic solution.

dinfitem.sol_itg_primal_obj
Primal objective value of the integer solution.

dinfitem.sol_itg_pviolcon
Maximal primal bound violation for 𝑥𝑐 in the integer solution.

dinfitem.sol_itg_pviolvar
Maximal primal bound violation for 𝑥𝑥 in the integer solution.

dinfitem.sol_itg_pviolbarvar
Maximal primal bound violation for 𝑋 in the integer solution.

dinfitem.sol_itg_pviolcones
Maximal primal violation for primal conic constraints in the integer solution.

dinfitem.sol_itg_pviolitg
Maximal violation for the integer constraints in the integer solution.

dinfitem.sol_itg_nrm_xc
Infinity norm of 𝑥𝑐 in the integer solution.

dinfitem.sol_itg_nrm_xx
Infinity norm of 𝑥𝑥 in the integer solution.

dinfitem.sol_itg_nrm_barx
Infinity norm of 𝑋 in the integer solution.

dinfitem.intpnt_factor_num_flops
An estimate of the number of flops used in the factorization.

16.6. Enumerations 247

MOSEK Optimizer API for Python, Release 8.0.0.94

dinfitem.qcqo_reformulate_time
Time spent with conic quadratic reformulation.

dinfitem.qcqo_reformulate_max_perturbation
Maximum absolute diagonal perturbation occuring during the QCQO reformulation.

dinfitem.qcqo_reformulate_worst_cholesky_diag_scaling
Worst Cholesky diagonal scaling.

dinfitem.qcqo_reformulate_worst_cholesky_column_scaling
Worst Cholesky column scaling.

dinfitem.primal_repair_penalty_obj
The optimal objective value of the penalty function.

feature
License feature

feature.pts
Base system.

feature.pton
Nonlinear extension.

liinfitem
Long integer information items.

liinfitem.mio_presolved_anz
Number of non-zero entries in the constraint matrix of presolved problem.

liinfitem.mio_simplex_iter
Number of simplex iterations performed by the mixed-integer optimizer.

liinfitem.mio_intpnt_iter
Number of interior-point iterations performed by the mixed-integer optimizer.

liinfitem.bi_primal_iter
Number of primal pivots performed in the basis identification.

liinfitem.bi_dual_iter
Number of dual pivots performed in the basis identification.

liinfitem.bi_clean_primal_iter
Number of primal clean iterations performed in the basis identification.

liinfitem.bi_clean_primal_dual_iter
Number of primal-dual clean iterations performed in the basis identification.

liinfitem.bi_clean_dual_iter
Number of dual clean iterations performed in the basis identification.

liinfitem.bi_clean_primal_deg_iter
Number of primal degenerate clean iterations performed in the basis identification.

liinfitem.bi_clean_primal_dual_sub_iter
Number of primal-dual subproblem clean iterations performed in the basis identification.

liinfitem.bi_clean_primal_dual_deg_iter
Number of primal-dual degenerate clean iterations performed in the basis identification.

liinfitem.bi_clean_dual_deg_iter
Number of dual degenerate clean iterations performed in the basis identification.

liinfitem.intpnt_factor_num_nz
Number of non-zeros in factorization.

liinfitem.rd_numanz
Number of non-zeros in A that is read.

248 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

liinfitem.rd_numqnz
Number of Q non-zeros.

liinfitem.mio_sim_maxiter_setbacks
Number of times the the simplex optimizer has hit the maximum iteration limit when re-
optimizing.

iinfitem
Integer information items.

iinfitem.ana_pro_num_con
Number of constraints in the problem.

This value is set by task.analyzeproblem .

iinfitem.ana_pro_num_con_lo
Number of constraints with a lower bound and an infinite upper bound.

This value is set by task.analyzeproblem .

iinfitem.ana_pro_num_con_up
Number of constraints with an upper bound and an infinite lower bound.

This value is set by task.analyzeproblem .

iinfitem.ana_pro_num_con_ra
Number of constraints with finite lower and upper bounds.

This value is set by task.analyzeproblem .

iinfitem.ana_pro_num_con_eq
Number of equality constraints.

This value is set by task.analyzeproblem .

iinfitem.ana_pro_num_con_fr
Number of unbounded constraints.

This value is set by task.analyzeproblem .

iinfitem.ana_pro_num_var
Number of variables in the problem.

This value is set by task.analyzeproblem .

iinfitem.ana_pro_num_var_lo
Number of variables with a lower bound and an infinite upper bound.

This value is set by task.analyzeproblem .

iinfitem.ana_pro_num_var_up
Number of variables with an upper bound and an infinite lower bound. This value is set by

This value is set by task.analyzeproblem .

iinfitem.ana_pro_num_var_ra
Number of variables with finite lower and upper bounds.

This value is set by task.analyzeproblem .

iinfitem.ana_pro_num_var_eq
Number of fixed variables.

This value is set by task.analyzeproblem .

iinfitem.ana_pro_num_var_fr
Number of free variables.

This value is set by task.analyzeproblem .

16.6. Enumerations 249

MOSEK Optimizer API for Python, Release 8.0.0.94

iinfitem.ana_pro_num_var_cont
Number of continuous variables.

This value is set by task.analyzeproblem .

iinfitem.ana_pro_num_var_bin
Number of binary (0-1) variables.

This value is set by task.analyzeproblem .

iinfitem.ana_pro_num_var_int
Number of general integer variables.

This value is set by task.analyzeproblem .

iinfitem.optimize_response
The response code returned by optimize.

iinfitem.intpnt_iter
Number of interior-point iterations since invoking the interior-point optimizer.

iinfitem.intpnt_factor_dim_dense
Dimension of the dense sub system in factorization.

iinfitem.intpnt_solve_dual
Non-zero if the interior-point optimizer is solving the dual problem.

iinfitem.mio_node_depth
Depth of the last node solved.

iinfitem.mio_numcon
Number of constraints in the problem solved by the mixed-integer optimizer.

iinfitem.mio_numvar
Number of variables in the problem solved by the mixed-integer optimizer.

iinfitem.mio_numint
Number of integer variables in the problem solved be the mixed-integer optimizer.

iinfitem.mio_presolved_numcont
Number of continuous variables in the problem solved be the mixed-integer optimizer.

iinfitem.mio_presolved_numbin
Number of binary variables in the problem solved be the mixed-integer optimizer.

iinfitem.mio_presolved_numcon
Number of constraints in the presolved problem.

iinfitem.mio_presolved_numvar
Number of variables in the presolved problem.

iinfitem.mio_presolved_numint
Number of integer variables in the presolved problem.

iinfitem.mio_clique_table_size
Size of the clique table.

iinfitem.mio_construct_solution
If this item has the value 0, then MOSEK did not try to construct an initial integer feasible
solution. If the item has a positive value, then MOSEK successfully constructed an initial
integer feasible solution.

iinfitem.mio_construct_num_roundings
Number of values in the integer solution that is rounded to an integer value.

iinfitem.mio_num_int_solutions
Number of integer feasible solutions that has been found.

iinfitem.mio_obj_bound_defined
Non-zero if a valid objective bound has been found, otherwise zero.

250 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

iinfitem.mio_num_active_nodes
Number of active branch bound nodes.

iinfitem.mio_num_relax
Number of relaxations solved during the optimization.

iinfitem.mio_num_branch
Number of branches performed during the optimization.

iinfitem.mio_total_num_cuts
Total number of cuts generated by the mixed-integer optimizer.

iinfitem.mio_num_cmir_cuts
Number of Complemented Mixed Integer Rounding (CMIR) cuts.

iinfitem.mio_num_clique_cuts
Number of clique cuts.

iinfitem.mio_num_implied_bound_cuts
Number of implied bound cuts.

iinfitem.mio_num_knapsack_cover_cuts
Number of clique cuts.

iinfitem.mio_num_gomory_cuts
Number of Gomory cuts.

iinfitem.mio_num_repeated_presolve
Number of times presolve was repeated at root.

iinfitem.mio_initial_solution
Is non-zero if an initial integer solution is specified.

iinfitem.mio_user_obj_cut
If it is non-zero, then the objective cut is used.

iinfitem.mio_relgap_satisfied
Non-zero if relative gap is within tolerances.

iinfitem.mio_absgap_satisfied
Non-zero if absolute gap is within tolerances.

iinfitem.mio_near_relgap_satisfied
Non-zero if relative gap is within relaxed tolerances.

iinfitem.mio_near_absgap_satisfied
Non-zero if absolute gap is within relaxed tolerances.

iinfitem.rd_protype
Problem type.

iinfitem.rd_numcon
Number of constraints read.

iinfitem.rd_numvar
Number of variables read.

iinfitem.rd_numbarvar
Number of variables read.

iinfitem.rd_numintvar
Number of integer-constrained variables read.

iinfitem.rd_numq
Number of nonempty Q matrices read.

iinfitem.sim_dual_deg_iter
The number of dual degenerate iterations.

16.6. Enumerations 251

MOSEK Optimizer API for Python, Release 8.0.0.94

iinfitem.sim_dual_inf_iter
The number of iterations taken with dual infeasibility.

iinfitem.sim_dual_hotstart_lu
If 1 then a valid basis factorization of full rank was located and used by the dual simplex
algorithm.

iinfitem.sim_primal_iter
Number of primal simplex iterations during the last optimization.

iinfitem.sim_dual_iter
Number of dual simplex iterations during the last optimization.

iinfitem.sim_primal_dual_iter
Number of primal dual simplex iterations during the last optimization.

iinfitem.intpnt_num_threads
Number of threads that the interior-point optimizer is using.

iinfitem.sim_primal_inf_iter
The number of iterations taken with primal infeasibility.

iinfitem.sim_primal_dual_inf_iter
The number of master iterations with dual infeasibility taken by the primal dual simplex
algorithm.

iinfitem.sim_primal_deg_iter
The number of primal degenerate iterations.

iinfitem.sim_primal_dual_deg_iter
The number of degenerate major iterations taken by the primal dual simplex algorithm.

iinfitem.sim_primal_hotstart
If 1 then the primal simplex algorithm is solving from an advanced basis.

iinfitem.sim_primal_hotstart_lu
If 1 then a valid basis factorization of full rank was located and used by the primal simplex
algorithm.

iinfitem.sim_dual_hotstart
If 1 then the dual simplex algorithm is solving from an advanced basis.

iinfitem.sim_primal_dual_hotstart
If 1 then the primal dual simplex algorithm is solving from an advanced basis.

iinfitem.sim_primal_dual_hotstart_lu
If 1 then a valid basis factorization of full rank was located and used by the primal dual
simplex algorithm.

iinfitem.sol_itr_prosta
Problem status of the interior-point solution. Updated after each optimization.

iinfitem.sol_itr_solsta
Solution status of the interior-point solution. Updated after each optimization.

iinfitem.sol_bas_prosta
Problem status of the basic solution. Updated after each optimization.

iinfitem.sol_bas_solsta
Solution status of the basic solution. Updated after each optimization.

iinfitem.sol_itg_prosta
Problem status of the integer solution. Updated after each optimization.

iinfitem.sol_itg_solsta
Solution status of the integer solution. Updated after each optimization.

iinfitem.sim_numcon
Number of constraints in the problem solved by the simplex optimizer.

252 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

iinfitem.sim_numvar
Number of variables in the problem solved by the simplex optimizer.

iinfitem.opt_numcon
Number of constraints in the problem solved when the optimizer is called.

iinfitem.opt_numvar
Number of variables in the problem solved when the optimizer is called

iinfitem.sto_num_a_realloc
Number of times the storage for storing 𝐴 has been changed. A large value may indicates
that memory fragmentation may occur.

iinfitem.rd_numcone
Number of conic constraints read.

iinfitem.sim_solve_dual
Is non-zero if dual problem is solved.

inftype
Information item types

inftype.dou_type
Is a double information type.

inftype.int_type
Is an integer.

inftype.lint_type
Is a long integer.

iomode
Input/output modes

iomode.read
The file is read-only.

iomode.write
The file is write-only. If the file exists then it is truncated when it is opened. Otherwise it is
created when it is opened.

iomode.readwrite
The file is to read and written.

branchdir
Specifies the branching direction.

branchdir.free
The mixed-integer optimizer decides which branch to choose.

branchdir.up
The mixed-integer optimizer always chooses the up branch first.

branchdir.down
The mixed-integer optimizer always chooses the down branch first.

branchdir.near
Branch in direction nearest to selected fractional variable.

branchdir.far
Branch in direction farthest from selected fractional variable.

branchdir.root_lp
Chose direction based on root lp value of selected variable.

branchdir.guided
Branch in direction of current incumbent.

16.6. Enumerations 253

MOSEK Optimizer API for Python, Release 8.0.0.94

branchdir.pseudocost
Branch based on the pseudocost of the variable.

miocontsoltype
Continuous mixed-integer solution type

miocontsoltype.none
No interior-point or basic solution are reported when the mixed-integer optimizer is used.

miocontsoltype.root
The reported interior-point and basic solutions are a solution to the root node problem when
mixed-integer optimizer is used.

miocontsoltype.itg
The reported interior-point and basic solutions are a solution to the problem with all integer
variables fixed at the value they have in the integer solution. A solution is only reported in
case the problem has a primal feasible solution.

miocontsoltype.itg_rel
In case the problem is primal feasible then the reported interior-point and basic solutions are
a solution to the problem with all integer variables fixed at the value they have in the integer
solution. If the problem is primal infeasible, then the solution to the root node problem is
reported.

miomode
Integer restrictions

miomode.ignored
The integer constraints are ignored and the problem is solved as a continuous problem.

miomode.satisfied
Integer restrictions should be satisfied.

mionodeseltype
Mixed-integer node selection types

mionodeseltype.free
The optimizer decides the node selection strategy.

mionodeseltype.first
The optimizer employs a depth first node selection strategy.

mionodeseltype.best
The optimizer employs a best bound node selection strategy.

mionodeseltype.worst
The optimizer employs a worst bound node selection strategy.

mionodeseltype.hybrid
The optimizer employs a hybrid strategy.

mionodeseltype.pseudo
The optimizer employs selects the node based on a pseudo cost estimate.

mpsformat
MPS file format type

mpsformat.strict
It is assumed that the input file satisfies the MPS format strictly.

mpsformat.relaxed
It is assumed that the input file satisfies a slightly relaxed version of the MPS format.

mpsformat.free
It is assumed that the input file satisfies the free MPS format. This implies that spaces are
not allowed in names. Otherwise the format is free.

254 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

mpsformat.cplex
The CPLEX compatible version of the MPS format is employed.

msgkey
Message keys

msgkey.reading_file

msgkey.writing_file

msgkey.mps_selected

objsense
Objective sense types

objsense.minimize
The problem should be minimized.

objsense.maximize
The problem should be maximized.

onoffkey
On/off

onoffkey.on
Switch the option on.

onoffkey.off
Switch the option off.

optimizertype
Optimizer types

optimizertype.free
The optimizer is chosen automatically.

optimizertype.intpnt
The interior-point optimizer is used.

optimizertype.conic
The optimizer for problems having conic constraints.

optimizertype.primal_simplex
The primal simplex optimizer is used.

optimizertype.dual_simplex
The dual simplex optimizer is used.

optimizertype.free_simplex
One of the simplex optimizers is used.

optimizertype.mixed_int
The mixed-integer optimizer.

orderingtype
Ordering strategies

orderingtype.free
The ordering method is chosen automatically.

orderingtype.appminloc
Approximate minimum local fill-in ordering is employed.

orderingtype.experimental
This option should not be used.

orderingtype.try_graphpar
Always try the graph partitioning based ordering.

16.6. Enumerations 255

MOSEK Optimizer API for Python, Release 8.0.0.94

orderingtype.force_graphpar
Always use the graph partitioning based ordering even if it is worse than the approximate
minimum local fill ordering.

orderingtype.none
No ordering is used.

presolvemode
Presolve method.

presolvemode.off
The problem is not presolved before it is optimized.

presolvemode.on
The problem is presolved before it is optimized.

presolvemode.free
It is decided automatically whether to presolve before the problem is optimized.

parametertype
Parameter type

parametertype.invalid_type
Not a valid parameter.

parametertype.dou_type
Is a double parameter.

parametertype.int_type
Is an integer parameter.

parametertype.str_type
Is a string parameter.

problemitem
Problem data items

problemitem.var
Item is a variable.

problemitem.con
Item is a constraint.

problemitem.cone
Item is a cone.

problemtype
Problem types

problemtype.lo
The problem is a linear optimization problem.

problemtype.qo
The problem is a quadratic optimization problem.

problemtype.qcqo
The problem is a quadratically constrained optimization problem.

problemtype.geco
General convex optimization.

problemtype.conic
A conic optimization.

problemtype.mixed
General nonlinear constraints and conic constraints. This combination can not be solved by
MOSEK.

256 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

prosta
Problem status keys

prosta.unknown
Unknown problem status.

prosta.prim_and_dual_feas
The problem is primal and dual feasible.

prosta.prim_feas
The problem is primal feasible.

prosta.dual_feas
The problem is dual feasible.

prosta.near_prim_and_dual_feas
The problem is at least nearly primal and dual feasible.

prosta.near_prim_feas
The problem is at least nearly primal feasible.

prosta.near_dual_feas
The problem is at least nearly dual feasible.

prosta.prim_infeas
The problem is primal infeasible.

prosta.dual_infeas
The problem is dual infeasible.

prosta.prim_and_dual_infeas
The problem is primal and dual infeasible.

prosta.ill_posed
The problem is ill-posed. For example, it may be primal and dual feasible but have a positive
duality gap.

prosta.prim_infeas_or_unbounded
The problem is either primal infeasible or unbounded. This may occur for mixed-integer
problems.

xmlwriteroutputtype
XML writer output mode

xmlwriteroutputtype.row
Write in row order.

xmlwriteroutputtype.col
Write in column order.

rescodetype
Response code type

rescodetype.ok
The response code is OK.

rescodetype.wrn
The response code is a warning.

rescodetype.trm
The response code is an optimizer termination status.

rescodetype.err
The response code is an error.

rescodetype.unk
The response code does not belong to any class.

16.6. Enumerations 257

MOSEK Optimizer API for Python, Release 8.0.0.94

scalingtype
Scaling type

scalingtype.free
The optimizer chooses the scaling heuristic.

scalingtype.none
No scaling is performed.

scalingtype.moderate
A conservative scaling is performed.

scalingtype.aggressive
A very aggressive scaling is performed.

scalingmethod
Scaling method

scalingmethod.pow2
Scales only with power of 2 leaving the mantissa untouched.

scalingmethod.free
The optimizer chooses the scaling heuristic.

sensitivitytype
Sensitivity types

sensitivitytype.basis
Basis sensitivity analysis is performed.

sensitivitytype.optimal_partition
Optimal partition sensitivity analysis is performed.

simseltype
Simplex selection strategy

simseltype.free
The optimizer chooses the pricing strategy.

simseltype.full
The optimizer uses full pricing.

simseltype.ase
The optimizer uses approximate steepest-edge pricing.

simseltype.devex
The optimizer uses devex steepest-edge pricing (or if it is not available an approximate steep-
edge selection).

simseltype.se
The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge
selection).

simseltype.partial
The optimizer uses a partial selection approach. The approach is usually beneficial if the
number of variables is much larger than the number of constraints.

solitem
Solution items

solitem.xc
Solution for the constraints.

solitem.xx
Variable solution.

solitem.y
Lagrange multipliers for equations.

258 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

solitem.slc
Lagrange multipliers for lower bounds on the constraints.

solitem.suc
Lagrange multipliers for upper bounds on the constraints.

solitem.slx
Lagrange multipliers for lower bounds on the variables.

solitem.sux
Lagrange multipliers for upper bounds on the variables.

solitem.snx
Lagrange multipliers corresponding to the conic constraints on the variables.

solsta
Solution status keys

solsta.unknown
Status of the solution is unknown.

solsta.optimal
The solution is optimal.

solsta.prim_feas
The solution is primal feasible.

solsta.dual_feas
The solution is dual feasible.

solsta.prim_and_dual_feas
The solution is both primal and dual feasible.

solsta.near_optimal
The solution is nearly optimal.

solsta.near_prim_feas
The solution is nearly primal feasible.

solsta.near_dual_feas
The solution is nearly dual feasible.

solsta.near_prim_and_dual_feas
The solution is nearly both primal and dual feasible.

solsta.prim_infeas_cer
The solution is a certificate of primal infeasibility.

solsta.dual_infeas_cer
The solution is a certificate of dual infeasibility.

solsta.near_prim_infeas_cer
The solution is almost a certificate of primal infeasibility.

solsta.near_dual_infeas_cer
The solution is almost a certificate of dual infeasibility.

solsta.prim_illposed_cer
The solution is a certificate that the primal problem is illposed.

solsta.dual_illposed_cer
The solution is a certificate that the dual problem is illposed.

solsta.integer_optimal
The primal solution is integer optimal.

solsta.near_integer_optimal
The primal solution is near integer optimal.

16.6. Enumerations 259

MOSEK Optimizer API for Python, Release 8.0.0.94

soltype
Solution types

soltype.bas
The basic solution.

soltype.itr
The interior solution.

soltype.itg
The integer solution.

solveform
Solve primal or dual form

solveform.free
The optimizer is free to solve either the primal or the dual problem.

solveform.primal
The optimizer should solve the primal problem.

solveform.dual
The optimizer should solve the dual problem.

stakey
Status keys

stakey.unk
The status for the constraint or variable is unknown.

stakey.bas
The constraint or variable is in the basis.

stakey.supbas
The constraint or variable is super basic.

stakey.low
The constraint or variable is at its lower bound.

stakey.upr
The constraint or variable is at its upper bound.

stakey.fix
The constraint or variable is fixed.

stakey.inf
The constraint or variable is infeasible in the bounds.

startpointtype
Starting point types

startpointtype.free
The starting point is chosen automatically.

startpointtype.guess
The optimizer guesses a starting point.

startpointtype.constant
The optimizer constructs a starting point by assigning a constant value to all primal and dual
variables. This starting point is normally robust.

startpointtype.satisfy_bounds
The starting point is chosen to satisfy all the simple bounds on nonlinear variables. If this
starting point is employed, then more care than usual should employed when choosing the
bounds on the nonlinear variables. In particular very tight bounds should be avoided.

streamtype
Stream types

260 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

streamtype.log
Log stream. Contains the aggregated contents of all other streams. This means that a message
written to any other stream will also be written to this stream.

streamtype.msg
Message stream. Log information relating to performance and progress of the optimization is
written to this stream.

streamtype.err
Error stream. Error messages are written to this stream.

streamtype.wrn
Warning stream. Warning messages are written to this stream.

value
Integer values

value.max_str_len
Maximum string length allowed in MOSEK.

value.license_buffer_length
The length of a license key buffer.

variabletype
Variable types

variabletype.type_cont
Is a continuous variable.

variabletype.type_int
Is an integer variable.

16.7 Data Types

env_t
The MOSEK Environment type.

task_t
The MOSEK Task type.

userhandle_t
A pointer to a generic user-defined structure.

booleant
A signed integer interpreted as a boolean value.

int32t
Signed 32bit integer.

int64t
Signed 64bit integer.

wchart
Wide char type. The actual type may differ depending on the platform; it is either a 16 or 32 bits
signed or unsigned integer.

realt
The floating point type used by MOSEK.

string_t
The string type used by MOSEK. This is an UTF-8 encoded zero-terminated char string.

iparam
int parameter type. See Integer Parameters

16.7. Data Types 261

MOSEK Optimizer API for Python, Release 8.0.0.94

dparam
double parameter type. See Double Parameters

sparam
string parameter type. See String Parameters

rescode
The return code type.

16.8 Class Env

Env
The MOSEK global environment.

Members

env.__del__ – Free the underlying native allocation.

env.axpy – Adds alpha times x to y.

env.checkinall – Check in all unsued license features to the license token server.

env.checkinlicense – Check in a license feature from the license server ahead of time.

env.checkoutlicense – Check out a license feature from the license server ahead of time.

env.computesparsecholesky – Computes a Cholesky factorization of sparse matrix.

env.dot – Computes the inner product of two vectors.

env.echointro – Prints an intro to message stream.

env.gemm – Performs a dense matrix multiplication.

env.gemv – Computes dense matrix times a dense vector product.

env.getcodedesc – Obtains a short description of a response code.

env.getversion – Obtains MOSEK version information.

env.licensecleanup – Stops all threads and delete all handles used by the license system.

env.linkfiletostream – Directs all output from a stream to a file.

env.potrf – Computes a Cholesky factorization a dense matrix.

env.putlicensecode – The purpose of this function is to input a runtime license code.

env.putlicensedebug – Enables debug information for the license system.

env.putlicensepath – Set the path to the license file.

env.putlicensewait – Control whether mosek should wait for an available license if no license is
available.

env.set_Stream – Directs all output from a environment stream to a callback function.

env.sparsetriangularsolvedense – Solves a sparse triangular system of linear equations.

env.syeig – Computes all eigenvalues of a symmetric dense matrix.

env.syevd – Computes all the eigenvalue and eigenvectors of a symmetric dense matrix, and thus
its eigenvalue decomposition.

env.syrk – Performs a rank-k update of a symmetric matrix.

Env.Env()
Env.Env(licensefile)

Create a new environment.
Parameters

262 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] licensefile (String) – (Optional) License file to use.

Env._del_()
Free the underlying native allocation.

Env.axpy(n, alpha, x, y)
Adds 𝛼𝑥 to 𝑦.

Parameters

•[in] n (int) – Length of the vectors.

•[in] alpha (double) – The scalar that multiplies 𝑥.

•[in] x (double[]) – The 𝑥 vector.

•[io] y (double[]) – The 𝑦 vector.

Env.checkinall()
Check in all unsued license features to the license token server.

Env.checkinlicense(feature)
Check in a license feature to the license server. By default all licenses consumed by functions
using a single environment is kept checked out for the lifetime of the MOSEK environment. This
function checks in a given license feature to the license server immediately.

If the given license feature is not checked out or is in use by a call to task.optimize calling this
function has no effect.

Please note that returning a license to the license server incurs a small overhead, so frequent calls
to this function should be avoided.

Parameters

•[in] feature (feature) – Feature to check in to the license system.

Env.checkoutlicense(feature)
Check out a license feature from the license server. Normally the required license features will be
automatically checked out the first time it is needed by the function task.optimize . This function
can be used to check out one or more features ahead of time.

The license will remain checked out until the environment is deleted or the function
env.checkinlicense is called.

If a given feature is already checked out when this function is called, only one feature will be
checked out from the license server.

Parameters

•[in] feature (feature) – Feature to check out from the license system.

perm, diag, lnzc, lptrc, lensubnval, lsubc, lvalc = Env.computesparsecholesky(multithread,
ordermethod,
tolsingular,
anzc,
aptrc,
asubc,
avalc)

The function computes a Cholesky factorization of a sparse positive semidefinite matrix. Sparsity
is exploited during the computations to reduce the amount of space and work required.

To be precise then given a symmetric matrix 𝐴 ∈ R𝑛×𝑛 the function computes a nonsingular lower
triangular matrix 𝐿 and diagonal matrix 𝐷 such that

𝐿𝐿𝑇 −𝐷 = 𝑃𝐴𝑃𝑇

where 𝑃 is a permutation matrix. If a pivot during the computation of the Cholesky factorization
is less than

−𝜌 * max((𝑃𝐴𝑃𝑇)𝑗𝑗 , 1.0)

16.8. Class Env 263

MOSEK Optimizer API for Python, Release 8.0.0.94

then the matrix is declared negative semidefinite. On the hand if a pivot is smaller than

𝜌 * max((𝑃𝐴𝑃𝑇)𝑗𝑗 , 1.0),

then 𝐷𝑗𝑗 is increased from zero to

𝜌 * max((𝑃𝐴𝑃𝑇)𝑗𝑗 , 1.0).

Therefore, if 𝐴 is suffciently positive definite then 𝐷 will be the zero matrix. 𝜌 is set equal to value
of tolsingular.

Parameters

•[in] multithread (int) – If nonzero then the function may exploit multiple threads.

•[in] ordermethod (int) – If nonzero, then a sparsity preservering ordering will be employed.

•[in] tolsingular (double) – A positive parameter controling when a pivot is declared
zero.

•[in] anzc (int[]) – anzc[j] is the number of nonzeros in the jth column of A.

•[in] aptrc (long[]) – aptrc[j] is a pointer to the first element in column j.

•[in] asubc (int[]) – Row subscripts in each column stored in increasing order.

•[in] avalc (double[]) – Values stores column wise.
Return

•perm (int) – Is permutation array used to specify the permutation matrix 𝑃 computed by
the function.

•diag (double) – The diagonal elements of matrix 𝐷.

•lnzc (int) – lnzc[j] is the number of non zero elements in column j.

•lptrc (long) – lptrc[j] is a pointer to the first row index and value in column j.

•lensubnval (long) – Number of elements in lsubc and lvalc.

•lsubc (int) – Row indexes for each column stored sequentially. Must be stored increasing
order for each column.

•lvalc (double) – The value corresponding to row indexed stored lsubc.

xty = Env.dot(n, x, y)
Computes the inner product of two vectors 𝑥, 𝑦 of lenght 𝑛 ≥ 0, i.e

𝑥 · 𝑦 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖.

Note that if 𝑛 = 0, then the results of the operation is 0.
Parameters

•[in] n (int) – Length of the vectors.

•[in] x (double[]) – The 𝑥 vector.

•[in] y (double[]) – The 𝑦 vector.
Return

•xty (double) – The result of the inner product between 𝑥 and 𝑦.

Env.echointro(longver)
Prints an intro to message stream.

Parameters

•[in] longver (int) – If non-zero, then the intro is slightly longer.

264 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Env.gemm(transa, transb, m, n, k, alpha, a, b, beta, c)
Performs a matrix multiplication plus addition of dense matrices. Given 𝐴, 𝐵 and 𝐶 of compatible
dimensions, this function computes

𝐶 := 𝛼𝑜𝑝(𝐴)𝑜𝑝(𝐵) + 𝛽𝐶

where 𝛼, 𝛽 are two scalar values. The function 𝑜𝑝(𝑋) return 𝑋 if transX is YES, or 𝑋𝑇 if set to
NO. Dimensions of 𝐴, 𝑏 must therefore match those of 𝐶.

The result of this operation is stored in 𝐶.
Parameters

•[in] transa (transpose) – Indicates whether the matrix 𝐴 must be transposed.

•[in] transb (transpose) – Indicates whether the matrix 𝐵 must be transposed.

•[in] m (int) – Indicates the number of rows of matrices 𝐴 and 𝐶.

•[in] n (int) – Indicates the number of columns of matrices 𝐵 and 𝐶.

•[in] k (int) – Specifies the number of columns of the matrix 𝐴 and the number of rows of
the matrix 𝐵.

•[in] alpha (double) – A scalar value multipling the result of the matrix multiplication.

•[in] a (double[]) – The pointer to the array storing matrix 𝐴 in a column-major format.

•[in] b (double[]) – Indicates the number of rows of matrix 𝐵 and columns of matrix 𝐴.

•[in] beta (double) – A scalar value that multiplies 𝐶.

•[io] c (double[]) – The pointer to the array storing matrix 𝐶 in a column-major format.

Env.gemv(transa, m, n, alpha, a, x, beta, y)
Computes the multiplication of a scaled dense matrix times a dense vector product, plus a scaled
dense vector. In formula

𝑦 = 𝛼𝐴𝑥 + 𝛽𝑦,

or if trans is set to transpose.yes

𝑦 = 𝛼𝐴𝑇𝑥 + 𝛽𝑦,

where 𝛼, 𝛽 are scalar values. 𝐴 is an 𝑛×𝑚 matrix, 𝑥 ∈ R𝑚 and 𝑦 ∈ R𝑛.

Note that the result is stored overwriting 𝑦.
Parameters

•[in] transa (transpose) – Indicates whether the matrix 𝐴 must be transposed.

•[in] m (int) – Specifies the number of rows of the matrix 𝐴.

•[in] n (int) – Specifies the number of columns of the matrix 𝐴.

•[in] alpha (double) – A scalar value multipling the matrix 𝐴.

•[in] a (double[]) – A pointer to the array storing matrix 𝐴 in a column-major format.

•[in] x (double[]) – A pointer to the array storing the vector 𝑥.

•[in] beta (double) – A scalar value multipling the vector 𝑦.

•[io] y (double[]) – A pointer to the array storing the vector 𝑦.

symname, str = Env.getcodedesc(code)
Obtains a short description of the meaning of the response code given by code.

Parameters

•[in] code (rescode) – A valid MOSEK response code.
Return

16.8. Class Env 265

MOSEK Optimizer API for Python, Release 8.0.0.94

•symname (str) – Symbolic name corresponding to code.

•str (str) – Obtains a short description of a response code.

major, minor, build, revision = Env.getversion()
Obtains MOSEK version information.

Return

•major (int) – Major version number.

•minor (int) – Minor version number.

•build (int) – Build number.

•revision (int) – Revision number.

Env.licensecleanup()
Stops all threads and delete all handles used by the license system. If this function is called, it
must be called as the last MOSEK API call. No other MOSEK API calls are valid after this.

Env.linkfiletostream(whichstream, filename, append)
Directs all output from a stream to a file.

Parameters

•[in] whichstream (streamtype) – Index of the stream.

•[in] filename (str) – Sends all output from the stream defined by whichstream to the file
given by filename.

•[in] append (int) – If this argument is non-zero, the output is appended to the file.

Env.potrf(uplo, n, a)
Computes a Cholesky factorization of a real symmetric positive definite dense matrix.

Parameters

•[in] uplo (uplo) – Indicates whether the upper or lower triangular part of the matrix is
stored.

•[in] n (int) – Dimension of the symmetric matrix.

•[io] a (double[]) – A symmetric matrix stored in column-major order. Only the lower or
the upper triangular part is used, accordingly with the uplo parameter. It will contain the
result on exit.

Env.putlicensecode(code)
The purpose of this function is to input a runtime license code.

Parameters

•[in] code (int[]) – A runtime license code.

Env.putlicensedebug(licdebug)
If licdebug is non-zero, then MOSEK will print debug info regarding the license checkout.

Parameters

•[in] licdebug (int) – If this argument is non-zero, then MOSEK will print debug info
regarding the license checkout.

Env.putlicensepath(licensepath)
Set the path to the license file.

Parameters

•[in] licensepath (str) – A path specifycing where to search for the license.

Env.putlicensewait(licwait)
If licwait is non-zero, then MOSEK will wait for a license if no license is available. Moreover,
licwait-1 is the number of milliseconds to wait between each check for an available license.

Parameters

266 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] licwait (int) – If this argument is non-zero, then MOSEK will wait for a license if
no license is available. Moreover, licwait-1 is the number of milliseconds to wait between
each check for an available license.

Env.set_Stream(whichstream, callback)
Directs all output from a env stream to a callback function.

Parameters

•[in] whichstream (streamtype) – Index of the stream.

•[in] callback (none) – The callback function.

Env.sparsetriangularsolvedense(transposed, lnzc, lptrc, lsubc, lvalc, b)
The function can be used to a triangular system of the form

𝐿𝑥 = 𝑏

or

𝐿𝑇𝑥 = 𝑏

where 𝐿 is a sparse lower triangular nonsingular matrix. This implies in particular that diagonals
in 𝐿 are nonzero.

Parameters

•[in] transposed (transpose) – Controls whether the solve is with 𝐿 or 𝐿𝑇 .

•[in] lnzc (int[]) – lnzc[j] is the number of nonzeros in column j.

•[in] lptrc (long[]) – lptrc[j] is a pointer to the first row index and value in column j.

•[in] lsubc (int[]) – Row indexes for each column stored sequentially. Must be stored
increasing order for each column.

•[in] lvalc (double[]) – The value corresponding to row indexed stored lsubc.

•[io] b (double[]) – The right-hand side of linear equation system to be solved.

Env.syeig(uplo, n, a, w)
Computes all eigenvalues of a real symmetric matrix 𝐴. Eigenvalues are stored in the 𝑤 array.

Parameters

•[in] uplo (uplo) – Indicates whether the upper or lower triangular part is used.

•[in] n (int) – Dimension of the symmetric input matrix.

•[in] a (double[]) – A symmetric matrix stored in column-major order. Only the lower-
triangular part is used.

•[out] w (double[]) – Array of minimum dimension n where eigenvalues will be stored.

Env.syevd(uplo, n, a, w)
Computes all the eigenvalues and eigenvectors a real symmetric matrix.

Given the input matrix 𝐴 ∈ R𝑛×𝑛, this function returns a vector 𝑤 ∈ R𝑛 containing the eigenvalues
of 𝐴 and the corresponding eigenvectors, stored in 𝐴 as well.

Therefore, this function compute the eigenvalue decomposition of 𝐴 as

𝐴 = 𝑈𝑉 𝑈𝑇 ,

where 𝑉 = 𝑑𝑖𝑎𝑔(𝑤) and 𝑈 contains the eigen-vectors of 𝐴.
Parameters

•[in] uplo (uplo) – Indicates whether the upper or lower triangular part is used.

•[in] n (int) – Dimension of symmetric input matrix.

•[io] a (double[]) – A symmetric matrix stored in column-major order. Only the lower-
triangular part is used. It will be overwritten on exit.

16.8. Class Env 267

MOSEK Optimizer API for Python, Release 8.0.0.94

•[out] w (double[]) – An array where eigenvalues will be stored. Its lenght must be at least
the dimension of the input matrix.

Env.syrk(uplo, trans, n, k, alpha, a, beta, c)
Performs a symmetric rank-𝑘 update for a symmetric matrix.

Given a symmetric matrix 𝐶 ∈ R𝑛×𝑛, two scalars 𝛼, 𝛽 and a matrix 𝐴 of rank 𝑘 ≤ 𝑛, it computes
either

𝐶 = 𝛼𝐴𝐴𝑇 + 𝛽𝐶,

or

𝐶 = 𝛼𝐴𝑇𝐴 + 𝛽𝐶.

In the first case 𝐴 ∈ R𝑘×𝑛, in the second 𝐴 ∈ R𝑛×𝑘.

Note that the results overwrite the matrix 𝐶.
Parameters

•[in] uplo (uplo) – Indicates whether the upper or lower triangular part of 𝐶 is stored.

•[in] trans (transpose) – Indicates whether the matrix 𝐴 must be transposed.

•[in] n (int) – Specifies the order of 𝐶.

•[in] k (int) – Indicates the number of rows or columns of 𝐴, and its rank.

•[in] alpha (double) – A scalar value multipling the result of the matrix multiplication.

•[in] a (double[]) – The pointer to the array storing matrix 𝐴 in a column-major format.

•[in] beta (double) – A scalar value that multiplies 𝐶.

•[io] c (double[]) – The pointer to the array storing matrix 𝐶 in a column-major format.

16.9 Class Task

Task
Represent an optimization task.

Members

task.analyzenames – Analyze the names and issue an error for the first invalid name.

task.analyzeproblem – Analyze the data of a task.

task.analyzesolution – Print information related to the quality of the solution.

task.appendbarvars – Appends a semidefinite variable of dimension dim to the problem.

task.appendcone – Appends a new cone constraint to the problem.

task.appendconeseq – Appends a new conic constraint to the problem.

task.appendconesseq – Appends a multiple conic constraints to the problem.

task.appendcons – Appends a number of constraints to the optimization task.

task.appendsparsesymmat – Appends a general sparse symmetric matrix to the vector E of sym-
metric matrixes.

task.appendvars – Appends a number of variables to the optimization task.

task.asyncgetresult – Request a response from a remote job.

task.asyncoptimize – Offload the optimization task to a solver server.

task.asyncpoll – Requests information about the status of the remote job.

268 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

task.asyncstop – Request that the job identified by the token is terminated.

task.basiscond – Computes conditioning information for the basis matrix.

task.checkconvexity – Checks if a quadratic optimization problem is convex.

task.checkmem – Checks the memory allocated by the task.

task.chgbound – Changes the bounds for one constraint or variable.

task.chgconbound – Changes the bounds for one constraint.

task.chgvarbound – Changes the bounds for one variable.

task.commitchanges – Commits all cached problem changes.

task.deletesolution – Undefine a solution and frees the memory it uses.

task.dualsensitivity – Performs sensitivity analysis on objective coefficients.

task.getacol – Obtains one column of the linear constraint matrix.

task.getacolnumnz – Obtains the number of non-zero elements in one column of the linear con-
straint matrix

task.getacolslicetrip – Obtains a sequence of columns from the coefficient matrix in triplet
format.

task.getaij – Obtains a single coefficient in linear constraint matrix.

task.getapiecenumnz – Obtains the number non-zeros in a rectangular piece of the linear con-
straint matrix.

task.getarow – Obtains one row of the linear constraint matrix.

task.getarownumnz – Obtains the number of non-zero elements in one row of the linear constraint
matrix

task.getarowslicetrip – Obtains a sequence of rows from the coefficient matrix in triplet format.

task.getaslice – Obtains a sequence of rows or columns from the coefficient matrix.

task.getaslicenumnz – Obtains the number of non-zeros in a slice of rows or columns of the
coefficient matrix.

task.getbarablocktriplet – Obtains barA in block triplet form.

task.getbaraidx – Obtains information about an element barA.

task.getbaraidxij – Obtains information about an element barA.

task.getbaraidxinfo – Obtains the number terms in the weighted sum that forms a particular
element in barA.

task.getbarasparsity – Obtains the sparsity pattern of the barA matrix.

task.getbarcblocktriplet – Obtains barc in block triplet form.

task.getbarcidx – Obtains information about an element in barc.

task.getbarcidxinfo – Obtains information about an element in barc.

task.getbarcidxj – Obtains the row index of an element in barc.

task.getbarcsparsity – Get the positions of the nonzero elements in barc.

task.getbarsj – Obtains the dual solution for a semidefinite variable.

task.getbarvarname – Obtains a name of a semidefinite variable.

task.getbarvarnameindex – Obtains the index of name of semidefinite variable.

task.getbarvarnamelen – Obtains the length of a name of a semidefinite variable.

task.getbarxj – Obtains the primal solution for a semidefinite variable.

16.9. Class Task 269

MOSEK Optimizer API for Python, Release 8.0.0.94

task.getbound – Obtains bound information for one constraint or variable.

task.getboundslice – Obtains bounds information for a sequence of variables or constraints.

task.getc – Obtains all objective coefficients.

task.getcfix – Obtains the fixed term in the objective.

task.getcj – Obtains one coefficient of c.

task.getconbound – Obtains bound information for one constraint.

task.getconboundslice – Obtains bounds information for a slice of the constraints.

task.getcone – Obtains a conic constraint.

task.getconeinfo – Obtains information about a conic constraint.

task.getconename – Obtains a name of a cone.

task.getconenameindex – Checks whether the name somename has been assigned to any cone.

task.getconenamelen – Obtains the length of a name of a cone.

task.getconname – Obtains a name of a constraint.

task.getconnameindex – Checks whether the name somename has been assigned to any con-
straint.

task.getconnamelen – Obtains the length of a name of a constraint variable.

task.getcslice – Obtains a sequence of coefficients from the objective.

task.getdimbarvarj – Obtains the dimension of a symmetric matrix variable.

task.getdouinf – Obtains a double information item.

task.getdouparam – Obtains a double parameter.

task.getdualobj – Computes the dual objective value associated with the solution.

task.getdualsolutionnorms – Compute norms of the primal solution.

task.getdviolbarvar – Computes the violation of dual solution for a set of barx variables.

task.getdviolcon – Computes the violation of a dual solution associated with a set of constraints.

task.getdviolcones – Computes the violation of a solution for set of dual conic constraints.

task.getdviolvar – Computes the violation of a dual solution associated with a set of x variables.

task.getinfeasiblesubproblem – Obtains an infeasible sub problem.

task.getintinf – Obtains an integer information item.

task.getintparam – Obtains an integer parameter.

task.getlenbarvarj – Obtains the length if the j’th semidefinite variables.

task.getlintinf – Obtains an integer information item.

task.getmaxnumanz – Obtains number of preallocated non-zeros in the linear constraint matrix.

task.getmaxnumbarvar – Obtains maximum number of symmetric matrix variables that is re-
servered room for.

task.getmaxnumcon – Obtains the number of preallocated constraints in the optimization task.

task.getmaxnumcone – Obtains the number of preallocated cones in the optimization task.

task.getmaxnumqnz – Obtains the number of preallocated non-zeros for all quadratic terms in
objective and constraints.

task.getmaxnumvar – Obtains the maximum number variables allowed.

task.getmemusage – Obtains information about the amount of memory used by a task.

