maosek

MOSEK Fusion API for Matlab
Release 8.0.0.94

MOSEK ApS

2017

Introduction

1.1 Why the Fusion API for Matlab?

1.2 License agreement
Installation

2.1 Compatibility 0oL
2.2 Instructions. oo
2.3 Running Exampleso
Guidelines

3.1 Known Limitations
3.2 Deployment 0
3.3 The license system
Basic Tutorials

4.1 Linear Optimization
4.2 Conic Quadratic Optimization
4.3 Semidefinite Optimization
4.4 Integer Optimization

Design Principles
5.1 A Seamless Multi-language API

5.2 What You Write is What MOSEK Gets

Conic Optimization Modeling

6.1 Optimization Model
6.2 Matrices
6.3 Domains Lo
6.4 Variables Lo oL
6.5 Linear Expressions
6.6 Constraintso
6.7 Objective Function
6.8 Variable and Expression Views

Case Studies

7.1 Portfolio Optimization
7.2 Primal Support-Vector Machine (SVM)
7.3 2D Total Variation

7.4 Inner and outer Lowner-John Ellipsoids
7.5 Nearest Correlation Matrix Problem
7.6 Semidefinite Relaxation of MIQCQP Problems
77 SUDOKU
7.8 Multi-processors Scheduling
7.9 Traveling Salesman Problem (TSP)

CONTENTS

8 Interaction With the Solver

8.1 Solver Parameters e e e e e e e e e
8.2 Problem and Solution Status
8.3 Input/Output
8.4 Access to Optimizer APT Task
8.5 Stopping the Solver Execution

Performance considerations
9.1 Sparse Matrices o L
9.2 Nested Expressions o e e e

9.3 Names .

10 Problem Formulation and Solutions

10.1 Linear Optimization o i e
10.2 Conic Quadratic Optimization
10.3 Semidefinite Optimization L L

11 The Optimizers for Continuous Problems

11.1 Presolve .

11.2 Linear Optimization o e
11.3 Conic Optimization e e
11.4 Using Multiple Threads in an Optimizer

12 The Optimizer for Mixed-integer Problems
12.1 Some Concepts and Facts Related to Mixed-integer Optimization

12.2 The Mixed
12.3 Terminatio

-integer Optimizer
n Criterion e e e e e e e e e

12.4 Parameters Affecting the Termination of the Integer Optimizer.
12.5 How to Speed Up the Solution Process
12.6 Understanding Solution Quality

13 Fustion API Reference

13.1 Class list
13.2 Exceptions

13.3 Enumerations e e e e e e e e
13.4 Parameters e e e

14 Supported File Formats

14.1 The LP File Format e e e
14.2 The MPS File Format e
14.3 The OPF Format e
14.4 The CBF Format e e

14.5 The XML

(OSIL) Format e

14.6 The Task Format e e e e e e e e

14.7 The JSON

Format e

14.8 The Solution File Format e e e e e e e

15 Interface changes
15.1 Compatibility e
15.2 Parameters L e e e e e e e

15.3 Constants

Bibliography

API Index

87
87
88
89
92
92

97
97
97
98

99
99
102
104

107
107
109
115
116

117
117
118
118
119
119
120

121
121
187
191
193

229
230
235
246
255
270
270
270
278

281
281
281
283

287

289

CHAPTER

ONE

INTRODUCTION

The MOSEK Optimization Suite 8.0.0.94 is a powerfull software package capable of solving large-scale
optimization problems of the following kind:

e linear,

e convex quadratic,

e conic quadratic (also known as second-order cone),
e semidefinite,

e and general convex.

Integer constrained variables are supported for all problem classes except for semidefinite and general
convex problems. In order to obtain an overview of features in the MOSEK Optimization Suite consult
the product introduction guide.

1.1 Why the Fusion API for Matlab?

Fusion is an object oriented API specifically designed to build conic optimization models in a simple and
expressive manner, using mainstream programming languages.

Fusion API

Python C++ Java MATLAB .NET

With focus on usability and compactness, it helps the user focus on the modeling instead of coding.

The most widespread class of optimization problems is linear optimization problems, where all relations
are linear. The tremendous success of both applications and theory of linear optimization can be ascribed
to the following factors:

e The required data are simple, i.e. just matrices and vectors.

e Convexity is guaranteed since the problem is convex by construction.

e Linear functions are trivially differentiable.

e There exist very efficient algorithms and software for solving linear problems.
e Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the many
advantages of linear optimization may outweight the disadvantages. In some cases, however, the problem
formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic

http://docs.mosek.com/8.0/intro/index.html

MOSEK Fusion API for Matlab, Release 8.0.0.94

optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while
preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

Az —-be K
where £ = {y : y > 0}, i.e,,

Axr —b=y,

y € K.