270 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

task.getnumanz – Obtains the number of non-zeros in the coefficient matrix.

task.getnumanz64 – Obtains the number of non-zeros in the coefficient matrix.

task.getnumbarablocktriplets – Obtains an upper bound on the number of scalar elements in
the block triplet form of bara.

task.getnumbaranz – Get the number of nonzero elements in barA.

task.getnumbarcblocktriplets – Obtains an upper bound on the number of elements in the
block triplet form of barc.

task.getnumbarcnz – Obtains the number of nonzero elements in barc.

task.getnumbarvar – Obtains the number of semidefinite variables.

task.getnumcon – Obtains the number of constraints.

task.getnumcone – Obtains the number of cones.

task.getnumconemem – Obtains the number of members in a cone.

task.getnumintvar – Obtains the number of integer-constrained variables.

task.getnumparam – Obtains the number of parameters of a given type.

task.getnumqconknz – Obtains the number of non-zero quadratic terms in a constraint.

task.getnumqobjnz – Obtains the number of non-zero quadratic terms in the objective.

task.getnumsymmat – Get the number of symmetric matrixes stored.

task.getnumvar – Obtains the number of variables.

task.getobjname – Obtains the name assigned to the objective function.

task.getobjnamelen – Obtains the length of the name assigned to the objective function.

task.getobjsense – Gets the objective sense.

task.getprimalobj – Computes the primal objective value for the desired solution.

task.getprimalsolutionnorms – Compute norms of the primal solution.

task.getprobtype – Obtains the problem type.

task.getprosta – Obtains the problem status.

task.getpviolbarvar – Computes the violation of a primal solution for a list of barx variables.

task.getpviolcon – Computes the violation of a primal solution for a list of xc variables.

task.getpviolcones – Computes the violation of a solution for set of conic constraints.

task.getpviolvar – Computes the violation of a primal solution for a list of x variables.

task.getqconk – Obtains all the quadratic terms in a constraint.

task.getqobj – Obtains all the quadratic terms in the objective.

task.getqobjij – Obtains one coefficient from the quadratic term of the objective

task.getreducedcosts – Obtains the difference of (slx-sux) for a sequence of variables.

task.getskc – Obtains the status keys for the constraints.

task.getskcslice – Obtains the status keys for the constraints.

task.getskx – Obtains the status keys for the scalar variables.

task.getskxslice – Obtains the status keys for the variables.

task.getslc – Obtains the slc vector for a solution.

task.getslcslice – Obtains a slice of the slc vector for a solution.

task.getslx – Obtains the slx vector for a solution.

16.9. Class Task 271

MOSEK Optimizer API for Python, Release 8.0.0.94

task.getslxslice – Obtains a slice of the slx vector for a solution.

task.getsnx – Obtains the snx vector for a solution.

task.getsnxslice – Obtains a slice of the snx vector for a solution.

task.getsolsta – Obtains the solution status.

task.getsolution – Obtains the complete solution.

task.getsolutioni – Obtains the solution for a single constraint or variable.

task.getsolutioninfo – Obtains information about of a solution.

task.getsolutionslice – Obtains a slice of the solution.

task.getsparsesymmat – Gets a single symmetric matrix from the matrix store.

task.getstrparam – Obtains the value of a string parameter.

task.getstrparamlen – Obtains the length of a string parameter.

task.getsuc – Obtains the suc vector for a solution.

task.getsucslice – Obtains a slice of the suc vector for a solution.

task.getsux – Obtains the sux vector for a solution.

task.getsuxslice – Obtains a slice of the sux vector for a solution.

task.getsymmatinfo – Obtains information of a matrix from the symmetric matrix storage E.

task.gettaskname – Obtains the task name.

task.gettasknamelen – Obtains the length the task name.

task.getvarbound – Obtains bound information for one variable.

task.getvarboundslice – Obtains bounds information for a slice of the variables.

task.getvarname – Obtains a name of a variable.

task.getvarnameindex – Checks whether the name somename has been assigned to any variable.

task.getvarnamelen – Obtains the length of a name of a variable variable.

task.getvartype – Gets the variable type of one variable.

task.getvartypelist – Obtains the variable type for one or more variables.

task.getxc – Obtains the xc vector for a solution.

task.getxcslice – Obtains a slice of the xc vector for a solution.

task.getxx – Obtains the xx vector for a solution.

task.getxxslice – Obtains a slice of the xx vector for a solution.

task.gety – Obtains the y vector for a solution.

task.getyslice – Obtains a slice of the y vector for a solution.

task.initbasissolve – Prepare a task for basis solver.

task.inputdata – Input the linear part of an optimization task in one function call.

task.isdouparname – Checks a double parameter name.

task.isintparname – Checks an integer parameter name.

task.isstrparname – Checks a string parameter name.

task.linkfiletostream – Directs all output from a task stream to a file.

task.onesolutionsummary – Prints a short summary for the specified solution.

task.optimize – Optimizes the problem.

272 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

task.optimizermt – Offload the optimization task to a solver server.

task.optimizersummary – Prints a short summary with optimizer statistics for last optimization.

task.primalrepair – The function repairs a primal infeasible optimization problem by adjusting
the bounds on the constraints and variables.

task.primalsensitivity – Perform sensitivity analysis on bounds.

task.printdata – Prints a part of the problem data to a stream.

task.putacol – Replaces all elements in one column of A.

task.putacollist – Replaces all elements in several columns the linear constraint matrix by new
values.

task.putacolslice – Replaces all elements in several columns the linear constraint matrix by
new values.

task.putaij – Changes a single value in the linear coefficient matrix.

task.putaijlist – Changes one or more coefficients in the linear constraint matrix.

task.putarow – Replaces all elements in one row of A.

task.putarowlist – Replaces all elements in several rows the linear constraint matrix by new
values.

task.putarowslice – Replaces all elements in several rows the linear constraint matrix by new
values.

task.putbarablocktriplet – Inputs barA in block triplet form.

task.putbaraij – Inputs an element of barA.

task.putbarcblocktriplet – Inputs barC in block triplet form.

task.putbarcj – Changes one element in barc.

task.putbarsj – Sets the dual solution for a semidefinite variable.

task.putbarvarname – Puts the name of a semidefinite variable.

task.putbarxj – Sets the primal solution for a semidefinite variable.

task.putbound – Changes the bound for either one constraint or one variable.

task.putboundlist – Changes the bounds of constraints or variables.

task.putboundslice – Modifies bounds.

task.putcfix – Replaces the fixed term in the objective.

task.putcj – Modifies one linear coefficient in the objective.

task.putclist – Modifies a part of the linear objective coefficients.

task.putconbound – Changes the bound for one constraint.

task.putconboundlist – Changes the bounds of a list of constraints.

task.putconboundslice – Changes the bounds for a slice of the constraints.

task.putcone – Replaces a conic constraint.

task.putconename – Puts the name of a cone.

task.putconname – Puts the name of a constraint.

task.putcslice – Modifies a slice of the linear objective coefficients.

task.putdouparam – Sets a double parameter.

task.putintparam – Sets an integer parameter.

16.9. Class Task 273

MOSEK Optimizer API for Python, Release 8.0.0.94

task.putmaxnumanz – The function changes the size of the preallocated storage for linear coeffi-
cients.

task.putmaxnumbarvar – Sets the number of preallocated symmetric matrix variables in the op-
timization task.

task.putmaxnumcon – Sets the number of preallocated constraints in the optimization task.

task.putmaxnumcone – Sets the number of preallocated conic constraints in the optimization task.

task.putmaxnumqnz – Changes the size of the preallocated storage for quadratic terms.

task.putmaxnumvar – Sets the number of preallocated variables in the optimization task.

task.putnadouparam – Sets a double parameter.

task.putnaintparam – Sets an integer parameter.

task.putnastrparam – Sets a string parameter.

task.putobjname – Assigns a new name to the objective.

task.putobjsense – Sets the objective sense.

task.putparam – Modifies the value of parameter.

task.putqcon – Replaces all quadratic terms in constraints.

task.putqconk – Replaces all quadratic terms in a single constraint.

task.putqobj – Replaces all quadratic terms in the objective.

task.putqobjij – Replaces one coefficient in the quadratic term in the objective.

task.putskc – Sets the status keys for the constraints.

task.putskcslice – Sets the status keys for the constraints.

task.putskx – Sets the status keys for the scalar variables.

task.putskxslice – Sets the status keys for the variables.

task.putslc – Sets the slc vector for a solution.

task.putslcslice – Sets a slice of the slc vector for a solution.

task.putslx – Sets the slx vector for a solution.

task.putslxslice – Sets a slice of the slx vector for a solution.

task.putsnx – Sets the snx vector for a solution.

task.putsnxslice – Sets a slice of the snx vector for a solution.

task.putsolution – Inserts a solution.

task.putsolutioni – Sets the primal and dual solution information for a single constraint or
variable.

task.putsolutionyi – Inputs the dual variable of a solution.

task.putstrparam – Sets a string parameter.

task.putsuc – Sets the suc vector for a solution.

task.putsucslice – Sets a slice of the suc vector for a solution.

task.putsux – Sets the sux vector for a solution.

task.putsuxslice – Sets a slice of the sux vector for a solution.

task.puttaskname – Assigns a new name to the task.

task.putvarbound – Changes the bound for one variable.

task.putvarboundlist – Changes the bounds of a list of variables.

274 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

task.putvarboundslice – Changes the bounds for a slice of the variables.

task.putvarname – Puts the name of a variable.

task.putvartype – Sets the variable type of one variable.

task.putvartypelist – Sets the variable type for one or more variables.

task.putxc – Sets the xc vector for a solution.

task.putxcslice – Sets a slice of the xc vector for a solution.

task.putxx – Sets the xx vector for a solution.

task.putxxslice – Obtains a slice of the xx vector for a solution.

task.puty – Sets the y vector for a solution.

task.putyslice – Sets a slice of the y vector for a solution.

task.readdata – Reads problem data from a file.

task.readdataformat – Reads problem data from a file.

task.readparamfile – Reads a parameter file.

task.readsolution – Reads a solution from a file.

task.readsummary – Prints information about last file read.

task.readtask – Load task data from a file.

task.removebarvars – The function removes a number of symmetric matrix.

task.removecones – Removes a conic constraint from the problem.

task.removecons – The function removes a number of constraints.

task.removevars – The function removes a number of variables.

task.resizetask – Resizes an optimization task.

task.sensitivityreport – Creates a sensitivity report.

task.set_Progress – Recieve callbacks about current status of the solver during optimization.

task.set_Stream – Directs all output from a task stream to a callback function.

task.setdefaults – Resets all parameters values.

task.solutiondef – Checks whether a solution is defined.

task.solutionsummary – Prints a short summary of the current solutions.

task.solvewithbasis – Solve a linear equation system involving a basis matrix.

task.strtoconetype – Obtains a cone type code.

task.strtosk – Obtains a status key.

task.toconic – Inplace reformulation of a QCQP to a COP

task.updatesolutioninfo – Update the information items related to the solution.

task.writeSC – Write problem to an SCopt file and a normal problem file.

task.writedata – Writes problem data to a file.

task.writejsonsol – Write a solution to a file.

task.writeparamfile – Writes all the parameters to a parameter file.

task.writesolution – Write a solution to a file.

task.writetask – Write a complete binary dump of the task data.

task.writetasksolverresult_file – Internal

16.9. Class Task 275

MOSEK Optimizer API for Python, Release 8.0.0.94

Task.Task(env)
Task.Task(other)

Create a new Task in the given environment.
Parameters

•[in] env (Env) – Parent environment.

•[in] other (Task) – The task to copy.

Task.analyzenames(whichstream, nametype)
The function analyzes the names and issue an error if a name is invalid.

Parameters

•[in] whichstream (streamtype) – Index of the stream.

•[in] nametype (nametype) – The type of names e.g. valid in MPS or LP files.

Task.analyzeproblem(whichstream)
The function analyzes the data of task and writes out a report.

Parameters

•[in] whichstream (streamtype) – Index of the stream.

Task.analyzesolution(whichstream, whichsol)
Print information related to the quality of the solution and other solution statistics.

By default this function prints information about the largest infeasibilites in the solution, the
primal (and possibly dual) objective value and the solution status.

Following parameters can be used to configure the printed statistics:

•iparam.ana_sol_basis enables or disables printing of statistics specific to the basis solution
(condition number, number of basic variables etc.). Default is on.

•iparam.ana_sol_print_violated enables or disables listing names of all constraints (both
primal and dual) which are violated by the solution. Default is off.

•dparam.ana_sol_infeas_tol is the tolerance defining when a constraint is considered vio-
lated. If a constraint is violated more than this, it will be listed in the summary.

Parameters

•[in] whichstream (streamtype) – Index of the stream.

•[in] whichsol (soltype) – Selects a solution.

Task.appendbarvars(dim)
Appends a positive semidefinite matrix variable of dimension dim to the problem.

Parameters

•[in] dim (int[]) – Dimension of symmetric matrix variables to be added.

Task.appendcone(ct, conepar, submem)
Appends a new conic constraint to the problem. Hence, add a constraint

𝑥̂ ∈ 𝒦

to the problem where 𝒦 is a convex cone. 𝑥̂ is a subset of the variables which will be specified by
the argument submem.

Depending on the value of ct this function appends a normal (conetype.quad) or rotated quadratic
cone (conetype.rquad).

Define

𝑥̂ = 𝑥submem[0], . . . , 𝑥submem[nummem−1].

Depending on the value of ct this function appends one of the constraints:

276 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•Quadratic cone (conetype.quad) :

𝑥̂0 ≥

⎯⎸⎸⎷𝑖<nummem∑︁
𝑖=1

𝑥̂2
𝑖

•Rotated quadratic cone (conetype.rquad) :

2𝑥̂0𝑥̂1 ≥
𝑖<nummem∑︁

𝑖=2

𝑥̂2
𝑖 , 𝑥̂0, 𝑥̂1 ≥ 0

Please note that the sets of variables appearing in different conic constraints must be disjoint.

For an explained code example see Section 3.3 .
Parameters

•[in] ct (conetype) – Specifies the type of the cone.

•[in] conepar (double) – This argument is currently not used. It can be set to 0

•[in] submem (int[]) – Variable subscripts of the members in the cone.

Task.appendconeseq(ct, conepar, nummem, j)
Appends a new conic constraint to the problem. The function assumes the members of cone are
sequential where the first member has index j and the last j+nummem-1.

Parameters

•[in] ct (conetype) – Specifies the type of the cone.

•[in] conepar (double) – This argument is currently not used. It can be set to 0

•[in] nummem (int) – Dimension of the conic constraint to be appended.

•[in] j (int) – Index of the first variable in the conic constraint.

Task.appendconesseq(ct, conepar, nummem, j)
Appends a number conic constraints to the problem. The 𝑘th cone is assumed to be of dimension
nummem[k]. Moreover, is assumed that the first variable of the first cone has index 𝑗 and the index
of the variable in each cone are sequential. Finally, it assumed in the second cone is the last index
of first cone plus one and so forth.

Parameters

•[in] ct (conetype) – Specifies the type of the cone.

•[in] conepar (double[]) – This argument is currently not used. It can be set to 0

•[in] nummem (int[]) – Number of member variables in the cone.

•[in] j (int) – Index of the first variable in the first cone to be appended.

Task.appendcons(num)
Appends a number of constraints to the model. Appended constraints will be declared free. Please
note that MOSEK will automatically expand the problem dimension to accommodate the addi-
tional constraints.

Parameters

•[in] num (int) – Number of constraints which should be appended.

idx = Task.appendsparsesymmat(dim, subi, subj, valij)
MOSEK maintains a storage of symmetric data matrixes that is used to build the 𝑐 and 𝐴. The
storage can be thought of as a vector of symmetric matrixes denoted 𝐸. Hence, 𝐸𝑖 is a symmetric
matrix of certain dimension.

This function appends a general sparse symmetric matrix on triplet form to the vector 𝐸 of sym-
metric matrixes. The vectors subi, subj, and valij contains the row subscripts, column subscripts

16.9. Class Task 277

MOSEK Optimizer API for Python, Release 8.0.0.94

and values of each element in the symmetric matrix to be appended. Since the matrix that is ap-
pended is symmetric then only the lower triangular part should be specified. Moreover, duplicates
are not allowed.

Observe the function reports the index (position) of the appended matrix in 𝐸. This index should
be used for later references to the appended matrix.

Parameters

•[in] dim (int) – Dimension of the symmetric matrix that is appended.

•[in] subi (int[]) – Row subscript in the triplets.

•[in] subj (int[]) – Column subscripts in the triplets.

•[in] valij (double[]) – Values of each triplet.
Return

•idx (long) – Each matrix that is appended to 𝐸 is assigned a unique index i.e. idx that can
be used for later reference.

Task.appendvars(num)
Appends a number of variables to the model. Appended variables will be fixed at zero. Please note
that MOSEK will automatically expand the problem dimension to accommodate the additional
variables.

Parameters

•[in] num (int) – Number of variables which should be appended.

respavailable, resp, trm = Task.asyncgetresult(server, port, token)
Request a response from a remote job. If successful, solver response, termination code and solutions
are retrieved.

Parameters

•[in] server (str) – Name or IP address of the solver server

•[in] port (str) – Network port of solver service

•[in] token (str) – The task token
Return

•respavailable (int) – Indicates if a remote response is available. If this is not true, res and
trm should be ignored.

•resp (int) – Is either the response code from from the remote solver.

•trm (int) – Is either rescodetype.ok or a termination response code.

token = Task.asyncoptimize(server, port)
Offload the optimization task to a solver server defined by server:port. The call will return
immediately and not wait for the result.

If the string parameter sparam.remote_access_token is not blank, it will be passed to the server
as authentication.

Parameters

•[in] server (str) – Name or IP address of the solver server

•[in] port (str) – Network port of solver service
Return

•token (str) – Returns the task token

respavailable, resp, trm = Task.asyncpoll(server, port, token)
Requests information about the status of the remote job.

Parameters

•[in] server (str) – Name or IP address of the solver server

•[in] port (str) – Network port of solver service

278 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] token (str) – The task token
Return

•respavailable (int) – Indicates if a remote response is available. If this is not true, res and
trm should be ignored.

•resp (int) – Is either the response code from from the remote solver.

•trm (int) – Is either rescodetype.ok or a termination response code.

Task.asyncstop(server, port, token)
Request that the job identified by the token is terminated.

Parameters

•[in] server (str) – Name or IP address of the solver server

•[in] port (str) – Network port of solver service

•[in] token (str) – The task token

nrmbasis, nrminvbasis = Task.basiscond()
If a basic solution is available and it defines a nonsingular basis, then this function computes the
1-norm estimate of the basis matrix and an 1-norm estimate for the inverse of the basis matrix.
The 1-norm estimates are computed using the method outlined in [Ste98] , pp. 388-391.

By definition the 1-norm condition number of a matrix 𝐵 is defined as

𝒦1(𝐵) := ‖𝐵‖1‖𝐵−1|.

Moreover, the larger the condition number is the harder it is to solve linear equation systems
involving 𝐵. Given estimates for ‖𝐵‖1 and ‖𝐵−1‖1 it is also possible to estimate 𝜅1(𝐵).

Return

•nrmbasis (double) – An estimate for the 1 norm of the basis.

•nrminvbasis (double) – An estimate for the 1 norm of the inverse of the basis.

Task.checkconvexity()
This function checks if a quadratic optimization problem is convex. The amount of checking is
controlled by iparam.check_convexity .

The function reports an error if the problem is not convex.

Task.checkmem(file, line)
Checks the memory allocated by the task.

Parameters

•[in] file (str) – File from which the function is called.

•[in] line (int) – Line in the file from which the function is called.

Task.chgbound(accmode, i, lower, finite, value)
Changes a bound for one constraint or variable. If accmode equals accmode.con , a constraint
bound is changed, otherwise a variable bound is changed.

If lower is non-zero, then the lower bound is changed as follows:

new lower bound =

{︂
−∞, finite = 0,
value otherwise.

Otherwise if lower is zero, then

new upper bound =

{︂
∞, finite = 0,
value otherwise.

Please note that this function automatically updates the bound key for bound, in particular, if the
lower and upper bounds are identical, the bound key is changed to fixed.

Parameters

16.9. Class Task 279

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] accmode (accmode) – Defines if operations are performed row-wise (constraint-
oriented) or column-wise (variable-oriented).

•[in] i (int) – Index of the constraint or variable for which the bounds should be changed.

•[in] lower (int) – If non-zero, then the lower bound is changed, otherwise the upper bound
is changed.

•[in] finite (int) – If non-zero, then value is assumed to be finite.

•[in] value (double) – New value for the bound.

Task.chgconbound(i, lower, finite, value)
Changes a bound for one constraint.

If lower is non-zero, then the lower bound is changed as follows:

new lower bound =

{︂
−∞, finite = 0,
value otherwise.

Otherwise if lower is zero, then

new upper bound =

{︂
∞, finite = 0,
value otherwise.

Please note that this function automatically updates the bound key for bound, in particular, if the
lower and upper bounds are identical, the bound key is changed to fixed.

Parameters

•[in] i (int) – Index of the constraint for which the bounds should be changed.

•[in] lower (int) – If non-zero, then the lower bound is changed, otherwise the upper bound
is changed.

•[in] finite (int) – If non-zero, then value is assumed to be finite.

•[in] value (double) – New value for the bound.

Task.chgvarbound(j, lower, finite, value)
Changes a bound for on variable.

If lower is non-zero, then the lower bound is changed as follows:

new lower bound =

{︂
−∞, finite = 0,
value otherwise.

Otherwise if lower is zero, then

new upper bound =

{︂
∞, finite = 0,
value otherwise.

Please note that this function automatically updates the bound key for bound, in particular, if the
lower and upper bounds are identical, the bound key is changed to fixed.

Parameters

•[in] j (int) – Index of the variable for which the bounds should be changed.

•[in] lower (int) – If non-zero, then the lower bound is changed, otherwise the upper bound
is changed.

•[in] finite (int) – If non-zero, then value is assumed to be finite.

•[in] value (double) – New value for the bound.

Task.commitchanges()
Commits all cached problem changes to the task. It is usually not necessary explicitly to call this
function since changes will be committed automatically when required.

Task.deletesolution(whichsol)
Undefine a solution and frees the memory it uses.

280 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Parameters

•[in] whichsol (soltype) – Selects a solution.

Task.dualsensitivity(subj, leftpricej, rightpricej, leftrangej, rightrangej)
Calculates sensitivity information for objective coefficients. The indexes of the coefficients to
analyze are

{subj[𝑖]|𝑖 ∈ 0, . . . , numj− 1}

The results are returned so that e.g leftprice[𝑗] is the left shadow price of the objective coefficient
with index subj[𝑗].

The type of sensitivity analysis to perform (basis or optimal partition) is controlled by the param-
eter iparam.sensitivity_type .

For an example, please see Section 15.1.4 .
Parameters

•[in] subj (int[]) – Index of objective coefficients to analyze.

•[out] leftpricej (double[]) – leftpricej[𝑗] is the left shadow price for the coefficients
with index subj[j].

•[out] rightpricej (double[]) – rightpricej[𝑗] is the right shadow price for the coefficients
with index subj[j].

•[out] leftrangej (double[]) – leftrangej[𝑗] is the left range 𝛽1 for the coefficient with
index subj[j].

•[out] rightrangej (double[]) – rightrangej[𝑗] is the right range 𝛽2 for the coefficient
with index subj[j].

nzj = Task.getacol(j, subj, valj)
Obtains one column of 𝐴 in a sparse format.

Parameters

•[in] j (int) – Index of the column.

•[out] subj (int[]) – Index of the non-zeros in the row obtained.

•[out] valj (double[]) – Numerical values of the column obtained.
Return

•nzj (int) – Number of non-zeros in the column obtained.

nzj = Task.getacolnumnz(i)
Obtains the number of non-zero elements in one column of 𝐴.

Parameters

•[in] i (int) – Index of the column.
Return

•nzj (int) – Number of non-zeros in the 𝑗th row or column of 𝐴.

Task.getacolslicetrip(first, last, subi, subj, val)
Obtains a sequence of columns from 𝐴 in a sparse triplet format.

Parameters

•[in] first (int) – Index of the first column in the sequence.

•[in] last (int) – Index of the last column in the sequence plus one.

•[out] subi (int[]) – Constraint subscripts.

•[out] subj (int[]) – Column subscripts.

•[out] val (double[]) – Values.

aij = Task.getaij(i, j)
Obtains a single coefficient in 𝐴.

16.9. Class Task 281

MOSEK Optimizer API for Python, Release 8.0.0.94

Parameters

•[in] i (int) – Row index of the coefficient to be returned.

•[in] j (int) – Column index of the coefficient to be returned.
Return

•aij (double) – The required coefficient 𝑎𝑖,𝑗 .

numnz = Task.getapiecenumnz(firsti, lasti, firstj, lastj)
Obtains the number non-zeros in a rectangular piece of 𝐴, i.e. the number

|(𝑖, 𝑗) : 𝑎𝑖,𝑗 ̸= 0, firsti ≤ 𝑖 ≤ lasti− 1, firstj ≤ 𝑗 ≤ lastj− 1}|

where |ℐ| means the number of elements in the set ℐ.

This function is not an efficient way to obtain the number of non-zeros in one row or column. In
that case use the function task.getarownumnz or task.getacolnumnz .

Parameters

•[in] firsti (int) – Index of the first row in the rectangular piece.

•[in] lasti (int) – Index of the last row plus one in the rectangular piece.

•[in] firstj (int) – Index of the first column in the rectangular piece.

•[in] lastj (int) – Index of the last column plus one in the rectangular piece.
Return

•numnz (int) – Number of non-zero 𝐴 elements in the rectangular piece.

nzi = Task.getarow(i, subi, vali)
Obtains one row of 𝐴 in a sparse format.

Parameters

•[in] i (int) – Index of the row or column.

•[out] subi (int[]) – Index of the non-zeros in the row obtained.

•[out] vali (double[]) – Numerical values of the row obtained.
Return

•nzi (int) – Number of non-zeros in the row obtained.

nzi = Task.getarownumnz(i)
Obtains the number of non-zero elements in one row of 𝐴.

Parameters

•[in] i (int) – Index of the row or column.
Return

•nzi (int) – Number of non-zeros in the 𝑖th row of 𝐴.

Task.getarowslicetrip(first, last, subi, subj, val)
Obtains a sequence of rows from 𝐴 in a sparse triplets format.

Parameters

•[in] first (int) – Index of the first row or column in the sequence.

•[in] last (int) – Index of the last row or column in the sequence plus one.

•[out] subi (int[]) – Constraint subscripts.

•[out] subj (int[]) – Column subscripts.

•[out] val (double[]) – Values.

Task.getaslice(accmode, first, last, ptrb, ptre, sub, val)
Obtains a sequence of rows or columns from 𝐴 in sparse format.

Parameters

282 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] accmode (accmode) – Defines whether a column slice or a row slice is requested.

•[in] first (int) – Index of the first row or column in the sequence.

•[in] last (int) – Index of the last row or column in the sequence plus one.

•[out] ptrb (long[]) – ptrb[t] is an index pointing to the first element in the 𝑡th row or
column obtained.

•[out] ptre (long[]) – ptre[t] is an index pointing to the last element plus one in the 𝑡th
row or column obtained.

•[out] sub (int[]) – Contains the row or column subscripts.

•[out] val (double[]) – Contains the coefficient values.

numnz = Task.getaslicenumnz(accmode, first, last)
Obtains the number of non-zeros in a slice of rows or columns of 𝐴.

Parameters

•[in] accmode (accmode) – Defines whether non-zeros are counted in a column slice or a
row slice.

•[in] first (int) – Index of the first row or column in the sequence.

•[in] last (int) – Index of the last row or column plus one in the sequence.
Return

•numnz (long) – Number of non-zeros in the slice.

num = Task.getbarablocktriplet(subi, subj, subk, subl, valijkl)
Obtains 𝐴 in block triplet form.

Parameters

•[out] subi (int[]) – Constraint index.

•[out] subj (int[]) – Symmetric matrix variable index.

•[out] subk (int[]) – Block row index.

•[out] subl (int[]) – Block column index.

•[out] valijkl (double[]) – A list indexes of the elements from symmetric matrix storage
that appears in the weighted sum.

Return

•num (long) – Number of elements in the block triplet form.

i, j, num = Task.getbaraidx(idx, sub, weights)
Obtains information about an element in 𝐴. Since 𝐴 is a sparse matrix of symmetric matrixes
then only the nonzero elements in 𝐴 are stored in order to save space. Now 𝐴 is stored vectorized
form i.e. as one long vector. This function makes it possible to obtain information such as the row
index and the column index of a particular element of the vectorized form of 𝐴.

Please observe if one element of 𝐴 is inputted multiple times then it may be stored several times
in vectorized form. In that case the element with the highest index is the one that is used.

Parameters

•[in] idx (long) – Position of the element in the vectorized form.

•[out] sub (long[]) – A list indexes of the elements from symmetric matrix storage that
appears in the weighted sum.

•[out] weights (double[]) – The weights associated with each term in the weighted sum.
Return

•i (int) – Row index of the element at position idx.

•j (int) – Column index of the element at position idx.

•num (long) – Number of terms in weighted sum that forms the element.

16.9. Class Task 283

MOSEK Optimizer API for Python, Release 8.0.0.94

i, j = Task.getbaraidxij(idx)
Obtains information about an element in 𝐴. Since 𝐴 is a sparse matrix of symmetric matrixes only
the nonzero elements in 𝐴 are stored in order to save space. Now 𝐴 is stored vectorized form i.e.
as one long vector. This function makes it possible to obtain information such as the row index
and the column index of a particular element of the vectorized form of 𝐴.

Please note that if one element of 𝐴 is inputted multiple times then it may be stored several times
in vectorized form. In that case the element with the highest index is the one that is used.

Parameters

•[in] idx (long) – Position of the element in the vectorized form.
Return

•i (int) – Row index of the element at position idx.

•j (int) – Column index of the element at position idx.

num = Task.getbaraidxinfo(idx)
Each nonzero element in 𝐴𝑖𝑗 is formed as a weighted sum of symmetric matrices. Using
this function the number terms in the weighted sum can be obtained. See description of
task.appendsparsesymmat for details about the weighted sum.

Parameters

•[in] idx (long) – The internal position of the element that should be obtained information
for.

Return

•num (long) – Number of terms in the weighted sum that forms the specified element in 𝐴.

numnz = Task.getbarasparsity(idxij)
The matrix 𝐴 is assumed to be a sparse matrix of symmetric matrices. This implies that many of
elements in 𝐴 is likely to be zero matrixes. Therefore, in order to save space only nonzero elements
in 𝐴 are stored on vectorized form. This function is used to obtain the sparsity pattern of 𝐴 and
the position of each nonzero element in the vectorized form of 𝐴.

Parameters

•[out] idxij (long[]) – Position of each nonzero element in the vectorized form of 𝐴𝑖𝑗 .
Hence, idxij[k] is the vector position of the element in row subi[k] and column subj[k]
of 𝐴𝑖𝑗 .

Return

•numnz (long) – Number of nonzero elements in 𝐴.

num = Task.getbarcblocktriplet(subj, subk, subl, valijkl)
Obtains 𝐶 in block triplet form.

Parameters

•[out] subj (int[]) – Symmetric matrix variable index.

•[out] subk (int[]) – Block row index.

•[out] subl (int[]) – Block column index.

•[out] valijkl (double[]) – A list indexes of the elements from symmetric matrix storage
that appears in the weighted sum.

Return

•num (long) – Number of elements in the block triplet form.

j, num = Task.getbarcidx(idx, sub, weights)
Obtains information about an element in 𝑐.

Parameters

•[in] idx (long) – Index of the element that should be obtained information about.

•[out] sub (long[]) – Elements appearing the weighted sum.

•[out] weights (double[]) – Weights of terms in the weighted sum.

284 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Return

•j (int) – Row index in 𝑐.

•num (long) – Number of terms in the weighted sum.

num = Task.getbarcidxinfo(idx)
Obtains information about the 𝑐𝑖𝑗 .

Parameters

•[in] idx (long) – Index of element that should be obtained information about. The value
is an index of a symmetric sparse variable.

Return

•num (long) – Number of terms that appears in weighted that forms the requested element.

j = Task.getbarcidxj(idx)
Obtains the row index of an element in 𝑐.

Parameters

•[in] idx (long) – Index of the element that should be obtained information about.
Return

•j (int) – Row index in 𝑐.

numnz = Task.getbarcsparsity(idxj)
Internally only the nonzero elements of 𝑐 is stored

in a vector. This function returns which elements 𝑐 that are nonzero (in subj) and their internal
position (in idx). Using the position detailed information about each nonzero 𝐶𝑗 can be obtained
using task.getbarcidxinfo and task.getbarcidx .

Parameters

•[out] idxj (long[]) – Internal positions of the nonzeros elements in 𝑐.
Return

•numnz (long) – Number of nonzero elements in 𝐶.

Task.getbarsj(whichsol, j, barsj)
Obtains the dual solution for a semidefinite variable. Only the lower triangle part of 𝑠𝑗 is returned
because the matrix by construction is symmetric. The format is that the columns are stored
sequentially in the natural order.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] j (int) – Index of the semidefinite variable.

•[out] barsj (double[]) – Value of 𝑠𝑗 .

name = Task.getbarvarname(i)
Obtains a name of a semidefinite variable.

Parameters

•[in] i (int) – Index.
Return

•name (str) – The requested name is copied to this buffer.

asgn, index = Task.getbarvarnameindex(somename)
Obtains the index of name of semidefinite variable.

Parameters

•[in] somename (str) – The requested name is copied to this buffer.
Return

•asgn (int) – Is non-zero if the name somename is assigned to a semidefinite variable.

•index (int) – If the name somename is assigned to a semidefinite variable, then index is the
name of the constraint.

16.9. Class Task 285

MOSEK Optimizer API for Python, Release 8.0.0.94

len = Task.getbarvarnamelen(i)
Obtains the length of a name of a semidefinite variable.

Parameters

•[in] i (int) – Index.
Return

•len (int) – Returns the length of the indicated name.

Task.getbarxj(whichsol, j, barxj)
Obtains the primal solution for a semidefinite variable. Only the lower triangle part of 𝑥̄𝑗 is
returned because the matrix by construction is symmetric. The format is that the columns are
stored sequentially in the natural order.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] j (int) – Index of the semidefinite variable.

•[out] barxj (double[]) – Value of 𝑋𝑗 .

bk, bl, bu = Task.getbound(accmode, i)
Obtains bound information for one constraint or variable.

Parameters

•[in] accmode (accmode) – Defines if operations are performed row-wise (constraint-
oriented) or column-wise (variable-oriented).

•[in] i (int) – Index of the constraint or variable for which the bound information should
be obtained.

Return

•bk (int) – Bound keys.

•bl (double) – Values for lower bounds.

•bu (double) – Values for upper bounds.

Task.getboundslice(accmode, first, last, bk, bl, bu)
Obtains bounds information for a sequence of variables or constraints.

Parameters

•[in] accmode (accmode) – Defines if operations are performed row-wise (constraint-
oriented) or column-wise (variable-oriented).

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[out] bk (boundkey) – Bound keys.

•[out] bl (double[]) – Values for lower bounds.

•[out] bu (double[]) – Values for upper bounds.

Task.getc(c)
Obtains all objective coefficients 𝑐.

Parameters

•[out] c (double[]) – Linear terms of the objective as a dense vector. The lengths is the
number of variables.

cfix = Task.getcfix()
Obtains the fixed term in the objective.

Return

•cfix (double) – Fixed term in the objective.

cj = Task.getcj(j)
Obtains one coefficient of 𝑐.

286 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Parameters

•[in] j (int) – Index of the variable for which 𝑐 coefficient should be obtained.
Return

•cj (double) – The value of 𝑐𝑗 .

bk, bl, bu = Task.getconbound(i)
Obtains bound information for one constraint.

Parameters

•[in] i (int) – Index of the constraint for which the bound information should be obtained.
Return

•bk (int) – Bound keys.

•bl (double) – Values for lower bounds.

•bu (double) – Values for upper bounds.

Task.getconboundslice(first, last, bk, bl, bu)
Obtains bounds information for a slice of the constraints.

Parameters

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[out] bk (boundkey) – Bound keys.

•[out] bl (double[]) – Values for lower bounds.

•[out] bu (double[]) – Values for upper bounds.

ct, conepar, nummem = Task.getcone(k, submem)
Obtains a conic constraint.

Parameters

•[in] k (int) – Index of the cone constraint.

•[out] submem (int[]) – Variable subscripts of the members in the cone.
Return

•ct (int) – Specifies the type of the cone.

•conepar (double) – This argument is currently not used. It can be set to 0

•nummem (int) – Number of member variables in the cone.

ct, conepar, nummem = Task.getconeinfo(k)
Obtains information about a conic constraint.

Parameters

•[in] k (int) – Index of the conic constraint.
Return

•ct (int) – Specifies the type of the cone.

•conepar (double) – This argument is currently not used. It can be set to 0

•nummem (int) – Number of member variables in the cone.

name = Task.getconename(i)
Obtains a name of a cone.

Parameters

•[in] i (int) – Index.
Return

•name (str) – Is assigned the required name.

16.9. Class Task 287

MOSEK Optimizer API for Python, Release 8.0.0.94

asgn, index = Task.getconenameindex(somename)
Checks whether the name somename has been assigned to any cone. If it has been assigned to cone,
then index of the cone is reported.

Parameters

•[in] somename (str) – The name which should be checked.
Return

•asgn (int) – Is non-zero if the name somename is assigned to a cone.

•index (int) – If the name somename is assigned to a cone, then index is the name of the
cone.

len = Task.getconenamelen(i)
Obtains the length of a name of a cone.

Parameters

•[in] i (int) – Index.
Return

•len (int) – Returns the length of the indicated name.

name = Task.getconname(i)
Obtains a name of a constraint.

Parameters

•[in] i (int) – Index.
Return

•name (str) – Is assigned the required name.

asgn, index = Task.getconnameindex(somename)
Checks whether the name somename has been assigned to any constraint. If it has been assigned
to constraint, then index of the constraint is reported.

Parameters

•[in] somename (str) – The name which should be checked.
Return

•asgn (int) – Is non-zero if the name somename is assigned to a constraint.

•index (int) – If the name somename is assigned to a constraint, then index is the name of
the constraint.

len = Task.getconnamelen(i)
Obtains the length of a name of a constraint variable.

Parameters

•[in] i (int) – Index.
Return

•len (int) – Returns the length of the indicated name.

Task.getcslice(first, last, c)
Obtains a sequence of elements in 𝑐.

Parameters

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[out] c (double[]) – Linear terms of the objective as a dense vector. The lengths is the
number of variables.

dimbarvarj = Task.getdimbarvarj(j)
Obtains the dimension of a symmetric matrix variable.

Parameters

•[in] j (int) – Index of the semidefinite variable whose dimension is requested.

288 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Return

•dimbarvarj (int) – The dimension of the j’th semidefinite variable.

dvalue = Task.getdouinf(whichdinf)
Obtains a double information item from the task information database.

Parameters

•[in] whichdinf (dinfitem) – A double float information item.
Return

•dvalue (double) – The value of the required double information item.

parvalue = Task.getdouparam(param)
Obtains the value of a double parameter.

Parameters

•[in] param (dparam) – Which parameter.
Return

•parvalue (double) – Parameter value.

dualobj = Task.getdualobj(whichsol)

Computes the dual objective value associated with the solution. Note if the solution is a primal infeasibility certificate, then the fixed term in the objective value is not included.
Moreover, since there is no dual solution associated with integer solution, then an error will
be reported if the dual objective value is requested for the integer solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.
Return

•dualobj (double) – Objective value corresponding to the dual solution.

nrmy, nrmslc, nrmsuc, nrmslx, nrmsux, nrmsnx, nrmbars = Task.getdualsolutionnorms(whichsol)
Compute norms of the primal solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.
Return

•nrmy (double) – The norm of the y vector.

•nrmslc (double) – The norm of the slc vector.

•nrmsuc (double) – The norm of the suc vector.

•nrmslx (double) – The norm of the slx vector.

•nrmsux (double) – The norm of the sux vector.

•nrmsnx (double) – The norm of the snx vector.

•nrmbars (double) – The norm of the bars vector.

Task.getdviolbarvar(whichsol, sub, viol)
Let (𝑆𝑗)

* be the value of variable 𝑆𝑗 for the specified solution. Then the dual violation of the
solution associated with variable 𝑆𝑗 is given by

max(−𝜆min(𝑆𝑗), 0.0).

Both when the solution is a certificate of primal infeasibility or when it is dual feasibleness solution
the violation should be small.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] sub (int[]) – An array of indexes of 𝑋 variables.

•[out] viol (double[]) – viol[k] is violation of the solution for the constraint 𝑆sub[𝑘] ∈ 𝒮+.

16.9. Class Task 289

MOSEK Optimizer API for Python, Release 8.0.0.94

Task.getdviolcon(whichsol, sub, viol)
The violation of the dual solution associated with the 𝑖‘th constraint is computed as follows

max(𝜌((𝑠𝑐𝑙)
*
𝑖 , (𝑏

𝑐
𝑙)𝑖), 𝜌((𝑠𝑐𝑢)*𝑖 ,−(𝑏𝑐𝑢)𝑖), | − 𝑦𝑖 + (𝑠𝑐𝑙)

*
𝑖 − (𝑠𝑐𝑢)*𝑖 |)

where

𝜌(𝑥, 𝑙) =

{︂
−𝑥, 𝑙 > −∞,
|𝑥|, otherwise

Both when the solution is a certificate of primal infeasibility or it is a dual feasibleness solution the
violation should be small.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] sub (int[]) – An array of indexes of constraints.

•[out] viol (double[]) – viol[k] is the violation of dual solution associated with the con-
straint sub[k].

Task.getdviolcones(whichsol, sub, viol)
Let (𝑠𝑥𝑛)* be the value of variable (𝑠𝑥𝑛) for the specified solution. For simplicity let us assume that
𝑠𝑥𝑛 is a member of quadratic cone, then the violation is computed as follows{︂

max(0, ‖(𝑠𝑥𝑛‖*2;𝑛 − (𝑠𝑥𝑛)*1)/
√

2, (𝑠𝑥𝑛)* ≥ −‖(𝑠𝑥𝑛)*2:𝑛‖,
‖(𝑠𝑥𝑛)*‖, otherwise.

Both when the solution is a certificate of primal infeasibility or when it is a dual feasibleness
solution the violation should be small.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] sub (int[]) – An array of indexes of 𝑋 variables.

•[out] viol (double[]) – viol[k] violation of the solution associated with sub[k]‘th dual
conic constraint.

Task.getdviolvar(whichsol, sub, viol)
The violation of the dual solution associated with the 𝑗‘th variable is computed as follows

max

⎛⎝𝜌((𝑠𝑥𝑙)*𝑖 , (𝑏
𝑥
𝑙)𝑖), 𝜌((𝑠𝑥𝑢)*𝑖 ,−(𝑏𝑥𝑢)𝑖), |

𝑛𝑢𝑚𝑐𝑜𝑛−1∑︁
𝑗=0

𝑎𝑖𝑗𝑦𝑖 + (𝑠𝑥𝑙)*𝑖 − (𝑠𝑥𝑢)*𝑖 − 𝜏𝑐𝑗 |

⎞⎠
where

𝜌(𝑥, 𝑙) =

{︂
−𝑥, 𝑙 > −∞,
|𝑥|, otherwise

𝜏 = 0 if the solution is certificate of dual infeasibility and 𝜏 = 1 otherwise. The formula for
computing the violation is only shown for linear case but is generalized appropriately for the more
general problems.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] sub (int[]) – An array of indexes of 𝑥 variables.

•[out] viol (double[]) – viol[k] is the maximal violation of the solution for the constraints
(𝑠𝑥𝑙)sub[𝑘] ≥ 0 and (𝑠𝑥𝑢)sub[𝑘] ≥ 0.

inftask = Task.getinfeasiblesubproblem(whichsol)
Given the solution is a certificate of primal or dual infeasibility then a primal or dual infeasible
subproblem is obtained respectively. The subproblem tend to be much smaller than the original

290 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

problem and hence it easier to locate the infeasibility inspecting the subproblem than the original
problem.

For the procedure to be useful then it is important to assigning meaningful names to constraints,
variables etc. in the original task because those names will be duplicated in the subproblem.

The function is only applicable to linear and conic quadratic optimization problems.

For more information see Section 14 .
Parameters

•[in] whichsol (soltype) – Which solution to use when determining the infeasible sub-
problem.

Return

•inftask (Task) – A new task containing the infeasible subproblem.

ivalue = Task.getintinf(whichiinf)
Obtains an integer information item from the task information database.

Parameters

•[in] whichiinf (iinfitem) – Specifies an information item.
Return

•ivalue (int) – The value of the required integer information item.

parvalue = Task.getintparam(param)
Obtains the value of an integer parameter.

Parameters

•[in] param (iparam) – Which parameter.
Return

•parvalue (int) – Parameter value.

lenbarvarj = Task.getlenbarvarj(j)
Obtains the length of the 𝑗th semidefinite variable i.e. the number of elements in the triangular
part.

Parameters

•[in] j (int) – Index of the semidefinite variable whose length if requested.
Return

•lenbarvarj (long) – Number of scalar elements in the lower triangular part of the semidefinite
variable.

ivalue = Task.getlintinf(whichliinf)
Obtains an integer information item from the task information database.

Parameters

•[in] whichliinf (liinfitem) – Specifies an information item.
Return

•ivalue (long) – The value of the required integer information item.

maxnumanz = Task.getmaxnumanz()
Obtains number of preallocated non-zeros in 𝐴. When this number of non-zeros is reached
MOSEK will automatically allocate more space for 𝐴.

Return

•maxnumanz (long) – Number of preallocated non-zero linear matrix elements.

maxnumbarvar = Task.getmaxnumbarvar()
Obtains maximum number of symmetric matrix variables that is reservered room for.

Return

•maxnumbarvar (int) – Maximum number of symmetric matrix variables currently that is
reservered room for.

16.9. Class Task 291

MOSEK Optimizer API for Python, Release 8.0.0.94

maxnumcon = Task.getmaxnumcon()
Obtains the number of preallocated constraints in the optimization task. When this number of
constraints is reached MOSEK will automatically allocate more space for constraints.

Return

•maxnumcon (int) – Number of preallocated constraints in the optimization task.

maxnumcone = Task.getmaxnumcone()
Obtains the number of preallocated cones in the optimization task. When this number of cones is
reached MOSEK will automatically allocate space for more cones.

Return

•maxnumcone (int) – Number of preallocated conic constraints in the optimization task.

maxnumqnz = Task.getmaxnumqnz()
Obtains the number of preallocated non-zeros for 𝑄 (both objective and constraints). When this
number of non-zeros is reached MOSEK will automatically allocate more space for 𝑄.

Return

•maxnumqnz (long) – Number of non-zero elements preallocated in quadratic coefficient matri-
ces.

maxnumvar = Task.getmaxnumvar()
Obtains the number of preallocated variables in the optimization task. When this number of
variables is reached MOSEK will automatically allocate more space for constraints.

Return

•maxnumvar (int) – Number of preallocated variables in the optimization task.

meminuse, maxmemuse = Task.getmemusage()
Obtains information about the amount of memory used by a task.

Return

•meminuse (long) – Amount of memory currently used by the task.

•maxmemuse (long) – Maximum amount of memory used by the task until now.

numanz = Task.getnumanz()
Obtains the number of non-zeros in 𝐴.

Return

•numanz (int) – Number of non-zero elements in the linear constraint matrix.

numanz = Task.getnumanz64()
Obtains the number of non-zeros in 𝐴.

Return

•numanz (long) – Number of non-zero elements in the linear constraint matrix.

num = Task.getnumbarablocktriplets()
Obtains an upper bound on the number of elements in the block triplet form of 𝐴.

Return

•num (long) – Number elements in the block triplet form of 𝐴.

nz = Task.getnumbaranz()
Get the number of nonzero elements in 𝐴.

Return

•nz (long) – The number of nonzero elements in 𝐴 i.e. the number of 𝑎̄𝑖𝑗 elements that is
nonzero.

num = Task.getnumbarcblocktriplets()
Obtains an upper bound on the number of elements in the block triplet form of 𝐶.

Return

•num (long) – An upper bound on the number elements in the block trip let form of 𝑐.

292 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

nz = Task.getnumbarcnz()
Obtains the number of nonzero elements in 𝑐.

Return

•nz (long) – The number of nonzeros in 𝑐 i.e. the number of elements 𝑐𝑗 that is different from
0.

numbarvar = Task.getnumbarvar()
Obtains the number of semidefinite variables.

Return

•numbarvar (int) – Number of semidefinite variable in the problem.

numcon = Task.getnumcon()
Obtains the number of constraints.

Return

•numcon (int) – Number of constraints.

numcone = Task.getnumcone()
Obtains the number of cones.

Return

•numcone (int) – Number conic constraints.

nummem = Task.getnumconemem(k)
Obtains the number of members in a cone.

Parameters

•[in] k (int) – Index of the cone.
Return

•nummem (int) – Number of member variables in the cone.

numintvar = Task.getnumintvar()
Obtains the number of integer-constrained variables.

Return

•numintvar (int) – Number of integer variables.

numparam = Task.getnumparam(partype)
Obtains the number of parameters of a given type.

Parameters

•[in] partype (parametertype) – Parameter type.
Return

•numparam (int) – Identical to the number of parameters of the type partype.

numqcnz = Task.getnumqconknz(k)
Obtains the number of non-zero quadratic terms in a constraint.

Parameters

•[in] k (int) – Index of the constraint for which the number quadratic terms should be
obtained.

Return

•numqcnz (long) – Number of quadratic terms.

numqonz = Task.getnumqobjnz()
Obtains the number of non-zero quadratic terms in the objective.

Return

•numqonz (long) – Number of non-zero elements in the quadratic objective terms.

num = Task.getnumsymmat()
Get the number of symmetric matrixes stored in the vector 𝐸.

Return

16.9. Class Task 293

MOSEK Optimizer API for Python, Release 8.0.0.94

•num (long) – Returns the number of symmetric sparse matrixes.

numvar = Task.getnumvar()
Obtains the number of variables.

Return

•numvar (int) – Number of variables.

objname = Task.getobjname()
Obtains the name assigned to the objective function.

Return

•objname (str) – Assigned the objective name.

len = Task.getobjnamelen()
Obtains the length of the name assigned to the objective function.

Return

•len (int) – Assigned the length of the objective name.

sense = Task.getobjsense()
Gets the objective sense of the task.

Return

•sense (int) – The returned objective sense.

primalobj = Task.getprimalobj(whichsol)
Computes the primal objective value for the desired solution. Note if the solution is an infeasibility
certificate, then the fixed term in the objective is not included.

Parameters

•[in] whichsol (soltype) – Selects a solution.
Return

•primalobj (double) – Objective value corresponding to the primal solution.

nrmxc, nrmxx, nrmbarx = Task.getprimalsolutionnorms(whichsol)
Compute norms of the primal solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.
Return

•nrmxc (double) – The norm of xc vector.

•nrmxx (double) – The norm of xx vector.

•nrmbarx (double) – The norm of barx vector.

probtype = Task.getprobtype()
Obtains the problem type.

Return

•probtype (int) – The problem type.

prosta = Task.getprosta(whichsol)
Obtains the problem status.

Parameters

•[in] whichsol (soltype) – Selects a solution.
Return

•prosta (int) – Problem status.

Task.getpviolbarvar(whichsol, sub, viol)
Let (𝑋𝑗)

* be the value of variable 𝑋𝑗 for the specified solution. Then the primal violation of the
solution associated with variable 𝑋𝑗 is given by

max(−𝜆min(𝑋𝑗), 0.0).

294 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] sub (int[]) – An array of indexes of 𝑋 variables.

•[out] viol (double[]) – viol[k] is how much the solution violate the constraint 𝑋sub[𝑘] ∈
𝒮+.

Task.getpviolcon(whichsol, sub, viol)
The primal violation of the solution associated of constraint is computed by

max(𝑙𝑐𝑖 𝜏 − (𝑥𝑐
𝑖)

*), (𝑥𝑐
𝑖)

*𝜏 − 𝑢𝑐
𝑖𝜏, |

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑎𝑖𝑗𝑥
*
𝑗 − 𝑥𝑐

𝑖 |)

where 𝜏 is defined as follows. If the solution is a certificate of dual infeasibility, then 𝜏 = 0 and
otherwise 𝜏 = 1. Both when the solution is a valid certificate of dual infeasibility or when it is
primal feasibleness solution the violation should be small. The above is only shown for linear case
but is appropriately generalized for the other cases.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] sub (int[]) – An array of indexes of constraints.

•[out] viol (double[]) – viol[k] associated with the solution for the sub[k]‘th constraint.

Task.getpviolcones(whichsol, sub, viol)
Let 𝑥* be the value of variable 𝑥 for the specified solution. For simplicity let us assume that 𝑥 is
a member of quadratic cone, then the violation is computed as follows{︂

max(0, ‖𝑥2;𝑛‖ − 𝑥1)/
√

2, 𝑥1 ≥ −‖𝑥2:𝑛‖,
‖𝑥‖, otherwise.

Both when the solution is a certificate of dual infeasibility or when it is a primal feasibleness
solution the violation should be small.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] sub (int[]) – An array of indexes of 𝑋 variables.

•[out] viol (double[]) – viol[k] violation of the solution associated with sub[k]‘th conic
constraint.

Task.getpviolvar(whichsol, sub, viol)
Let 𝑥*

𝑗 be the value of variable 𝑥𝑗 for the specified solution. Then the primal violation of the
solution associated with variable 𝑥𝑗 is given by

max(𝑙𝑥𝑗 𝜏 − 𝑥*
𝑗 , 𝑥

*
𝑗 − 𝑢𝑥

𝑗 𝜏).

where 𝜏 is defined as follows. If the solution is a certificate of dual infeasibility, then 𝜏 = 0 and
otherwise 𝜏 = 1. Both when the solution is a valid certificate of dual infeasibility or when it is
primal feasibleness solution the violation should be small.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] sub (int[]) – An array of indexes of 𝑥 variables.

•[out] viol (double[]) – viol[k] is the violation associated the solution for variable 𝑥𝑗 .

numqcnz = Task.getqconk(k, qcsubi, qcsubj, qcval)
Obtains all the quadratic terms in a constraint. The quadratic terms are stored sequentially qcsubi,
qcsubj, and qcval.

Parameters

16.9. Class Task 295

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] k (int) – Which constraint.

•[out] qcsubi (int[]) – Row subscripts for quadratic constraint matrix.

•[out] qcsubj (int[]) – Column subscripts for quadratic constraint matrix.

•[out] qcval (double[]) – Quadratic constraint coefficient values.
Return

•numqcnz (long) – Number of quadratic terms.

numqonz = Task.getqobj(qosubi, qosubj, qoval)
Obtains the quadratic terms in the objective. The required quadratic terms are stored sequentially
in qosubi, qosubj, and qoval.

Parameters

•[out] qosubi (int[]) – Row subscripts for quadratic objective coefficients.

•[out] qosubj (int[]) – Column subscripts for quadratic objective coefficients.

•[out] qoval (double[]) – Quadratic objective coefficient values.
Return

•numqonz (long) – Number of non-zero elements in the quadratic objective terms.

qoij = Task.getqobjij(i, j)
Obtains one coefficient 𝑞𝑜𝑖𝑗 in the quadratic term of the objective.

Parameters

•[in] i (int) – Row index of the coefficient.

•[in] j (int) – Column index of coefficient.
Return

•qoij (double) – The required coefficient.

Task.getreducedcosts(whichsol, first, last, redcosts)
Computes the reduced costs for a sequence of variables and return them in the variable redcosts
i.e.

redcosts[𝑗 − first] = (𝑠𝑥𝑙)𝑗 − (𝑠𝑥𝑢)𝑗 , 𝑗 = first, . . . , 𝑙𝑎𝑠𝑡− 1 (16.2)

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – See formula (16.2) for the definition.

•[in] last (int) – See formula (16.2) for the definition.

•[out] redcosts (double[]) – The reduced costs in the required sequence of variables are
stored sequentially in redcosts starting at redcosts[\idxbeg].

Task.getskc(whichsol, skc)
Obtains the status keys for the constraints.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[out] skc (stakey) – Status keys for the constraints.

Task.getskcslice(whichsol, first, last, skc)
Obtains the status keys for the constraints.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

296 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•[out] skc (stakey) – Status keys for the constraints.

Task.getskx(whichsol, skx)
Obtains the status keys for the scalar variables.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[out] skx (stakey) – Status keys for the variables.

Task.getskxslice(whichsol, first, last, skx)
Obtains the status keys for the variables.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[out] skx (stakey) – Status keys for the variables.

Task.getslc(whichsol, slc)
Obtains the 𝑠𝑐𝑙 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[out] slc (double[]) – The 𝑠𝑐𝑙 vector.

Task.getslcslice(whichsol, first, last, slc)
Obtains a slice of the 𝑠𝑐𝑙 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[out] slc (double[]) – Dual variables corresponding to the lower bounds on the constraints.

Task.getslx(whichsol, slx)
Obtains the 𝑠𝑥𝑙 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[out] slx (double[]) – The 𝑠𝑥𝑙 vector.

Task.getslxslice(whichsol, first, last, slx)
Obtains a slice of the 𝑠𝑥𝑙 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[out] slx (double[]) – Dual variables corresponding to the lower bounds on the variables.

Task.getsnx(whichsol, snx)
Obtains the 𝑠𝑥𝑛 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[out] snx (double[]) – The 𝑠𝑥𝑛 vector.

Task.getsnxslice(whichsol, first, last, snx)
Obtains a slice of the 𝑠𝑥𝑛 vector for a solution.

16.9. Class Task 297

MOSEK Optimizer API for Python, Release 8.0.0.94

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[out] snx (double[]) – Dual variables corresponding to the conic constraints on the vari-
ables.

solsta = Task.getsolsta(whichsol)
Obtains the solution status.

Parameters

•[in] whichsol (soltype) – Selects a solution.
Return

•solsta (int) – Solution status.

prosta, solsta = Task.getsolution(whichsol, skc, skx, skn, xc, xx, y, slc, suc, slx, sux,
snx)

Obtains the complete solution.

Consider the case of linear programming. The primal problem is given by

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

and the corresponding dual problem is

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢
+(𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

In this case the mapping between variables and arguments to the function is as follows:

•xx : Corresponds to variable 𝑥.

•y : Corresponds to variable 𝑦.

•slc: Corresponds to variable 𝑠𝑐𝑙 .

•suc: Corresponds to variable 𝑠𝑐𝑢.

•slx: Corresponds to variable 𝑠𝑥𝑙 .

•sux: Corresponds to variable 𝑠𝑥𝑢.

•xc : Corresponds to 𝐴𝑥.

The meaning of the values returned by this function depend on the solution status returned in the
argument solsta. The most important possible values of solsta are:

•solsta.optimal : An optimal solution satisfying the optimality criteria for continuous prob-
lems is returned.

•solsta.integer_optimal : An optimal solution satisfying the optimality criteria for integer
problems is returned.

•solsta.prim_feas : A solution satisfying the feasibility criteria.

•solsta.prim_infeas_cer : A primal certificate of infeasibility is returned.

•solsta.dual_infeas_cer : A dual certificate of infeasibility is returned.
Parameters

•[in] whichsol (soltype) – Selects a solution.

298 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•[out] skc (stakey) – Status keys for the constraints.

•[out] skx (stakey) – Status keys for the variables.

•[out] skn (stakey) – Status keys for the conic constraints.

•[out] xc (double[]) – Primal constraint solution.

•[out] xx (double[]) – Primal variable solution.

•[out] y (double[]) – Vector of dual variables corresponding to the constraints.

•[out] slc (double[]) – Dual variables corresponding to the lower bounds on the constraints.

•[out] suc (double[]) – Dual variables corresponding to the upper bounds on the constraints.

•[out] slx (double[]) – Dual variables corresponding to the lower bounds on the variables.

•[out] sux (double[]) – Dual variables corresponding to the upper bounds on the variables.

•[out] snx (double[]) – Dual variables corresponding to the conic constraints on the vari-
ables.

Return

•prosta (int) – Problem status.

•solsta (int) – Solution status.

sk, x, sl, su, sn = Task.getsolutioni(accmode, i, whichsol)
Obtains the primal and dual solution information for a single constraint or variable.

Parameters

•[in] accmode (accmode) – If set to accmode.con the solution information for a constraint
is retrieved. Otherwise for a variable.

•[in] i (int) – Index of the constraint or variable.

•[in] whichsol (soltype) – Selects a solution.
Return

•sk (int) – Status key of the constraint of variable.

•x (double) – Solution value of the primal variable.

•sl (double) – Solution value of the dual variable associated with the lower bound.

•su (double) – Solution value of the dual variable associated with the upper bound.

•sn (double) – Solution value of the dual variable associated with the cone constraint.

pobj, pviolcon, pviolvar, pviolbarvar, pviolcone, pviolitg, dobj, dviolcon, dviolvar, dviolbarvar, dviolcone = Task.getsolutioninfo(whichsol)
Obtains information about a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.
Return

•pobj (double) – The primal objective value as computed by task.getprimalobj .

•pviolcon (double) – Maximal primal violation of the solution associated with the 𝑥𝑐 variables
where the violations are computed by task.getpviolcon .

•pviolvar (double) – Maximal primal violation of the solution for the 𝑥𝑥 variables where the
violations are computed by task.getpviolvar .

•pviolbarvar (double) – Maximal primal violation of solution for the 𝑋 variables where the
violations are computed by task.getpviolbarvar .

•pviolcone (double) – Maximal primal violation of solution for the conic constraints where
the violations are computed by task.getpviolcones .

16.9. Class Task 299

MOSEK Optimizer API for Python, Release 8.0.0.94

•pviolitg (double) – Maximal violation in the integer constraints. The violation for an integer
constrained variable 𝑥𝑗 is given by

min(𝑥𝑗 − ⌊𝑥𝑗⌋, ⌈𝑥𝑗⌉ − 𝑥𝑗).

This number is always zero for the interior-point and the basic solutions.

•dobj (double) – Dual objective value as computed as computed by task.getdualobj .

•dviolcon (double) – Maximal violation of the dual solution associated with the 𝑥𝑐 variable
as computed by as computed by task.getdviolcon .

•dviolvar (double) – Maximal violation of the dual solution associated with the 𝑥 variable as
computed by as computed by task.getdviolvar .

•dviolbarvar (double) – Maximal violation of the dual solution associated with the 𝑠 variable
as computed by as computed by task.getdviolbarvar .

•dviolcone (double) – Maximal violation of the dual solution associated with the dual conic
constraints as computed by task.getdviolcones .

Task.getsolutionslice(whichsol, solitem, first, last, values)
Obtains a slice of the solution.

Consider the case of linear programming. The primal problem is given by

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥.

and the corresponding dual problem is

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢
+(𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,

𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0.

The solitem argument determines which part of the solution is returned:

•solitem.xx : The variable values return 𝑥.

•solitem.y : The variable values return 𝑦.

•solitem.slc : The variable values return 𝑠𝑐𝑙 .

•solitem.suc : The variable values return 𝑠𝑐𝑢.

•solitem.slx : The variable values return 𝑠𝑥𝑙 .

•solitem.sux : The variable values return 𝑠𝑥𝑢.

A conic optimization problem has the same primal variables as in the linear case. Recall that the
dual of a conic optimization problem is given by:

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢
+(𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑥)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to 𝐴𝑇 𝑦 + 𝑠𝑥𝑙 − 𝑠𝑥𝑢 + 𝑠𝑥𝑛 = 𝑐,
−𝑦 + 𝑠𝑐𝑙 − 𝑠𝑐𝑢 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝒦*

This introduces one additional dual variable 𝑠𝑥𝑛. This variable can be acceded by selecting solitem
as solitem.snx .

The meaning of the values returned by this function also depends on the solution status which can
be obtained with task.getsolsta . Depending on the solution status value will be:

300 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•solsta.optimal A part of the optimal solution satisfying the optimality criteria for contin-
uous problems.

•solsta.integer_optimal A part of the optimal solution satisfying the optimality criteria
for integer problems.

•solsta.prim_feas A part of the solution satisfying the feasibility criteria.

•solsta.prim_infeas_cer A part of the primal certificate of infeasibility.

•solsta.dual_infeas_cer A part of the dual certificate of infeasibility.
Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] solitem (solitem) – Which part of the solution is required.

•[in] first (int) – Index of the first value in the slice.

•[in] last (int) – value of the last index+1 in the slice, e.g. if 𝑥𝑥[5, . . . , 9] is required last
should be 10.

•[out] values (double[]) – The values in the required sequence are stored sequentially in
values starting at values[\idxbeg].

Task.getsparsesymmat(idx, subi, subj, valij)
Get a single symmetric matrix from the matrix store.

Parameters

•[in] idx (long) – Index of the matrix to get.

•[out] subi (int[]) – Row subscripts of the matrix non-zero elements.

•[out] subj (int[]) – Column subscripts of the matrix non-zero elements.

•[out] valij (double[]) – Coefficients of the matrix non-zero elements.

len, parvalue = Task.getstrparam(param)
Obtains the value of a string parameter.

Parameters

•[in] param (sparam) – Which parameter.
Return

•len (int) – The length of the parameter value.

•parvalue (str) – If this is not NULL, the parameter value is stored here.

len = Task.getstrparamlen(param)
Obtains the length of a string parameter.

Parameters

•[in] param (sparam) – Which parameter.
Return

•len (int) – The length of the parameter value.

Task.getsuc(whichsol, suc)
Obtains the 𝑠𝑐𝑢 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[out] suc (double[]) – The 𝑠𝑐𝑢 vector.

Task.getsucslice(whichsol, first, last, suc)
Obtains a slice of the 𝑠𝑐𝑢 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

16.9. Class Task 301

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] last (int) – Last index plus 1 in the sequence.

•[out] suc (double[]) – Dual variables corresponding to the upper bounds on the constraints.

Task.getsux(whichsol, sux)
Obtains the 𝑠𝑥𝑢 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[out] sux (double[]) – The 𝑠𝑥𝑢 vector.

Task.getsuxslice(whichsol, first, last, sux)
Obtains a slice of the 𝑠𝑥𝑢 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[out] sux (double[]) – Dual variables corresponding to the upper bounds on the variables.

dim, nz, type = Task.getsymmatinfo(idx)
MOSEK maintains a vector denoted by 𝐸 of symmetric data matrixes. This function makes it
possible to obtain important information about an data matrix in 𝐸.

Parameters

•[in] idx (long) – Index of the matrix that is requested information about.
Return

•dim (int) – Returns the dimension of the requested matrix.

•nz (long) – Returns the number of non-zeros in the requested matrix.

•type (int) – Returns the type of the requested matrix.

taskname = Task.gettaskname()
Obtains the name assigned to the task.

Return

•taskname (str) – Is assigned the task name.

len = Task.gettasknamelen()
Obtains the length the task name.

Return

•len (int) – Returns the length of the task name.

bk, bl, bu = Task.getvarbound(i)
Obtains bound information for one variable.

Parameters

•[in] i (int) – Index of the variable for which the bound information should be obtained.
Return

•bk (int) – Bound keys.

•bl (double) – Values for lower bounds.

•bu (double) – Values for upper bounds.

Task.getvarboundslice(first, last, bk, bl, bu)
Obtains bounds information for a slice of the variables.

Parameters

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[out] bk (boundkey) – Bound keys.

302 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•[out] bl (double[]) – Values for lower bounds.

•[out] bu (double[]) – Values for upper bounds.

name = Task.getvarname(j)
Obtains a name of a variable.

Parameters

•[in] j (int) – Index.
Return

•name (str) – Returns the required name.

asgn, index = Task.getvarnameindex(somename)
Checks whether the name somename has been assigned to any variable. If it has been assigned to
variable, then index of the variable is reported.

Parameters

•[in] somename (str) – The name which should be checked.
Return

•asgn (int) – Is non-zero if the name somename is assigned to a variable.

•index (int) – If the name somename is assigned to a variable, then index is the name of the
variable.

len = Task.getvarnamelen(i)
Obtains the length of a name of a variable variable.

Parameters

•[in] i (int) – Index.
Return

•len (int) – Returns the length of the indicated name.

vartype = Task.getvartype(j)
Gets the variable type of one variable.

Parameters

•[in] j (int) – Index of the variable.
Return

•vartype (int) – Variable type of variable j.

Task.getvartypelist(subj, vartype)
Obtains the variable type of one or more variables.

Upon return vartype[k] is the variable type of variable subj[k].
Parameters

•[in] subj (int[]) – A list of variable indexes.

•[out] vartype (variabletype) – The variables types corresponding to the variables specified
by subj.

Task.getxc(whichsol, xc)
Obtains the 𝑥𝑐 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[out] xc (double[]) – The 𝑥𝑐 vector.

Task.getxcslice(whichsol, first, last, xc)
Obtains a slice of the 𝑥𝑐 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

16.9. Class Task 303

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] last (int) – Last index plus 1 in the sequence.

•[out] xc (double[]) – Primal constraint solution.

Task.getxx(whichsol, xx)
Obtains the 𝑥𝑥 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[out] xx (double[]) – The 𝑥𝑥 vector.

Task.getxxslice(whichsol, first, last, xx)
Obtains a slice of the 𝑥𝑥 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[out] xx (double[]) – Primal variable solution.

Task.gety(whichsol, y)
Obtains the 𝑦 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[out] y (double[]) – The 𝑦 vector.

Task.getyslice(whichsol, first, last, y)
Obtains a slice of the 𝑦 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[out] y (double[]) – Vector of dual variables corresponding to the constraints.

Task.initbasissolve(basis)
Prepare a task for use with the task.solvewithbasis function.

This function should be called

•immediately before the first call to task.solvewithbasis , and

•immediately before any subsequent call to task.solvewithbasis if the task has been modi-
fied.

If the basis is singular i.e. not invertible, then the error rescode.err_basis_singular (1615) is
reported.

Parameters

•[out] basis (int[]) – The array of basis indexes to use.

The array is interpreted as follows: If basis[𝑖] ≤ 𝑛𝑢𝑚𝑐𝑜𝑛− 1, then 𝑥𝑐
basis[𝑖] is in the basis at

position 𝑖, otherwise 𝑥basis[𝑖]−numcon is in the basis at position 𝑖.

Task.inputdata(maxnumcon, maxnumvar, c, cfix, aptrb, aptre, asub, aval, bkc, blc, buc, bkx,
blx, bux)

Input the linear part of an optimization problem.

The non-zeros of 𝐴 are inputted column-wise in the format described in Section 16.1.3.2 .

For an explained code example see Section 3.2 and Section 16.1.3 .
Parameters

304 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] maxnumcon (int) – Number of preallocated constraints in the optimization task.

•[in] maxnumvar (int) – Number of preallocated variables in the optimization task.

•[in] c (double[]) – Linear terms of the objective as a dense vector. The lengths is the
number of variables.

•[in] cfix (double) – Fixed term in the objective.

•[in] aptrb (long[]) – Row or column end pointers.

•[in] aptre (long[]) – Row or column start pointers.

•[in] asub (int[]) – Coefficient subscripts.

•[in] aval (double[]) – Coefficient values.

•[in] bkc (boundkey) – Bound keys for the constraints.

•[in] blc (double[]) – Lower bounds for the constraints.

•[in] buc (double[]) – Upper bounds for the constraints.

•[in] bkx (boundkey) – Bound keys for the variables.

•[in] blx (double[]) – Lower bounds for the variables.

•[in] bux (double[]) – Upper bounds for the variables.

param = Task.isdouparname(parname)
Checks whether parname is a valid double parameter name.

Parameters

•[in] parname (str) – Parameter name.
Return

•param (int) – Which parameter.

param = Task.isintparname(parname)
Checks whether parname is a valid integer parameter name.

Parameters

•[in] parname (str) – Parameter name.
Return

•param (int) – Which parameter.

param = Task.isstrparname(parname)
Checks whether parname is a valid string parameter name.

Parameters

•[in] parname (str) – Parameter name.
Return

•param (int) – Which parameter.

Task.linkfiletostream(whichstream, filename, append)
Directs all output from a task stream to a file.

Parameters

•[in] whichstream (streamtype) – Index of the stream.

•[in] filename (str) – The name of the file where text from the stream defined by
whichstream is written.

•[in] append (int) – If this argument is 0 the output file will be overwritten, otherwise text
is append to the output file.

Task.onesolutionsummary(whichstream, whichsol)
Prints a short summary for a specified solution.

Parameters

16.9. Class Task 305

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] whichstream (streamtype) – Index of the stream.

•[in] whichsol (soltype) – Selects a solution.

trmcode = Task.optimize()
Calls the optimizer. Depending on the problem type and the selected optimizer this will call one of
the optimizers in MOSEK. By default the interior point optimizer will be selected for continuous
problems. The optimizer may be selected manually by setting the parameter iparam.optimizer .

This function returns errors on the left hand side. Warnings are not returned and termination
codes are returned in the separate argument trmcode.

Return

•trmcode (int) – Is either rescodetype.ok or a termination response code.

trmcode = Task.optimizermt(server, port)
Offload the optimization task to a solver server defined by server:port. The call will block until
a result is available or the connection closes.

If the string parameter sparam.remote_access_token is not blank, it will be passed to the server
as authentication.

Parameters

•[in] server (str) – Name or IP address of the solver server

•[in] port (str) – Network port of solver service
Return

•trmcode (int) – Is either rescodetype.ok or a termination response code.

Task.optimizersummary(whichstream)
Prints a short summary with optimizer statistics for last optimization.

Parameters

•[in] whichstream (streamtype) – Index of the stream.

Task.primalrepair(wlc, wuc, wlx, wux)
The function repairs a primal infeasible optimization problem by adjusting the bounds on the
constraints and variables where the adjustment is computed as the minimal weighted sum relaxation
to the bounds on the constraints and variables. Observe the function only repairs the problem but
does not compute an optimal solution to the repaired problem. If an optimal solution is required
the problem should be optimized after the repair.

The function is applicable to linear and conic problems possibly having integer constrained vari-
ables.

Observe that when computing the minimal weighted relaxation then the termination tolerance
specified by the parameters of the task is employed. For instance the parameter iparam.mio_mode
can be used make MOSEK ignore the integer constraints during the repair which usually leads to
a much faster repair. However, the drawback is of course that the repaired problem may not have
an integer feasible solution.

Note the function modifies the bounds on the constraints and variables. If this is not a desired
feature, then apply the function to a cloned task.

Parameters

•[in] wlc (double[]) – (𝑤𝑐
𝑙)𝑖 is the weight associated with relaxing the lower bound on

constraint 𝑖. If the weight is negative, then the lower bound is not relaxed. Moreover, if the
argument is NULL, then all the weights are assumed to be 1.

•[in] wuc (double[]) – (𝑤𝑐
𝑢)𝑖 is the weight associated with relaxing the upper bound on

constraint 𝑖. If the weight is negative, then the upper bound is not relaxed. Moreover, if the
argument is NULL, then all the weights are assumed to be 1.

•[in] wlx (double[]) – (𝑤𝑥
𝑙)𝑗 is the weight associated with relaxing the upper bound on

constraint 𝑗. If the weight is negative, then the lower bound is not relaxed. Moreover, if the
argument is NULL, then all the weights are assumed to be 1.

306 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] wux (double[]) – (𝑤𝑥
𝑙)𝑖 is the weight associated with relaxing the upper bound on

variable 𝑗. If the weight is negative, then the upper bound is not relaxed. Moreover, if the
argument is NULL, then all the weights are assumed to be 1.

Task.primalsensitivity(subi, marki, subj, markj, leftpricei, rightpricei, leftrangei,
rightrangei, leftpricej, rightpricej, leftrangej, rightrangej)

Calculates sensitivity information for bounds on variables and constraints.

For details on sensitivity analysis and the definitions of shadow price and linearity interval see
Section 15 .

The constraints for which sensitivity analysis is performed are given by the data structures:

1.subi Index of constraint to analyze.

2.marki Indicate for which bound of constraint subi[i] sensitivity analysis is performed. If
marki[i] = mark.up the upper bound of constraint subi[i] is analyzed, and if marki[i] =
mark.lo the lower bound is analyzed. If subi[i] is an equality constraint, either mark.lo
or mark.up can be used to select the constraint for sensitivity analysis.

Consider the problem:

minimize 𝑥1 + 𝑥2

subject to − 1 ≤ 𝑥1 − 𝑥2 ≤ 1,
𝑥1 = 0,

𝑥1 ≥ 0, 𝑥2 ≥ 0

Suppose that

•numi = 1;

•subi = [0];

•marki = [mark.up]

then

leftpricei[0], rightpricei[0], leftrangei[0] and rightrangei[0] will contain the sensitiv-
ity information for the upper bound on constraint 0 given by the expression:

𝑥1 − 𝑥2 ≤ 1

Similarly, the variables for which to perform sensitivity analysis are given by the structures:

1.subj Index of variables to analyze.

2.markj Indicate for which bound of variable subi[j] sensitivity analysis is performed. If
markj[j] = mark.up the upper bound of constraint subi[j] is analyzed, and if markj[j] =
mark.lo the lower bound is analyzed.

3.If subi[j] is an equality constraint, either mark.lo or mark.up can be used to select the
constraint for sensitivity analysis.

For an example, please see Section 15.1.4 .

The type of sensitivity analysis to be performed (basis or optimal partition) is controlled by the
parameter iparam.sensitivity_type .

Parameters

•[in] subi (int[]) – Indexes of bounds on constraints to analyze.

•[in] marki (mark) – The value of marki[i] specifies for which bound (upper or lower) on
constraint subi[i] sensitivity analysis should be performed.

•[in] subj (int[]) – Indexes of bounds on variables to analyze.

•[in] markj (mark) – The value of markj[j] specifies for which bound (upper or lower) on
variable subj[j] sensitivity analysis should be performed.

16.9. Class Task 307

MOSEK Optimizer API for Python, Release 8.0.0.94

•[out] leftpricei (double[]) – leftpricei[i] is the left shadow price for the upper/lower
bound (indicated by marki[i]) of the constraint with index subi[i].

•[out] rightpricei (double[]) – rightpricei[i] is the right shadow price for the up-
per/lower bound (indicated by marki[i]) of the constraint with index subi[i].

•[out] leftrangei (double[]) – leftrangei[i] is the left range for the upper/lower bound
(indicated by marki[i]) of the constraint with index subi[i].

•[out] rightrangei (double[]) – rightrangei[i] is the right range for the upper/lower
bound (indicated by marki[i]) of the constraint with index subi[i].

•[out] leftpricej (double[]) – leftpricej[j] is the left shadow price for the upper/lower
bound (indicated by marki[j]) on variable subj[j].

•[out] rightpricej (double[]) –

rightpricej[j] is the right shadow price for the upper/lower bound (indicated by marki[j])
on variable subj[j].

•[out] leftrangej (double[]) –

leftrangej[j] is the left range for the upper/lower bound (indicated by marki[j])
on variable subj[j].

•[out] rightrangej (double[]) – rightrangej[j] is the right range for the upper/lower
bound (indicated by marki[j]) on variable subj[j].

Task.printdata(whichstream, firsti, lasti, firstj, lastj, firstk, lastk, c, qo, a, qc, bc,
bx, vartype, cones)

Prints a part of the problem data to a stream. This function is normally used for debugging
purposes only, e.g. to verify that the correct data has been inputted.

Parameters

•[in] whichstream (streamtype) – Index of the stream.

•[in] firsti (int) – Index of first constraint for which data should be printed.

•[in] lasti (int) – Index of last constraint plus 1 for which data should be printed.

•[in] firstj (int) – Index of first variable for which data should be printed.

•[in] lastj (int) – Index of last variable plus 1 for which data should be printed.

•[in] firstk (int) – Index of first cone for which data should be printed.

•[in] lastk (int) – Index of last cone plus 1 for which data should be printed.

•[in] c (int) – If non-zero 𝑐 is printed.

•[in] qo (int) – If non-zero 𝑄𝑜 is printed.

•[in] a (int) – If non-zero 𝐴 is printed.

•[in] qc (int) – If non-zero 𝑄𝑘 is printed for the relevant constraints.

•[in] bc (int) – If non-zero the constraints bounds are printed.

•[in] bx (int) – If non-zero the variable bounds are printed.

•[in] vartype (int) – If non-zero the variable types are printed.

•[in] cones (int) – If non-zero the conic data is printed.

Task.putacol(j, subj, valj)
Resets all the elements in column 𝑗 to zero and then do

𝐴subj[𝑘],j = valj[𝑘], 𝑘 = 0, . . . , nzj− 1.

Parameters

•[in] j (int) – Index of column in 𝐴.

308 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] subj (int[]) – Row indexes of non-zero values in column 𝑗 of 𝐴.

•[in] valj (double[]) – New non-zero values of column 𝑗 in 𝐴.

Task.putacollist(sub, ptrb, ptre, asub, aval)
Replaces all elements in a set of columns of 𝐴. The elements are replaced as follows

for 𝑖 = 0, . . . , 𝑛𝑢𝑚− 1
𝑎asub[𝑘],sub[𝑖] = aval[𝑘], 𝑘 = aptrb[𝑖], . . . , aptre[𝑖] − 1.

Parameters

•[in] sub (int[]) – Indexes of columns that should be replaced. comp should not contain
duplicate values.

•[in] ptrb (long[]) – Array of pointers to the first element in the columns stored in comp
and comp.

For an explanation of the meaning of comp see Section 16.1.3.2 .

•[in] ptre (long[]) – Array of pointers to the last element plus one in the columns stored
in comp and comp.

For an explanation of the meaning of comp see Section 16.1.3.2 .

•[in] asub (int[]) – comp contains the new variable indexes.

•[in] aval (double[]) – Coefficient values.

Task.putacolslice(first, last, ptrb, ptre, asub, aval)
Replaces all elements in a set of columns of 𝐴.

Parameters

•[in] first (int) – First column in the slice.

•[in] last (int) – Last column plus one in the slice.

•[in] ptrb (long[]) – Array of pointers to the first element in the columns stored in comp
and comp.

For an explanation of the meaning of comp see Section 16.1.3.2 .

•[in] ptre (long[]) – Array of pointers to the last element plus one in the columns stored
in comp and comp.

For an explanation of the meaning of comp see Section 16.1.3.2 .

•[in] asub (int[]) – comp contains the new variable indexes.

•[in] aval (double[]) – Coefficient values.

Task.putaij(i, j, aij)
Changes a coefficient in 𝐴 using the method

𝑎ij = aij.

Parameters

•[in] i (int) – Index of the constraint in which the change should occur.

•[in] j (int) – Index of the variable in which the change should occur.

•[in] aij (double) – New coefficient for 𝑎𝑖,𝑗 .

Task.putaijlist(subi, subj, valij)
Changes one or more coefficients in 𝐴 using the method

𝑎subi[k],subj[k] = valij[k], 𝑘 = 0, . . . , num− 1.

Parameters

16.9. Class Task 309

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] subi (int[]) – Constraint indexes in which the change should occur.

•[in] subj (int[]) – Variable indexes in which the change should occur.

•[in] valij (double[]) – New coefficient values for 𝑎𝑖,𝑗 .

Task.putarow(i, subi, vali)
Resets all the elements in row 𝑖 to zero and then do

𝐴i,subi[𝑘] = vali[𝑘], 𝑘 = 0, . . . , nzi− 1.

Parameters

•[in] i (int) – Index of row in 𝐴.

•[in] subi (int[]) – Row indexes of non-zero values in row 𝑖 of 𝐴.

•[in] vali (double[]) – New non-zero values of row 𝑖 in 𝐴.

Task.putarowlist(sub, ptrb, ptre, asub, aval)
Replaces all elements in a set of rows of 𝐴. The elements are replaced as follows

for 𝑖 = first, . . . , last− 1
𝑎sub[i],asub[𝑘] = aval[𝑘], 𝑘 = aptrb[𝑖], . . . , aptre[𝑖] − 1.

Parameters

•[in] sub (int[]) – Indexes of rows or columns that should be replaced. comp should not
contain duplicate values.

•[in] ptrb (long[]) – Array of pointers to the first element in the rows stored in comp and
comp.

For an explanation of the meaning of comp see Section 16.1.3.2 .

•[in] ptre (long[]) – Array of pointers to the last element plus one in the rows stored in
comp and comp.

For an explanation of the meaning of comp see Section 16.1.3.2 .

•[in] asub (int[]) – comp contains the new variable indexes.

•[in] aval (double[]) – Coefficient values.

Task.putarowslice(first, last, ptrb, ptre, asub, aval)
Replaces all elements in a set of rows of 𝐴. The elements is replaced as follows

for 𝑖 = first, . . . , last− 1
𝑎sub[𝑖],asub[𝑘] = aval[𝑘], 𝑘 = aptrb[𝑖], . . . , aptre[𝑖] − 1.

Parameters

•[in] first (int) – First row in the slice.

•[in] last (int) – Last row plus one in the slice.

•[in] ptrb (long[]) – Array of pointers to the first element in the rows stored in comp and
comp.

For an explanation of the meaning of comp see Section 16.1.3.2 .

•[in] ptre (long[]) – Array of pointers to the last element plus one in the rows stored in
comp and comp.

For an explanation of the meaning of comp see Section 16.1.3.2 .

•[in] asub (int[]) – comp contains the new variable indexes.

•[in] aval (double[]) – Coefficient values.

Task.putbarablocktriplet(num, subi, subj, subk, subl, valijkl)
Inputs the 𝐴 in block triplet form.

310 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Parameters

•[in] num (long) – Number of elements in the block triplet form.

•[in] subi (int[]) – Constraint index.

•[in] subj (int[]) – Symmetric matrix variable index.

•[in] subk (int[]) – Block row index.

•[in] subl (int[]) – Block column index.

•[in] valijkl (double[]) – The numerical value associated with the block triplet.

Task.putbaraij(i, j, sub, weights)
This function puts one element associated with 𝑋𝑗 in the 𝐴 matrix.

Each element in the 𝐴 matrix is a weighted sum of symmetric matrixes, i.e. 𝐴𝑖𝑗 is a symmetric
matrix with dimensions as 𝑋𝑗 . By default all elements in 𝐴 are 0, so only non-zero elements need
be added.

Setting the same elements again will overwrite the earlier entry.

The symmetric matrixes themselves are defined separately using the function
task.appendsparsesymmat .

Parameters

•[in] i (int) – Row index of 𝐴.

•[in] j (int) – Column index of 𝐴.

•[in] sub (long[]) – See argument weights for an explanation.

•[in] weights (double[]) – weights[k] times sub[k]‘th term of 𝐸 is added to 𝐴𝑖𝑗 .

Task.putbarcblocktriplet(num, subj, subk, subl, valjkl)
Inputs the 𝐶 in block triplet form.

Parameters

•[in] num (long) – Number of elements in the block triplet form.

•[in] subj (int[]) – Symmetric matrix variable index.

•[in] subk (int[]) – Block row index.

•[in] subl (int[]) – Block column index.

•[in] valjkl (double[]) – The numerical value associated with the block triplet.

Task.putbarcj(j, sub, weights)
This function puts one element associated with 𝑋𝑗 in the 𝑐 vector.

Each element in the 𝑐 vector is a weighted sum of symmetric matrixes, i.e. 𝑐𝑗 is a symmetric matrix
with dimensions as 𝑋𝑗 . By default all elements in 𝑐 are 0, so only non-zero elements need be added.

Setting the same elements again will overwrite the earlier entry.

The symmetric matrixes themselves are defined separately using the function
task.appendsparsesymmat .

Parameters

•[in] j (int) – Index of the element in 𝑐 that should be changed.

•[in] sub (long[]) – sub is list of indexes of those symmetric matrices appearing in sum.

•[in] weights (double[]) – The weights of the terms in the weighted sum that forms c𝑗 .

Task.putbarsj(whichsol, j, barsj)
Sets the dual solution for a semidefinite variable.

Parameters

•[in] whichsol (soltype) – Selects a solution.

16.9. Class Task 311

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] j (int) – Index of the semidefinite variable.

•[in] barsj (double[]) – Value of 𝑠𝑗 .

Task.putbarvarname(j, name)
Puts the name of a semidefinite variable.

Parameters

•[in] j (int) – Index of the variable.

•[in] name (str) – The variable name.