In conic optimization a wider class of convex sets I is allowed, for example in 3 dimensions K may
correspond to an ice cream cone. The conic optimizer in MOSEK supports three structurally different
types of cones K, which allows a surprisingly large number of nonlinear relations to be modeled (as
described in the MOSEK modeling cookbook), while preserving the nice algorithmic and theoretical
properties of linear optimization.

A typical (low-level) solver API requires the problem to be serialized into a single matrix and a few
vectors, and constructing (or modifying) such a problem often proves to be both a time-consuming and
error-prone process. Fusion, on the other hand, introduces a higher level of abstraction, which allows
the user to focus explicitly on modeling oriented aspects rather than reformulating a given model for a
particular solver API. For example, in Fusion it is easy to add variables and constraints to an existing
model.

Typically a conic optimization model in Fusion can be developed in a fraction of the time compared
to using a low-level C API, but of course Fusion introduces a computational overhead compared to
customized C code. In most cases, however, the overhead is small compared to the overall solution time,
and we generally recommend that Fusion is used as a first step for building and verifying new models.
Often, the final Fusion implementation will be directly suited for production code, and otherwise it
readily provides a reference implementation for model verification.

1.2 License agreement

Before using the MOSEK software, please read the license agreement available in the distribu-
tion at <MSKHOME>/mosek/8/mosek-eula.pdf or on the MOSEK website https://mosek.com /sales
license-agreement.

MOSEK uses some third-party open-source libraries. Their license details follows.

zlib

MOSEK includes the zlib library obtained from the zlib website. The license agreement for zlib is shown
in Listing 1.1.

Listing 1.1: zlib license.

zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012

Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

2 Chapter 1. Introduction

http://docs.mosek.com/modeling-cookbook/index.html
https://mosek.com/sales/license-agreement
https://mosek.com/sales/license-agreement
http://zlib.org

MOSEK Fusion API for Matlab, Release 8.0.0.94

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler

jloup@gzip.org madler@alumni.caltech.edu

fplib

MOSEK includes the floating point formatting library developed by David M. Gay obtained from the
netlib website. The license agreement for fplib is shown in Listing 1.2.

Listing 1.2: fplib license.

/KooK ok ok sk sk sk sk sk sk ok sk ok ok ok ok Kk Kk Kk o ok ok ok ok ok ok ok ok sk sk sk sk sk sk ok ok koK kK K Kk ok ok ok ok sk ok sk ok ok ok ok ok

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

ok ok K K 3 oK oK oK K 3 ok oK oK K o ok ok oK K ok ok oK K K ok ok ok K 3K ok oK K K 3 ok oK K K 3 ok ok K K ok ok ok K ok ok ok sk ok ok kK /

1.2. License agreement 3

http://www.netlib.org

MOSEK Fusion API for Matlab, Release 8.0.0.94

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

In this section we discuss how to install and setup the MOSEK Fusion API for Matlab.

2.1 Compatibility

Fusion supports MATLAB 2014a+ with Java enabled and JavaVM 1.8 and later.

2.2 Instructions

To use the API the relevant paths must be set in MATLAB using either the GUI or from the command
line typing

addpath mosek/<MSKVER>/toolbox/
javaaddpath <MSKHOME>/mosek/8/tools/platform/<PLATFORM>/bin/mosekmatlab. jar

where
e <PLATFORM> is either linux64x86 or 0sz64x86.
e <MSKHOME> is the root of the MOSEK installation.

Important: It is important to use the mosekmatlab. jar file as other .jar files available in the distri-
bution will not work with this interface.

2.3 Running Examples

The examples directories contain scripts for building and running the various examples; these are called
build.bat and run.bat on Windows, and build.sh and run.sh on Linux and Mac OS X. Running all
examples and making sure that all complete with no error is a recommeneded preliminary step to check
that MOSEK Fusion is properly set up.

Note: A valid license must be available and set up.

MOSEK Fusion API for Matlab, Release 8.0.0.94

6 Chapter 2. Installation

CHAPTER

THREE

GUIDELINES

3.1 Known Limitations

The main limitation in the use of the MOSEK Fusion API for Matlab 8.0.0.94 are reported in this
section.

3.1.1 Modeling Limitations

To design an API that looks almost the same across several programming languaes, some limitations are
needed:

Fusion imposes some limitations on certain aspects of a model:

e Constraints and variables belong to a single model, and cannot as such be used (e.g. stacked) with
objects from other models.

e Constraint and variable domains are immutable.

3.1.2 Memory Limitations

There are some hard limits on shapes and sizes in Fusion:
e The maximum number of variable elements used in a model can be no larger than 23! — 1.
e The maximum size of a dimension is 23! — 1.
e For efficiency reasons the total size of an item (the product of the dimensions) is limited to 263 — 1.