Task.putbarxj(whichsol, j, barxj)
Sets the primal solution for a semidefinite variable.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] j (int) – Index of the semidefinite variable.

•[in] barxj (double[]) – Value of 𝑋𝑗 .

Task.putbound(accmode, i, bk, bl, bu)
Changes the bounds for either one constraint or one variable.

If the a bound value specified is numerically larger than dparam.data_tol_bound_inf it is consid-
ered infinite and the bound key is changed accordingly. If a bound value is numerically larger than
dparam.data_tol_bound_wrn , a warning will be displayed, but the bound is inputted as specified.

Parameters

•[in] accmode (accmode) – Defines whether the bound for a constraint or a variable is
changed.

•[in] i (int) – Index of the constraint or variable.

•[in] bk (boundkey) – New bound key.

•[in] bl (double) – New lower bound.

•[in] bu (double) – New upper bound.

Task.putboundlist(accmode, sub, bk, bl, bu)
Changes the bounds for either some constraints or variables. If multiple bound changes are specified
for a constraint or a variable, only the last change takes effect.

Parameters

•[in] accmode (accmode) – Defines whether bounds for constraints (accmode.con) or vari-
ables (accmode.var) are changed.

•[in] sub (int[]) – Subscripts of the bounds that should be changed.

•[in] bk (boundkey) – Constraint or variable index sub[t] is assigned the bound key bk[t].

•[in] bl (double[]) – Constraint or variable index sub[t] is assigned the lower bound
bl[t].

•[in] bu (double[]) – Constraint or variable index sub[t] is assigned the upper bound
bu[t].

Task.putboundslice(con, first, last, bk, bl, bu)
Changes the bounds for a sequence of variables or constraints.

Parameters

•[in] con (accmode) – Defines whether bounds for constraints (accmode.con) or variables
(accmode.var) are changed.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[in] bk (boundkey) – Bound keys.

312 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] bl (double[]) – Values for lower bounds.

•[in] bu (double[]) – Values for upper bounds.

Task.putcfix(cfix)
Replaces the fixed term in the objective by a new one.

Parameters

•[in] cfix (double) – Fixed term in the objective.

Task.putcj(j, cj)
Modifies one coefficient in the linear objective vector 𝑐, i.e.

𝑐j = cj.

Parameters

•[in] j (int) – Index of the variable for which 𝑐 should be changed.

•[in] cj (double) – New value of 𝑐𝑗 .

Task.putclist(subj, val)
Modifies elements in the linear term 𝑐 in the objective using the principle

𝑐subj[t] = val[t], 𝑡 = 0, . . . , num− 1.

If a variable index is specified multiple times in subj only the last entry is used.
Parameters

•[in] subj (int[]) – Index of variables for which 𝑐 should be changed.

•[in] val (double[]) – New numerical values for coefficients in 𝑐 that should be modified.

Task.putconbound(i, bk, bl, bu)
Changes the bounds for one constraint.

If the a bound value specified is numerically larger than dparam.data_tol_bound_inf it is consid-
ered infinite and the bound key is changed accordingly. If a bound value is numerically larger than
dparam.data_tol_bound_wrn , a warning will be displayed, but the bound is inputted as specified.

Parameters

•[in] i (int) – Index of the constraint.

•[in] bk (boundkey) – New bound key.

•[in] bl (double) – New lower bound.

•[in] bu (double) – New upper bound.

Task.putconboundlist(sub, bkc, blc, buc)
Changes the bounds for a list of constraints. If multiple bound changes are specified for a constraint,
then only the last change takes effect.

Parameters

•[in] sub (int[]) – List constraints indexes.

•[in] bkc (boundkey) – New bound keys.

•[in] blc (double[]) – New lower bound values.

•[in] buc (double[]) – New upper bound values.

Task.putconboundslice(first, last, bk, bl, bu)
Changes the bounds for a slice of the constraints.

Parameters

•[in] first (int) – Index of the first constraint in the slice.

•[in] last (int) – Index of the last constraint in the slice plus 1.

•[in] bk (boundkey) – New bound keys.

16.9. Class Task 313

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] bl (double[]) – New lower bounds.

•[in] bu (double[]) – New upper bounds.

Task.putcone(k, ct, conepar, submem)
Replaces a conic constraint.

Parameters

•[in] k (int) – Index of the cone.

•[in] ct (conetype) – Specifies the type of the cone.

•[in] conepar (double) – This argument is currently not used. It can be set to 0

•[in] submem (int[]) – Variable subscripts of the members in the cone.

Task.putconename(j, name)
Puts the name of a cone.

Parameters

•[in] j (int) – Index of the cone.

•[in] name (str) – The variable name.

Task.putconname(i, name)
Puts the name of a constraint.

Parameters

•[in] i (int) – Index of the constraint.

•[in] name (str) – The variable name.

Task.putcslice(first, last, slice)
Modifies a slice in the linear term 𝑐 in the objective using the principle

𝑐j = slice[j− first], 𝑗 = 𝑓𝑖𝑟𝑠𝑡, .., 𝑙𝑎𝑠𝑡− 1

Parameters

•[in] first (int) – First element in the slice of 𝑐.

•[in] last (int) – Last element plus 1 of the slice in 𝑐 to be changed.

•[in] slice (double[]) – New numerical values for coefficients in 𝑐 that should be modified.

Task.putdouparam(param, parvalue)
Sets the value of a double parameter.

Parameters

•[in] param (dparam) – Which parameter.

•[in] parvalue (double) – Parameter value.

Task.putintparam(param, parvalue)
Sets the value of an integer parameter.

Parameters

•[in] param (iparam) – Which parameter.

•[in] parvalue (int) – Parameter value.

Task.putmaxnumanz(maxnumanz)
MOSEK stores only the non-zero elements in 𝐴. Therefore1 MOSEK cannot predict how much
storage is required to store 𝐴. Using this function it is possible to specify the number of non-zeros
to preallocate for storing 𝐴.

If the number of non-zeros in the problem is known, it is a good idea to set maxnumanz slightly
larger than this number, otherwise a rough estimate can be used. In general, if 𝐴 is inputted in
many small chunks, setting this value may speed up the data input phase.

314 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

It is not mandatory to call this function, since MOSEK will reallocate internal structures whenever
it is necessary.

Observe the function call has no effect if both maxnumcon and maxnumvar is zero.
Parameters

•[in] maxnumanz (long) – New size of the storage reserved for storing 𝐴.

Task.putmaxnumbarvar(maxnumbarvar)
Sets the number of preallocated symmetric matrix variables in the optimization task. When this
number of variables is reached MOSEK will automatically allocate more space for variables.

It is not mandatory to call this function, since its only function is to give a hint of the amount of
data to preallocate for efficiency reasons.

Please note that maxnumbarvar must be larger than the current number of variables in the task.
Parameters

•[in] maxnumbarvar (int) – The maximum number of semidefinite variables.

Task.putmaxnumcon(maxnumcon)
Sets the number of preallocated constraints in the optimization task. When this number of con-
straints is reached MOSEK will automatically allocate more space for constraints.

It is never mandatory to call this function, since MOSEK will reallocate any internal structures
whenever it is required.

Please note that maxnumcon must be larger than the current number of constraints in the task.
Parameters

•[in] maxnumcon (int) – Number of preallocated constraints in the optimization task.

Task.putmaxnumcone(maxnumcone)
Sets the number of preallocated conic constraints in the optimization task. When this number of
conic constraints is reached MOSEK will automatically allocate more space for conic constraints.

It is never mandatory to call this function, since MOSEK will reallocate any internal structures
whenever it is required.

Please note that maxnumcon must be larger than the current number of constraints in the task.
Parameters

•[in] maxnumcone (int) – Number of preallocated conic constraints in the optimization task.

Task.putmaxnumqnz(maxnumqnz)
MOSEK stores only the non-zero elements in 𝑄. Therefore, MOSEK cannot predict how much
storage is required to store 𝑄. Using this function it is possible to specify the number non-zeros to
preallocate for storing 𝑄 (both objective and constraints).

It may be advantageous to reserve more non-zeros for 𝑄 than actually needed since it may improve
the internal efficiency of MOSEK, however, it is never worthwhile to specify more than the double
of the anticipated number of non-zeros in 𝑄.

It is never mandatory to call this function, since its only function is to give a hint of the amount
of data to preallocate for efficiency reasons.

Parameters

•[in] maxnumqnz (long) – Number of non-zero elements preallocated in quadratic coefficient
matrices.

Task.putmaxnumvar(maxnumvar)
Sets the number of preallocated variables in the optimization task. When this number of variables
is reached MOSEK will automatically allocate more space for variables.

It is never mandatory to call this function, since its only function is to give a hint of the amount
of data to preallocate for efficiency reasons.

Please note that maxnumvar must be larger than the current number of variables in the task.
Parameters

16.9. Class Task 315

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] maxnumvar (int) – Number of preallocated variables in the optimization task.

Task.putnadouparam(paramname, parvalue)
Sets the value of a named double parameter.

Parameters

•[in] paramname (str) – Name of a parameter.

•[in] parvalue (double) – Parameter value.

Task.putnaintparam(paramname, parvalue)
Sets the value of a named integer parameter.

Parameters

•[in] paramname (str) – Name of a parameter.

•[in] parvalue (int) – Parameter value.

Task.putnastrparam(paramname, parvalue)
Sets the value of a named string parameter.

Parameters

•[in] paramname (str) – Name of a parameter.

•[in] parvalue (str) – Parameter value.

Task.putobjname(objname)
Assigns the name given by objname to the objective function.

Parameters

•[in] objname (str) – Name of the objective.

Task.putobjsense(sense)
Sets the objective sense of the task.

Parameters

•[in] sense (objsense) – The objective sense of the task. The values objsense.maximize
and objsense.minimize means that the problem is maximized or minimized respectively.

Task.putparam(parname, parvalue)
Checks if a parname is valid parameter name. If it is, the parameter is assigned the value specified
by parvalue.

Parameters

•[in] parname (str) – Parameter name.

•[in] parvalue (str) – Parameter value.

Task.putqcon(qcsubk, qcsubi, qcsubj, qcval)
Replace all quadratic entries in the constraints. consider constraints on the form:

𝑙𝑐𝑘 ≤ 1

2

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑖=0

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑞𝑘𝑖𝑗𝑥𝑖𝑥𝑗 +
𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁

𝑗=0

𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘, 𝑘 = 0, . . . ,𝑚− 1.

the function assigns values to 𝑞 such that:

𝑞
qcsubk[t]
qcsubi[t],qcsubj[t] = qcval[t], 𝑡 = 0, . . . , numqcnz− 1.

and

𝑞
qcsubk[t]
qcsubj[t],qcsubi[t] = qcval[t], 𝑡 = 0, . . . , numqcnz− 1.

values not assigned are set to zero.

Please note that duplicate entries are added together.
Parameters

•[in] qcsubk (int[]) – Constraint subscripts for quadratic coefficients.

316 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] qcsubi (int[]) – Row subscripts for quadratic constraint matrix.

•[in] qcsubj (int[]) – Column subscripts for quadratic constraint matrix.

•[in] qcval (double[]) – Quadratic constraint coefficient values.

Task.putqconk(k, qcsubi, qcsubj, qcval)
Replaces all the quadratic entries in one constraint 𝑘 of the form:

𝑙𝑐𝑘 ≤ 1

2

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑖=0

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑞𝑘𝑖𝑗𝑥𝑖𝑥𝑗 +

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑎𝑘𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑘.

It is assumed that 𝑄𝑘 is symmetric, i.e. 𝑞𝑘𝑖𝑗 = 𝑞𝑘𝑗𝑖,and therefore, only the values of 𝑞𝑘𝑖𝑗 for which
𝑖 ≥ 𝑗 should be inputted to MOSEK. To be precise, MOSEK uses the following procedure

1. 𝑄𝑘 = 0
2. for 𝑡 = 0 to 𝑛𝑢𝑚𝑞𝑐𝑛𝑧 − 1
3. 𝑞𝑘qcsubi[t],qcsubj[t] = 𝑞𝑘qcsubi[t],qcsubj[t] + qcval[t]

3. 𝑞𝑘qcsubj[t],qcsubi[t] = 𝑞𝑘qcsubj[t],qcsubi[t] + qcval[t]

Please note that:

•For large problems it is essential for the efficiency that the function task.putmaxnumqnz is
employed to specify an appropriate maxnumqnz.

•Only the lower triangular part should be specified because 𝑄𝑘 is symmetric. Specifying values
for 𝑞𝑘𝑖𝑗 where 𝑖 < 𝑗 will result in an error.

•Only non-zero elements should be specified.

•The order in which the non-zero elements are specified is insignificant.

•Duplicate elements are added together. Hence, it is recommended not to specify the same
element multiple times in qcsubi, qcsubj, and qcval.

For a code example see Section 3.5
Parameters

•[in] k (int) – The constraint in which the new 𝑄 elements are inserted.

•[in] qcsubi (int[]) – Row subscripts for quadratic constraint matrix.

•[in] qcsubj (int[]) – Column subscripts for quadratic constraint matrix.

•[in] qcval (double[]) – Quadratic constraint coefficient values.

Task.putqobj(qosubi, qosubj, qoval)
Replaces all the quadratic terms in the objective

1

2

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑖=0

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑞𝑜𝑖𝑗𝑥𝑖𝑥𝑗 +

𝑛𝑢𝑚𝑣𝑎𝑟−1∑︁
𝑗=0

𝑐𝑗𝑥𝑗 + 𝑐𝑓 .

It is assumed that 𝑄𝑜 is symmetric, i.e. 𝑞𝑜𝑖𝑗 = 𝑞𝑜𝑗𝑖, and therefore, only the values of 𝑞𝑜𝑖𝑗 for which
𝑖 ≥ 𝑗 should be specified. To be precise, MOSEK uses the following procedure

1. 𝑄𝑜 = 0
2. for 𝑡 = 0 to 𝑛𝑢𝑚𝑞𝑜𝑛𝑧 − 1
3. 𝑞𝑜qosubi[t],qosubj[t] = 𝑞𝑜qosubi[t],qosubj[t] + qoval[t]

3. 𝑞𝑜qosubj[t],qosubi[t] = 𝑞𝑜qosubj[t],qosubi[t] + qoval[t]

Please note that:

•Only the lower triangular part should be specified because 𝑄𝑜 is symmetric. Specifying values
for 𝑞𝑜𝑖𝑗 where 𝑖 < 𝑗 will result in an error.

16.9. Class Task 317

MOSEK Optimizer API for Python, Release 8.0.0.94

•Only non-zero elements should be specified.

•The order in which the non-zero elements are specified is insignificant.

•Duplicate entries are added to together.

For a code example see Section 3.5 .
Parameters

•[in] qosubi (int[]) – Row subscripts for quadratic objective coefficients.

•[in] qosubj (int[]) – Column subscripts for quadratic objective coefficients.

•[in] qoval (double[]) – Quadratic objective coefficient values.

Task.putqobjij(i, j, qoij)
Replaces one coefficient in the quadratic term in the objective. The function performs the assign-
ment

𝑞𝑜ij = qoij.

Only the elements in the lower triangular part are accepted. Setting 𝑞𝑖𝑗 with 𝑗 > 𝑖 will cause an
error.

Please note that replacing all quadratic element, one at a time, is more computationally expensive
than replacing all elements at once. Use task.putqobj instead whenever possible.

Parameters

•[in] i (int) – Row index for the coefficient to be replaced.

•[in] j (int) – Column index for the coefficient to be replaced.

•[in] qoij (double) – The new value for 𝑞𝑜𝑖𝑗 .

Task.putskc(whichsol, skc)
Sets the status keys for the constraints.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] skc (stakey) – Status keys for the constraints.

Task.putskcslice(whichsol, first, last, skc)
Sets the status keys for the constraints.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[in] skc (stakey) – Status keys for the constraints.

Task.putskx(whichsol, skx)
Sets the status keys for the scalar variables.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] skx (stakey) – Status keys for the variables.

Task.putskxslice(whichsol, first, last, skx)
Sets the status keys for the variables.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

318 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] skx (stakey) – Status keys for the variables.

Task.putslc(whichsol, slc)
Sets the 𝑠𝑐𝑙 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] slc (double[]) – The 𝑠𝑐𝑙 vector.

Task.putslcslice(whichsol, first, last, slc)
Sets a slice of the 𝑠𝑐𝑙 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[in] slc (double[]) – Dual variables corresponding to the lower bounds on the constraints.

Task.putslx(whichsol, slx)
Sets the 𝑠𝑥𝑙 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] slx (double[]) – The 𝑠𝑥𝑙 vector.

Task.putslxslice(whichsol, first, last, slx)
Sets a slice of the 𝑠𝑥𝑙 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[in] slx (double[]) – Dual variables corresponding to the lower bounds on the variables.

Task.putsnx(whichsol, sux)
Sets the 𝑠𝑥𝑛 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] sux (double[]) – The 𝑠𝑥𝑛 vector.

Task.putsnxslice(whichsol, first, last, snx)
Sets a slice of the 𝑠𝑥𝑛 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[in] snx (double[]) – Dual variables corresponding to the conic constraints on the vari-
ables.

Task.putsolution(whichsol, skc, skx, skn, xc, xx, y, slc, suc, slx, sux, snx)
Inserts a solution into the task.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] skc (stakey) – Status keys for the constraints.

•[in] skx (stakey) – Status keys for the variables.

16.9. Class Task 319

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] skn (stakey) – Status keys for the conic constraints.

•[in] xc (double[]) – Primal constraint solution.

•[in] xx (double[]) – Primal variable solution.

•[in] y (double[]) – Vector of dual variables corresponding to the constraints.

•[in] slc (double[]) – Dual variables corresponding to the lower bounds on the constraints.

•[in] suc (double[]) – Dual variables corresponding to the upper bounds on the constraints.

•[in] slx (double[]) – Dual variables corresponding to the lower bounds on the variables.

•[in] sux (double[]) – Dual variables corresponding to the upper bounds on the variables.

•[in] snx (double[]) – Dual variables corresponding to the conic constraints on the vari-
ables.

Task.putsolutioni(accmode, i, whichsol, sk, x, sl, su, sn)
Sets the primal and dual solution information for a single constraint or variable.

Parameters

•[in] accmode (accmode) – If set to accmode.con the solution information for a constraint
is modified. Otherwise for a variable.

•[in] i (int) – Index of the constraint or variable.

•[in] whichsol (soltype) – Selects a solution.

•[in] sk (stakey) – Status key of the constraint or variable.

•[in] x (double) – Solution value of the primal constraint or variable.

•[in] sl (double) – Solution value of the dual variable associated with the lower bound.

•[in] su (double) – Solution value of the dual variable associated with the upper bound.

•[in] sn (double) – Solution value of the dual variable associated with the cone constraint.

Task.putsolutionyi(i, whichsol, y)
Inputs the dual variable of a solution.

Parameters

•[in] i (int) – Index of the dual variable.

•[in] whichsol (soltype) – Selects a solution.

•[in] y (double) – Solution value of the dual variable.

Task.putstrparam(param, parvalue)
Sets the value of a string parameter.

Parameters

•[in] param (sparam) – Which parameter.

•[in] parvalue (str) – Parameter value.

Task.putsuc(whichsol, suc)
Sets the 𝑠𝑐𝑢 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] suc (double[]) – The 𝑠𝑐𝑢 vector.

Task.putsucslice(whichsol, first, last, suc)
Sets a slice of the 𝑠𝑐𝑢 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

320 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] last (int) – Last index plus 1 in the sequence.

•[in] suc (double[]) – Dual variables corresponding to the upper bounds on the constraints.

Task.putsux(whichsol, sux)
Sets the 𝑠𝑥𝑢 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] sux (double[]) – The 𝑠𝑥𝑢 vector.

Task.putsuxslice(whichsol, first, last, sux)
Sets a slice of the 𝑠𝑥𝑢 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[in] sux (double[]) – Dual variables corresponding to the upper bounds on the variables.

Task.puttaskname(taskname)
Assigns the name taskname to the task.

Parameters

•[in] taskname (str) – Name assigned to the task.

Task.putvarbound(j, bk, bl, bu)
Changes the bounds for one variable.

If the a bound value specified is numerically larger than dparam.data_tol_bound_inf it is consid-
ered infinite and the bound key is changed accordingly. If a bound value is numerically larger than
dparam.data_tol_bound_wrn , a warning will be displayed, but the bound is inputted as specified.

Parameters

•[in] j (int) – Index of the variable.

•[in] bk (boundkey) – New bound key.

•[in] bl (double) – New lower bound.

•[in] bu (double) – New upper bound.

Task.putvarboundlist(sub, bkx, blx, bux)
Changes the bounds for one or more variables. If multiple bound changes are specified for a variable,
then only the last change takes effect.

Parameters

•[in] sub (int[]) – List of variable indexes.

•[in] bkx (boundkey) – New bound keys.

•[in] blx (double[]) – New lower bound values.

•[in] bux (double[]) – New upper bound values.

Task.putvarboundslice(first, last, bk, bl, bu)
Changes the bounds for a slice of the variables.

Parameters

•[in] first (int) – Index of the first variable in the slice.

•[in] last (int) – Index of the last variable in the slice plus 1.

•[in] bk (boundkey) – New bound keys.

•[in] bl (double[]) – New lower bounds.

•[in] bu (double[]) – New upper bounds.

16.9. Class Task 321

MOSEK Optimizer API for Python, Release 8.0.0.94

Task.putvarname(j, name)
Puts the name of a variable.

Parameters

•[in] j (int) – Index of the variable.

•[in] name (str) – The variable name.

Task.putvartype(j, vartype)
Sets the variable type of one variable.

Parameters

•[in] j (int) – Index of the variable.

•[in] vartype (variabletype) – The new variable type.

Task.putvartypelist(subj, vartype)
Sets the variable type for one or more variables, i.e. variable number subj[𝑘] is assigned the variable
type vartype[𝑘].

If the same index is specified multiple times in subj only the last entry takes effect.
Parameters

•[in] subj (int[]) – A list of variable indexes for which the variable type should be changed.

•[in] vartype (variabletype) – A list of variable types that should be assigned to the
variables specified by subj. See variabletype for the possible values of vartype.

Task.putxc(whichsol, xc)
Sets the 𝑥𝑐 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[out] xc (double[]) – The 𝑥𝑐 vector.

Task.putxcslice(whichsol, first, last, xc)
Sets a slice of the 𝑥𝑐 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[in] xc (double[]) – Primal constraint solution.

Task.putxx(whichsol, xx)
Sets the 𝑥𝑥 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] xx (double[]) – The 𝑥𝑥 vector.

Task.putxxslice(whichsol, first, last, xx)
Obtains a slice of the 𝑥𝑥 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[in] xx (double[]) – Primal variable solution.

Task.puty(whichsol, y)
Sets the 𝑦 vector for a solution.

Parameters

322 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

•[in] whichsol (soltype) – Selects a solution.

•[in] y (double[]) – The 𝑦 vector.

Task.putyslice(whichsol, first, last, y)
Sets a slice of the 𝑦 vector for a solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] first (int) – First index in the sequence.

•[in] last (int) – Last index plus 1 in the sequence.

•[in] y (double[]) – Vector of dual variables corresponding to the constraints.

Task.readdata(filename)
Reads an optimization problem and associated data from a file.

Parameters

•[in] filename (str) – Data is read from the file filename.

Task.readdataformat(filename, format, compress)
Reads an optimization problem and associated data from a file.

Parameters

•[in] filename (str) – Data is read from the file filename.

•[in] format (dataformat) – File data format.

•[in] compress (compresstype) – File compression type.

Task.readparamfile(filename)
Reads a parameter file.

Parameters

•[in] filename (str) – Data is read from the file filename if it is a nonempty string.
Otherwise data is read from the file specified by sparam.param_read_file_name .

Task.readsolution(whichsol, filename)
Reads a solution file and inserts the solution into the solution whichsol.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] filename (str) – A valid file name.

Task.readsummary(whichstream)
Prints a short summary of last file that was read.

Parameters

•[in] whichstream (streamtype) – Index of the stream.

Task.readtask(filename)
Load task data from a file, replacing any data that already is in the task object. All problem
data are resorted, but if the file contains solutions, the solution status after loading a file is still
unknown, even if it was optimal or otherwise well-defined when the file was dumped.

See section 17.6 for a description of the Task format.
Parameters

•[in] filename (str) – Input file name.

Task.removebarvars(subset)
The function removes a subset of the symmetric matrix from the optimization task. This implies
that the existing symmetric matrix are renumbered, for instance if constraint 5 is removed then
constraint 6 becomes constraint 5 and so forth.

Parameters

•[in] subset (int[]) – Indexes of symmetric matrix which should be removed.

16.9. Class Task 323

MOSEK Optimizer API for Python, Release 8.0.0.94

Task.removecones(subset)
Removes a number conic constraint from the problem. In general, it is much more efficient to
remove a cone with a high index than a low index.

Parameters

•[in] subset (int[]) – Indexes of cones which should be removed.

Task.removecons(subset)
The function removes a subset of the constraints from the optimization task. This implies that
the existing constraints are renumbered, for instance if constraint 5 is removed then constraint 6
becomes constraint 5 and so forth.

Parameters

•[in] subset (int[]) – Indexes of constraints which should be removed.

Task.removevars(subset)
The function removes a subset of the variables from the optimization task. This implies that the
existing variables are renumbered, for instance if constraint 5 is removed then constraint 6 becomes
constraint 5 and so forth.

Parameters

•[in] subset (int[]) – Indexes of variables which should be removed.

Task.resizetask(maxnumcon, maxnumvar, maxnumcone, maxnumanz, maxnumqnz)
Sets the amount of preallocated space assigned for each type of data in an optimization task.

It is never mandatory to call this function, since its only function is to give a hint of the amount
of data to preallocate for efficiency reasons.

Please note that the procedure is destructive in the sense that all existing data stored in the task
is destroyed.

Parameters

•[in] maxnumcon (int) – New maximum number of constraints.

•[in] maxnumvar (int) – New maximum number of variables.

•[in] maxnumcone (int) – New maximum number of cones.

•[in] maxnumanz (long) – New maximum number of non-zeros in 𝐴.

•[in] maxnumqnz (long) – New maximum number of non-zeros in all 𝑄 matrices.

Task.sensitivityreport(whichstream)
Reads a sensitivity format file from a location given by sparam.sensitivity_file_name and
writes the result to the stream whichstream. If sparam.sensitivity_res_file_name is set to a
non-empty string, then the sensitivity report is also written to a file of this name.

Parameters

•[in] whichstream (streamtype) – Index of the stream.

Task.set_Progress(callback)
Recieve callbacks about current status of the solver during optimization.

For example:

Returns non-zero to request that the solver terminates.
Parameters

•[in] callback (none) – The callback function.

Task.set_Stream(whichstream, callback)
Directs all output from a task stream to a callback function.

Parameters

•[in] whichstream (streamtype) – Index of the stream.

•[in] callback (none) – The callback function.

324 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Task.setdefaults()
Resets all the parameters to their default values.

isdef = Task.solutiondef(whichsol)
Checks whether a solution is defined.

Parameters

•[in] whichsol (soltype) – Selects a solution.
Return

•isdef (int) – Is non-zero if the requested solution is defined.

Task.solutionsummary(whichstream)
Prints a short summary of the current solutions.

Parameters

•[in] whichstream (streamtype) – Index of the stream.

numnz = Task.solvewithbasis(transp, numnz, sub, val)
If a basic solution is available, then exactly numcon basis variables are defined. These numcon

basis variables are denoted the basis. Associated with the basis is a basis matrix denoted 𝐵. This
function solves either the linear equation system

𝐵𝑋 = 𝑏 (16.3)

or the system

𝐵𝑇𝑋 = 𝑏 (16.4)

for the unknowns 𝑋, with 𝑏 being a user-defined vector.

In order to make sense of the solution 𝑋 it is important to know the ordering of the variables in the
basis because the ordering specifies how 𝐵 is constructed. When calling task.initbasissolve
an ordering of the basis variables is obtained, which can be used to deduce how MOSEK has
constructed 𝐵. Indeed if the 𝑘th basis variable is variable 𝑥𝑗 it implies that

𝐵𝑖,𝑘 = 𝐴𝑖,𝑗 , 𝑖 = 0, . . . , 𝑛𝑢𝑚𝑐𝑜𝑛− 1.

Otherwise if the 𝑘th basis variable is variable 𝑥𝑐
𝑗 it implies that

𝐵𝑖,𝑘 =

{︂
−1, 𝑖 = 𝑗,
0, 𝑖 ̸= 𝑗.

Given the knowledge of how 𝐵 is constructed it is possible to interpret the solution 𝑋 correctly.

Please note that this function exploits the sparsity in the vector 𝑏 to speed up the computations.
Parameters

•[in] transp (int) – If this argument is non-zero, then (16.4) is solved. Otherwise the
system (16.3) is solved.

•[io] numnz (int) – As input it is the number of non-zeros in 𝑏. As output it is the number
of non-zeros in 𝑋.

•[io] sub (int[]) – As input it contains the positions of the non-zeros in 𝑏, i.e.

𝑏[sub[𝑘]] ̸= 0, 𝑘 = 0, . . . , 𝑛𝑢𝑚𝑛𝑧[0] − 1.

As output it contains the positions of the non-zeros in 𝑋. It is important that sub has room
for numcon elements.

•[io] val (double[]) – As input it is the vector 𝑏. Although the positions of the non-zero
elements are specified in sub it is required that val[𝑖] = 0 if 𝑏[𝑖] = 0. As output val is the
vector 𝑋.

Please note that val is a dense vector — not a packed sparse vector. This implies that val
has room for numcon elements.

16.9. Class Task 325

MOSEK Optimizer API for Python, Release 8.0.0.94

Return

•numnz (int) – As input it is the number of non-zeros in 𝑏. As output it is the number of
non-zeros in 𝑋.

conetype = Task.strtoconetype(str)
Obtains cone type code corresponding to a cone type string.

Parameters

•[in] str (str) – String corresponding to the cone type code codetype.
Return

•conetype (int) – The cone type corresponding to the string str.

sk = Task.strtosk(str)
Obtains the status key corresponding to an explanatory string.

Parameters

•[in] str (str) – Status key string.
Return

•sk (int) – Status key corresponding to the string.

Task.toconic()
This function tries to reformulate a given Quadratically Constrained Quadratic Optimization prob-
lem (QCQP) as a Conic Quadratic Optimization problem (CQO). The first step of the reformulation
is to convert the quadratic term of the objective function as a constraint, if any. Then the following
steps are repeated for each quadratic constraint:

•a conic constraint is added along with a suitable number of auxiliary variables and constraints;

•the original quadratic constraint is not removed, but all its coefficients are zeroed out.

Note that the reformulation preserves all the original variables.

The conversion is performed in-place, i.e. the task passed as argument is modified on exit. That
also means that if the reformulation fails, i.e. the given QCQP is not representable as a CQO, then
the task has an undefined state. In some cases, users may want to clone the task to ensure a clean
copy is preserved.

Task.updatesolutioninfo(whichsol)
Update the information items related to the solution.

Parameters

•[in] whichsol (soltype) – Selects a solution.

Task.writeSC(scfilename, taskfilename)
Write problem to an SCopt file and a normal problem file.

Parameters

•[in] scfilename (str) – Name of SCopt terms file.

•[in] taskfilename (str) – Name of problem file.

Task.writedata(filename)
Writes problem data associated with the optimization task to a file in one of the supported formats.
See Section 17 for the complete list.

By default the data file format is determined by the file name extension. This behaviour can be
overridden by setting the iparam.write_data_format parameter.

MOSEK is able to read and write files in a compressed format (gzip). To write in the compressed
format append the extension .gz. E.g to write a gzip compressed MPS file use the extension
mps.gz.

Please note that MPS, LP and OPF files require all variables to have unique names. If a task
contains no names, it is possible to write the file with automatically generated anonymous names
by setting the iparam.write_generic_names parameter to onoffkey.on .

326 Chapter 16. API Reference

MOSEK Optimizer API for Python, Release 8.0.0.94

Please note that if a general nonlinear function appears in the problem then such function cannot
be written to file and MOSEK will issue a warning.

Parameters

•[in] filename (str) – Data is written to the file filename if it is a nonempty string.
Otherwise data is written to the file specified by sparam.data_file_name .

Task.writejsonsol(filename)
Saves the current solutions and solver information items in a JSON file.

Parameters

•[in] filename (str) – A valid file name.

Task.writeparamfile(filename)
Writes all the parameters to a parameter file.

Parameters

•[in] filename (str) – The name of parameter file.

Task.writesolution(whichsol, filename)
Saves the current basic, interior-point, or integer solution to a file.

Parameters

•[in] whichsol (soltype) – Selects a solution.

•[in] filename (str) – A valid file name.

Task.writetask(filename)
Write a binary dump of the task data. This format saves all problem data, but not callback-
functions and general non-linear terms.

See section 17.6 for a description of the Task format.
Parameters

•[in] filename (str) – Output file name.

Task.writetasksolverresult_file(filename)
Internal

Parameters

•[in] filename (str) – A valid file name.

16.10 Exceptions

Exception
Base exception class for all MOSEK exceptions.

Implements
Exception

Error
Exception class used for all error response codes from MOSEK.

Implements
Exception

Warning
Exception class used for all warning response codes from MOSEK.

Implements
Exception

16.10. Exceptions 327

MOSEK Optimizer API for Python, Release 8.0.0.94

328 Chapter 16. API Reference

CHAPTER

SEVENTEEN

SUPPORTED FILE FORMATS

MOSEK supports a range of problem and solution formats listed in Table 17.1 and Table 17.2. The Task
format is MOSEK‘s native binary format and it supports all features that MOSEK supports. The
OPF format is MOSEK‘s human-readable alternative that supports nearly all features (everything
except semidefinite problems). In general, text formats are significantly slower to read, but can be
examined and edited directly in any text editor.

Problem formats

See Table 17.1.

Table 17.1: List of supported file formats for optimization prob-
lems.

Format Type Ext. Binary/Text LP QP CQO SDP
LP lp plain text X X
MPS mps plain text X X
OPF opf plain text X X X
CBF cbf plain text X X X
Osil xml xml text X X
Task format task binary X X X X
Jtask format jtask text X X X X

Solution formats

See Table 17.2.

Table 17.2: List of supported solution formats.

Format Type Ext. Binary/Text Description

SOL
sol plain text Interior Solution
bas plain text Basic Solution
int plain text Integer

Jsol format jsol text Solution

Compression

MOSEK supports GZIP compression of files. Problem files with an additional .gz extension are assumed
to be compressed when read, and are automatically compressed when written. For example, a file called

329

MOSEK Optimizer API for Python, Release 8.0.0.94

problem.mps.gz

will be considered as a GZIP compressed MPS file.

17.1 The LP File Format

MOSEK supports the LP file format with some extensions. The LP format is not a completely well-
defined standard and hence different optimization packages may interpret the same LP file in slightly
different ways. MOSEK tries to emulate as closely as possible CPLEX’s behavior, but tries to stay
backward compatible.

The LP file format can specify problems on the form

minimize/maximize 𝑐𝑇𝑥 + 1
2𝑞

𝑜(𝑥)
subject to 𝑙𝑐 ≤ 𝐴𝑥 + 1

2𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥𝒥 integer,

where

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝑐 ∈ R𝑛 is the linear term in the objective.

• 𝑞𝑜 :∈ R𝑛 → R is the quadratic term in the objective where

𝑞𝑜(𝑥) = 𝑥𝑇𝑄𝑜𝑥

and it is assumed that

𝑄𝑜 = (𝑄𝑜)𝑇 .

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

𝑞𝑖(𝑥) = 𝑥𝑇𝑄𝑖𝑥

where it is assumed that

𝑄𝑖 = (𝑄𝑖)𝑇 .

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer constrained variables.

17.1.1 File Sections

An LP formatted file contains a number of sections specifying the objective, constraints, variable bounds,
and variable types. The section keywords may be any mix of upper and lower case letters.

Objective Function

The first section beginning with one of the keywords

330 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

max
maximum
maximize
min
minimum
minimize

defines the objective sense and the objective function, i.e.

𝑐𝑇𝑥 +
1

2
𝑥𝑇𝑄𝑜𝑥.

The objective may be given a name by writing

myname:

before the expressions. If no name is given, then the objective is named obj.

The objective function contains linear and quadratic terms. The linear terms are written as:

4 x1 + x2 - 0.1 x3

and so forth. The quadratic terms are written in square brackets ([]) and are either squared or multiplied
as in the examples

x1^2

and

x1 * x2

There may be zero or more pairs of brackets containing quadratic expressions.

An example of an objective section is

minimize
myobj: 4 x1 + x2 - 0.1 x3 + [x1^2 + 2.1 x1 * x2]/2

Please note that the quadratic expressions are multiplied with 1
2 , so that the above expression means

minimize 4𝑥1 + 𝑥2 − 0.1 · 𝑥3 + 1
2 (𝑥2

1 + 2.1 · 𝑥1 · 𝑥2)

If the same variable occurs more than once in the linear part, the coefficients are added, so that 4 x1 +
2 x1 is equivalent to 6 x1. In the quadratic expressions x1 * x2 is equivalent to x2 * x1 and, as in the
linear part, if the same variables multiplied or squared occur several times their coefficients are added.

Constraints

The second section beginning with one of the keywords

subj to
subject to
s.t.
st

defines the linear constraint matrix 𝐴 and the quadratic matrices 𝑄𝑖.

A constraint contains a name (optional), expressions adhering to the same rules as in the objective and
a bound:

subject to
con1: x1 + x2 + [x3^2]/2 <= 5.1

17.1. The LP File Format 331

MOSEK Optimizer API for Python, Release 8.0.0.94

The bound type (here <=) may be any of <, <=, =, >, >= (< and <= mean the same), and the bound may
be any number.

In the standard LP format it is not possible to define more than one bound, but MOSEK supports
defining ranged constraints by using double-colon (::) instead of a single-colon (:) after the constraint
name, i.e.

−5 ≤ 𝑥1 + 𝑥2 ≤ 5 (17.1)

may be written as

con:: -5 < x_1 + x_2 < 5

By default MOSEK writes ranged constraints this way.

If the files must adhere to the LP standard, ranged constraints must either be split into upper bounded
and lower bounded constraints or be written as an equality with a slack variable. For example the
expression (17.1) may be written as

𝑥1 + 𝑥2 − 𝑠𝑙1 = 0, −5 ≤ 𝑠𝑙1 ≤ 5.

Bounds

Bounds on the variables can be specified in the bound section beginning with one of the keywords

bound
bounds

The bounds section is optional but should, if present, follow the subject to section. All variables listed
in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and +∞ . A variable may be declared free with the keyword
free, which means that the lower bound is −∞ and the upper bound is +∞ . Furthermore it may be
assigned a finite lower and upper bound. The bound definitions for a given variable may be written in
one or two lines, and bounds can be any number or ±∞ (written as +inf/-inf/+infinity/-infinity)
as in the example

bounds
x1 free
x2 <= 5
0.1 <= x2
x3 = 42
2 <= x4 < +inf

Variable Types

The final two sections are optional and must begin with one of the keywords

bin
binaries
binary

and

gen
general

Under general all integer variables are listed, and under binary all binary (integer variables with bounds
0 and 1) are listed:

332 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

general
x1 x2
binary
x3 x4

Again, all variables listed in the binary or general sections must occur in either the objective or a
constraint.

Terminating Section

Finally, an LP formatted file must be terminated with the keyword

end

17.1.2 LP File Examples

Linear example lo1.lp

\ File: lo1.lp
maximize
obj: 3 x1 + x2 + 5 x3 + x4
subject to
c1: 3 x1 + x2 + 2 x3 = 30
c2: 2 x1 + x2 + 3 x3 + x4 >= 15
c3: 2 x2 + 3 x4 <= 25
bounds
0 <= x1 <= +infinity
0 <= x2 <= 10
0 <= x3 <= +infinity
0 <= x4 <= +infinity

end

Mixed integer example milo1.lp

maximize
obj: x1 + 6.4e-01 x2
subject to
c1: 5e+01 x1 + 3.1e+01 x2 <= 2.5e+02
c2: 3e+00 x1 - 2e+00 x2 >= -4e+00
bounds
0 <= x1 <= +infinity
0 <= x2 <= +infinity

general
x1 x2

end

17.1.3 LP Format peculiarities

Comments

Anything on a line after a \ is ignored and is treated as a comment.

17.1. The LP File Format 333

MOSEK Optimizer API for Python, Release 8.0.0.94

Names

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits 0-9 and
the characters

!"#$%&()/,.;?@_'`|~

The first character in a name must not be a number, a period or the letter e or E. Keywords must not
be used as names.

MOSEK accepts any character as valid for names, except \0. A name that is not allowed in LP file will
be changed and a warning will be issued.

The algorithm for making names LP valid works as follows: The name is interpreted as an utf-8 string.
For a unicode character c:

• If c==_ (underscore), the output is __ (two underscores).

• If c is a valid LP name character, the output is just c.

• If c is another character in the ASCII range, the output is _XX, where XX is the hexadecimal code
for the character.

• If c is a character in the range 127-65535, the output is _uXXXX, where XXXX is the hexadecimal
code for the character.

• If c is a character above 65535, the output is _UXXXXXXXX, where XXXXXXXX is the hexadecimal
code for the character.

Invalid utf-8 substrings are escaped as _XX', and if a name starts with a period, e or E, that character
is escaped as _XX.

Variable Bounds

Specifying several upper or lower bounds on one variable is possible but MOSEK uses only the tightest
bounds. If a variable is fixed (with =), then it is considered the tightest bound.

MOSEK Extensions to the LP Format

Some optimization software packages employ a more strict definition of the LP format than the one used
by MOSEK. The limitations imposed by the strict LP format are the following:

• Quadratic terms in the constraints are not allowed.

• Names can be only 16 characters long.

• Lines must not exceed 255 characters in length.

If an LP formatted file created by MOSEK should satisfy the strict definition, then the parameter

• iparam.write_lp_strict_format

should be set; note, however, that some problems cannot be written correctly as a strict LP formatted
file. For instance, all names are truncated to 16 characters and hence they may loose their uniqueness
and change the problem.

To get around some of the inconveniences converting from other problem formats, MOSEK allows lines
to contain 1024 characters and names may have any length (shorter than the 1024 characters).

Internally in MOSEK names may contain any (printable) character, many of which cannot be used in
LP names. Setting the parameters

• iparam.read_lp_quoted_names and

• iparam.write_lp_quoted_names

334 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

allows MOSEK to use quoted names. The first parameter tells MOSEK to remove quotes from
quoted names e.g, "x1", when reading LP formatted files. The second parameter tells MOSEK to put
quotes around any semi-illegal name (names beginning with a number or a period) and fully illegal name
(containing illegal characters). As double quote is a legal character in the LP format, quoting semi-illegal
names makes them legal in the pure LP format as long as they are still shorter than 16 characters. Fully
illegal names are still illegal in a pure LP file.

17.1.4 The strict LP format

The LP format is not a formal standard and different vendors have slightly different interpretations of
the LP format. To make MOSEK’s definition of the LP format more compatible with the definitions
of other vendors, use the parameter setting

• iparam.write_lp_strict_format = onoffkey.on

This setting may lead to truncation of some names and hence to an invalid LP file. The simple solution
to this problem is to use the parameter setting

• iparam.write_generic_names = onoffkey.on

which will cause all names to be renamed systematically in the output file.

17.1.5 Formatting of an LP File

A few parameters control the visual formatting of LP files written by MOSEK in order to make it easier
to read the files. These parameters are

• iparam.write_lp_line_width

• iparam.write_lp_terms_per_line

The first parameter sets the maximum number of characters on a single line. The default value is 80
corresponding roughly to the width of a standard text document.

The second parameter sets the maximum number of terms per line; a term means a sign, a coefficient,
and a name (for example + 42 elephants). The default value is 0, meaning that there is no maximum.

Unnamed Constraints

Reading and writing an LP file with MOSEK may change it superficially. If an LP file contains
unnamed constraints or objective these are given their generic names when the file is read (however
unnamed constraints in MOSEK are written without names).

17.2 The MPS File Format

MOSEK supports the standard MPS format with some extensions. For a detailed description of the
MPS format see the book by Nazareth [Naz87] .

17.2.1 MPS File Structure

The version of the MPS format supported by MOSEK allows specification of an optimization problem
of the form

𝑙𝑐 ≤ 𝐴𝑥 + 𝑞(𝑥) ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,

𝑥 ∈ 𝒦,
𝑥𝒥 integer,

(17.2)

where

17.2. The MPS File Format 335

MOSEK Optimizer API for Python, Release 8.0.0.94

• 𝑥 ∈ R𝑛 is the vector of decision variables.

• 𝐴 ∈ R𝑚×𝑛 is the constraint matrix.

• 𝑙𝑐 ∈ R𝑚 is the lower limit on the activity for the constraints.

• 𝑢𝑐 ∈ R𝑚 is the upper limit on the activity for the constraints.

• 𝑙𝑥 ∈ R𝑛 is the lower limit on the activity for the variables.

• 𝑢𝑥 ∈ R𝑛 is the upper limit on the activity for the variables.

• 𝑞 : R𝑛 → R is a vector of quadratic functions. Hence,

𝑞𝑖(𝑥) =
1

2
𝑥𝑇𝑄𝑖𝑥

where it is assumed that

𝑄𝑖 = (𝑄𝑖)𝑇 .

Please note the explicit 1
2 in the quadratic term and that 𝑄𝑖 is required to be symmetric.

• 𝒦 is a convex cone.

• 𝒥 ⊆ {1, 2, . . . , 𝑛} is an index set of the integer-constrained variables.

An MPS file with one row and one column can be illustrated like this:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
NAME [name]
OBJSENSE
[objsense]
OBJNAME
[objname]
ROWS
? [cname1]
COLUMNS
[vname1] [cname1] [value1] [vname3] [value2]
RHS
[name] [cname1] [value1] [cname2] [value2]
RANGES
[name] [cname1] [value1] [cname2] [value2]
QSECTION [cname1]
[vname1] [vname2] [value1] [vname3] [value2]
QMATRIX
[vname1] [vname2] [value1]
QUADOBJ
[vname1] [vname2] [value1]
QCMATRIX [cname1]
[vname1] [vname2] [value1]
BOUNDS
?? [name] [vname1] [value1]
CSECTION [kname1] [value1] [ktype]
[vname1]
ENDATA

Here the names in capitals are keywords of the MPS format and names in brackets are custom defined
names or values. A couple of notes on the structure:

• Fields: All items surrounded by brackets appear in fields. The fields named “valueN” are numerical
values. Hence, they must have the format

[+|-]XXXXXXX.XXXXXX[[e|E][+|-]XXX]

where

336 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

.. code-block:: text

X = [0|1|2|3|4|5|6|7|8|9].

• Sections: The MPS file consists of several sections where the names in capitals indicate the begin-
ning of a new section. For example, COLUMNS denotes the beginning of the columns section.

• Comments: Lines starting with an * are comment lines and are ignored by MOSEK.

• Keys: The question marks represent keys to be specified later.

• Extensions: The sections QSECTION and CSECTION are specific MOSEK extensions of the MPS
format. The sections QMATRIX, QUADOBJ and QCMATRIX are included for sake of compatibility with
other vendors extensions to the MPS format.

The standard MPS format is a fixed format, i.e. everything in the MPS file must be within certain fixed
positions. MOSEK also supports a free format. See Section 17.2.9 for details.

Linear example lo1.mps

A concrete example of a MPS file is presented below:

* File: lo1.mps
NAME lo1
OBJSENSE

MAX
ROWS
N obj
E c1
G c2
L c3

COLUMNS
x1 obj 3
x1 c1 3
x1 c2 2
x2 obj 1
x2 c1 1
x2 c2 1
x2 c3 2
x3 obj 5
x3 c1 2
x3 c2 3
x4 obj 1
x4 c2 1
x4 c3 3

RHS
rhs c1 30
rhs c2 15
rhs c3 25

RANGES
BOUNDS
UP bound x2 10

ENDATA

Subsequently each individual section in the MPS format is discussed.

Section NAME

In this section a name ([name]) is assigned to the problem.

17.2. The MPS File Format 337

MOSEK Optimizer API for Python, Release 8.0.0.94

OBJSENSE (optional)

This is an optional section that can be used to specify the sense of the objective function. The OBJSENSE
section contains one line at most which can be one of the following

MIN
MINIMIZE
MAX
MAXIMIZE

It should be obvious what the implication is of each of these four lines.

OBJNAME (optional)

This is an optional section that can be used to specify the name of the row that is used as objective
function. The OBJNAME section contains one line at most which has the form

objname

objname should be a valid row name.

ROWS

A record in the ROWS section has the form

? [cname1]

where the requirements for the fields are as follows:

Field Starting Position Max Width required Description
? 2 1 Yes Constraint key
[cname1] 5 8 Yes Constraint name

Hence, in this section each constraint is assigned an unique name denoted by [cname1]. Please note that
[cname1] starts in position 5 and the field can be at most 8 characters wide. An initial key ? must be
present to specify the type of the constraint. The key can have the values E, G, L, or N with the following
interpretation:

Constraint type 𝑙𝑐𝑖 𝑢𝑐
𝑖

E finite 𝑙𝑐𝑖
G finite ∞
L −∞ finite
N −∞ ∞

In the MPS format an objective vector is not specified explicitly, but one of the constraints having the
key N will be used as the objective vector 𝑐 . In general, if multiple N type constraints are specified, then
the first will be used as the objective vector 𝑐.

COLUMNS

In this section the elements of 𝐴 are specified using one or more records having the form:

[vname1] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

338 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

Hence, a record specifies one or two elements 𝑎𝑖𝑗 of 𝐴 using the principle that [vname1] and [cname1]
determines 𝑗 and 𝑖 respectively. Please note that [cname1] must be a constraint name specified in the
ROWS section. Finally, [value1] denotes the numerical value of 𝑎𝑖𝑗 . Another optional element is specified
by [cname2], and [value2] for the variable specified by [vname1]. Some important comments are:

• All elements belonging to one variable must be grouped together.

• Zero elements of 𝐴 should not be specified.

• At least one element for each variable should be specified.

RHS (optional)

A record in this section has the format

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Position Max Width required Description
[name] 5 8 Yes Name of the RHS vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The interpretation of a record is that [name] is the name of the RHS vector to be specified. In general,
several vectors can be specified. [cname1] denotes a constraint name previously specified in the ROWS
section. Now, assume that this name has been assigned to the 𝑖 th constraint and 𝑣1 denotes the value
specified by [value1], then the interpretation of 𝑣1 is:

Constraint 𝑙𝑐𝑖 𝑢𝑐
𝑖

type
E 𝑣1 𝑣1
G 𝑣1
L 𝑣1
N

An optional second element is specified by [cname2] and [value2] and is interpreted in the same way.
Please note that it is not necessary to specify zero elements, because elements are assumed to be zero.

RANGES (optional)

A record in this section has the form

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each fields are as follows:

Field Starting Position Max Width required Description
[name] 5 8 Yes Name of the RANGE vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

17.2. The MPS File Format 339

MOSEK Optimizer API for Python, Release 8.0.0.94

The records in this section are used to modify the bound vectors for the constraints, i.e. the values in 𝑙𝑐

and 𝑢𝑐 . A record has the following interpretation:[name] is the name of the RANGE vector and [cname1]
is a valid constraint name. Assume that [cname1] is assigned to the 𝑖 th constraint and let 𝑣1 be the
value specified by [value1], then a record has the interpretation:

Constraint type Sign of 𝑣1 𝑙𝑐𝑖 𝑢𝑐
𝑖

E − 𝑢𝑐
𝑖 + 𝑣1

E + 𝑙𝑐𝑖 + 𝑣1
G − or + 𝑙𝑐𝑖 + |𝑣1|
L − or + 𝑢𝑐

𝑖 − |𝑣1|
N

QSECTION (optional)

Within the QSECTION the label [cname1] must be a constraint name previously specified in the ROWS
section. The label [cname1] denotes the constraint to which the quadratic term belongs. A record in
the QSECTION has the form

[vname1] [vname2] [value1] [vname3] [value2]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value
[vname3] 40 8 No Variable name
[value2] 50 12 No Numerical value

A record specifies one or two elements in the lower triangular part of the 𝑄𝑖 matrix where [cname1]
specifies the 𝑖 . Hence, if the names [vname1] and [vname2] have been assigned to the 𝑘 th and 𝑗 th
variable, then 𝑄𝑖

𝑘𝑗 is assigned the value given by [value1] An optional second element is specified in
the same way by the fields [vname1], [vname3], and [value2].

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1
COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0
RHS
rhs c1 1.0
QSECTION obj
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0
ENDATA

Regarding the QSECTIONs please note that:

340 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

• Only one QSECTION is allowed for each constraint.

• The QSECTIONs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• All entries specified in a QSECTION are assumed to belong to the lower triangular part of the
quadratic term of 𝑄 .

QMATRIX/QUADOBJ (optional)

The QMATRIX and QUADOBJ sections allow to define the quadratic term of the objective function. They
differ in how the quadratic term of the objective function is stored:

• QMATRIX It stores all the nonzeros coefficients, withouot taking advantage of the symmetry of the
𝑄 matrix.

• QUADOBJ It only store the upper diagonal nonzero elements of the 𝑄 matrix.

A record in both sections has the form:

[vname1] [vname2] [value1]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

A record specifies one elements of the 𝑄 matrix in the objective function . Hence, if the names [vname1]
and [vname2] have been assigned to the 𝑘 th and 𝑗 th variable, then 𝑄𝑘𝑗 is assigned the value given
by [value1]. Note that a line must apper for each off-diagonal coefficient if using a QMATRIX section,
while only one entry is required in a QUADOBJ section. The quadratic part of the objective function will
be evaluated as 1/2𝑥𝑇𝑄𝑥.

The example

minimize −𝑥2 + 1
2 (2𝑥2

1 − 2𝑥1𝑥3 + 0.2𝑥2
2 + 2𝑥2

3)
subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,

𝑥 ≥ 0

has the following MPS file representation using QMATRIX

* File: qo1_matrix.mps
NAME qo1_qmatrix
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QMATRIX
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

17.2. The MPS File Format 341

MOSEK Optimizer API for Python, Release 8.0.0.94

or the following using QUADOBJ

* File: qo1_quadobj.mps
NAME qo1_quadobj
ROWS
N obj
G c1

COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0

QUADOBJ
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Please also note that:

• A QMATRIX/QUADOBJ section can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QMATRIX/QUADOBJ section must already be specified in the
COLUMNS section.

17.2.2 QCMATRIX (optional)

A QCMATRIX section allows to specify the quadratic part of a given constraints. Within the QCMATRIX the
label [cname1] must be a constraint name previously specified in the ROWS section. The label [cname1]
denotes the constraint to which the quadratic term belongs. A record in the QSECTION has the form

[vname1] [vname2] [value1]

where the requirements for each field are:

Field Starting Position Max Width required Description
[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value

A record specifies an entry of the 𝑄𝑖 matrix where [cname1] specifies the 𝑖. Hence, if the names [vname1]
and [vname2] have been assigned to the 𝑘 th and 𝑗 th variable, then 𝑄𝑖

𝑘𝑗 is assigned the value given by
[value1]. Moreover, the quadratic term is represented as 1/2𝑥𝑇𝑄𝑥.

The example

minimize 𝑥2

subject to 𝑥1 + 𝑥2 + 𝑥3 ≥ 1,
1
2 (−2𝑥1𝑥3 + 0.2𝑥2

2 + 2𝑥2
3) ≤ 10,

𝑥 ≥ 0

has the following MPS file representation

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1
L q1

COLUMNS

342 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0

RHS
rhs c1 1.0
rhs q1 10.0

QCMATRIX q1
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0

ENDATA

Regarding the QCMATRIXs please note that:

• Only one QCMATRIX is allowed for each constraint.

• The QCMATRIXs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• A QCMATRIX does not exploit the symmetry of 𝑄: an off-diagonal entry (𝑖, 𝑗) should apperas twice.

17.2.3 BOUNDS (optional)

In the BOUNDS section changes to the default bounds vectors 𝑙𝑥 and 𝑢𝑥 are specified. The default bounds
vectors are 𝑙𝑥 = 0 and 𝑢𝑥 = ∞ . Moreover, it is possible to specify several sets of bound vectors. A
record in this section has the form

?? [name] [vname1] [value1]

where the requirements for each field are:

Field Starting Position Max Width Required Description
?? 2 2 Yes Bound key
[name] 5 8 Yes Name of the BOUNDS vector
[vname1] 15 8 Yes Variable name
[value1] 25 12 No Numerical value

Hence, a record in the BOUNDS section has the following interpretation:[name] is the name of the bound
vector and [vname1] is the name of the variable which bounds are modified by the record. ?? and
[value1] are used to modify the bound vectors according to the following table:

?? 𝑙𝑥𝑗 𝑢𝑥
𝑗 Made integer (added to 𝒥)

FR −∞ ∞ No
FX 𝑣1 𝑣1 No
LO 𝑣1 unchanged No
MI −∞ unchanged No
PL unchanged ∞ No
UP unchanged 𝑣1 No
BV 0 1 Yes
LI ⌈𝑣1⌉ unchanged Yes
UI unchanged ⌊𝑣1⌋ Yes

v_1 is the value specified by [value1].

17.2. The MPS File Format 343

MOSEK Optimizer API for Python, Release 8.0.0.94

17.2.4 CSECTION (optional)

The purpose of the CSECTION is to specify the constraint

𝑥 ∈ 𝒦.

in (17.2). It is assumed that 𝒦 satisfies the following requirements. Let

𝑥𝑡 ∈ R𝑛𝑡

, 𝑡 = 1, . . . , 𝑘

be vectors comprised of parts of the decision variables 𝑥 so that each decision variable is a member of
exactly one vector 𝑥𝑡, for example

𝑥1 =

⎡⎣ 𝑥1

𝑥4

𝑥7

⎤⎦ and 𝑥2 =

⎡⎢⎢⎣
𝑥6

𝑥5

𝑥3

𝑥2

⎤⎥⎥⎦ .

Next define

𝒦 :=
{︀
𝑥 ∈ R𝑛 : 𝑥𝑡 ∈ 𝒦𝑡, 𝑡 = 1, . . . , 𝑘

}︀
where 𝒦𝑡 must have one of the following forms

• R set:

𝒦𝑡 =
{︁
𝑥 ∈ R𝑛𝑡

}︁
.

• Quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 𝑥1 ≥

⎯⎸⎸⎷ 𝑛𝑡∑︁
𝑗=2

𝑥2
𝑗

⎫⎬⎭ . (17.3)

• Rotated quadratic cone:

𝒦𝑡 =

⎧⎨⎩𝑥 ∈ R𝑛𝑡

: 2𝑥1𝑥2 ≥
𝑛𝑡∑︁
𝑗=3

𝑥2
𝑗 , 𝑥1, 𝑥2 ≥ 0

⎫⎬⎭ . (17.4)

In general, only quadratic and rotated quadratic cones are specified in the MPS file whereas membership
of the R set is not. If a variable is not a member of any other cone then it is assumed to be a member
of an R cone.

Next, let us study an example. Assume that the quadratic cone

𝑥4 ≥
√︁

𝑥2
5 + 𝑥2

8

and the rotated quadratic cone

𝑥3𝑥7 ≥ 𝑥2
1 + 𝑥2

0, 𝑥3, 𝑥7 ≥ 0,

should be specified in the MPS file. One CSECTION is required for each cone and they are specified as
follows:

344 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
CSECTION konea 0.0 QUAD
x4
x5
x8
CSECTION koneb 0.0 RQUAD
x7
x3
x1
x0

This first CSECTION specifies the cone (17.3) which is given the name konea. This is a quadratic cone
which is specified by the keyword QUAD in the CSECTION header. The 0.0 value in the CSECTION header
is not used by the QUAD cone.

The second CSECTION specifies the rotated quadratic cone (17.4). Please note the keyword RQUAD in the
CSECTION which is used to specify that the cone is a rotated quadratic cone instead of a quadratic cone.
The 0.0 value in the CSECTION header is not used by the RQUAD cone.

In general, a CSECTION header has the format

CSECTION [kname1] [value1] [ktype]

where the requirement for each field are as follows:

Field Starting Position Max Width Required Description
[kname1] 5 8 Yes Name of the cone
[value1] 15 12 No Cone parameter
[ktype] 25 Yes Type of the cone.

The possible cone type keys are:

Cone type key Members Interpretation.
QUAD ≤ 1 Quadratic cone i.e. (17.3).
RQUAD ≤ 2 Rotated quadratic cone i.e. (17.4).

Please note that a quadratic cone must have at least one member whereas a rotated quadratic cone must
have at least two members. A record in the CSECTION has the format

[vname1]

where the requirements for each field are

Field Starting Position Max Width required Description
[vname1] 2 8 Yes A valid variable name

The most important restriction with respect to the CSECTION is that a variable must occur in only one
CSECTION.

17.2.5 ENDATA

This keyword denotes the end of the MPS file.

17.2.6 Integer Variables

Using special bound keys in the BOUNDS section it is possible to specify that some or all of the variables
should be integer-constrained i.e. be members of 𝒥 . However, an alternative method is available.

This method is available only for backward compatibility and we recommend that it is not used. This
method requires that markers are placed in the COLUMNS section as in the example:

17.2. The MPS File Format 345

MOSEK Optimizer API for Python, Release 8.0.0.94

COLUMNS
x1 obj -10.0 c1 0.7
x1 c2 0.5 c3 1.0
x1 c4 0.1
* Start of integer-constrained variables.
MARK000 'MARKER' 'INTORG'
x2 obj -9.0 c1 1.0
x2 c2 0.8333333333 c3 0.66666667
x2 c4 0.25
x3 obj 1.0 c6 2.0
MARK001 'MARKER' 'INTEND'

• End of integer-constrained variables.

Please note that special marker lines are used to indicate the start and the end of the integer variables.
Furthermore be aware of the following

• IMPORTANT: All variables between the markers are assigned a default lower bound of 0 and a
default upper bound of 1. This may not be what is intended. If it is not intended, the correct
bounds should be defined in the BOUNDS section of the MPS formatted file.

• MOSEK ignores field 1, i.e. MARK0001 and MARK001, however, other optimization systems require
them.

• Field 2, i.e. MARKER, must be specified including the single quotes. This implies that no row can
be assigned the name MARKER.

• Field 3 is ignored and should be left blank.

• Field 4, i.e. INTORG and INTEND, must be specified.

• It is possible to specify several such integer marker sections within the COLUMNS section.

17.2.7 General Limitations

• An MPS file should be an ASCII file.

17.2.8 Interpretation of the MPS Format

Several issues related to the MPS format are not well-defined by the industry standard. However,
MOSEK uses the following interpretation:

• If a matrix element in the COLUMNS section is specified multiple times, then the multiple entries are
added together.

• If a matrix element in a QSECTION section is specified multiple times, then the multiple entries are
added together.

17.2.9 The Free MPS Format

MOSEK supports a free format variation of the MPS format. The free format is similar to the MPS file
format but less restrictive, e.g. it allows longer names. However, it also presents two main limitations:

• A name must not contain any blanks.

• By default a line in the MPS file must not contain more than 1024 characters. However, by
modifying the parameter iparam.read_mps_width an arbitrary large line width will be accepted.

To use the free MPS format instead of the default MPS format the MOSEK parameter
iparam.read_mps_format should be changed.

346 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

17.3 The OPF Format

The Optimization Problem Format (OPF) is an alternative to LP and MPS files for specifying optimiza-
tion problems. It is row-oriented, inspired by the CPLEX LP format.

Apart from containing objective, constraints, bounds etc. it may contain complete or partial solutions,
comments and extra information relevant for solving the problem. It is designed to be easily read and
modified by hand and to be forward compatible with possible future extensions.

Intended use

The OPF file format is meant to replace several other files:

• The LP file format: Any problem that can be written as an LP file can be written as an OPF file
too; furthermore it naturally accommodates ranged constraints and variables as well as arbitrary
characters in names, fixed expressions in the objective, empty constraints, and conic constraints.

• Parameter files: It is possible to specify integer, double and string parameters along with the
problem (or in a separate OPF file).

• Solution files: It is possible to store a full or a partial solution in an OPF file and later reload it.

17.3.1 The File Format

The format uses tags to structure data. A simple example with the basic sections may look like this:

[comment]
This is a comment. You may write almost anything here...
[/comment]

This is a single-line comment.

[objective min 'myobj']
x + 3 y + x^2 + 3 y^2 + z + 1
[/objective]

[constraints]
[con 'con01'] 4 &<= x + y [/con]
[/constraints]

[bounds]
[b] -10 &<= x,y &<= 10 [/b]

[cone quad] x,y,z [/cone]
[/bounds]

A scope is opened by a tag of the form [tag] and closed by a tag of the form [/tag]. An opening tag
may accept a list of unnamed and named arguments, for examples:

[tag value] tag with one unnamed argument [/tag]
[tag arg=value] tag with one named argument in quotes [/tag]

Unnamed arguments are identified by their order, while named arguments may appear in any order, but
never before an unnamed argument. The value can be a quoted, single-quoted or double-quoted text
string, i.e.

[tag 'value'] single-quoted value [/tag]
[tag arg='value'] single-quoted value [/tag]
[tag "value"] double-quoted value [/tag]
[tag arg="value"] double-quoted value [/tag]

17.3. The OPF Format 347

MOSEK Optimizer API for Python, Release 8.0.0.94

Sections

The recognized tags are

[comment]

A comment section. This can contain almost any text: Between single quotes (’) or double quotes (")
any text may appear. Outside quotes the markup characters ([and]) must be prefixed by backslashes.
Both single and double quotes may appear alone or inside a pair of quotes if it is prefixed by a backslash.

[objective]

The objective function: This accepts one or two parameters, where the first one (in the above example
min) is either min or max (regardless of case) and defines the objective sense, and the second one (above
myobj), if present, is the objective name. The section may contain linear and quadratic expressions. If
several objectives are specified, all but the last are ignored.

[constraints]

This does not directly contain any data, but may contain the subsection con defining a linear constraint.

[con] defines a single constraint; if an argument is present ([con NAME]) this is used as the name of
the constraint, otherwise it is given a null-name. The section contains a constraint definition written as
linear and quadratic expressions with a lower bound, an upper bound, with both or with an equality.
Examples:

[constraints]
[con 'con1'] 0 <= x + y [/con]
[con 'con2'] 0 >= x + y [/con]
[con 'con3'] 0 <= x + y <= 10 [/con]
[con 'con4'] x + y = 10 [/con]
[/constraints]

Constraint names are unique. If a constraint is specified which has the same name as a previously defined
constraint, the new constraint replaces the existing one.

[bounds]

This does not directly contain any data, but may contain the subsections b (linear bounds on variables)
and cone (quadratic cone).

[b]. Bound definition on one or several variables separated by comma (,). An upper or lower bound
on a variable replaces any earlier defined bound on that variable. If only one bound (upper or lower) is
given only this bound is replaced. This means that upper and lower bounds can be specified separately.
So the OPF bound definition:

[b] x,y >= -10 [/b]
[b] x,y <= 10 [/b]

results in the bound −10 ≤ 𝑥, 𝑦 ≤ 10.

[cone]. currently supports the quadratic cone and the rotated quadratic cone.

A conic constraint is defined as a set of variables which belong to a single unique cone.

348 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

• A quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

𝑥2
1 >

𝑛∑︁
𝑖=2

𝑥2
𝑖 .

• A rotated quadratic cone of 𝑛 variables 𝑥1, . . . , 𝑥𝑛 defines a constraint of the form

𝑥1𝑥2 >

𝑛∑︁
𝑖=3

𝑥2
𝑖 .

A [bounds]-section example:

[bounds]
[b] 0 <= x,y <= 10 [/b] # ranged bound
[b] 10 >= x,y >= 0 [/b] # ranged bound
[b] 0 <= x,y <= inf [/b] # using inf
[b] x,y free [/b] # free variables
Let (x,y,z,w) belong to the cone K
[cone quad] x,y,z,w [/cone] # quadratic cone
[cone rquad] x,y,z,w [/cone] # rotated quadratic cone
[/bounds]

By default all variables are free.

[variables]

This defines an ordering of variables as they should appear in the problem. This is simply a space-
separated list of variable names.

[integer]

This contains a space-separated list of variables and defines the constraint that the listed variables must
be integer values.

[hints]

This may contain only non-essential data; for example estimates of the number of variables, constraints
and non-zeros. Placed before all other sections containing data this may reduce the time spent reading
the file.

In the hints section, any subsection which is not recognized by MOSEK is simply ignored. In this
section a hint in a subsection is defined as follows:

[hint ITEM] value [/hint]

where ITEM may be replaced by numvar (number of variables), numcon (number of linear/quadratic
constraints), numanz (number of linear non-zeros in constraints) and numqnz (number of quadratic non-
zeros in constraints).

[solutions]

This section can contain a set of full or partial solutions to a problem. Each solution must be specified
using a [solution]-section, i.e.

17.3. The OPF Format 349

MOSEK Optimizer API for Python, Release 8.0.0.94

[solutions]
[solution]...[/solution] #solution 1
[solution]...[/solution] #solution 2
#other solutions....
[solution]...[/solution] #solution n
[/solutions]

Note that a [solution]-section must be always specified inside a [solutions]-section. The syntax of
a [solution]-section is the following:

[solution SOLTYPE status=STATUS]...[/solution]

where SOLTYPE is one of the strings

• interior, a non-basic solution,

• basic, a basic solution,

• integer, an integer solution,

and STATUS is one of the strings

• UNKNOWN,

• OPTIMAL,

• INTEGER_OPTIMAL,

• PRIM_FEAS,

• DUAL_FEAS,

• PRIM_AND_DUAL_FEAS,

• NEAR_OPTIMAL,

• NEAR_PRIM_FEAS,

• NEAR_DUAL_FEAS,

• NEAR_PRIM_AND_DUAL_FEAS,

• PRIM_INFEAS_CER,

• DUAL_INFEAS_CER,

• NEAR_PRIM_INFEAS_CER,

• NEAR_DUAL_INFEAS_CER,

• NEAR_INTEGER_OPTIMAL.

Most of these values are irrelevant for input solutions; when constructing a solution for simplex hot-start
or an initial solution for a mixed integer problem the safe setting is UNKNOWN.

A [solution]-section contains [con] and [var] sections. Each [con] and [var] section defines solution
information for a single variable or constraint, specified as list of KEYWORD/value pairs, in any order,
written as

KEYWORD=value

Allowed keywords are as follows:

• sk. The status of the item, where the value is one of the following strings:

– LOW, the item is on its lower bound.

– UPR, the item is on its upper bound.

– FIX, it is a fixed item.

– BAS, the item is in the basis.

350 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

– SUPBAS, the item is super basic.

– UNK, the status is unknown.

– INF, the item is outside its bounds (infeasible).

• lvl Defines the level of the item.

• sl Defines the level of the dual variable associated with its lower bound.

• su Defines the level of the dual variable associated with its upper bound.

• sn Defines the level of the variable associated with its cone.

• y Defines the level of the corresponding dual variable (for constraints only).

A [var] section should always contain the items sk, lvl, sl and su. Items sl and su are not required
for integer solutions.

A [con] section should always contain sk, lvl, sl, su and y.

An example of a solution section

[solution basic status=UNKNOWN]
[var x0] sk=LOW lvl=5.0 [/var]
[var x1] sk=UPR lvl=10.0 [/var]
[var x2] sk=SUPBAS lvl=2.0 sl=1.5 su=0.0 [/var]

[con c0] sk=LOW lvl=3.0 y=0.0 [/con]
[con c0] sk=UPR lvl=0.0 y=5.0 [/con]
[/solution]

• [vendor] This contains solver/vendor specific data. It accepts one argument, which is a vendor
ID – for MOSEK the ID is simply mosek – and the section contains the subsection parameters
defining solver parameters. When reading a vendor section, any unknown vendor can be safely
ignored. This is described later.

Comments using the # may appear anywhere in the file. Between the # and the following line-break any
text may be written, including markup characters.

Numbers

Numbers, when used for parameter values or coefficients, are written in the usual way by the printf
function. That is, they may be prefixed by a sign (+ or -) and may contain an integer part, decimal part
and an exponent. The decimal point is always . (a dot). Some examples are

1
1.0
.0
1.
1e10
1e+10
1e-10

Some invalid examples are

e10 # invalid, must contain either integer or decimal part
. # invalid
.e10 # invalid

More formally, the following standard regular expression describes numbers as used:

[+|-]?([0-9]+[.][0-9]*|[.][0-9]+)([eE][+|-]?[0-9]+)?

17.3. The OPF Format 351

MOSEK Optimizer API for Python, Release 8.0.0.94

Names

Variable names, constraint names and objective name may contain arbitrary characters, which in some
cases must be enclosed by quotes (single or double) that in turn must be preceded by a backslash.
Unquoted names must begin with a letter (a-z or A-Z) and contain only the following characters: the
letters a-z and A-Z, the digits 0-9, braces ({ and }) and underscore (_).

Some examples of legal names:

an_unquoted_name
another_name{123}
'single quoted name'
"double quoted name"
"name with \\"quote\\" in it"
"name with []s in it"

17.3.2 Parameters Section

In the vendor section solver parameters are defined inside the parameters subsection. Each parameter
is written as

[p PARAMETER_NAME] value [/p]

where PARAMETER_NAME is replaced by a MOSEK parameter name, usually of the form MSK_IPAR_...,
MSK_DPAR_... or MSK_SPAR_..., and the value is replaced by the value of that parameter; both integer
values and named values may be used. Some simple examples are

[vendor mosek]
[parameters]
[p MSK_IPAR_OPF_MAX_TERMS_PER_LINE] 10 [/p]
[p MSK_IPAR_OPF_WRITE_PARAMETERS] MSK_ON [/p]
[p MSK_DPAR_DATA_TOL_BOUND_INF] 1.0e18 [/p]
[/parameters]
[/vendor]

17.3.3 Writing OPF Files from MOSEK

To write an OPF file set the parameter iparam.write_data_format to dataformat.op as this ensures
that OPF format is used.

Then modify the following parameters to define what the file should contain:

iparam.opf_write_sol_bas Include basic solution, if defined.
iparam.opf_write_sol_itg Include integer solution, if defined.
iparam.opf_write_sol_itr Include interior solution, if defined.
iparam.opf_write_solutions Include solutions if they are defined. If this is off, no solutions are

included.
iparam.opf_write_header Include a small header with comments.
iparam.opf_write_problem Include the problem itself — objective, constraints and bounds.
iparam.opf_write_parametersInclude all parameter settings.
iparam.opf_write_hints Include hints about the size of the problem.

17.3.4 Examples

This section contains a set of small examples written in OPF and describing how to formulate linear,
quadratic and conic problems.

352 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

Linear Example lo1.opf

Consider the example:

maximize 3𝑥0 + 1𝑥1 + 5𝑥2 + 1𝑥3

subject to 3𝑥0 + 1𝑥1 + 2𝑥2 = 30,
2𝑥0 + 1𝑥1 + 3𝑥2 + 1𝑥3 ≥ 15,

2𝑥1 + 3𝑥3 ≤ 25,

having the bounds

0 ≤ 𝑥0 ≤ ∞,
0 ≤ 𝑥1 ≤ 10,
0 ≤ 𝑥2 ≤ ∞,
0 ≤ 𝑥3 ≤ ∞.

In the OPF format the example is displayed as shown in Listing 17.1.

Listing 17.1: Example of an OPF file for a linear problem.

[comment]
The lo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 4 [/hint]
[hint NUMCON] 3 [/hint]
[hint NUMANZ] 9 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3 x4

[/variables]

[objective maximize 'obj']
3 x1 + x2 + 5 x3 + x4

[/objective]

[constraints]
[con 'c1'] 3 x1 + x2 + 2 x3 = 30 [/con]
[con 'c2'] 2 x1 + x2 + 3 x3 + x4 >= 15 [/con]
[con 'c3'] 2 x2 + 3 x4 <= 25 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]
[b] 0 <= x2 <= 10 [/b]

[/bounds]

Quadratic Example qo1.opf

An example of a quadratic optimization problem is

minimize 𝑥2
1 + 0.1𝑥2

2 + 𝑥2
3 − 𝑥1𝑥3 − 𝑥2

subject to 1 ≤ 𝑥1 + 𝑥2 + 𝑥3,
𝑥 ≥ 0.

This can be formulated in opf as shown below.

17.3. The OPF Format 353

MOSEK Optimizer API for Python, Release 8.0.0.94

Listing 17.2: Example of an OPF file for a quadratic problem.

[comment]
The qo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 3 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]
[hint NUMQNZ] 4 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3

[/variables]

[objective minimize 'obj']
The quadratic terms are often written with a factor of 1/2 as here,
but this is not required.

- x2 + 0.5 (2.0 x1 ^ 2 - 2.0 x3 * x1 + 0.2 x2 ^ 2 + 2.0 x3 ^ 2)
[/objective]

[constraints]
[con 'c1'] 1.0 <= x1 + x2 + x3 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]

[/bounds]

Conic Quadratic Example cqo1.opf

Consider the example:

minimize 𝑥3 + 𝑥4 + 𝑥5

subject to 𝑥0 + 𝑥1 + 2𝑥2 = 1,
𝑥0, 𝑥1, 𝑥2 ≥ 0,

𝑥3 ≥
√︀
𝑥2
0 + 𝑥2

1,
2𝑥4𝑥5 ≥ 𝑥2

2.

Please note that the type of the cones is defined by the parameter to [cone ...]; the content of the
cone-section is the names of variables that belong to the cone. The resulting OPF file is in Listing 17.3.

Listing 17.3: Example of an OPF file for a conic quadratic problem.

[comment]
The cqo1 example in OPF format.

[/comment]

[hints]
[hint NUMVAR] 6 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2 x3 x4 x5 x6

[/variables]

354 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

[objective minimize 'obj']
x4 + x5 + x6

[/objective]

[constraints]
[con 'c1'] x1 + x2 + 2e+00 x3 = 1e+00 [/con]

[/constraints]

[bounds]
We let all variables default to the positive orthant
[b] 0 <= * [/b]

...and change those that differ from the default
[b] x4,x5,x6 free [/b]

Define quadratic cone: x4 >= sqrt(x1^2 + x2^2)
[cone quad 'k1'] x4, x1, x2 [/cone]

Define rotated quadratic cone: 2 x5 x6 >= x3^2
[cone rquad 'k2'] x5, x6, x3 [/cone]

[/bounds]

Mixed Integer Example milo1.opf

Consider the mixed integer problem:

maximize 𝑥0 + 0.64𝑥1

subject to 50𝑥0 + 31𝑥1 ≤ 250,
3𝑥0 − 2𝑥1 ≥ −4,
𝑥0, 𝑥1 ≥ 0 and integer

This can be implemented in OPF with the file in Listing 17.4.

Listing 17.4: Example of an OPF file for a mixed-integer linear problem.

[comment]
The milo1 example in OPF format

[/comment]

[hints]
[hint NUMVAR] 2 [/hint]
[hint NUMCON] 2 [/hint]
[hint NUMANZ] 4 [/hint]

[/hints]

[variables disallow_new_variables]
x1 x2

[/variables]

[objective maximize 'obj']
x1 + 6.4e-1 x2

[/objective]

[constraints]
[con 'c1'] 5e+1 x1 + 3.1e+1 x2 <= 2.5e+2 [/con]
[con 'c2'] -4 <= 3 x1 - 2 x2 [/con]

[/constraints]

[bounds]
[b] 0 <= * [/b]

[/bounds]

17.3. The OPF Format 355

MOSEK Optimizer API for Python, Release 8.0.0.94

[integer]
x1 x2

[/integer]

17.4 The CBF Format

This document constitutes the technical reference manual of the Conic Benchmark Format with file exten-
sion: .cbf or .CBF. It unifies linear, second-order cone (also known as conic quadratic) and semidefinite
optimization with mixed-integer variables. The format has been designed with benchmark libraries in
mind, and therefore focuses on compact and easily parsable representations. The problem structure is
separated from the problem data, and the format moreover facilitates benchmarking of hotstart capability
through sequences of changes.

17.4.1 How Instances Are Specified

This section defines the spectrum of conic optimization problems that can be formulated in terms of the
keywords of the CBF format.

In the CBF format, conic optimization problems are considered in the following form:

min /max 𝑔𝑜𝑏𝑗

𝑔𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ,
s.t. 𝐺𝑖 ∈ 𝒦𝑖, 𝑖 ∈ ℐ𝑃𝑆𝐷,

𝑥𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 ,
𝑋𝑗 ∈ 𝒦𝑗 , 𝑗 ∈ 𝒥 𝑃𝑆𝐷.

(17.5)

• Variables are either scalar variables, 𝑥𝑗 for 𝑗 ∈ 𝒥 , or variables, 𝑋𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷. Scalar variables
can also be declared as integer.

• Constraints are affine expressions of the variables, either scalar-valued 𝑔𝑖 for 𝑖 ∈ ℐ, or matrix-
valued 𝐺𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖.

• The objective function is a scalar-valued affine expression of the variables, either to be minimized
or maximized. We refer to this expression as 𝑔𝑜𝑏𝑗

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 .

CBF format can represent the following cones 𝒦:

• Free domain - A cone in the linear family defined by

{𝑥 ∈ R𝑛}, for 𝑛 ≥ 1.

• Positive orthant - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Negative orthant - A cone in the linear family defined by

356 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

{𝑥 ∈ R𝑛 | 𝑥𝑗 ≤ 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Fixpoint zero - A cone in the linear family defined by

{𝑥 ∈ R𝑛 | 𝑥𝑗 = 0 for 𝑗 = 1, . . . , 𝑛}, for 𝑛 ≥ 1.

• Quadratic cone - A cone in the second-order cone family defined by

{︂(︂
𝑝
𝑥

)︂
∈ R× R𝑛−1, 𝑝2 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0

}︂
, for 𝑛 ≥ 2.

• Rotated quadratic cone - A cone in the second-order cone family defined by

⎧⎨⎩
⎛⎝ 𝑝

𝑞
𝑥

⎞⎠ ∈ R× R× R𝑛−2, 2𝑝𝑞 ≥ 𝑥𝑇𝑥, 𝑝 ≥ 0, 𝑞 ≥ 0

⎫⎬⎭ , for 𝑛 ≥ 3.

17.4.2 The Structure of CBF Files

This section defines how information is written in the CBF format, without being specific about the type
of information being communicated.

All information items belong to exactly one of the three groups of information. These information groups,
and the order they must appear in, are:

1. File format.

2. Problem structure.

3. Problem data.

The first group, file format, provides information on how to interpret the file. The second group, problem
structure, provides the information needed to deduce the type and size of the problem instance. Finally,
the third group, problem data, specifies the coefficients and constants of the problem instance.

Information items

The format is composed as a list of information items. The first line of an information item is the
KEYWORD, revealing the type of information provided. The second line - of some keywords only - is the
HEADER, typically revealing the size of information that follows. The remaining lines are the BODY holding
the actual information to be specified.

KEYWORD
BODY

KEYWORD
HEADER
BODY

The KEYWORD determines how each line in the HEADER and BODY is structured. Moreover, the number of
lines in the BODY follows either from the KEYWORD, the HEADER, or from another information item required
to precede it.

17.4. The CBF Format 357

MOSEK Optimizer API for Python, Release 8.0.0.94

Embedded hotstart-sequences

A sequence of problem instances, based on the same problem structure, is within a single file. This
is facilitated via the CHANGE within the problem data information group, as a separator between the
information items of each instance. The information items following a CHANGE keyword are appending
to, or changing (e.g., setting coefficients back to their default value of zero), the problem data of the
preceding instance.

The sequence is intended for benchmarking of hotstart capability, where the solvers can reuse their
internal state and solution (subject to the achieved accuracy) as warmpoint for the succeeding instance.
Whenever this feature is unsupported or undesired, the keyword CHANGE should be interpreted as the
end of file.

File encoding and line width restrictions

The format is based on the US-ASCII printable character set with two extensions as listed below. Note,
by definition, that none of these extensions can be misinterpreted as printable US-ASCII characters:

• A line feed marks the end of a line, carriage returns are ignored.

• Comment-lines may contain unicode characters in UTF-8 encoding.

The line width is restricted to 512 bytes, with 3 bytes reserved for the potential carriage return, line feed
and null-terminator.

Integers and floating point numbers must follow the ISO C decimal string representation in the standard
C locale. The format does not impose restrictions on the magnitude of, or number of significant digits
in numeric data, but the use of 64-bit integers and 64-bit IEEE 754 floating point numbers should be
sufficient to avoid loss of precision.

Comment-line and whitespace rules

The format allows single-line comments respecting the following rule:

• Lines having first byte equal to ’#’ (US-ASCII 35) are comments, and should be ignored. Comments
are only allowed between information items.

Given that a line is not a comment-line, whitespace characters should be handled according to the
following rules:

• Leading and trailing whitespace characters should be ignored.

– The seperator between multiple pieces of information on one line, is either one or more whites-
pace characters.

• Lines containing only whitespace characters are empty, and should be ignored. Empty lines are
only allowed between information items.

17.4.3 Problem Specification

The problem structure

The problem structure defines the objective sense, whether it is minimization and maximization. It also
defines the index sets, 𝒥 , 𝒥 𝑃𝑆𝐷, ℐ and ℐ𝑃𝑆𝐷, which are all numbered from zero, {0, 1, . . .}, and empty
until explicitly constructed.

• Scalar variables are constructed in vectors restricted to a conic domain, such as (𝑥0, 𝑥1) ∈ R2
+,

(𝑥2, 𝑥3, 𝑥4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑥 ∈ 𝒦𝑛1
1 ×𝒦𝑛2

2 × · · · × 𝒦𝑛𝑘

𝑘

358 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

which in the CBF format becomes:

VAR
n k
K1 n1
K2 n2
...
Kk nk

where
∑︀

𝑖 𝑛𝑖 = 𝑛 is the total number of scalar variables. The list of supported cones is found in
Table 17.3. Integrality of scalar variables can be specified afterwards.

• PSD variables are constructed one-by-one. That is, 𝑋𝑗 ⪰ 0𝑛𝑗×𝑛𝑗 for 𝑗 ∈ 𝒥 𝑃𝑆𝐷, constructs a
matrix-valued variable of size 𝑛𝑗 ×𝑛𝑗 restricted to be symmetric positive semidefinite. In the CBF
format, this list of constructions becomes:

PSDVAR
N
n1
n2
...
nN

where 𝑁 is the total number of PSD variables.

• Scalar constraints are constructed in vectors restricted to a conic domain, such as (𝑔0, 𝑔1) ∈ R2
+,

(𝑔2, 𝑔3, 𝑔4) ∈ 𝒬3, etc. In terms of the Cartesian product, this generalizes to

𝑔 ∈ 𝒦𝑚1
1 ×𝒦𝑚2

2 × · · · × 𝒦𝑚𝑘

𝑘

which in the CBF format becomes:

CON
m k
K1 m1
K2 m2
..
Kk mk

where
∑︀

𝑖 𝑚𝑖 = 𝑚 is the total number of scalar constraints. The list of supported cones is found
in Table 17.3.

• PSD constraints are constructed one-by-one. That is, 𝐺𝑖 ⪰ 0𝑚𝑖×𝑚𝑖 for 𝑖 ∈ ℐ𝑃𝑆𝐷, constructs a
matrix-valued affine expressions of size 𝑚𝑖 ×𝑚𝑖 restricted to be symmetric positive semidefinite.
In the CBF format, this list of constructions becomes

PSDCON
M
m1
m2
..
mM

where 𝑀 is the total number of PSD constraints.

With the objective sense, variables (with integer indications) and constraints, the definitions of the many
affine expressions follow in problem data.

Problem data

The problem data defines the coefficients and constants of the affine expressions of the problem instance.
These are considered zero until explicitly defined, implying that instances with no keywords from this

17.4. The CBF Format 359

MOSEK Optimizer API for Python, Release 8.0.0.94

information group are, in fact, valid. Duplicating or conflicting information is a failure to comply with
the standard. Consequently, two coefficients written to the same position in a matrix (or to transposed
positions in a symmetric matrix) is an error.

The affine expressions of the objective, 𝑔𝑜𝑏𝑗 , of the scalar constraints, 𝑔𝑖, and of the PSD constraints,
𝐺𝑖, are defined separately. The following notation uses the standard trace inner product for matrices,
⟨𝑋,𝑌 ⟩ =

∑︀
𝑖,𝑗 𝑋𝑖𝑗𝑌𝑖𝑗 .

• The affine expression of the objective is defined as

𝑔𝑜𝑏𝑗 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹 𝑜𝑏𝑗
𝑗 , 𝑋𝑗⟩ +

∑︁
𝑗∈𝒥

𝑎𝑜𝑏𝑗𝑗 𝑥𝑗 + 𝑏𝑜𝑏𝑗 ,

in terms of the symmetric matrices, 𝐹 𝑜𝑏𝑗
𝑗 , and scalars, 𝑎𝑜𝑏𝑗𝑗 and 𝑏𝑜𝑏𝑗 .

• The affine expressions of the scalar constraints are defined, for 𝑖 ∈ ℐ, as

𝑔𝑖 =
∑︁

𝑗∈𝒥𝑃𝑆𝐷

⟨𝐹𝑖𝑗 , 𝑋𝑗⟩ +
∑︁
𝑗∈𝒥

𝑎𝑖𝑗𝑥𝑗 + 𝑏𝑖,

in terms of the symmetric matrices, 𝐹𝑖𝑗 , and scalars, 𝑎𝑖𝑗 and 𝑏𝑖.

• The affine expressions of the PSD constraints are defined, for 𝑖 ∈ ℐ𝑃𝑆𝐷, as

𝐺𝑖 =
∑︁
𝑗∈𝒥

𝑥𝑗𝐻𝑖𝑗 + 𝐷𝑖,

in terms of the symmetric matrices, 𝐻𝑖𝑗 and 𝐷𝑖.

List of cones

The format uses an explicit syntax for symmetric positive semidefinite cones as shown above. For scalar
variables and constraints, constructed in vectors, the supported conic domains and their minimum sizes
are given as follows.

Table 17.3: Cones available in the CBF format

Name CBF keyword Cone family
Free domain F linear
Positive orthant L+ linear
Negative orthant L- linear
Fixpoint zero L= linear
Quadratic cone Q second-order
Rotated quadratic cone QR second-order

17.4.4 File Format Keywords

VER

Description: The version of the Conic Benchmark Format used to write the file.

HEADER: None

BODY: One line formatted as:

INT

This is the version number.

Must appear exactly once in a file, as the first keyword.

360 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

OBJSENSE

Description: Define the objective sense.

HEADER: None

BODY: One line formatted as:

STR

having MIN indicates minimize, and MAX indicates maximize. Capital letters are required.

Must appear exactly once in a file.

PSDVAR

Description: Construct the PSD variables.

HEADER: One line formatted as:

INT

This is the number of PSD variables in the problem.

BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued PSD variable.
The number of lines should match the number stated in the header.

VAR

Description: Construct the scalar variables.

HEADER: One line formatted as:

INT INT

This is the number of scalar variables, followed by the number of conic domains they are restricted to.

BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 17.3), and the number of scalar variables restricted to this cone.
These numbers should add up to the number of scalar variables stated first in the header. The number
of lines should match the second number stated in the header.

INT

Description: Declare integer requirements on a selected subset of scalar variables.

HEADER: one line formatted as:

INT

This is the number of integer scalar variables in the problem.

BODY: a list of lines formatted as:

17.4. The CBF Format 361

MOSEK Optimizer API for Python, Release 8.0.0.94

INT

This indicates the scalar variable index 𝑗 ∈ 𝒥 . The number of lines should match the number stated in
the header.

Can only be used after the keyword VAR.

PSDCON

Description: Construct the PSD constraints.

HEADER: One line formatted as:

INT

This is the number of PSD constraints in the problem.

BODY: A list of lines formatted as:

INT

This indicates the number of rows (equal to the number of columns) in the matrix-valued affine expression
of the PSD constraint. The number of lines should match the number stated in the header.

Can only be used after these keywords: PSDVAR, VAR.

CON

Description: Construct the scalar constraints.

HEADER: One line formatted as:

INT INT

This is the number of scalar constraints, followed by the number of conic domains they restrict to.

BODY: A list of lines formatted as:

STR INT

This indicates the cone name (see Table 17.3), and the number of affine expressions restricted to this
cone. These numbers should add up to the number of scalar constraints stated first in the header. The
number of lines should match the second number stated in the header.

Can only be used after these keywords: PSDVAR, VAR

OBJFCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices 𝐹 𝑜𝑏𝑗
𝑗 , as used in

the objective.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT INT INT REAL

362 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

This indicates the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

OBJACOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑎𝑜𝑏𝑗𝑗 , as used in the objective.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT REAL

This indicates the scalar variable index 𝑗 ∈ 𝒥 and the coefficient value. The number of lines should
match the number stated in the header.

OBJBCOORD

Description: Input the scalar, 𝑏𝑜𝑏𝑗 , as used in the objective.

HEADER: None.

BODY: One line formatted as:

REAL

This indicates the coefficient value.

FCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐹𝑖𝑗 , as used in the
scalar constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT INT INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the PSD variable index 𝑗 ∈ 𝒥 𝑃𝑆𝐷, the row index, the
column index and the coefficient value. The number of lines should match the number stated in the
header.

ACOORD

Description: Input sparse coordinates (triplets) to define the scalars, 𝑎𝑖𝑗 , as used in the scalar constraints.

HEADER: One line formatted as:

INT

17.4. The CBF Format 363

MOSEK Optimizer API for Python, Release 8.0.0.94

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ, the scalar variable index 𝑗 ∈ 𝒥 and the coefficient value.
The number of lines should match the number stated in the header.

BCOORD

Description: Input sparse coordinates (pairs) to define the scalars, 𝑏𝑖, as used in the scalar constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT REAL

This indicates the scalar constraint index 𝑖 ∈ ℐ and the coefficient value. The number of lines should
match the number stated in the header.

HCOORD

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, 𝐻𝑖𝑗 , as used in
the PSD constraints.

HEADER: One line formatted as:

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as

INT INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the scalar variable index 𝑗 ∈ 𝒥 , the row index, the
column index and the coefficient value. The number of lines should match the number stated in the
header.

DCOORD

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices, 𝐷𝑖, as used in
the PSD constraints.

HEADER: One line formatted as

INT

This is the number of coordinates to be specified.

BODY: A list of lines formatted as:

INT INT INT REAL

This indicates the PSD constraint index 𝑖 ∈ ℐ𝑃𝑆𝐷, the row index, the column index and the coefficient
value. The number of lines should match the number stated in the header.

364 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

CHANGE

Start of a new instance specification based on changes to the previous. Can be interpreted as the end of
file when the hotstart-sequence is unsupported or undesired.

BODY: None

Header: None

17.4.5 CBF Format Examples

Minimal Working Example

The conic optimization problem (17.6) , has three variables in a quadratic cone - first one is integer -
and an affine expression in domain 0 (equality constraint).

minimize 5.1𝑥0

subject to 6.2𝑥1 + 7.3𝑥2 − 8.4 ∈ {0}
𝑥 ∈ 𝒬3, 𝑥0 ∈ Z.

(17.6)

Its formulation in the Conic Benchmark Format begins with the version of the CBF format used, to
safeguard against later revisions.

VER
1

Next follows the problem structure, consisting of the objective sense, the number and domain of variables,
the indices of integer variables, and the number and domain of scalar-valued affine expressions (i.e., the
equality constraint).

OBJSENSE
MIN

VAR
3 1
Q 3

INT
1
0

CON
1 1
L= 1

Finally follows the problem data, consisting of the coefficients of the objective, the coefficients of the
constraints, and the constant terms of the constraints. All data is specified on a sparse coordinate form.

OBJACOORD
1
0 5.1

ACOORD
2
0 1 6.2
0 2 7.3

BCOORD
1
0 -8.4

This concludes the example.

17.4. The CBF Format 365

MOSEK Optimizer API for Python, Release 8.0.0.94

Mixing Linear, Second-order and Semidefinite Cones

The conic optimization problem (17.7), has a semidefinite cone, a quadratic cone over unordered
subindices, and two equality constraints.

minimize

⟨⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ , 𝑋1

⟩
+ 𝑥1

subject to

⟨⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑋1

⟩
+ 𝑥1 = 1.0 ,

⟨⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , 𝑋1

⟩
+ 𝑥0 + 𝑥2 = 0.5 ,

𝑥1 ≥
√︀
𝑥2
0 + 𝑥2

2 ,
𝑋1 ⪰ 0 .

(17.7)

The equality constraints are easily rewritten to the conic form, (𝑔0, 𝑔1) ∈ {0}2, by moving constants such
that the right-hand-side becomes zero. The quadratic cone does not fit under the VAR keyword in this
variable permutation. Instead, it takes a scalar constraint (𝑔2, 𝑔3, 𝑔4) = (𝑥1, 𝑥0, 𝑥2) ∈ 𝒬3, with scalar
variables constructed as (𝑥0, 𝑥1, 𝑥2) ∈ R3. Its formulation in the CBF format is reported in the following
list

File written using this version of the Conic Benchmark Format:
| Version 1.
VER
1

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

One PSD variable of this size:
| Three times three.
PSDVAR
1
3

Three scalar variables in this one conic domain:
| Three are free.
VAR
3 1
F 3

Five scalar constraints with affine expressions in two conic domains:
| Two are fixed to zero.
| Three are in conic quadratic domain.
CON
5 2
L= 2
Q 3

Five coordinates in F^{obj}_j coefficients:
| F^{obj}[0][0,0] = 2.0
| F^{obj}[0][1,0] = 1.0
| and more...
OBJFCOORD
5
0 0 0 2.0
0 1 0 1.0
0 1 1 2.0

366 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

0 2 1 1.0
0 2 2 2.0

One coordinate in a^{obj}_j coefficients:
| a^{obj}[1] = 1.0
OBJACOORD
1
1 1.0

Nine coordinates in F_ij coefficients:
| F[0,0][0,0] = 1.0
| F[0,0][1,1] = 1.0
| and more...
FCOORD
9
0 0 0 0 1.0
0 0 1 1 1.0
0 0 2 2 1.0
1 0 0 0 1.0
1 0 1 0 1.0
1 0 2 0 1.0
1 0 1 1 1.0
1 0 2 1 1.0
1 0 2 2 1.0

Six coordinates in a_ij coefficients:
| a[0,1] = 1.0
| a[1,0] = 1.0
| and more...
ACOORD
6
0 1 1.0
1 0 1.0
1 2 1.0
2 1 1.0
3 0 1.0
4 2 1.0

Two coordinates in b_i coefficients:
| b[0] = -1.0
| b[1] = -0.5
BCOORD
2
0 -1.0
1 -0.5

Mixing Semidefinite Variables and Linear Matrix Inequalities

The standard forms in semidefinite optimization are usually based either on semidefinite variables or
linear matrix inequalities. In the CBF format, both forms are supported and can even be mixed as
shown in.

minimize
⟨[︂

1 0
0 1

]︂
, 𝑋1

⟩
+ 𝑥1 + 𝑥2 + 1

subject to
⟨[︂

0 1
1 0

]︂
, 𝑋1

⟩
− 𝑥1 − 𝑥2 ≥ 0.0 ,

𝑥1

[︂
0 1
1 3

]︂
+ 𝑥2

[︂
3 1
1 0

]︂
−
[︂

1 0
0 1

]︂
⪰ 0 ,

𝑋1 ⪰ 0 .

(17.8)

Its formulation in the CBF format is written in what follows

17.4. The CBF Format 367

MOSEK Optimizer API for Python, Release 8.0.0.94

File written using this version of the Conic Benchmark Format:
| Version 1.
VER
1

The sense of the objective is:
| Minimize.
OBJSENSE
MIN

One PSD variable of this size:
| Two times two.
PSDVAR
1
2

Two scalar variables in this one conic domain:
| Two are free.
VAR
2 1
F 2

One PSD constraint of this size:
| Two times two.
PSDCON
1
2

One scalar constraint with an affine expression in this one conic domain:
| One is greater than or equal to zero.
CON
1 1
L+ 1

Two coordinates in F^{obj}_j coefficients:
| F^{obj}[0][0,0] = 1.0
| F^{obj}[0][1,1] = 1.0
OBJFCOORD
2
0 0 0 1.0
0 1 1 1.0

Two coordinates in a^{obj}_j coefficients:
| a^{obj}[0] = 1.0
| a^{obj}[1] = 1.0
OBJACOORD
2
0 1.0
1 1.0

One coordinate in b^{obj} coefficient:
| b^{obj} = 1.0
OBJBCOORD
1.0

One coordinate in F_ij coefficients:
| F[0,0][1,0] = 1.0
FCOORD
1
0 0 1 0 1.0

Two coordinates in a_ij coefficients:
| a[0,0] = -1.0

368 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

| a[0,1] = -1.0
ACOORD
2
0 0 -1.0
0 1 -1.0

Four coordinates in H_ij coefficients:
| H[0,0][1,0] = 1.0
| H[0,0][1,1] = 3.0
| and more...
HCOORD
4
0 0 1 0 1.0
0 0 1 1 3.0
0 1 0 0 3.0
0 1 1 0 1.0

Two coordinates in D_i coefficients:
| D[0][0,0] = -1.0
| D[0][1,1] = -1.0
DCOORD
2
0 0 0 -1.0
0 1 1 -1.0

Optimization Over a Sequence of Objectives

The linear optimization problem (17.9), is defined for a sequence of objectives such that hotstarting from
one to the next might be advantages.

maximize𝑘 𝑔𝑜𝑏𝑗𝑘

subject to 50𝑥0 + 31 ≤ 250 ,
3𝑥0 − 2𝑥1 ≥ −4 ,
𝑥 ∈ R2

+,

(17.9)

given,

1. 𝑔𝑜𝑏𝑗0 = 𝑥0 + 0.64𝑥1.

2. 𝑔𝑜𝑏𝑗1 = 1.11𝑥0 + 0.76𝑥1.

3. 𝑔𝑜𝑏𝑗2 = 1.11𝑥0 + 0.85𝑥1.

Its formulation in the CBF format is reported in Listing 17.5.

Listing 17.5: Problem (17.9) in CBF format.

File written using this version of the Conic Benchmark Format:
| Version 1.
VER
1

The sense of the objective is:
| Maximize.
OBJSENSE
MAX

Two scalar variables in this one conic domain:
| Two are nonnegative.
VAR
2 1
L+ 2

17.4. The CBF Format 369

MOSEK Optimizer API for Python, Release 8.0.0.94

Two scalar constraints with affine expressions in these two conic domains:
| One is in the nonpositive domain.
| One is in the nonnegative domain.
CON
2 2
L- 1
L+ 1

Two coordinates in a^{obj}_j coefficients:
| a^{obj}[0] = 1.0
| a^{obj}[1] = 0.64
OBJACOORD
2
0 1.0
1 0.64

Four coordinates in a_ij coefficients:
| a[0,0] = 50.0
| a[1,0] = 3.0
| and more...
ACOORD
4
0 0 50.0
1 0 3.0
0 1 31.0
1 1 -2.0

Two coordinates in b_i coefficients:
| b[0] = -250.0
| b[1] = 4.0
BCOORD
2
0 -250.0
1 4.0

New problem instance defined in terms of changes.
CHANGE

Two coordinate changes in a^{obj}_j coefficients. Now it is:
| a^{obj}[0] = 1.11
| a^{obj}[1] = 0.76
OBJACOORD
2
0 1.11
1 0.76

New problem instance defined in terms of changes.
CHANGE

One coordinate change in a^{obj}_j coefficients. Now it is:
| a^{obj}[0] = 1.11
| a^{obj}[1] = 0.85
OBJACOORD
1
1 0.85

370 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

17.5 The XML (OSiL) Format

MOSEK can write data in the standard OSiL xml format. For a definition of the OSiL format please
see http://www.optimizationservices.org/.

Only linear constraints (possibly with integer variables) are supported. By default output files with the
extension .xml are written in the OSiL format.

The parameter iparam.write_xml_mode controls if the linear coefficients in the 𝐴 matrix are written
in row or column order.

17.6 The Task Format

The Task format is MOSEK‘s native binary format. It contains a complete image of a MOSEK task,
i.e.

• Problem data: Linear, conic quadratic, semidefinite and quadratic data

• Problem item names: Variable names, constraints names, cone names etc.

• Parameter settings

• Solutions

There are a few things to be aware of:

• The task format does not support General Convex problems since these are defined by arbitrary
user-defined functions.

• Status of a solution read from a file will always be unknown.

The format is based on the TAR (USTar) file format. This means that the individual pieces of data in
a .task file can be examined by unpacking it as a TAR file. Please note that the inverse may not work:
Creating a file using TAR will most probably not create a valid MOSEK Task file since the order of
the entries is important.

17.7 The JSON Format

MOSEK provides the possibility to read/write problems in valid JSON format.

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy
for humans to read and write. It is easy for machines to parse and generate. It is based
on a subset of the JavaScript Programming Language, Standard ECMA-262 3rd Edition -
December 1999. JSON is a text format that is completely language independent but uses
conventions that are familiar to programmers of the C-family of languages, including C, C++,
C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON an ideal
data-interchange language.

The official JSON website http://www.json.org provides plenty of information along with the format
definition.

MOSEK defines two JSON-like formats:

• jtask

• jsol

Warning: Despite being text-based human-readable formats, jtask and jsol files will include no
indentation and no new-lines, in order to keep the files as compact as possible. We therefore strongly
advise to use JSON viewer tools to inspect jtask and jsol files.

17.5. The XML (OSiL) Format 371

http://www.optimizationservices.org/
http://www.json.org

MOSEK Optimizer API for Python, Release 8.0.0.94

17.7.1 jtask format

It stores a problem instance. The jtask format contains the same information as a task format .

Even though a jtask file is human-readable, we do not recommend users to create it by hand, but to rely
on MOSEK.

17.7.2 jsol format

It stores a problem solution. The jsol format contains all solutions and information items.

You can write a jsol file using task.writejsonsol . You can not read a jsol file into MOSEK.

17.7.3 A jtask example

In Listing 17.6 we present a file in the jtask format that corresponds to the sample problem from lo1.lp.
The listing has been formatted for readability.

Listing 17.6: A formatted jtask file for the lo1.lp example.

{
"$schema":"http://mosek.com/json/schema#",
"Task/INFO":{

"taskname":"lo1",
"numvar":4,
"numcon":3,
"numcone":0,
"numbarvar":0,
"numanz":9,
"numsymmat":0,
"mosekver":[

8,
0,
0,
9

]
},
"Task/data":{

"var":{
"name":[

"x1",
"x2",
"x3",
"x4"

],
"bk":[

"lo",
"ra",
"lo",
"lo"

],
"bl":[

0.0,
0.0,
0.0,
0.0

],
"bu":[

1e+30,
1e+1,
1e+30,

372 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

1e+30
],
"type":[

"cont",
"cont",
"cont",
"cont"

]
},
"con":{

"name":[
"c1",
"c2",
"c3"

],
"bk":[

"fx",
"lo",
"up"

],
"bl":[

3e+1,
1.5e+1,

-1e+30
],
"bu":[

3e+1,
1e+30,
2.5e+1

]
},
"objective":{

"sense":"max",
"name":"obj",
"c":{

"subj":[
0,
1,
2,
3

],
"val":[

3e+0,
1e+0,
5e+0,
1e+0

]
},
"cfix":0.0

},
"A":{

"subi":[
0,
0,
0,
1,
1,
1,
1,
2,
2

],
"subj":[

17.7. The JSON Format 373

MOSEK Optimizer API for Python, Release 8.0.0.94

0,
1,
2,
0,
1,
2,
3,
1,
3

],
"val":[

3e+0,
1e+0,
2e+0,
2e+0,
1e+0,
3e+0,
1e+0,
2e+0,
3e+0

]
}

},
"Task/parameters":{

"iparam":{
"ANA_SOL_BASIS":"ON",
"ANA_SOL_PRINT_VIOLATED":"OFF",
"AUTO_SORT_A_BEFORE_OPT":"OFF",
"AUTO_UPDATE_SOL_INFO":"OFF",
"BASIS_SOLVE_USE_PLUS_ONE":"OFF",
"BI_CLEAN_OPTIMIZER":"OPTIMIZER_FREE",
"BI_IGNORE_MAX_ITER":"OFF",
"BI_IGNORE_NUM_ERROR":"OFF",
"BI_MAX_ITERATIONS":1000000,
"CACHE_LICENSE":"ON",
"CHECK_CONVEXITY":"CHECK_CONVEXITY_FULL",
"COMPRESS_STATFILE":"ON",
"CONCURRENT_NUM_OPTIMIZERS":2,
"CONCURRENT_PRIORITY_DUAL_SIMPLEX":2,
"CONCURRENT_PRIORITY_FREE_SIMPLEX":3,
"CONCURRENT_PRIORITY_INTPNT":4,
"CONCURRENT_PRIORITY_PRIMAL_SIMPLEX":1,
"FEASREPAIR_OPTIMIZE":"FEASREPAIR_OPTIMIZE_NONE",
"INFEAS_GENERIC_NAMES":"OFF",
"INFEAS_PREFER_PRIMAL":"ON",
"INFEAS_REPORT_AUTO":"OFF",
"INFEAS_REPORT_LEVEL":1,
"INTPNT_BASIS":"BI_ALWAYS",
"INTPNT_DIFF_STEP":"ON",
"INTPNT_FACTOR_DEBUG_LVL":0,
"INTPNT_FACTOR_METHOD":0,
"INTPNT_HOTSTART":"INTPNT_HOTSTART_NONE",
"INTPNT_MAX_ITERATIONS":400,
"INTPNT_MAX_NUM_COR":-1,
"INTPNT_MAX_NUM_REFINEMENT_STEPS":-1,
"INTPNT_OFF_COL_TRH":40,
"INTPNT_ORDER_METHOD":"ORDER_METHOD_FREE",
"INTPNT_REGULARIZATION_USE":"ON",
"INTPNT_SCALING":"SCALING_FREE",
"INTPNT_SOLVE_FORM":"SOLVE_FREE",
"INTPNT_STARTING_POINT":"STARTING_POINT_FREE",
"LIC_TRH_EXPIRY_WRN":7,
"LICENSE_DEBUG":"OFF",

374 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

"LICENSE_PAUSE_TIME":0,
"LICENSE_SUPPRESS_EXPIRE_WRNS":"OFF",
"LICENSE_WAIT":"OFF",
"LOG":10,
"LOG_ANA_PRO":1,
"LOG_BI":4,
"LOG_BI_FREQ":2500,
"LOG_CHECK_CONVEXITY":0,
"LOG_CONCURRENT":1,
"LOG_CUT_SECOND_OPT":1,
"LOG_EXPAND":0,
"LOG_FACTOR":1,
"LOG_FEAS_REPAIR":1,
"LOG_FILE":1,
"LOG_HEAD":1,
"LOG_INFEAS_ANA":1,
"LOG_INTPNT":4,
"LOG_MIO":4,
"LOG_MIO_FREQ":1000,
"LOG_OPTIMIZER":1,
"LOG_ORDER":1,
"LOG_PRESOLVE":1,
"LOG_RESPONSE":0,
"LOG_SENSITIVITY":1,
"LOG_SENSITIVITY_OPT":0,
"LOG_SIM":4,
"LOG_SIM_FREQ":1000,
"LOG_SIM_MINOR":1,
"LOG_STORAGE":1,
"MAX_NUM_WARNINGS":10,
"MIO_BRANCH_DIR":"BRANCH_DIR_FREE",
"MIO_CONSTRUCT_SOL":"OFF",
"MIO_CUT_CLIQUE":"ON",
"MIO_CUT_CMIR":"ON",
"MIO_CUT_GMI":"ON",
"MIO_CUT_KNAPSACK_COVER":"OFF",
"MIO_HEURISTIC_LEVEL":-1,
"MIO_MAX_NUM_BRANCHES":-1,
"MIO_MAX_NUM_RELAXS":-1,
"MIO_MAX_NUM_SOLUTIONS":-1,
"MIO_MODE":"MIO_MODE_SATISFIED",
"MIO_MT_USER_CB":"ON",
"MIO_NODE_OPTIMIZER":"OPTIMIZER_FREE",
"MIO_NODE_SELECTION":"MIO_NODE_SELECTION_FREE",
"MIO_PERSPECTIVE_REFORMULATE":"ON",
"MIO_PROBING_LEVEL":-1,
"MIO_RINS_MAX_NODES":-1,
"MIO_ROOT_OPTIMIZER":"OPTIMIZER_FREE",
"MIO_ROOT_REPEAT_PRESOLVE_LEVEL":-1,
"MT_SPINCOUNT":0,
"NUM_THREADS":0,
"OPF_MAX_TERMS_PER_LINE":5,
"OPF_WRITE_HEADER":"ON",
"OPF_WRITE_HINTS":"ON",
"OPF_WRITE_PARAMETERS":"OFF",
"OPF_WRITE_PROBLEM":"ON",
"OPF_WRITE_SOL_BAS":"ON",
"OPF_WRITE_SOL_ITG":"ON",
"OPF_WRITE_SOL_ITR":"ON",
"OPF_WRITE_SOLUTIONS":"OFF",
"OPTIMIZER":"OPTIMIZER_FREE",
"PARAM_READ_CASE_NAME":"ON",
"PARAM_READ_IGN_ERROR":"OFF",

17.7. The JSON Format 375

MOSEK Optimizer API for Python, Release 8.0.0.94

"PRESOLVE_ELIMINATOR_MAX_FILL":-1,
"PRESOLVE_ELIMINATOR_MAX_NUM_TRIES":-1,
"PRESOLVE_LEVEL":-1,
"PRESOLVE_LINDEP_ABS_WORK_TRH":100,
"PRESOLVE_LINDEP_REL_WORK_TRH":100,
"PRESOLVE_LINDEP_USE":"ON",
"PRESOLVE_MAX_NUM_REDUCTIONS":-1,
"PRESOLVE_USE":"PRESOLVE_MODE_FREE",
"PRIMAL_REPAIR_OPTIMIZER":"OPTIMIZER_FREE",
"QO_SEPARABLE_REFORMULATION":"OFF",
"READ_DATA_COMPRESSED":"COMPRESS_FREE",
"READ_DATA_FORMAT":"DATA_FORMAT_EXTENSION",
"READ_DEBUG":"OFF",
"READ_KEEP_FREE_CON":"OFF",
"READ_LP_DROP_NEW_VARS_IN_BOU":"OFF",
"READ_LP_QUOTED_NAMES":"ON",
"READ_MPS_FORMAT":"MPS_FORMAT_FREE",
"READ_MPS_WIDTH":1024,
"READ_TASK_IGNORE_PARAM":"OFF",
"SENSITIVITY_ALL":"OFF",
"SENSITIVITY_OPTIMIZER":"OPTIMIZER_FREE_SIMPLEX",
"SENSITIVITY_TYPE":"SENSITIVITY_TYPE_BASIS",
"SIM_BASIS_FACTOR_USE":"ON",
"SIM_DEGEN":"SIM_DEGEN_FREE",
"SIM_DUAL_CRASH":90,
"SIM_DUAL_PHASEONE_METHOD":0,
"SIM_DUAL_RESTRICT_SELECTION":50,
"SIM_DUAL_SELECTION":"SIM_SELECTION_FREE",
"SIM_EXPLOIT_DUPVEC":"SIM_EXPLOIT_DUPVEC_OFF",
"SIM_HOTSTART":"SIM_HOTSTART_FREE",
"SIM_HOTSTART_LU":"ON",
"SIM_INTEGER":0,
"SIM_MAX_ITERATIONS":10000000,
"SIM_MAX_NUM_SETBACKS":250,
"SIM_NON_SINGULAR":"ON",
"SIM_PRIMAL_CRASH":90,
"SIM_PRIMAL_PHASEONE_METHOD":0,
"SIM_PRIMAL_RESTRICT_SELECTION":50,
"SIM_PRIMAL_SELECTION":"SIM_SELECTION_FREE",
"SIM_REFACTOR_FREQ":0,
"SIM_REFORMULATION":"SIM_REFORMULATION_OFF",
"SIM_SAVE_LU":"OFF",
"SIM_SCALING":"SCALING_FREE",
"SIM_SCALING_METHOD":"SCALING_METHOD_POW2",
"SIM_SOLVE_FORM":"SOLVE_FREE",
"SIM_STABILITY_PRIORITY":50,
"SIM_SWITCH_OPTIMIZER":"OFF",
"SOL_FILTER_KEEP_BASIC":"OFF",
"SOL_FILTER_KEEP_RANGED":"OFF",
"SOL_READ_NAME_WIDTH":-1,
"SOL_READ_WIDTH":1024,
"SOLUTION_CALLBACK":"OFF",
"TIMING_LEVEL":1,
"WRITE_BAS_CONSTRAINTS":"ON",
"WRITE_BAS_HEAD":"ON",
"WRITE_BAS_VARIABLES":"ON",
"WRITE_DATA_COMPRESSED":0,
"WRITE_DATA_FORMAT":"DATA_FORMAT_EXTENSION",
"WRITE_DATA_PARAM":"OFF",
"WRITE_FREE_CON":"OFF",
"WRITE_GENERIC_NAMES":"OFF",
"WRITE_GENERIC_NAMES_IO":1,
"WRITE_IGNORE_INCOMPATIBLE_CONIC_ITEMS":"OFF",

376 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

"WRITE_IGNORE_INCOMPATIBLE_ITEMS":"OFF",
"WRITE_IGNORE_INCOMPATIBLE_NL_ITEMS":"OFF",
"WRITE_IGNORE_INCOMPATIBLE_PSD_ITEMS":"OFF",
"WRITE_INT_CONSTRAINTS":"ON",
"WRITE_INT_HEAD":"ON",
"WRITE_INT_VARIABLES":"ON",
"WRITE_LP_FULL_OBJ":"ON",
"WRITE_LP_LINE_WIDTH":80,
"WRITE_LP_QUOTED_NAMES":"ON",
"WRITE_LP_STRICT_FORMAT":"OFF",
"WRITE_LP_TERMS_PER_LINE":10,
"WRITE_MPS_FORMAT":"MPS_FORMAT_FREE",
"WRITE_MPS_INT":"ON",
"WRITE_PRECISION":15,
"WRITE_SOL_BARVARIABLES":"ON",
"WRITE_SOL_CONSTRAINTS":"ON",
"WRITE_SOL_HEAD":"ON",
"WRITE_SOL_IGNORE_INVALID_NAMES":"OFF",
"WRITE_SOL_VARIABLES":"ON",
"WRITE_TASK_INC_SOL":"ON",
"WRITE_XML_MODE":"WRITE_XML_MODE_ROW"

},
"dparam":{

"ANA_SOL_INFEAS_TOL":1e-6,
"BASIS_REL_TOL_S":1e-12,
"BASIS_TOL_S":1e-6,
"BASIS_TOL_X":1e-6,
"CHECK_CONVEXITY_REL_TOL":1e-10,
"DATA_TOL_AIJ":1e-12,
"DATA_TOL_AIJ_HUGE":1e+20,
"DATA_TOL_AIJ_LARGE":1e+10,
"DATA_TOL_BOUND_INF":1e+16,
"DATA_TOL_BOUND_WRN":1e+8,
"DATA_TOL_C_HUGE":1e+16,
"DATA_TOL_CJ_LARGE":1e+8,
"DATA_TOL_QIJ":1e-16,
"DATA_TOL_X":1e-8,
"FEASREPAIR_TOL":1e-10,
"INTPNT_CO_TOL_DFEAS":1e-8,
"INTPNT_CO_TOL_INFEAS":1e-10,
"INTPNT_CO_TOL_MU_RED":1e-8,
"INTPNT_CO_TOL_NEAR_REL":1e+3,
"INTPNT_CO_TOL_PFEAS":1e-8,
"INTPNT_CO_TOL_REL_GAP":1e-7,
"INTPNT_NL_MERIT_BAL":1e-4,
"INTPNT_NL_TOL_DFEAS":1e-8,
"INTPNT_NL_TOL_MU_RED":1e-12,
"INTPNT_NL_TOL_NEAR_REL":1e+3,
"INTPNT_NL_TOL_PFEAS":1e-8,
"INTPNT_NL_TOL_REL_GAP":1e-6,
"INTPNT_NL_TOL_REL_STEP":9.95e-1,
"INTPNT_QO_TOL_DFEAS":1e-8,
"INTPNT_QO_TOL_INFEAS":1e-10,
"INTPNT_QO_TOL_MU_RED":1e-8,
"INTPNT_QO_TOL_NEAR_REL":1e+3,
"INTPNT_QO_TOL_PFEAS":1e-8,
"INTPNT_QO_TOL_REL_GAP":1e-8,
"INTPNT_TOL_DFEAS":1e-8,
"INTPNT_TOL_DSAFE":1e+0,
"INTPNT_TOL_INFEAS":1e-10,
"INTPNT_TOL_MU_RED":1e-16,
"INTPNT_TOL_PATH":1e-8,
"INTPNT_TOL_PFEAS":1e-8,

17.7. The JSON Format 377

MOSEK Optimizer API for Python, Release 8.0.0.94

"INTPNT_TOL_PSAFE":1e+0,
"INTPNT_TOL_REL_GAP":1e-8,
"INTPNT_TOL_REL_STEP":9.999e-1,
"INTPNT_TOL_STEP_SIZE":1e-6,
"LOWER_OBJ_CUT":-1e+30,
"LOWER_OBJ_CUT_FINITE_TRH":-5e+29,
"MIO_DISABLE_TERM_TIME":-1e+0,
"MIO_MAX_TIME":-1e+0,
"MIO_MAX_TIME_APRX_OPT":6e+1,
"MIO_NEAR_TOL_ABS_GAP":0.0,
"MIO_NEAR_TOL_REL_GAP":1e-3,
"MIO_REL_GAP_CONST":1e-10,
"MIO_TOL_ABS_GAP":0.0,
"MIO_TOL_ABS_RELAX_INT":1e-5,
"MIO_TOL_FEAS":1e-6,
"MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT":0.0,
"MIO_TOL_REL_GAP":1e-4,
"MIO_TOL_X":1e-6,
"OPTIMIZER_MAX_TIME":-1e+0,
"PRESOLVE_TOL_ABS_LINDEP":1e-6,
"PRESOLVE_TOL_AIJ":1e-12,
"PRESOLVE_TOL_REL_LINDEP":1e-10,
"PRESOLVE_TOL_S":1e-8,
"PRESOLVE_TOL_X":1e-8,
"QCQO_REFORMULATE_REL_DROP_TOL":1e-15,
"SEMIDEFINITE_TOL_APPROX":1e-10,
"SIM_LU_TOL_REL_PIV":1e-2,
"SIMPLEX_ABS_TOL_PIV":1e-7,
"UPPER_OBJ_CUT":1e+30,
"UPPER_OBJ_CUT_FINITE_TRH":5e+29

},
"sparam":{

"BAS_SOL_FILE_NAME":"",
"DATA_FILE_NAME":"examples/tools/data/lo1.mps",
"DEBUG_FILE_NAME":"",
"INT_SOL_FILE_NAME":"",
"ITR_SOL_FILE_NAME":"",
"MIO_DEBUG_STRING":"",
"PARAM_COMMENT_SIGN":"%%",
"PARAM_READ_FILE_NAME":"",
"PARAM_WRITE_FILE_NAME":"",
"READ_MPS_BOU_NAME":"",
"READ_MPS_OBJ_NAME":"",
"READ_MPS_RAN_NAME":"",
"READ_MPS_RHS_NAME":"",
"SENSITIVITY_FILE_NAME":"",
"SENSITIVITY_RES_FILE_NAME":"",
"SOL_FILTER_XC_LOW":"",
"SOL_FILTER_XC_UPR":"",
"SOL_FILTER_XX_LOW":"",
"SOL_FILTER_XX_UPR":"",
"STAT_FILE_NAME":"",
"STAT_KEY":"",
"STAT_NAME":"",
"WRITE_LP_GEN_VAR_NAME":"XMSKGEN"

}
}

}

378 Chapter 17. Supported File Formats

MOSEK Optimizer API for Python, Release 8.0.0.94

17.8 The Solution File Format

MOSEK provides several solution files depending on the problem type and the optimizer used:

• basis solution file (extension .bas) if the problem is optimized using the simplex optimizer or basis
identification is performed,

• interior solution file (extension .sol) if a problem is optimized using the interior-point optimizer
and no basis identification is required,

• integer solution file (extension .int) if the problem contains integer constrained variables.

All solution files have the format:

NAME : <problem name>
PROBLEM STATUS : <status of the problem>
SOLUTION STATUS : <status of the solution>
OBJECTIVE NAME : <name of the objective function>
PRIMAL OBJECTIVE : <primal objective value corresponding to the solution>
DUAL OBJECTIVE : <dual objective value corresponding to the solution>
CONSTRAINTS
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER
? <name> ?? <a value> <a value> <a value> <a value> <a value>
VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER CONIC␣
→˓DUAL

? <name> ?? <a value> <a value> <a value> <a value> <a value> <a value>

In the example the fields ? and <> will be filled with problem and solution specific information. As can
be observed a solution report consists of three sections, i.e.

• HEADER In this section, first the name of the problem is listed and afterwards the problem and
solution status are shown. Next the primal and dual objective values are displayed.

• CONSTRAINTS For each constraint 𝑖 of the form

𝑙𝑐𝑖 ≤
𝑛∑︁

𝑗=1

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑢𝑐
𝑖 , (17.10)

the following information is listed:

– INDEX: A sequential index assigned to the constraint by MOSEK

– NAME: The name of the constraint assigned by the user.

– AT: The status of the constraint. In Table 17.4 the possible values of the status keys and
their interpretation are shown.

Table 17.4: Status keys.

Status key Interpretation
UN Unknown status
BS Is basic
SB Is superbasic
LL Is at the lower limit (bound)
UL Is at the upper limit (bound)
EQ Lower limit is identical to upper limit
** Is infeasible i.e. the lower limit is greater than the upper limit.

– ACTIVITY: the quantity
∑︀𝑛

𝑗=1 𝑎𝑖𝑗𝑥
*
𝑗 , where 𝑥* is the value of the primal solution.

– LOWER LIMIT: the quantity 𝑙𝑐𝑖 (see (17.10).)

– UPPER LIMIT: the quantity 𝑢𝑐
𝑖 (see (17.10).)

17.8. The Solution File Format 379

MOSEK Optimizer API for Python, Release 8.0.0.94

– DUAL LOWER: the dual multiplier corresponding to the lower limit on the constraint.

– DUAL UPPER: the dual multiplier corresponding to the upper limit on the constraint.

• VARIABLES The last section of the solution report lists information about the variables. This
information has a similar interpretation as for the constraints. However, the column with
the header CONIC DUAL is included for problems having one or more conic constraints. This
column shows the dual variables corresponding to the conic constraints.

Example: lo1.sol

In Listing 17.7 we show the solution file for the lo1.opf problem.

Listing 17.7: An example of .sol file.

NAME :
PROBLEM STATUS : PRIMAL_AND_DUAL_FEASIBLE
SOLUTION STATUS : OPTIMAL
OBJECTIVE NAME : obj
PRIMAL OBJECTIVE : 8.33333333e+01
DUAL OBJECTIVE : 8.33333332e+01

CONSTRAINTS
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓DUAL LOWER DUAL UPPER

0 c1 EQ 3.00000000000000e+01 3.00000000e+01 3.00000000e+01 -0.
→˓00000000000000e+00 -2.49999999741654e+00

1 c2 SB 5.33333333049188e+01 1.50000000e+01 NONE 2.
→˓09157603759397e-10 -0.00000000000000e+00

2 c3 UL 2.49999999842049e+01 NONE 2.50000000e+01 -0.
→˓00000000000000e+00 -3.33333332895110e-01

VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT ␣
→˓DUAL LOWER DUAL UPPER

0 x1 LL 1.67020427073508e-09 0.00000000e+00 NONE -4.
→˓49999999528055e+00 -0.00000000000000e+00

1 x2 LL 2.93510446280504e-09 0.00000000e+00 1.00000000e+01 -2.
→˓16666666494916e+00 6.20863861687316e-10

2 x3 SB 1.49999999899425e+01 0.00000000e+00 NONE -8.
→˓79123177454657e-10 -0.00000000000000e+00

3 x4 SB 8.33333332273116e+00 0.00000000e+00 NONE -1.
→˓69795978899185e-09 -0.00000000000000e+00

380 Chapter 17. Supported File Formats

CHAPTER

EIGHTEEN

INTERFACE CHANGES

The section show interface-specific changes to the MOSEK Optimizer API for Python in version 8. See
the release notes for general changes and new features of the MOSEK Optimization Suite.

18.1 Compatibility

• All input functions of the form putXXXlist now perform strict dimensional checking. That means
all input arrays must have the same size. In previous release they were allowed to differs and
MOSEK would have used the shortest dimension.

• Compatibility guarantees for this interface has been updated. See the new state of compatibility .

18.2 Functions

Added

Changed

Removed

• Env.putdllpath

• Env.putkeepdlls

• Task.getdbi

• Task.getdcni

• Task.getdeqi

• Task.getinti

• Task.getnumqconknz64

• Task.getpbi

• Task.getpcni

• Task.getpeqi

• Task.getqobj64

• Task.getsolutioninf

• Task.getvarbranchdir

• Task.getvarbranchpri

• Task.optimizeconcurrent

381

http://docs.mosek.com/8.0/releasenotes/index.html

MOSEK Optimizer API for Python, Release 8.0.0.94

• Task.putvarbranchorder

• Task.readbranchpriorities

• Task.relaxprimal

• Task.writebranchpriorities

18.3 Parameters

Added

• dparam.data_sym_mat_tol

• dparam.data_sym_mat_tol_huge

• dparam.data_sym_mat_tol_large

• dparam.intpnt_qo_tol_dfeas

• dparam.intpnt_qo_tol_infeas

• dparam.intpnt_qo_tol_mu_red

• dparam.intpnt_qo_tol_near_rel

• dparam.intpnt_qo_tol_pfeas

• dparam.intpnt_qo_tol_rel_gap

• dparam.semidefinite_tol_approx

• iparam.intpnt_multi_thread

• iparam.license_trh_expiry_wrn

• iparam.log_ana_pro

• iparam.mio_cut_clique

• iparam.mio_cut_gmi

• iparam.mio_cut_implied_bound

• iparam.mio_cut_knapsack_cover

• iparam.mio_cut_selection_level

• iparam.mio_perspective_reformulate

• iparam.mio_root_repeat_presolve_level

• iparam.mio_vb_detection_level

• iparam.presolve_eliminator_max_fill

Removed

• dparam.feasrepair_tol

• dparam.mio_heuristic_time

• dparam.mio_max_time_aprx_opt

• dparam.mio_rel_add_cut_limited

• dparam.mio_tol_max_cut_frac_rhs

• dparam.mio_tol_min_cut_frac_rhs

382 Chapter 18. Interface changes

MOSEK Optimizer API for Python, Release 8.0.0.94

• dparam.mio_tol_rel_relax_int

• dparam.mio_tol_x

• dparam.nonconvex_tol_feas

• dparam.nonconvex_tol_opt

• iparam.alloc_add_qnz

• iparam.concurrent_num_optimizers

• iparam.concurrent_priority_dual_simplex

• iparam.concurrent_priority_free_simplex

• iparam.concurrent_priority_intpnt

• iparam.concurrent_priority_primal_simplex

• iparam.feasrepair_optimize

• iparam.intpnt_factor_debug_lvl

• iparam.intpnt_factor_method

• iparam.lic_trh_expiry_wrn

• iparam.log_concurrent

• iparam.log_nonconvex

• iparam.log_param

• iparam.log_sim_network_freq

• iparam.mio_branch_priorities_use

• iparam.mio_cont_sol

• iparam.mio_cut_cg

• iparam.mio_cut_level_root

• iparam.mio_cut_level_tree

• iparam.mio_feaspump_level

• iparam.mio_hotstart

• iparam.mio_keep_basis

• iparam.mio_local_branch_number

• iparam.mio_optimizer_mode

• iparam.mio_presolve_aggregate

• iparam.mio_presolve_probing

• iparam.mio_presolve_use

• iparam.mio_strong_branch

• iparam.mio_use_multithreaded_optimizer

• iparam.nonconvex_max_iterations

• iparam.presolve_elim_fill

• iparam.presolve_eliminator_use

• iparam.qo_separable_reformulation

• iparam.read_anz

• iparam.read_con

18.3. Parameters 383

MOSEK Optimizer API for Python, Release 8.0.0.94

• iparam.read_cone

• iparam.read_mps_keep_int

• iparam.read_mps_obj_sense

• iparam.read_mps_relax

• iparam.read_qnz

• iparam.read_var

• iparam.warning_level

• iparam.write_ignore_incompatible_conic_items

• iparam.write_ignore_incompatible_nl_items

• iparam.write_ignore_incompatible_psd_items

• sparam.feasrepair_name_prefix

• sparam.feasrepair_name_separator

• sparam.feasrepair_name_wsumviol

18.4 Constants

Added

• branchdir.far

• branchdir.guided

• branchdir.near

• branchdir.pseudocost

• branchdir.root_lp

• callbackcode.begin_root_cutgen

• callbackcode.begin_to_conic

• callbackcode.end_root_cutgen

• callbackcode.end_to_conic

• callbackcode.im_root_cutgen

• callbackcode.solving_remote

• dataformat.json_task

• dinfitem.mio_clique_separation_time

• dinfitem.mio_cmir_separation_time

• dinfitem.mio_gmi_separation_time

• dinfitem.mio_implied_bound_time

• dinfitem.mio_knapsack_cover_separation_time

• dinfitem.qcqo_reformulate_max_perturbation

• dinfitem.qcqo_reformulate_worst_cholesky_column_scaling

• dinfitem.qcqo_reformulate_worst_cholesky_diag_scaling

• dinfitem.sol_bas_nrm_barx

384 Chapter 18. Interface changes

MOSEK Optimizer API for Python, Release 8.0.0.94

• dinfitem.sol_bas_nrm_slc

• dinfitem.sol_bas_nrm_slx

• dinfitem.sol_bas_nrm_suc

• dinfitem.sol_bas_nrm_sux

• dinfitem.sol_bas_nrm_xc

• dinfitem.sol_bas_nrm_xx

• dinfitem.sol_bas_nrm_y

• dinfitem.sol_itg_nrm_barx

• dinfitem.sol_itg_nrm_xc

• dinfitem.sol_itg_nrm_xx

• dinfitem.sol_itr_nrm_bars

• dinfitem.sol_itr_nrm_barx

• dinfitem.sol_itr_nrm_slc

• dinfitem.sol_itr_nrm_slx

• dinfitem.sol_itr_nrm_snx

• dinfitem.sol_itr_nrm_suc

• dinfitem.sol_itr_nrm_sux

• dinfitem.sol_itr_nrm_xc

• dinfitem.sol_itr_nrm_xx

• dinfitem.sol_itr_nrm_y

• dinfitem.to_conic_time

• iinfitem.mio_absgap_satisfied

• iinfitem.mio_clique_table_size

• iinfitem.mio_near_absgap_satisfied

• iinfitem.mio_near_relgap_satisfied

• iinfitem.mio_node_depth

• iinfitem.mio_num_cmir_cuts

• iinfitem.mio_num_implied_bound_cuts

• iinfitem.mio_num_knapsack_cover_cuts

• iinfitem.mio_num_repeated_presolve

• iinfitem.mio_presolved_numbin

• iinfitem.mio_presolved_numcon

• iinfitem.mio_presolved_numcont

• iinfitem.mio_presolved_numint

• iinfitem.mio_presolved_numvar

• iinfitem.mio_relgap_satisfied

• liinfitem.mio_presolved_anz

• liinfitem.mio_sim_maxiter_setbacks

• mpsformat.cplex

18.4. Constants 385

MOSEK Optimizer API for Python, Release 8.0.0.94

• solsta.dual_illposed_cer

• solsta.prim_illposed_cer

Changed

• solsta.integer_optimal

• solsta.near_integer_optimal

• value.license_buffer_length

Removed

• constant.callbackcode.begin_concurrent

• constant.callbackcode.begin_network_dual_simplex

• constant.callbackcode.begin_network_primal_simplex

• constant.callbackcode.begin_network_simplex

• constant.callbackcode.begin_nonconvex

• constant.callbackcode.begin_simplex_network_detect

• constant.callbackcode.end_concurrent

• constant.callbackcode.end_network_dual_simplex

• constant.callbackcode.end_network_primal_simplex

• constant.callbackcode.end_network_simplex

• constant.callbackcode.end_nonconvex

• constant.callbackcode.end_simplex_network_detect

• constant.callbackcode.im_mio_presolve

• constant.callbackcode.im_network_dual_simplex

• constant.callbackcode.im_network_primal_simplex

• constant.callbackcode.im_nonconvex

• constant.callbackcode.noncovex

• constant.callbackcode.update_network_dual_simplex

• constant.callbackcode.update_network_primal_simplex

• constant.callbackcode.update_nonconvex

• constant.dinfitem.concurrent_time

• constant.dinfitem.mio_cg_seperation_time

• constant.dinfitem.mio_cmir_seperation_time

• constant.dinfitem.sim_network_dual_time

• constant.dinfitem.sim_network_primal_time

• constant.dinfitem.sim_network_time

• constant.feature.ptom

• constant.feature.ptox

• constant.iinfitem.concurrent_fastest_optimizer

386 Chapter 18. Interface changes

MOSEK Optimizer API for Python, Release 8.0.0.94

• constant.iinfitem.mio_num_basis_cuts

• constant.iinfitem.mio_num_cardgub_cuts

• constant.iinfitem.mio_num_coef_redc_cuts

• constant.iinfitem.mio_num_contra_cuts

• constant.iinfitem.mio_num_disagg_cuts

• constant.iinfitem.mio_num_flow_cover_cuts

• constant.iinfitem.mio_num_gcd_cuts

• constant.iinfitem.mio_num_gub_cover_cuts

• constant.iinfitem.mio_num_knapsur_cover_cuts

• constant.iinfitem.mio_num_lattice_cuts

• constant.iinfitem.mio_num_lift_cuts

• constant.iinfitem.mio_num_obj_cuts

• constant.iinfitem.mio_num_plan_loc_cuts

• constant.iinfitem.sim_network_dual_deg_iter

• constant.iinfitem.sim_network_dual_hotstart

• constant.iinfitem.sim_network_dual_hotstart_lu

• constant.iinfitem.sim_network_dual_inf_iter

• constant.iinfitem.sim_network_dual_iter

• constant.iinfitem.sim_network_primal_deg_iter

• constant.iinfitem.sim_network_primal_hotstart

• constant.iinfitem.sim_network_primal_hotstart_lu

• constant.iinfitem.sim_network_primal_inf_iter

• constant.iinfitem.sim_network_primal_iter

• constant.iinfitem.sol_int_prosta

• constant.iinfitem.sol_int_solsta

• constant.iinfitem.sto_num_a_cache_flushes

• constant.iinfitem.sto_num_a_transposes

• constant.miomode.lazy

• constant.optimizertype.concurrent

• constant.optimizertype.mixed_int_conic

• constant.optimizertype.network_primal_simplex

• constant.optimizertype.nonconvex

• constant.optimizertype.primal_dual_simplex

18.5 Response Codes

Added

• rescode.err_duplicate_aij (1385)

18.5. Response Codes 387

MOSEK Optimizer API for Python, Release 8.0.0.94

• rescode.err_json_data (1179)

• rescode.err_json_format (1178)

• rescode.err_json_missing_data (1180)

• rescode.err_json_number_overflow (1177)

• rescode.err_json_string (1176)

• rescode.err_json_syntax (1175)

• rescode.err_lau_invalid_lower_triangular_matrix (7002)

• rescode.err_lau_invalid_sparse_symmetric_matrix (7019)

• rescode.err_lau_not_positive_definite (7001)

• rescode.err_mixed_conic_and_nl (1501)

• rescode.err_server_connect (8000)

• rescode.err_server_protocol (8001)

• rescode.err_server_status (8002)

• rescode.err_server_token (8003)

• rescode.err_sym_mat_huge (1482)

• rescode.err_sym_mat_invalid (1480)

• rescode.err_task_write (2562)

• rescode.err_toconic_constr_not_conic (7153)

• rescode.err_toconic_constr_q_not_psd (7150)

• rescode.err_toconic_constraint_fx (7151)

• rescode.err_toconic_constraint_ra (7152)

• rescode.err_toconic_objective_not_psd (7155)

• rescode.wrn_sym_mat_large (960)

Removed

• rescode.err_ad_invalid_operand

• rescode.err_ad_invalid_operator

• rescode.err_ad_missing_operand

• rescode.err_ad_missing_return

• rescode.err_concurrent_optimizer

• rescode.err_inv_conic_problem

• rescode.err_invalid_branch_direction

• rescode.err_invalid_branch_priority

• rescode.err_invalid_network_problem

• rescode.err_mbt_incompatible

• rescode.err_mbt_invalid

• rescode.err_mixed_problem

• rescode.err_no_dual_info_for_itg_sol

• rescode.err_ord_invalid

388 Chapter 18. Interface changes

MOSEK Optimizer API for Python, Release 8.0.0.94

• rescode.err_ord_invalid_branch_dir

• rescode.err_toconic_conversion_fail

• rescode.err_too_many_concurrent_tasks

• rescode.wrn_too_many_threads_concurrent

18.5. Response Codes 389

MOSEK Optimizer API for Python, Release 8.0.0.94

390 Chapter 18. Interface changes

BIBLIOGRAPHY

[AA95] E. D. Andersen and K. D. Andersen. Presolving in linear programming. Math. Programming,
71(2):221–245, 1995.

[AGMX96] E. D. Andersen, J. Gondzio, Cs. Mészáros, and X. Xu. Implementation of interior point meth-
ods for large scale linear programming. In T. Terlaky, editor, Interior-point methods of mathematical
programming, pages 189–252. Kluwer Academic Publishers, 1996.

[ART03] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point method
for conic quadratic optimization. Math. Programming, February 2003.

[AY96] E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms. Management Sci.,
42(12):1719–1731, December 1996.

[AY98] E. D. Andersen and Y. Ye. A computational study of the homogeneous algorithm for large-scale
convex optimization. Computational Optimization and Applications, 10:243–269, 1998.

[AY99] E. D. Andersen and Y. Ye. On a homogeneous algorithm for the monotone complementarity
problem. Math. Programming, 84(2):375–399, February 1999.

[And09] Erling D. Andersen. The homogeneous and self-dual model and algorithm for linear optimiza-
tion. Technical Report TR-1-2009, MOSEK ApS, 2009. URL: http://docs.mosek.com/whitepapers/
homolo.pdf.

[And13] Erling D. Andersen. On formulating quadratic functions in optimization models. Technical
Report TR-1-2013, MOSEK ApS, 2013. Last revised 23-feb-2016. URL: http://docs.mosek.com/
whitepapers/qmodel.pdf.

[BSS93] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming: Theory and algorithms.
John Wiley and Sons, New York, 2 edition, 1993.

[Chv83] V. Chvátal. Linear programming. W.H. Freeman and Company, 1983.

[CT07] Gerard Cornuejols and Reha Tütüncü. Optimization methods in finance. Cambridge University
Press, New York, 2007.

[GK00] Richard C. Grinold and Ronald N. Kahn. Active portfolio management. McGraw-Hill, New York,
2 edition, 2000.

[Naz87] J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, New York,
1987.

[RTV97] C. Roos, T. Terlaky, and J. -Ph. Vial. Theory and algorithms for linear optimization: an
interior point approach. John Wiley and Sons, New York, 1997.

[Ste98] G. W. Stewart. Matrix Algorithms. Volume 1: Basic decompositions. SIAM, 1998.

[Wal00] S. W. Wallace. Decision making under uncertainty: is sensitivity of any use. Oper. Res.,
48(1):20–25, January 2000.

[Wol98] L. A. Wolsey. Integer programming. John Wiley and Sons, 1998.

391

http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/homolo.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf
http://docs.mosek.com/whitepapers/qmodel.pdf

MOSEK Optimizer API for Python, Release 8.0.0.94

[MOSEKApS12] MOSEK ApS. The MOSEK Modeling Cookbook. MOSEK ApS, Fruebjergvej 3, Boks
16, 2100 Copenhagen O, 2012. Last revised September 2015. URL: http://docs.mosek.com/generic/
modeling-a4.pdf.

392 Bibliography

http://docs.mosek.com/generic/modeling-a4.pdf
http://docs.mosek.com/generic/modeling-a4.pdf

API INDEX

Classes
Env, 262
Env._del_, 263
Env.axpy, 263
Env.checkinall, 263
Env.checkinlicense, 263
Env.checkoutlicense, 263
Env.computesparsecholesky, 263
Env.dot, 264
Env.echointro, 264
Env.env, 262
Env.gemm, 264
Env.gemv, 265
Env.getcodedesc, 265
Env.getversion, 266
Env.licensecleanup, 266
Env.linkfiletostream, 266
Env.potrf, 266
Env.putlicensecode, 266
Env.putlicensedebug, 266
Env.putlicensepath, 266
Env.putlicensewait, 266
Env.set_stream, 267
Env.sparsetriangularsolvedense, 267
Env.syeig, 267
Env.syevd, 267
Env.syrk, 268
Task, 268
Task.analyzenames, 276
Task.analyzeproblem, 276
Task.analyzesolution, 276
Task.appendbarvars, 276
Task.appendcone, 276
Task.appendconeseq, 277
Task.appendconesseq, 277
Task.appendcons, 277
Task.appendsparsesymmat, 277
Task.appendvars, 278
Task.asyncgetresult, 278
Task.asyncoptimize, 278
Task.asyncpoll, 278
Task.asyncstop, 279
Task.basiscond, 279
Task.checkconvexity, 279
Task.checkmem, 279
Task.chgbound, 279

Task.chgconbound, 280
Task.chgvarbound, 280
Task.commitchanges, 280
Task.deletesolution, 280
Task.dualsensitivity, 281
Task.getacol, 281
Task.getacolnumnz, 281
Task.getacolslicetrip, 281
Task.getaij, 281
Task.getapiecenumnz, 282
Task.getarow, 282
Task.getarownumnz, 282
Task.getarowslicetrip, 282
Task.getaslice, 282
Task.getaslicenumnz, 283
Task.getbarablocktriplet, 283
Task.getbaraidx, 283
Task.getbaraidxij, 283
Task.getbaraidxinfo, 284
Task.getbarasparsity, 284
Task.getbarcblocktriplet, 284
Task.getbarcidx, 284
Task.getbarcidxinfo, 285
Task.getbarcidxj, 285
Task.getbarcsparsity, 285
Task.getbarsj, 285
Task.getbarvarname, 285
Task.getbarvarnameindex, 285
Task.getbarvarnamelen, 285
Task.getbarxj, 286
Task.getbound, 286
Task.getboundslice, 286
Task.getc, 286
Task.getcfix, 286
Task.getcj, 286
Task.getconbound, 287
Task.getconboundslice, 287
Task.getcone, 287
Task.getconeinfo, 287
Task.getconename, 287
Task.getconenameindex, 287
Task.getconenamelen, 288
Task.getconname, 288
Task.getconnameindex, 288
Task.getconnamelen, 288
Task.getcslice, 288
Task.getdimbarvarj, 288

393

MOSEK Optimizer API for Python, Release 8.0.0.94

Task.getdouinf, 289
Task.getdouparam, 289
Task.getdualobj, 289
Task.getdualsolutionnorms, 289
Task.getdviolbarvar, 289
Task.getdviolcon, 289
Task.getdviolcones, 290
Task.getdviolvar, 290
Task.getinfeasiblesubproblem, 290
Task.getintinf, 291
Task.getintparam, 291
Task.getlenbarvarj, 291
Task.getlintinf, 291
Task.getmaxnumanz, 291
Task.getmaxnumbarvar, 291
Task.getmaxnumcon, 291
Task.getmaxnumcone, 292
Task.getmaxnumqnz, 292
Task.getmaxnumvar, 292
Task.getmemusage, 292
Task.getnumanz, 292
Task.getnumanz64, 292
Task.getnumbarablocktriplets, 292
Task.getnumbaranz, 292
Task.getnumbarcblocktriplets, 292
Task.getnumbarcnz, 292
Task.getnumbarvar, 293
Task.getnumcon, 293
Task.getnumcone, 293
Task.getnumconemem, 293
Task.getnumintvar, 293
Task.getnumparam, 293
Task.getnumqconknz, 293
Task.getnumqobjnz, 293
Task.getnumsymmat, 293
Task.getnumvar, 294
Task.getobjname, 294
Task.getobjnamelen, 294
Task.getobjsense, 294
Task.getprimalobj, 294
Task.getprimalsolutionnorms, 294
Task.getprobtype, 294
Task.getprosta, 294
Task.getpviolbarvar, 294
Task.getpviolcon, 295
Task.getpviolcones, 295
Task.getpviolvar, 295
Task.getqconk, 295
Task.getqobj, 296
Task.getqobjij, 296
Task.getreducedcosts, 296
Task.getskc, 296
Task.getskcslice, 296
Task.getskx, 297
Task.getskxslice, 297
Task.getslc, 297
Task.getslcslice, 297
Task.getslx, 297

Task.getslxslice, 297
Task.getsnx, 297
Task.getsnxslice, 297
Task.getsolsta, 298
Task.getsolution, 298
Task.getsolutioni, 299
Task.getsolutioninfo, 299
Task.getsolutionslice, 300
Task.getsparsesymmat, 301
Task.getstrparam, 301
Task.getstrparamlen, 301
Task.getsuc, 301
Task.getsucslice, 301
Task.getsux, 302
Task.getsuxslice, 302
Task.getsymmatinfo, 302
Task.gettaskname, 302
Task.gettasknamelen, 302
Task.getvarbound, 302
Task.getvarboundslice, 302
Task.getvarname, 303
Task.getvarnameindex, 303
Task.getvarnamelen, 303
Task.getvartype, 303
Task.getvartypelist, 303
Task.getxc, 303
Task.getxcslice, 303
Task.getxx, 304
Task.getxxslice, 304
Task.gety, 304
Task.getyslice, 304
Task.initbasissolve, 304
Task.inputdata, 304
Task.isdouparname, 305
Task.isintparname, 305
Task.isstrparname, 305
Task.linkfiletostream, 305
Task.onesolutionsummary, 305
Task.optimize, 306
Task.optimizermt, 306
Task.optimizersummary, 306
Task.primalrepair, 306
Task.primalsensitivity, 307
Task.printdata, 308
Task.putacol, 308
Task.putacollist, 309
Task.putacolslice, 309
Task.putaij, 309
Task.putaijlist, 309
Task.putarow, 310
Task.putarowlist, 310
Task.putarowslice, 310
Task.putbarablocktriplet, 310
Task.putbaraij, 311
Task.putbarcblocktriplet, 311
Task.putbarcj, 311
Task.putbarsj, 311
Task.putbarvarname, 312

394 API Index

MOSEK Optimizer API for Python, Release 8.0.0.94

Task.putbarxj, 312
Task.putbound, 312
Task.putboundlist, 312
Task.putboundslice, 312
Task.putcfix, 313
Task.putcj, 313
Task.putclist, 313
Task.putconbound, 313
Task.putconboundlist, 313
Task.putconboundslice, 313
Task.putcone, 314
Task.putconename, 314
Task.putconname, 314
Task.putcslice, 314
Task.putdouparam, 314
Task.putintparam, 314
Task.putmaxnumanz, 314
Task.putmaxnumbarvar, 315
Task.putmaxnumcon, 315
Task.putmaxnumcone, 315
Task.putmaxnumqnz, 315
Task.putmaxnumvar, 315
Task.putnadouparam, 316
Task.putnaintparam, 316
Task.putnastrparam, 316
Task.putobjname, 316
Task.putobjsense, 316
Task.putparam, 316
Task.putqcon, 316
Task.putqconk, 317
Task.putqobj, 317
Task.putqobjij, 318
Task.putskc, 318
Task.putskcslice, 318
Task.putskx, 318
Task.putskxslice, 318
Task.putslc, 319
Task.putslcslice, 319
Task.putslx, 319
Task.putslxslice, 319
Task.putsnx, 319
Task.putsnxslice, 319
Task.putsolution, 319
Task.putsolutioni, 320
Task.putsolutionyi, 320
Task.putstrparam, 320
Task.putsuc, 320
Task.putsucslice, 320
Task.putsux, 321
Task.putsuxslice, 321
Task.puttaskname, 321
Task.putvarbound, 321
Task.putvarboundlist, 321
Task.putvarboundslice, 321
Task.putvarname, 321
Task.putvartype, 322
Task.putvartypelist, 322
Task.putxc, 322

Task.putxcslice, 322
Task.putxx, 322
Task.putxxslice, 322
Task.puty, 322
Task.putyslice, 323
Task.readdata, 323
Task.readdataformat, 323
Task.readparamfile, 323
Task.readsolution, 323
Task.readsummary, 323
Task.readtask, 323
Task.removebarvars, 323
Task.removecones, 323
Task.removecons, 324
Task.removevars, 324
Task.resizetask, 324
Task.sensitivityreport, 324
Task.set_progress, 324
Task.set_stream, 324
Task.setdefaults, 324
Task.solutiondef, 325
Task.solutionsummary, 325
Task.solvewithbasis, 325
Task.strtoconetype, 326
Task.strtosk, 326
Task.task, 275
Task.toconic, 326
Task.updatesolutioninfo, 326
Task.writedata, 326
Task.writejsonsol, 327
Task.writeparamfile, 327
Task.writesc, 326
Task.writesolution, 327
Task.writetask, 327
Task.writetasksolverresult_file, 327

Enumerations
accmode, 235
accmode.con, 235
accmode.var, 235
basindtype, 235
basindtype.always, 235
basindtype.if_feasible, 235
basindtype.never, 235
basindtype.no_error, 235
basindtype.reservered, 235
boundkey, 235
boundkey.fr, 235
boundkey.fx, 235
boundkey.lo, 235
boundkey.ra, 235
boundkey.up, 235
branchdir, 253
branchdir.down, 253
branchdir.far, 253
branchdir.free, 253
branchdir.guided, 253
branchdir.near, 253

API Index 395

MOSEK Optimizer API for Python, Release 8.0.0.94

branchdir.pseudocost, 253
branchdir.root_lp, 253
branchdir.up, 253
callbackcode, 237
callbackcode.begin_bi, 238
callbackcode.begin_conic, 238
callbackcode.begin_dual_bi, 238
callbackcode.begin_dual_sensitivity, 241
callbackcode.begin_dual_setup_bi, 241
callbackcode.begin_dual_simplex, 240
callbackcode.begin_dual_simplex_bi, 239
callbackcode.begin_full_convexity_check,

241
callbackcode.begin_infeas_ana, 240
callbackcode.begin_intpnt, 237
callbackcode.begin_license_wait, 241
callbackcode.begin_mio, 239
callbackcode.begin_optimizer, 237
callbackcode.begin_presolve, 237
callbackcode.begin_primal_bi, 238
callbackcode.begin_primal_dual_simplex, 240
callbackcode.begin_primal_dual_simplex_bi,

239
callbackcode.begin_primal_repair, 241
callbackcode.begin_primal_sensitivity, 241
callbackcode.begin_primal_setup_bi, 240
callbackcode.begin_primal_simplex, 240
callbackcode.begin_primal_simplex_bi, 239
callbackcode.begin_qcqo_reformulate, 241
callbackcode.begin_read, 241
callbackcode.begin_root_cutgen, 237
callbackcode.begin_simplex, 240
callbackcode.begin_simplex_bi, 239
callbackcode.begin_to_conic, 241
callbackcode.begin_write, 242
callbackcode.conic, 238
callbackcode.dual_simplex, 238
callbackcode.end_bi, 238
callbackcode.end_conic, 238
callbackcode.end_dual_bi, 238
callbackcode.end_dual_sensitivity, 241
callbackcode.end_dual_setup_bi, 241
callbackcode.end_dual_simplex, 240
callbackcode.end_dual_simplex_bi, 239
callbackcode.end_full_convexity_check, 241
callbackcode.end_infeas_ana, 240
callbackcode.end_intpnt, 238
callbackcode.end_license_wait, 241
callbackcode.end_mio, 239
callbackcode.end_optimizer, 237
callbackcode.end_presolve, 237
callbackcode.end_primal_bi, 238
callbackcode.end_primal_dual_simplex, 240
callbackcode.end_primal_dual_simplex_bi,

239
callbackcode.end_primal_repair, 241
callbackcode.end_primal_sensitivity, 241
callbackcode.end_primal_setup_bi, 241

callbackcode.end_primal_simplex, 240
callbackcode.end_primal_simplex_bi, 239
callbackcode.end_qcqo_reformulate, 241
callbackcode.end_read, 241
callbackcode.end_root_cutgen, 237
callbackcode.end_simplex, 240
callbackcode.end_simplex_bi, 239
callbackcode.end_to_conic, 241
callbackcode.end_write, 242
callbackcode.im_bi, 238
callbackcode.im_conic, 238
callbackcode.im_dual_bi, 238
callbackcode.im_dual_sensivity, 240
callbackcode.im_dual_simplex, 240
callbackcode.im_full_convexity_check, 241
callbackcode.im_intpnt, 237
callbackcode.im_license_wait, 241
callbackcode.im_lu, 242
callbackcode.im_mio, 239
callbackcode.im_mio_dual_simplex, 240
callbackcode.im_mio_intpnt, 240
callbackcode.im_mio_primal_simplex, 240
callbackcode.im_order, 242
callbackcode.im_presolve, 237
callbackcode.im_primal_bi, 238
callbackcode.im_primal_dual_simplex, 240
callbackcode.im_primal_sensivity, 240
callbackcode.im_primal_simplex, 240
callbackcode.im_qo_reformulate, 241
callbackcode.im_read, 241
callbackcode.im_root_cutgen, 237
callbackcode.im_simplex, 242
callbackcode.im_simplex_bi, 239
callbackcode.intpnt, 237
callbackcode.new_int_mio, 239
callbackcode.primal_simplex, 238
callbackcode.read_opf, 242
callbackcode.read_opf_section, 242
callbackcode.solving_remote, 242
callbackcode.update_dual_bi, 238
callbackcode.update_dual_simplex, 240
callbackcode.update_dual_simplex_bi, 239
callbackcode.update_presolve, 237
callbackcode.update_primal_bi, 238
callbackcode.update_primal_dual_simplex,

240
callbackcode.update_primal_dual_simplex_bi,

239
callbackcode.update_primal_simplex, 240
callbackcode.update_primal_simplex_bi, 239
callbackcode.write_opf, 242
checkconvexitytype, 242
checkconvexitytype.full, 242
checkconvexitytype.none, 242
checkconvexitytype.simple, 242
compresstype, 242
compresstype.free, 242
compresstype.gzip, 242

396 API Index

MOSEK Optimizer API for Python, Release 8.0.0.94

compresstype.none, 242
conetype, 242
conetype.quad, 242
conetype.rquad, 242
dataformat, 243
dataformat.cb, 243
dataformat.extension, 243
dataformat.free_mps, 243
dataformat.json_task, 243
dataformat.lp, 243
dataformat.mps, 243
dataformat.op, 243
dataformat.task, 243
dataformat.xml, 243
dinfitem, 243
dinfitem.bi_clean_dual_time, 243
dinfitem.bi_clean_primal_dual_time, 243
dinfitem.bi_clean_primal_time, 243
dinfitem.bi_clean_time, 243
dinfitem.bi_dual_time, 243
dinfitem.bi_primal_time, 243
dinfitem.bi_time, 243
dinfitem.intpnt_dual_feas, 244
dinfitem.intpnt_dual_obj, 244
dinfitem.intpnt_factor_num_flops, 247
dinfitem.intpnt_opt_status, 244
dinfitem.intpnt_order_time, 244
dinfitem.intpnt_primal_feas, 244
dinfitem.intpnt_primal_obj, 244
dinfitem.intpnt_time, 244
dinfitem.mio_clique_separation_time, 245
dinfitem.mio_cmir_separation_time, 245
dinfitem.mio_construct_solution_obj, 244
dinfitem.mio_dual_bound_after_presolve, 245
dinfitem.mio_gmi_separation_time, 245
dinfitem.mio_heuristic_time, 244
dinfitem.mio_implied_bound_time, 245
dinfitem.mio_knapsack_cover_separation_time,

245
dinfitem.mio_obj_abs_gap, 245
dinfitem.mio_obj_bound, 245
dinfitem.mio_obj_int, 245
dinfitem.mio_obj_rel_gap, 245
dinfitem.mio_optimizer_time, 244
dinfitem.mio_probing_time, 245
dinfitem.mio_root_cutgen_time, 245
dinfitem.mio_root_optimizer_time, 244
dinfitem.mio_root_presolve_time, 244
dinfitem.mio_time, 244
dinfitem.mio_user_obj_cut, 245
dinfitem.optimizer_time, 245
dinfitem.presolve_eli_time, 245
dinfitem.presolve_lindep_time, 245
dinfitem.presolve_time, 245
dinfitem.primal_repair_penalty_obj, 248
dinfitem.qcqo_reformulate_max_perturbation,

248
dinfitem.qcqo_reformulate_time, 247

dinfitem.qcqo_reformulate_worst_cholesky_column_scaling,
248

dinfitem.qcqo_reformulate_worst_cholesky_diag_scaling,
248

dinfitem.rd_time, 246
dinfitem.sim_dual_time, 244
dinfitem.sim_feas, 244
dinfitem.sim_obj, 244
dinfitem.sim_primal_dual_time, 244
dinfitem.sim_primal_time, 244
dinfitem.sim_time, 244
dinfitem.sol_bas_dual_obj, 247
dinfitem.sol_bas_dviolcon, 247
dinfitem.sol_bas_dviolvar, 247
dinfitem.sol_bas_nrm_barx, 247
dinfitem.sol_bas_nrm_slc, 247
dinfitem.sol_bas_nrm_slx, 247
dinfitem.sol_bas_nrm_suc, 247
dinfitem.sol_bas_nrm_sux, 247
dinfitem.sol_bas_nrm_xc, 247
dinfitem.sol_bas_nrm_xx, 247
dinfitem.sol_bas_nrm_y, 247
dinfitem.sol_bas_primal_obj, 246
dinfitem.sol_bas_pviolcon, 246
dinfitem.sol_bas_pviolvar, 247
dinfitem.sol_itg_nrm_barx, 247
dinfitem.sol_itg_nrm_xc, 247
dinfitem.sol_itg_nrm_xx, 247
dinfitem.sol_itg_primal_obj, 247
dinfitem.sol_itg_pviolbarvar, 247
dinfitem.sol_itg_pviolcon, 247
dinfitem.sol_itg_pviolcones, 247
dinfitem.sol_itg_pviolitg, 247
dinfitem.sol_itg_pviolvar, 247
dinfitem.sol_itr_dual_obj, 246
dinfitem.sol_itr_dviolbarvar, 246
dinfitem.sol_itr_dviolcon, 246
dinfitem.sol_itr_dviolcones, 246
dinfitem.sol_itr_dviolvar, 246
dinfitem.sol_itr_nrm_bars, 246
dinfitem.sol_itr_nrm_barx, 246
dinfitem.sol_itr_nrm_slc, 246
dinfitem.sol_itr_nrm_slx, 246
dinfitem.sol_itr_nrm_snx, 246
dinfitem.sol_itr_nrm_suc, 246
dinfitem.sol_itr_nrm_sux, 246
dinfitem.sol_itr_nrm_xc, 246
dinfitem.sol_itr_nrm_xx, 246
dinfitem.sol_itr_nrm_y, 246
dinfitem.sol_itr_primal_obj, 246
dinfitem.sol_itr_pviolbarvar, 246
dinfitem.sol_itr_pviolcon, 246
dinfitem.sol_itr_pviolcones, 246
dinfitem.sol_itr_pviolvar, 246
dinfitem.to_conic_time, 244
feature, 248
feature.pton, 248
feature.pts, 248

API Index 397

MOSEK Optimizer API for Python, Release 8.0.0.94

iinfitem, 249
iinfitem.ana_pro_num_con, 249
iinfitem.ana_pro_num_con_eq, 249
iinfitem.ana_pro_num_con_fr, 249
iinfitem.ana_pro_num_con_lo, 249
iinfitem.ana_pro_num_con_ra, 249
iinfitem.ana_pro_num_con_up, 249
iinfitem.ana_pro_num_var, 249
iinfitem.ana_pro_num_var_bin, 250
iinfitem.ana_pro_num_var_cont, 249
iinfitem.ana_pro_num_var_eq, 249
iinfitem.ana_pro_num_var_fr, 249
iinfitem.ana_pro_num_var_int, 250
iinfitem.ana_pro_num_var_lo, 249
iinfitem.ana_pro_num_var_ra, 249
iinfitem.ana_pro_num_var_up, 249
iinfitem.intpnt_factor_dim_dense, 250
iinfitem.intpnt_iter, 250
iinfitem.intpnt_num_threads, 252
iinfitem.intpnt_solve_dual, 250
iinfitem.mio_absgap_satisfied, 251
iinfitem.mio_clique_table_size, 250
iinfitem.mio_construct_num_roundings, 250
iinfitem.mio_construct_solution, 250
iinfitem.mio_initial_solution, 251
iinfitem.mio_near_absgap_satisfied, 251
iinfitem.mio_near_relgap_satisfied, 251
iinfitem.mio_node_depth, 250
iinfitem.mio_num_active_nodes, 251
iinfitem.mio_num_branch, 251
iinfitem.mio_num_clique_cuts, 251
iinfitem.mio_num_cmir_cuts, 251
iinfitem.mio_num_gomory_cuts, 251
iinfitem.mio_num_implied_bound_cuts, 251
iinfitem.mio_num_int_solutions, 250
iinfitem.mio_num_knapsack_cover_cuts, 251
iinfitem.mio_num_relax, 251
iinfitem.mio_num_repeated_presolve, 251
iinfitem.mio_numcon, 250
iinfitem.mio_numint, 250
iinfitem.mio_numvar, 250
iinfitem.mio_obj_bound_defined, 250
iinfitem.mio_presolved_numbin, 250
iinfitem.mio_presolved_numcon, 250
iinfitem.mio_presolved_numcont, 250
iinfitem.mio_presolved_numint, 250
iinfitem.mio_presolved_numvar, 250
iinfitem.mio_relgap_satisfied, 251
iinfitem.mio_total_num_cuts, 251
iinfitem.mio_user_obj_cut, 251
iinfitem.opt_numcon, 253
iinfitem.opt_numvar, 253
iinfitem.optimize_response, 250
iinfitem.rd_numbarvar, 251
iinfitem.rd_numcon, 251
iinfitem.rd_numcone, 253
iinfitem.rd_numintvar, 251
iinfitem.rd_numq, 251

iinfitem.rd_numvar, 251
iinfitem.rd_protype, 251
iinfitem.sim_dual_deg_iter, 251
iinfitem.sim_dual_hotstart, 252
iinfitem.sim_dual_hotstart_lu, 252
iinfitem.sim_dual_inf_iter, 251
iinfitem.sim_dual_iter, 252
iinfitem.sim_numcon, 252
iinfitem.sim_numvar, 253
iinfitem.sim_primal_deg_iter, 252
iinfitem.sim_primal_dual_deg_iter, 252
iinfitem.sim_primal_dual_hotstart, 252
iinfitem.sim_primal_dual_hotstart_lu, 252
iinfitem.sim_primal_dual_inf_iter, 252
iinfitem.sim_primal_dual_iter, 252
iinfitem.sim_primal_hotstart, 252
iinfitem.sim_primal_hotstart_lu, 252
iinfitem.sim_primal_inf_iter, 252
iinfitem.sim_primal_iter, 252
iinfitem.sim_solve_dual, 253
iinfitem.sol_bas_prosta, 252
iinfitem.sol_bas_solsta, 252
iinfitem.sol_itg_prosta, 252
iinfitem.sol_itg_solsta, 252
iinfitem.sol_itr_prosta, 252
iinfitem.sol_itr_solsta, 252
iinfitem.sto_num_a_realloc, 253
inftype, 253
inftype.dou_type, 253
inftype.int_type, 253
inftype.lint_type, 253
intpnthotstart, 237
intpnthotstart.dual, 237
intpnthotstart.none, 237
intpnthotstart.primal, 237
intpnthotstart.primal_dual, 237
iomode, 253
iomode.read, 253
iomode.readwrite, 253
iomode.write, 253
language, 235
language.dan, 235
language.eng, 235
liinfitem, 248
liinfitem.bi_clean_dual_deg_iter, 248
liinfitem.bi_clean_dual_iter, 248
liinfitem.bi_clean_primal_deg_iter, 248
liinfitem.bi_clean_primal_dual_deg_iter,

248
liinfitem.bi_clean_primal_dual_iter, 248
liinfitem.bi_clean_primal_dual_sub_iter,

248
liinfitem.bi_clean_primal_iter, 248
liinfitem.bi_dual_iter, 248
liinfitem.bi_primal_iter, 248
liinfitem.intpnt_factor_num_nz, 248
liinfitem.mio_intpnt_iter, 248
liinfitem.mio_presolved_anz, 248

398 API Index

MOSEK Optimizer API for Python, Release 8.0.0.94

liinfitem.mio_sim_maxiter_setbacks, 249
liinfitem.mio_simplex_iter, 248
liinfitem.rd_numanz, 248
liinfitem.rd_numqnz, 248
mark, 235
mark.lo, 236
mark.up, 236
miocontsoltype, 254
miocontsoltype.itg, 254
miocontsoltype.itg_rel, 254
miocontsoltype.none, 254
miocontsoltype.root, 254
miomode, 254
miomode.ignored, 254
miomode.satisfied, 254
mionodeseltype, 254
mionodeseltype.best, 254
mionodeseltype.first, 254
mionodeseltype.free, 254
mionodeseltype.hybrid, 254
mionodeseltype.pseudo, 254
mionodeseltype.worst, 254
mpsformat, 254
mpsformat.cplex, 254
mpsformat.free, 254
mpsformat.relaxed, 254
mpsformat.strict, 254
msgkey, 255
msgkey.mps_selected, 255
msgkey.reading_file, 255
msgkey.writing_file, 255
nametype, 242
nametype.gen, 242
nametype.lp, 243
nametype.mps, 243
objsense, 255
objsense.maximize, 255
objsense.minimize, 255
onoffkey, 255
onoffkey.off, 255
onoffkey.on, 255
optimizertype, 255
optimizertype.conic, 255
optimizertype.dual_simplex, 255
optimizertype.free, 255
optimizertype.free_simplex, 255
optimizertype.intpnt, 255
optimizertype.mixed_int, 255
optimizertype.primal_simplex, 255
orderingtype, 255
orderingtype.appminloc, 255
orderingtype.experimental, 255
orderingtype.force_graphpar, 255
orderingtype.free, 255
orderingtype.none, 256
orderingtype.try_graphpar, 255
parametertype, 256
parametertype.dou_type, 256

parametertype.int_type, 256
parametertype.invalid_type, 256
parametertype.str_type, 256
presolvemode, 256
presolvemode.free, 256
presolvemode.off, 256
presolvemode.on, 256
problemitem, 256
problemitem.con, 256
problemitem.cone, 256
problemitem.var, 256
problemtype, 256
problemtype.conic, 256
problemtype.geco, 256
problemtype.lo, 256
problemtype.mixed, 256
problemtype.qcqo, 256
problemtype.qo, 256
prosta, 256
prosta.dual_feas, 257
prosta.dual_infeas, 257
prosta.ill_posed, 257
prosta.near_dual_feas, 257
prosta.near_prim_and_dual_feas, 257
prosta.near_prim_feas, 257
prosta.prim_and_dual_feas, 257
prosta.prim_and_dual_infeas, 257
prosta.prim_feas, 257
prosta.prim_infeas, 257
prosta.prim_infeas_or_unbounded, 257
prosta.unknown, 257
rescodetype, 257
rescodetype.err, 257
rescodetype.ok, 257
rescodetype.trm, 257
rescodetype.unk, 257
rescodetype.wrn, 257
scalingmethod, 258
scalingmethod.free, 258
scalingmethod.pow2, 258
scalingtype, 257
scalingtype.aggressive, 258
scalingtype.free, 258
scalingtype.moderate, 258
scalingtype.none, 258
sensitivitytype, 258
sensitivitytype.basis, 258
sensitivitytype.optimal_partition, 258
simdegen, 236
simdegen.aggressive, 236
simdegen.free, 236
simdegen.minimum, 236
simdegen.moderate, 236
simdegen.none, 236
simdupvec, 236
simdupvec.free, 236
simdupvec.off, 236
simdupvec.on, 236

API Index 399

MOSEK Optimizer API for Python, Release 8.0.0.94

simhotstart, 237
simhotstart.free, 237
simhotstart.none, 237
simhotstart.status_keys, 237
simreform, 236
simreform.aggressive, 236
simreform.free, 236
simreform.off, 236
simreform.on, 236
simseltype, 258
simseltype.ase, 258
simseltype.devex, 258
simseltype.free, 258
simseltype.full, 258
simseltype.partial, 258
simseltype.se, 258
solitem, 258
solitem.slc, 258
solitem.slx, 259
solitem.snx, 259
solitem.suc, 259
solitem.sux, 259
solitem.xc, 258
solitem.xx, 258
solitem.y, 258
solsta, 259
solsta.dual_feas, 259
solsta.dual_illposed_cer, 259
solsta.dual_infeas_cer, 259
solsta.integer_optimal, 259
solsta.near_dual_feas, 259
solsta.near_dual_infeas_cer, 259
solsta.near_integer_optimal, 259
solsta.near_optimal, 259
solsta.near_prim_and_dual_feas, 259
solsta.near_prim_feas, 259
solsta.near_prim_infeas_cer, 259
solsta.optimal, 259
solsta.prim_and_dual_feas, 259
solsta.prim_feas, 259
solsta.prim_illposed_cer, 259
solsta.prim_infeas_cer, 259
solsta.unknown, 259
soltype, 259
soltype.bas, 260
soltype.itg, 260
soltype.itr, 260
solveform, 260
solveform.dual, 260
solveform.free, 260
solveform.primal, 260
stakey, 260
stakey.bas, 260
stakey.fix, 260
stakey.inf, 260
stakey.low, 260
stakey.supbas, 260
stakey.unk, 260

stakey.upr, 260
startpointtype, 260
startpointtype.constant, 260
startpointtype.free, 260
startpointtype.guess, 260
startpointtype.satisfy_bounds, 260
streamtype, 260
streamtype.err, 261
streamtype.log, 260
streamtype.msg, 261
streamtype.wrn, 261
symmattype, 243
symmattype.sparse, 243
transpose, 236
transpose.no, 236
transpose.yes, 236
uplo, 236
uplo.lo, 236
uplo.up, 236
value, 261
value.license_buffer_length, 261
value.max_str_len, 261
variabletype, 261
variabletype.type_cont, 261
variabletype.type_int, 261
xmlwriteroutputtype, 257
xmlwriteroutputtype.col, 257
xmlwriteroutputtype.row, 257

Exceptions
Error, 327
Exception, 327
Warning, 327

Parameters
Double params, 166
dparam.ana_sol_infeas_tol, 166
dparam.basis_rel_tol_s, 166
dparam.basis_tol_s, 166
dparam.basis_tol_x, 167
dparam.check_convexity_rel_tol, 167
dparam.data_sym_mat_tol, 167
dparam.data_sym_mat_tol_huge, 167
dparam.data_sym_mat_tol_large, 167
dparam.data_tol_aij, 167
dparam.data_tol_aij_huge, 167
dparam.data_tol_aij_large, 168
dparam.data_tol_bound_inf, 168
dparam.data_tol_bound_wrn, 168
dparam.data_tol_c_huge, 168
dparam.data_tol_cj_large, 168
dparam.data_tol_qij, 168
dparam.data_tol_x, 168
dparam.intpnt_co_tol_dfeas, 169
dparam.intpnt_co_tol_infeas, 169
dparam.intpnt_co_tol_mu_red, 169
dparam.intpnt_co_tol_near_rel, 169
dparam.intpnt_co_tol_pfeas, 169

400 API Index

MOSEK Optimizer API for Python, Release 8.0.0.94

dparam.intpnt_co_tol_rel_gap, 169
dparam.intpnt_nl_merit_bal, 169
dparam.intpnt_nl_tol_dfeas, 169
dparam.intpnt_nl_tol_mu_red, 170
dparam.intpnt_nl_tol_near_rel, 170
dparam.intpnt_nl_tol_pfeas, 170
dparam.intpnt_nl_tol_rel_gap, 170
dparam.intpnt_nl_tol_rel_step, 170
dparam.intpnt_qo_tol_dfeas, 170
dparam.intpnt_qo_tol_infeas, 170
dparam.intpnt_qo_tol_mu_red, 170
dparam.intpnt_qo_tol_near_rel, 171
dparam.intpnt_qo_tol_pfeas, 171
dparam.intpnt_qo_tol_rel_gap, 171
dparam.intpnt_tol_dfeas, 171
dparam.intpnt_tol_dsafe, 171
dparam.intpnt_tol_infeas, 171
dparam.intpnt_tol_mu_red, 171
dparam.intpnt_tol_path, 172
dparam.intpnt_tol_pfeas, 172
dparam.intpnt_tol_psafe, 172
dparam.intpnt_tol_rel_gap, 172
dparam.intpnt_tol_rel_step, 172
dparam.intpnt_tol_step_size, 172
dparam.lower_obj_cut, 172
dparam.lower_obj_cut_finite_trh, 173
dparam.mio_disable_term_time, 173
dparam.mio_max_time, 173
dparam.mio_near_tol_abs_gap, 173
dparam.mio_near_tol_rel_gap, 173
dparam.mio_rel_gap_const, 173
dparam.mio_tol_abs_gap, 174
dparam.mio_tol_abs_relax_int, 174
dparam.mio_tol_feas, 174
dparam.mio_tol_rel_dual_bound_improvement,

174
dparam.mio_tol_rel_gap, 174
dparam.optimizer_max_time, 174
dparam.presolve_tol_abs_lindep, 174
dparam.presolve_tol_aij, 175
dparam.presolve_tol_rel_lindep, 175
dparam.presolve_tol_s, 175
dparam.presolve_tol_x, 175
dparam.qcqo_reformulate_rel_drop_tol, 175
dparam.semidefinite_tol_approx, 175
dparam.sim_lu_tol_rel_piv, 175
dparam.simplex_abs_tol_piv, 175
dparam.upper_obj_cut, 176
dparam.upper_obj_cut_finite_trh, 176
Integer params, 176
iparam.ana_sol_basis, 176
iparam.ana_sol_print_violated, 176
iparam.auto_sort_a_before_opt, 176
iparam.auto_update_sol_info, 176
iparam.basis_solve_use_plus_one, 176
iparam.bi_clean_optimizer, 177
iparam.bi_ignore_max_iter, 177
iparam.bi_ignore_num_error, 177

iparam.bi_max_iterations, 177
iparam.cache_license, 177
iparam.check_convexity, 177
iparam.compress_statfile, 178
iparam.infeas_generic_names, 178
iparam.infeas_prefer_primal, 178
iparam.infeas_report_auto, 178
iparam.infeas_report_level, 178
iparam.intpnt_basis, 178
iparam.intpnt_diff_step, 178
iparam.intpnt_hotstart, 178
iparam.intpnt_max_iterations, 178
iparam.intpnt_max_num_cor, 179
iparam.intpnt_max_num_refinement_steps, 179
iparam.intpnt_multi_thread, 179
iparam.intpnt_off_col_trh, 179
iparam.intpnt_order_method, 179
iparam.intpnt_regularization_use, 179
iparam.intpnt_scaling, 179
iparam.intpnt_solve_form, 180
iparam.intpnt_starting_point, 180
iparam.license_debug, 180
iparam.license_pause_time, 180
iparam.license_suppress_expire_wrns, 180
iparam.license_trh_expiry_wrn, 180
iparam.license_wait, 180
iparam.log, 180
iparam.log_ana_pro, 181
iparam.log_bi, 181
iparam.log_bi_freq, 181
iparam.log_check_convexity, 181
iparam.log_cut_second_opt, 181
iparam.log_expand, 181
iparam.log_factor, 182
iparam.log_feas_repair, 182
iparam.log_file, 182
iparam.log_head, 182
iparam.log_infeas_ana, 182
iparam.log_intpnt, 182
iparam.log_mio, 182
iparam.log_mio_freq, 182
iparam.log_optimizer, 183
iparam.log_order, 183
iparam.log_presolve, 183
iparam.log_response, 183
iparam.log_sensitivity, 183
iparam.log_sensitivity_opt, 183
iparam.log_sim, 183
iparam.log_sim_freq, 184
iparam.log_sim_minor, 184
iparam.log_storage, 184
iparam.max_num_warnings, 184
iparam.mio_branch_dir, 184
iparam.mio_construct_sol, 184
iparam.mio_cut_clique, 184
iparam.mio_cut_cmir, 185
iparam.mio_cut_gmi, 185
iparam.mio_cut_implied_bound, 185

API Index 401

MOSEK Optimizer API for Python, Release 8.0.0.94

iparam.mio_cut_knapsack_cover, 185
iparam.mio_cut_selection_level, 185
iparam.mio_heuristic_level, 185
iparam.mio_max_num_branches, 185
iparam.mio_max_num_relaxs, 186
iparam.mio_max_num_solutions, 186
iparam.mio_mode, 186
iparam.mio_mt_user_cb, 186
iparam.mio_node_optimizer, 186
iparam.mio_node_selection, 186
iparam.mio_perspective_reformulate, 186
iparam.mio_probing_level, 186
iparam.mio_rins_max_nodes, 187
iparam.mio_root_optimizer, 187
iparam.mio_root_repeat_presolve_level, 187
iparam.mio_vb_detection_level, 187
iparam.mt_spincount, 187
iparam.num_threads, 188
iparam.opf_max_terms_per_line, 188
iparam.opf_write_header, 188
iparam.opf_write_hints, 188
iparam.opf_write_parameters, 188
iparam.opf_write_problem, 188
iparam.opf_write_sol_bas, 188
iparam.opf_write_sol_itg, 189
iparam.opf_write_sol_itr, 189
iparam.opf_write_solutions, 188
iparam.optimizer, 189
iparam.param_read_case_name, 189
iparam.param_read_ign_error, 189
iparam.presolve_eliminator_max_fill, 189
iparam.presolve_eliminator_max_num_tries,

189
iparam.presolve_level, 189
iparam.presolve_lindep_abs_work_trh, 190
iparam.presolve_lindep_rel_work_trh, 190
iparam.presolve_lindep_use, 190
iparam.presolve_max_num_reductions, 190
iparam.presolve_use, 190
iparam.primal_repair_optimizer, 190
iparam.read_data_compressed, 190
iparam.read_data_format, 190
iparam.read_debug, 191
iparam.read_keep_free_con, 191
iparam.read_lp_drop_new_vars_in_bou, 191
iparam.read_lp_quoted_names, 191
iparam.read_mps_format, 191
iparam.read_mps_width, 191
iparam.read_task_ignore_param, 191
iparam.sensitivity_all, 191
iparam.sensitivity_optimizer, 192
iparam.sensitivity_type, 192
iparam.sim_basis_factor_use, 192
iparam.sim_degen, 192
iparam.sim_dual_crash, 192
iparam.sim_dual_phaseone_method, 192
iparam.sim_dual_restrict_selection, 192
iparam.sim_dual_selection, 193

iparam.sim_exploit_dupvec, 193
iparam.sim_hotstart, 193
iparam.sim_hotstart_lu, 193
iparam.sim_integer, 193
iparam.sim_max_iterations, 193
iparam.sim_max_num_setbacks, 193
iparam.sim_non_singular, 193
iparam.sim_primal_crash, 194
iparam.sim_primal_phaseone_method, 194
iparam.sim_primal_restrict_selection, 194
iparam.sim_primal_selection, 194
iparam.sim_refactor_freq, 194
iparam.sim_reformulation, 194
iparam.sim_save_lu, 194
iparam.sim_scaling, 195
iparam.sim_scaling_method, 195
iparam.sim_solve_form, 195
iparam.sim_stability_priority, 195
iparam.sim_switch_optimizer, 195
iparam.sol_filter_keep_basic, 195
iparam.sol_filter_keep_ranged, 195
iparam.sol_read_name_width, 196
iparam.sol_read_width, 196
iparam.solution_callback, 195
iparam.timing_level, 196
iparam.write_bas_constraints, 196
iparam.write_bas_head, 196
iparam.write_bas_variables, 196
iparam.write_data_compressed, 196
iparam.write_data_format, 197
iparam.write_data_param, 197
iparam.write_free_con, 197
iparam.write_generic_names, 197
iparam.write_generic_names_io, 197
iparam.write_ignore_incompatible_items, 197
iparam.write_int_constraints, 197
iparam.write_int_head, 197
iparam.write_int_variables, 197
iparam.write_lp_full_obj, 198
iparam.write_lp_line_width, 198
iparam.write_lp_quoted_names, 198
iparam.write_lp_strict_format, 198
iparam.write_lp_terms_per_line, 198
iparam.write_mps_format, 198
iparam.write_mps_int, 198
iparam.write_precision, 198
iparam.write_sol_barvariables, 199
iparam.write_sol_constraints, 199
iparam.write_sol_head, 199
iparam.write_sol_ignore_invalid_names, 199
iparam.write_sol_variables, 199
iparam.write_task_inc_sol, 199
iparam.write_xml_mode, 199
String params, 200
sparam.bas_sol_file_name, 200
sparam.data_file_name, 200
sparam.debug_file_name, 200
sparam.int_sol_file_name, 200

402 API Index

MOSEK Optimizer API for Python, Release 8.0.0.94

sparam.itr_sol_file_name, 200
sparam.mio_debug_string, 200
sparam.param_comment_sign, 200
sparam.param_read_file_name, 200
sparam.param_write_file_name, 200
sparam.read_mps_bou_name, 200
sparam.read_mps_obj_name, 201
sparam.read_mps_ran_name, 201
sparam.read_mps_rhs_name, 201
sparam.remote_access_token, 201
sparam.sensitivity_file_name, 201
sparam.sensitivity_res_file_name, 201
sparam.sol_filter_xc_low, 201
sparam.sol_filter_xc_upr, 201
sparam.sol_filter_xx_low, 201
sparam.sol_filter_xx_upr, 201
sparam.stat_file_name, 202
sparam.stat_key, 202
sparam.stat_name, 202
sparam.write_lp_gen_var_name, 202

Response codes
rescode.ok (ok), 214
rescode.trm_internal (trm_internal), 214
rescode.trm_internal_stop

(trm_internal_stop), 214
rescode.trm_max_iterations

(trm_max_iterations), 214
rescode.trm_max_num_setbacks

(trm_max_num_setbacks), 214
rescode.trm_max_time (trm_max_time), 214
rescode.trm_mio_near_abs_gap

(trm_mio_near_abs_gap), 214
rescode.trm_mio_near_rel_gap

(trm_mio_near_rel_gap), 214
rescode.trm_mio_num_branches

(trm_mio_num_branches), 214
rescode.trm_mio_num_relaxs

(trm_mio_num_relaxs), 214
rescode.trm_num_max_num_int_solutions

(trm_num_max_num_int_solutions),
214

rescode.trm_numerical_problem
(trm_numerical_problem), 214

rescode.trm_objective_range
(trm_objective_range), 214

rescode.trm_stall (trm_stall), 214
rescode.trm_user_callback

(trm_user_callback), 214
rescode.wrn_ana_almost_int_bounds

(wrn_ana_almost_int_bounds), 232
rescode.wrn_ana_c_zero (wrn_ana_c_zero),

232
rescode.wrn_ana_close_bounds

(wrn_ana_close_bounds), 232
rescode.wrn_ana_empty_cols

(wrn_ana_empty_cols), 232

rescode.wrn_ana_large_bounds
(wrn_ana_large_bounds), 232

rescode.wrn_construct_invalid_sol_itg
(wrn_construct_invalid_sol_itg), 232

rescode.wrn_construct_no_sol_itg
(wrn_construct_no_sol_itg), 232

rescode.wrn_construct_solution_infeas
(wrn_construct_solution_infeas), 232

rescode.wrn_dropped_nz_qobj
(wrn_dropped_nz_qobj), 232

rescode.wrn_duplicate_barvariable_names
(wrn_duplicate_barvariable_names),
232

rescode.wrn_duplicate_cone_names
(wrn_duplicate_cone_names), 232

rescode.wrn_duplicate_constraint_names
(wrn_duplicate_constraint_names), 232

rescode.wrn_duplicate_variable_names
(wrn_duplicate_variable_names), 232

rescode.wrn_eliminator_space
(wrn_eliminator_space), 232

rescode.wrn_empty_name (wrn_empty_name),
232

rescode.wrn_ignore_integer
(wrn_ignore_integer), 232

rescode.wrn_incomplete_linear_dependency_check
(wrn_incomplete_linear_dependency_check),
232

rescode.wrn_large_aij (wrn_large_aij), 232
rescode.wrn_large_bound (wrn_large_bound),

233
rescode.wrn_large_cj (wrn_large_cj), 233
rescode.wrn_large_con_fx

(wrn_large_con_fx), 233
rescode.wrn_large_lo_bound

(wrn_large_lo_bound), 233
rescode.wrn_large_up_bound

(wrn_large_up_bound), 233
rescode.wrn_license_expire

(wrn_license_expire), 233
rescode.wrn_license_feature_expire

(wrn_license_feature_expire), 233
rescode.wrn_license_server

(wrn_license_server), 233
rescode.wrn_lp_drop_variable

(wrn_lp_drop_variable), 233
rescode.wrn_lp_old_quad_format

(wrn_lp_old_quad_format), 233
rescode.wrn_mio_infeasible_final

(wrn_mio_infeasible_final), 233
rescode.wrn_mps_split_bou_vector

(wrn_mps_split_bou_vector), 233
rescode.wrn_mps_split_ran_vector

(wrn_mps_split_ran_vector), 233
rescode.wrn_mps_split_rhs_vector

(wrn_mps_split_rhs_vector), 233
rescode.wrn_name_max_len

(wrn_name_max_len), 233

API Index 403

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.wrn_no_dualizer (wrn_no_dualizer),
233

rescode.wrn_no_global_optimizer
(wrn_no_global_optimizer), 233

rescode.wrn_no_nonlinear_function_write
(wrn_no_nonlinear_function_write),
233

rescode.wrn_nz_in_upr_tri
(wrn_nz_in_upr_tri), 233

rescode.wrn_open_param_file
(wrn_open_param_file), 233

rescode.wrn_param_ignored_cmio
(wrn_param_ignored_cmio), 233

rescode.wrn_param_name_dou
(wrn_param_name_dou), 234

rescode.wrn_param_name_int
(wrn_param_name_int), 234

rescode.wrn_param_name_str
(wrn_param_name_str), 234

rescode.wrn_param_str_value
(wrn_param_str_value), 234

rescode.wrn_presolve_outofspace
(wrn_presolve_outofspace), 234

rescode.wrn_quad_cones_with_root_fixed_at_zero
(wrn_quad_cones_with_root_fixed_at_zero),
234

rescode.wrn_rquad_cones_with_root_fixed_at_zero
(wrn_rquad_cones_with_root_fixed_at_zero),
234

rescode.wrn_sol_file_ignored_con
(wrn_sol_file_ignored_con), 234

rescode.wrn_sol_file_ignored_var
(wrn_sol_file_ignored_var), 234

rescode.wrn_sol_filter (wrn_sol_filter), 234
rescode.wrn_spar_max_len

(wrn_spar_max_len), 234
rescode.wrn_sym_mat_large

(wrn_sym_mat_large), 234
rescode.wrn_too_few_basis_vars

(wrn_too_few_basis_vars), 234
rescode.wrn_too_many_basis_vars

(wrn_too_many_basis_vars), 234
rescode.wrn_undef_sol_file_name

(wrn_undef_sol_file_name), 234
rescode.wrn_using_generic_names

(wrn_using_generic_names), 234
rescode.wrn_write_changed_names

(wrn_write_changed_names), 234
rescode.wrn_write_discarded_cfix

(wrn_write_discarded_cfix), 234
rescode.wrn_zero_aij (wrn_zero_aij), 234
rescode.wrn_zeros_in_sparse_col

(wrn_zeros_in_sparse_col), 234
rescode.wrn_zeros_in_sparse_row

(wrn_zeros_in_sparse_row), 235
rescode.err_ad_invalid_codelist

(err_ad_invalid_codelist), 215

rescode.err_api_array_too_small
(err_api_array_too_small), 215

rescode.err_api_cb_connect
(err_api_cb_connect), 215

rescode.err_api_fatal_error
(err_api_fatal_error), 215

rescode.err_api_internal (err_api_internal),
215

rescode.err_arg_is_too_large
(err_arg_is_too_large), 215

rescode.err_arg_is_too_small
(err_arg_is_too_small), 215

rescode.err_argument_dimension
(err_argument_dimension), 215

rescode.err_argument_is_too_large
(err_argument_is_too_large), 215

rescode.err_argument_lenneq
(err_argument_lenneq), 215

rescode.err_argument_perm_array
(err_argument_perm_array), 215

rescode.err_argument_type
(err_argument_type), 215

rescode.err_bar_var_dim (err_bar_var_dim),
215

rescode.err_basis (err_basis), 215
rescode.err_basis_factor (err_basis_factor),

215
rescode.err_basis_singular

(err_basis_singular), 215
rescode.err_blank_name (err_blank_name), 215
rescode.err_cannot_clone_nl

(err_cannot_clone_nl), 215
rescode.err_cannot_handle_nl

(err_cannot_handle_nl), 215
rescode.err_cbf_duplicate_acoord

(err_cbf_duplicate_acoord), 215
rescode.err_cbf_duplicate_bcoord

(err_cbf_duplicate_bcoord), 215
rescode.err_cbf_duplicate_con

(err_cbf_duplicate_con), 215
rescode.err_cbf_duplicate_int

(err_cbf_duplicate_int), 215
rescode.err_cbf_duplicate_obj

(err_cbf_duplicate_obj), 216
rescode.err_cbf_duplicate_objacoord

(err_cbf_duplicate_objacoord), 216
rescode.err_cbf_duplicate_var

(err_cbf_duplicate_var), 216
rescode.err_cbf_invalid_con_type

(err_cbf_invalid_con_type), 216
rescode.err_cbf_invalid_domain_dimension

(err_cbf_invalid_domain_dimension),
216

rescode.err_cbf_invalid_int_index
(err_cbf_invalid_int_index), 216

rescode.err_cbf_invalid_var_type
(err_cbf_invalid_var_type), 216

404 API Index

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_cbf_no_variables
(err_cbf_no_variables), 216

rescode.err_cbf_no_version_specified
(err_cbf_no_version_specified), 216

rescode.err_cbf_obj_sense
(err_cbf_obj_sense), 216

rescode.err_cbf_parse (err_cbf_parse), 216
rescode.err_cbf_syntax (err_cbf_syntax), 216
rescode.err_cbf_too_few_constraints

(err_cbf_too_few_constraints), 216
rescode.err_cbf_too_few_ints

(err_cbf_too_few_ints), 216
rescode.err_cbf_too_few_variables

(err_cbf_too_few_variables), 216
rescode.err_cbf_too_many_constraints

(err_cbf_too_many_constraints), 216
rescode.err_cbf_too_many_ints

(err_cbf_too_many_ints), 216
rescode.err_cbf_too_many_variables

(err_cbf_too_many_variables), 216
rescode.err_cbf_unsupported

(err_cbf_unsupported), 216
rescode.err_con_q_not_nsd

(err_con_q_not_nsd), 216
rescode.err_con_q_not_psd

(err_con_q_not_psd), 216
rescode.err_cone_index (err_cone_index), 217
rescode.err_cone_overlap (err_cone_overlap),

217
rescode.err_cone_overlap_append

(err_cone_overlap_append), 217
rescode.err_cone_rep_var

(err_cone_rep_var), 217
rescode.err_cone_size (err_cone_size), 217
rescode.err_cone_type (err_cone_type), 217
rescode.err_cone_type_str

(err_cone_type_str), 217
rescode.err_data_file_ext

(err_data_file_ext), 217
rescode.err_dup_name (err_dup_name), 217
rescode.err_duplicate_aij

(err_duplicate_aij), 217
rescode.err_duplicate_barvariable_names

(err_duplicate_barvariable_names), 217
rescode.err_duplicate_cone_names

(err_duplicate_cone_names), 217
rescode.err_duplicate_constraint_names

(err_duplicate_constraint_names), 217
rescode.err_duplicate_variable_names

(err_duplicate_variable_names), 217
rescode.err_end_of_file (err_end_of_file),

217
rescode.err_factor (err_factor), 217
rescode.err_feasrepair_cannot_relax

(err_feasrepair_cannot_relax), 217
rescode.err_feasrepair_inconsistent_bound

(err_feasrepair_inconsistent_bound),
217

rescode.err_feasrepair_solving_relaxed
(err_feasrepair_solving_relaxed), 217

rescode.err_file_license (err_file_license),
217

rescode.err_file_open (err_file_open), 217
rescode.err_file_read (err_file_read), 218
rescode.err_file_write (err_file_write), 218
rescode.err_first (err_first), 218
rescode.err_firsti (err_firsti), 218
rescode.err_firstj (err_firstj), 218
rescode.err_fixed_bound_values

(err_fixed_bound_values), 218
rescode.err_flexlm (err_flexlm), 218
rescode.err_global_inv_conic_problem

(err_global_inv_conic_problem), 218
rescode.err_huge_aij (err_huge_aij), 218
rescode.err_huge_c (err_huge_c), 218
rescode.err_identical_tasks

(err_identical_tasks), 218
rescode.err_in_argument (err_in_argument),

218
rescode.err_index (err_index), 218
rescode.err_index_arr_is_too_large

(err_index_arr_is_too_large), 218
rescode.err_index_arr_is_too_small

(err_index_arr_is_too_small), 218
rescode.err_index_is_too_large

(err_index_is_too_large), 218
rescode.err_index_is_too_small

(err_index_is_too_small), 218
rescode.err_inf_dou_index

(err_inf_dou_index), 218
rescode.err_inf_dou_name

(err_inf_dou_name), 218
rescode.err_inf_int_index

(err_inf_int_index), 218
rescode.err_inf_int_name

(err_inf_int_name), 218
rescode.err_inf_lint_index

(err_inf_lint_index), 218
rescode.err_inf_lint_name

(err_inf_lint_name), 218
rescode.err_inf_type (err_inf_type), 219
rescode.err_infeas_undefined

(err_infeas_undefined), 219
rescode.err_infinite_bound

(err_infinite_bound), 219
rescode.err_int64_to_int32_cast

(err_int64_to_int32_cast), 219
rescode.err_internal (err_internal), 219
rescode.err_internal_test_failed

(err_internal_test_failed), 219
rescode.err_inv_aptre (err_inv_aptre), 219
rescode.err_inv_bk (err_inv_bk), 219
rescode.err_inv_bkc (err_inv_bkc), 219
rescode.err_inv_bkx (err_inv_bkx), 219
rescode.err_inv_cone_type

(err_inv_cone_type), 219

API Index 405

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_inv_cone_type_str
(err_inv_cone_type_str), 219

rescode.err_inv_marki (err_inv_marki), 219
rescode.err_inv_markj (err_inv_markj), 219
rescode.err_inv_name_item

(err_inv_name_item), 219
rescode.err_inv_numi (err_inv_numi), 219
rescode.err_inv_numj (err_inv_numj), 219
rescode.err_inv_optimizer

(err_inv_optimizer), 219
rescode.err_inv_problem (err_inv_problem),

219
rescode.err_inv_qcon_subi

(err_inv_qcon_subi), 219
rescode.err_inv_qcon_subj

(err_inv_qcon_subj), 219
rescode.err_inv_qcon_subk

(err_inv_qcon_subk), 219
rescode.err_inv_qcon_val (err_inv_qcon_val),

219
rescode.err_inv_qobj_subi

(err_inv_qobj_subi), 220
rescode.err_inv_qobj_subj

(err_inv_qobj_subj), 220
rescode.err_inv_qobj_val (err_inv_qobj_val),

220
rescode.err_inv_sk (err_inv_sk), 220
rescode.err_inv_sk_str (err_inv_sk_str), 220
rescode.err_inv_skc (err_inv_skc), 220
rescode.err_inv_skn (err_inv_skn), 220
rescode.err_inv_skx (err_inv_skx), 220
rescode.err_inv_var_type (err_inv_var_type),

220
rescode.err_invalid_accmode

(err_invalid_accmode), 220
rescode.err_invalid_aij (err_invalid_aij), 220
rescode.err_invalid_ampl_stub

(err_invalid_ampl_stub), 220
rescode.err_invalid_barvar_name

(err_invalid_barvar_name), 220
rescode.err_invalid_compression

(err_invalid_compression), 220
rescode.err_invalid_con_name

(err_invalid_con_name), 220
rescode.err_invalid_cone_name

(err_invalid_cone_name), 220
rescode.err_invalid_file_format_for_cones

(err_invalid_file_format_for_cones),
220

rescode.err_invalid_file_format_for_general_nl
(err_invalid_file_format_for_general_nl),
220

rescode.err_invalid_file_format_for_sym_mat
(err_invalid_file_format_for_sym_mat),
220

rescode.err_invalid_file_name
(err_invalid_file_name), 220

rescode.err_invalid_format_type
(err_invalid_format_type), 220

rescode.err_invalid_idx (err_invalid_idx),
220

rescode.err_invalid_iomode
(err_invalid_iomode), 220

rescode.err_invalid_max_num
(err_invalid_max_num), 221

rescode.err_invalid_name_in_sol_file
(err_invalid_name_in_sol_file), 221

rescode.err_invalid_obj_name
(err_invalid_obj_name), 221

rescode.err_invalid_objective_sense
(err_invalid_objective_sense), 221

rescode.err_invalid_problem_type
(err_invalid_problem_type), 221

rescode.err_invalid_sol_file_name
(err_invalid_sol_file_name), 221

rescode.err_invalid_stream
(err_invalid_stream), 221

rescode.err_invalid_surplus
(err_invalid_surplus), 221

rescode.err_invalid_sym_mat_dim
(err_invalid_sym_mat_dim), 221

rescode.err_invalid_task (err_invalid_task),
221

rescode.err_invalid_utf8 (err_invalid_utf8),
221

rescode.err_invalid_var_name
(err_invalid_var_name), 221

rescode.err_invalid_wchar
(err_invalid_wchar), 221

rescode.err_invalid_whichsol
(err_invalid_whichsol), 221

rescode.err_json_data (err_json_data), 221
rescode.err_json_format (err_json_format),

221
rescode.err_json_missing_data

(err_json_missing_data), 221
rescode.err_json_number_overflow

(err_json_number_overflow), 221
rescode.err_json_string (err_json_string),

221
rescode.err_json_syntax (err_json_syntax),

221
rescode.err_last (err_last), 221
rescode.err_lasti (err_lasti), 221
rescode.err_lastj (err_lastj), 221
rescode.err_lau_arg_k (err_lau_arg_k), 222
rescode.err_lau_arg_m (err_lau_arg_m), 222
rescode.err_lau_arg_n (err_lau_arg_n), 222
rescode.err_lau_arg_trans

(err_lau_arg_trans), 222
rescode.err_lau_arg_transa

(err_lau_arg_transa), 222
rescode.err_lau_arg_transb

(err_lau_arg_transb), 222

406 API Index

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_lau_arg_uplo (err_lau_arg_uplo),
222

rescode.err_lau_invalid_lower_triangular_matrix
(err_lau_invalid_lower_triangular_matrix),
222

rescode.err_lau_invalid_sparse_symmetric_matrix
(err_lau_invalid_sparse_symmetric_matrix),
222

rescode.err_lau_not_positive_definite
(err_lau_not_positive_definite), 222

rescode.err_lau_singular_matrix
(err_lau_singular_matrix), 222

rescode.err_lau_unknown (err_lau_unknown),
222

rescode.err_license (err_license), 222
rescode.err_license_cannot_allocate

(err_license_cannot_allocate), 222
rescode.err_license_cannot_connect

(err_license_cannot_connect), 222
rescode.err_license_expired

(err_license_expired), 222
rescode.err_license_feature

(err_license_feature), 222
rescode.err_license_invalid_hostid

(err_license_invalid_hostid), 222
rescode.err_license_max (err_license_max),

222
rescode. (err_license_moseklm_daemon), 222
rescode.err_license_no_server_line

(err_license_no_server_line), 222
rescode.err_license_no_server_support

(err_license_no_server_support), 222
rescode.err_license_server

(err_license_server), 223
rescode.err_license_server_version

(err_license_server_version), 223
rescode.err_license_version

(err_license_version), 223
rescode.err_link_file_dll (err_link_file_dll),

223
rescode.err_living_tasks (err_living_tasks),

223
rescode.err_lower_bound_is_a_nan

(err_lower_bound_is_a_nan), 223
rescode.err_lp_dup_slack_name

(err_lp_dup_slack_name), 223
rescode.err_lp_empty (err_lp_empty), 223
rescode.err_lp_file_format

(err_lp_file_format), 223
rescode.err_lp_format (err_lp_format), 223
rescode.err_lp_free_constraint

(err_lp_free_constraint), 223
rescode.err_lp_incompatible

(err_lp_incompatible), 223
rescode.err_lp_invalid_con_name

(err_lp_invalid_con_name), 223
rescode.err_lp_invalid_var_name

(err_lp_invalid_var_name), 223

rescode.err_lp_write_conic_problem
(err_lp_write_conic_problem), 223

rescode.err_lp_write_geco_problem
(err_lp_write_geco_problem), 223

rescode.err_lu_max_num_tries
(err_lu_max_num_tries), 223

rescode.err_max_len_is_too_small
(err_max_len_is_too_small), 223

rescode.err_maxnumbarvar
(err_maxnumbarvar), 223

rescode.err_maxnumcon (err_maxnumcon), 224
rescode.err_maxnumcone (err_maxnumcone),

224
rescode.err_maxnumqnz (err_maxnumqnz), 224
rescode.err_maxnumvar (err_maxnumvar), 224
rescode.err_mio_internal (err_mio_internal),

224
rescode.err_mio_invalid_node_optimizer

(err_mio_invalid_node_optimizer), 224
rescode.err_mio_invalid_root_optimizer

(err_mio_invalid_root_optimizer), 224
rescode.err_mio_no_optimizer

(err_mio_no_optimizer), 224
rescode.err_mio_not_loaded

(err_mio_not_loaded), 224
rescode.err_missing_license_file

(err_missing_license_file), 224
rescode.err_mixed_conic_and_nl

(err_mixed_conic_and_nl), 224
rescode.err_mps_cone_overlap

(err_mps_cone_overlap), 224
rescode.err_mps_cone_repeat

(err_mps_cone_repeat), 224
rescode.err_mps_cone_type

(err_mps_cone_type), 224
rescode.err_mps_duplicate_q_element

(err_mps_duplicate_q_element), 224
rescode.err_mps_file (err_mps_file), 224
rescode.err_mps_inv_bound_key

(err_mps_inv_bound_key), 224
rescode.err_mps_inv_con_key

(err_mps_inv_con_key), 224
rescode.err_mps_inv_field

(err_mps_inv_field), 224
rescode.err_mps_inv_marker

(err_mps_inv_marker), 224
rescode.err_mps_inv_sec_name

(err_mps_inv_sec_name), 224
rescode.err_mps_inv_sec_order

(err_mps_inv_sec_order), 224
rescode.err_mps_invalid_obj_name

(err_mps_invalid_obj_name), 225
rescode.err_mps_invalid_objsense

(err_mps_invalid_objsense), 225
rescode.err_mps_mul_con_name

(err_mps_mul_con_name), 225
rescode.err_mps_mul_csec

(err_mps_mul_csec), 225

API Index 407

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_mps_mul_qobj
(err_mps_mul_qobj), 225

rescode.err_mps_mul_qsec
(err_mps_mul_qsec), 225

rescode.err_mps_no_objective
(err_mps_no_objective), 225

rescode.err_mps_non_symmetric_q
(err_mps_non_symmetric_q), 225

rescode.err_mps_null_con_name
(err_mps_null_con_name), 225

rescode.err_mps_null_var_name
(err_mps_null_var_name), 225

rescode.err_mps_splitted_var
(err_mps_splitted_var), 225

rescode.err_mps_tab_in_field2
(err_mps_tab_in_field2), 225

rescode.err_mps_tab_in_field3
(err_mps_tab_in_field3), 225

rescode.err_mps_tab_in_field5
(err_mps_tab_in_field5), 225

rescode.err_mps_undef_con_name
(err_mps_undef_con_name), 225

rescode.err_mps_undef_var_name
(err_mps_undef_var_name), 225

rescode.err_mul_a_element
(err_mul_a_element), 225

rescode.err_name_is_null
(err_name_is_null), 225

rescode.err_name_max_len
(err_name_max_len), 225

rescode.err_nan_in_blc (err_nan_in_blc), 225
rescode.err_nan_in_blx (err_nan_in_blx), 225
rescode.err_nan_in_buc (err_nan_in_buc),

225
rescode.err_nan_in_bux (err_nan_in_bux),

225
rescode.err_nan_in_c (err_nan_in_c), 226
rescode.err_nan_in_double_data

(err_nan_in_double_data), 226
rescode.err_negative_append

(err_negative_append), 226
rescode.err_negative_surplus

(err_negative_surplus), 226
rescode.err_newer_dll (err_newer_dll), 226
rescode.err_no_bars_for_solution

(err_no_bars_for_solution), 226
rescode.err_no_barx_for_solution

(err_no_barx_for_solution), 226
rescode.err_no_basis_sol (err_no_basis_sol),

226
rescode.err_no_dual_for_itg_sol

(err_no_dual_for_itg_sol), 226
rescode.err_no_dual_infeas_cer

(err_no_dual_infeas_cer), 226
rescode.err_no_init_env (err_no_init_env),

226
rescode.err_no_optimizer_var_type

(err_no_optimizer_var_type), 226

rescode.err_no_primal_infeas_cer
(err_no_primal_infeas_cer), 226

rescode.err_no_snx_for_bas_sol
(err_no_snx_for_bas_sol), 226

rescode.err_no_solution_in_callback
(err_no_solution_in_callback), 226

rescode.err_non_unique_array
(err_non_unique_array), 226

rescode.err_nonconvex (err_nonconvex), 226
rescode.err_nonlinear_equality

(err_nonlinear_equality), 226
rescode.err_nonlinear_functions_not_allowed

(err_nonlinear_functions_not_allowed),
226

rescode.err_nonlinear_ranged
(err_nonlinear_ranged), 226

rescode.err_nr_arguments
(err_nr_arguments), 226

rescode.err_null_env (err_null_env), 226
rescode.err_null_pointer (err_null_pointer),

227
rescode.err_null_task (err_null_task), 227
rescode.err_numconlim (err_numconlim), 227
rescode.err_numvarlim (err_numvarlim), 227
rescode.err_obj_q_not_nsd

(err_obj_q_not_nsd), 227
rescode.err_obj_q_not_psd

(err_obj_q_not_psd), 227
rescode.err_objective_range

(err_objective_range), 227
rescode.err_older_dll (err_older_dll), 227
rescode.err_open_dl (err_open_dl), 227
rescode.err_opf_format (err_opf_format), 227
rescode.err_opf_new_variable

(err_opf_new_variable), 227
rescode.err_opf_premature_eof

(err_opf_premature_eof), 227
rescode.err_optimizer_license

(err_optimizer_license), 227
rescode.err_overflow (err_overflow), 227
rescode.err_param_index (err_param_index),

227
rescode.err_param_is_too_large

(err_param_is_too_large), 227
rescode.err_param_is_too_small

(err_param_is_too_small), 227
rescode.err_param_name (err_param_name),

227
rescode.err_param_name_dou

(err_param_name_dou), 227
rescode.err_param_name_int

(err_param_name_int), 227
rescode.err_param_name_str

(err_param_name_str), 227
rescode.err_param_type (err_param_type), 228
rescode.err_param_value_str

(err_param_value_str), 228

408 API Index

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_platform_not_licensed
(err_platform_not_licensed), 228

rescode.err_postsolve (err_postsolve), 228
rescode.err_pro_item (err_pro_item), 228
rescode.err_prob_license (err_prob_license),

228
rescode.err_qcon_subi_too_large

(err_qcon_subi_too_large), 228
rescode.err_qcon_subi_too_small

(err_qcon_subi_too_small), 228
rescode.err_qcon_upper_triangle

(err_qcon_upper_triangle), 228
rescode.err_qobj_upper_triangle

(err_qobj_upper_triangle), 228
rescode.err_read_format (err_read_format),

228
rescode.err_read_lp_missing_end_tag

(err_read_lp_missing_end_tag), 228
rescode.err_read_lp_nonexisting_name

(err_read_lp_nonexisting_name),
228

rescode.err_remove_cone_variable
(err_remove_cone_variable), 228

rescode.err_repair_invalid_problem
(err_repair_invalid_problem), 228

rescode.err_repair_optimization_failed
(err_repair_optimization_failed), 228

rescode.err_sen_bound_invalid_lo
(err_sen_bound_invalid_lo), 228

rescode.err_sen_bound_invalid_up
(err_sen_bound_invalid_up), 228

rescode.err_sen_format (err_sen_format), 228
rescode.err_sen_index_invalid

(err_sen_index_invalid), 228
rescode.err_sen_index_range

(err_sen_index_range), 228
rescode.err_sen_invalid_regexp

(err_sen_invalid_regexp), 228
rescode.err_sen_numerical

(err_sen_numerical), 229
rescode.err_sen_solution_status

(err_sen_solution_status), 229
rescode.err_sen_undef_name

(err_sen_undef_name), 229
rescode.err_sen_unhandled_problem_type

(err_sen_unhandled_problem_type),
229

rescode.err_server_connect
(err_server_connect), 229

rescode.err_server_protocol
(err_server_protocol), 229

rescode.err_server_status
(err_server_status), 229

rescode.err_server_token (err_server_token),
229

rescode.err_size_license (err_size_license),
229

rescode.err_size_license_con
(err_size_license_con), 229

rescode.err_size_license_intvar
(err_size_license_intvar), 229

rescode.err_size_license_numcores
(err_size_license_numcores), 229

rescode.err_size_license_var
(err_size_license_var), 229

rescode.err_sol_file_invalid_number
(err_sol_file_invalid_number), 229

rescode.err_solitem (err_solitem), 229
rescode.err_solver_probtype

(err_solver_probtype), 229
rescode.err_space (err_space), 229
rescode.err_space_leaking

(err_space_leaking), 229
rescode.err_space_no_info

(err_space_no_info), 229
rescode.err_sym_mat_duplicate

(err_sym_mat_duplicate), 229
rescode.err_sym_mat_huge

(err_sym_mat_huge), 229
rescode.err_sym_mat_invalid

(err_sym_mat_invalid), 230
rescode.err_sym_mat_invalid_col_index

(err_sym_mat_invalid_col_index), 230
rescode.err_sym_mat_invalid_row_index

(err_sym_mat_invalid_row_index),
230

rescode.err_sym_mat_invalid_value
(err_sym_mat_invalid_value), 230

rescode.err_sym_mat_not_lower_tringular
(err_sym_mat_not_lower_tringular),
230

rescode.err_task_incompatible
(err_task_incompatible), 230

rescode.err_task_invalid (err_task_invalid),
230

rescode.err_task_write (err_task_write), 230
rescode.err_thread_cond_init

(err_thread_cond_init), 230
rescode.err_thread_create

(err_thread_create), 230
rescode.err_thread_mutex_init

(err_thread_mutex_init), 230
rescode.err_thread_mutex_lock

(err_thread_mutex_lock), 230
rescode.err_thread_mutex_unlock

(err_thread_mutex_unlock), 230
rescode.err_toconic_constr_not_conic

(err_toconic_constr_not_conic), 230
rescode.err_toconic_constr_q_not_psd

(err_toconic_constr_q_not_psd), 230
rescode.err_toconic_constraint_fx

(err_toconic_constraint_fx), 230
rescode.err_toconic_constraint_ra

(err_toconic_constraint_ra), 230

API Index 409

MOSEK Optimizer API for Python, Release 8.0.0.94

rescode.err_toconic_objective_not_psd
(err_toconic_objective_not_psd), 230

rescode.err_too_small_max_num_nz
(err_too_small_max_num_nz), 230

rescode.err_too_small_maxnumanz
(err_too_small_maxnumanz), 230

rescode.err_unb_step_size
(err_unb_step_size), 230

rescode.err_undef_solution
(err_undef_solution), 230

rescode.err_undefined_objective_sense
(err_undefined_objective_sense), 231

rescode.err_unhandled_solution_status
(err_unhandled_solution_status), 231

rescode.err_unknown (err_unknown), 231
rescode.err_upper_bound_is_a_nan

(err_upper_bound_is_a_nan), 231
rescode.err_upper_triangle

(err_upper_triangle), 231
rescode.err_user_func_ret

(err_user_func_ret), 231
rescode.err_user_func_ret_data

(err_user_func_ret_data), 231
rescode.err_user_nlo_eval

(err_user_nlo_eval), 231
rescode.err_user_nlo_eval_hessubi

(err_user_nlo_eval_hessubi), 231
rescode.err_user_nlo_eval_hessubj

(err_user_nlo_eval_hessubj), 231
rescode.err_user_nlo_func

(err_user_nlo_func), 231
rescode.err_whichitem_not_allowed

(err_whichitem_not_allowed), 231
rescode.err_whichsol (err_whichsol), 231
rescode.err_write_lp_format

(err_write_lp_format), 231
rescode.err_write_lp_non_unique_name

(err_write_lp_non_unique_name),
231

rescode.err_write_mps_invalid_name
(err_write_mps_invalid_name), 231

rescode.err_write_opf_invalid_var_name
(err_write_opf_invalid_var_name),
231

rescode.err_writing_file (err_writing_file),
231

rescode.err_xml_invalid_problem_type
(err_xml_invalid_problem_type), 231

rescode.err_y_is_undefined
(err_y_is_undefined), 232

Types
booleant, 261
dparam, 261
env_t, 261
int32t, 261
int64t, 261
iparam, 261

realt, 261
rescode, 262
sparam, 262
string_t, 261
task_t, 261
userhandle_t, 261
wchart, 261

410 API Index

	Introduction
	Why the Optimizer API for Python?
	License agreement

	Installation
	Compatibility
	Instructions
	Testing the Installation

	Basic Tutorials
	The Basics Tutorial
	Linear Optimization
	Conic Quadratic Optimization
	Semidefinite Optimization
	Quadratic Optimization
	Integer Optimization
	Optimizer Termination Handling
	Problem Modification and Reoptimization
	Solution Analysis
	Solver Parameters

	Nonlinear Tutorials
	Separable Convex (SCopt) Interface

	Advanced Tutorials
	The Progress Call-back
	Solving Linear Systems Involving the Basis Matrix
	Calling BLAS/LAPACK Routines from MOSEK
	Computing a Sparse Cholesky Factorization
	Converting a quadratically constrained problem to conic form
	MOSEK OptServer

	Guidelines
	Deployment
	Efficiency Considerations
	The license system

	Case Studies
	Portfolio Optimization

	Errors and Warnings
	Warnings
	Errors

	Managing I/O
	Stream I/O
	File I/O
	Verbosity

	Problem Formulation and Solutions
	Linear Optimization
	Conic Quadratic Optimization
	Semidefinite Optimization
	Quadratic and Quadratically Constrained Optimization
	General Convex Optimization

	The Optimizers for Continuous Problems
	Presolve
	Linear Optimization
	Conic Optimization
	Nonlinear Convex Optimization
	Using Multiple Threads in an Optimizer

	The Optimizer for Mixed-integer Problems
	Some Concepts and Facts Related to Mixed-integer Optimization
	The Mixed-integer Optimizer
	Termination Criterion
	Parameters Affecting the Termination of the Integer Optimizer.
	How to Speed Up the Solution Process
	Understanding Solution Quality

	Problem Analyzer
	General Characteristics
	Objective
	Linear Constraints
	Constraint and Variable Bounds
	Quadratic Constraints
	Conic Constraints

	Analyzing Infeasible Problems
	Example: Primal Infeasibility
	Locating the cause of Primal Infeasibility
	Locating the Cause of Dual Infeasibility
	The Infeasibility Report
	Theory Concerning Infeasible Problems
	The Certificate of Primal Infeasibility
	The certificate of dual infeasibility

	Sensitivity Analysis
	Sensitivity Analysis for Linear Problems
	Sensitivity Analysis with MOSEK

	API Reference
	API Conventions
	Functions grouped by topic
	The Interface for Separable Convex Optimization
	Parameters
	Response codes
	Enumerations
	Data Types
	Class Env
	Class Task
	Exceptions

	Supported File Formats
	The LP File Format
	The MPS File Format
	The OPF Format
	The CBF Format
	The XML (OSiL) Format
	The Task Format
	The JSON Format
	The Solution File Format

	Interface changes
	Compatibility
	Functions
	Parameters
	Constants
	Response Codes

	Bibliography
	API Index