Fetching a solution from a shaped variable produces a flat array of values. This means that all values,
even the ones that are not used in the problem, are returned, and that the variable elements are linearly
indexed. In this case, it is better to create a slice variable holding the relevant elements and fetch
the solution for this; fetching the full solution may cause an exception due to memory exhaustion or
platform-dependant constraints on array sizes.

3.2 Deployment

When redistributing a Matlab application using the MOSEK Fusion API for Matlab 8.0.0.94, the
following libraries must be included:

3.3 The license system

MOSEK is a commercial product that always needs a valid license to work. A license is typically
provided as a license file that allows the user to access the subset of the MOSEK Optimization Suite

MOSEK Fusion API for Matlab, Release 8.0.0.94

functionalities it is entitled for, and for the right amount of time. MOSEK uses a third party license
manager to implement license checking.

By default a license token remains checked out for the duration of the MOSEK session, i.e.
1. a license token is checked out when the method Model.solve is called the first time and
2. it is returned when the MYodel class instance is destroyed.

To change the license systems behavior to returning the license token after each call to MOSEK set the
parameter cachelicense to off.

Additionally license checkout and checkin can be controlled manually accessing the unerlying MOSEK
task and environment. Please see Section 8./.

3.3.1 Waiting for a free license

By default an error will be returned if no license token is available. By setting the parameter licenseWatt
MOSEK can be instructed to wait until a license token is available.

See section 8.1.

3.3.2 Manually stopping the license system

8 Chapter 3. Guidelines

CHAPTER
FOUR

BASIC TUTORIALS

In this section a number of examples is provided to demonstrate the functionality required for solving
linear, conic, semidefinite and quadratic problems as well as mixed integer problems.

o Linear optimization tutorial : It shows how to input a linear program. It will show how

— define variables and their bounds,

define constraints and their bounds,

define a linear objective function,

input a linear program but rows or by column.
— retrieve the solution.

e Conic quadratic optimization tutorial : The basic steps needed to formulate a conic quadratic
program are introduced:

— define quadratic cones,
— assign the relevant variables to their cones.

e Semudefinite optimization tutorial : How to input semidefintite optimization problems is the topic
of this tutorial, and in particular how to

— input semidefinite matrices and in sparse format,
— add semidefinite matrix variable and
— formulate linear constraints and objective function based on matrix variables.

o Mized-Integer optimization tutorial : This tutorial shows how integrality conditions can be speci-
fied.

4.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem is a problem
of the following form:

Minimize or maximize the objective function

n—1

E o f
Cjxj+ ¢

Jj=0

subject to the linear constraints

n—1
ZESZaijjSui, k=0,....m—1,
j=0

and the bounds

7 <z;<uj, j=0,...,n—1,

MOSEK Fusion API for Matlab, Release 8.0.0.94

where we have used the problem elements:
e m and n which are the number of constraints and variables respectively,
e 1 which is the variable vector of length n,

e ¢ which is a coefficient vector of size n

€o

Cn—1

¢/ which is a constant,

A which is a m x n matrix of coefficients is given by

ao,0 T ag,(n—1)

G(m-1),0 " G(m—1),(n-1)

e [¢ and u® which specify the lower and upper bounds on constraints respectively, and

e [and u” which specifies the lower and upper bounds on variables respectively.

Note: Please note the unconventional notation using 0 as the first index rather than 1. Hence, x is
the first element in variable vector x.

4.1.1 Example LO1

The following is an example of a linear optimization problem:

maximize 3xzg + lxz; + bdxs + lag

subject to 3z + lx; + 24 = 30, (4.1)
2£E0 +].(El + 31’2 +].xg Z].57 ’
221 + 3z3 < 25,
having the bounds
0 S Zo S 0,
0 S €1 S 105
0 S X2 S 00,
0 < 23 < o0

We start our implementation in Fuston importing the relevant modules, i.e.

import mosek.fusion.x*;

Next we declare an optimization model creating an instance of the Xodel class:

’M = Model();

From now on most of our steps will involve M. The variables in problem (4.1) can be declared specifying:
e an (optional) name,
e their dimension,

e the bounds.

10 Chapter 4. Basic Tutorials

MOSEK Fusion API for Matlab, Release 8.0.0.94

/ Create variable 'z' of length 4
x = M.variable('x', 4, Domain.greaterThan(0.0));

It is important to notice that the bound will be applied element-wise.

To define the constraints, we assume the coeffient matrix to be given as an array of rows A, each one
being a dense array as well.

/ Create three constraints

M.constraint('cl', Expr.dot(A(1,:), x), Domain.equalsTo(30.0));
M.constraint('c2', Expr.dot(A(2,:), x), Domain.greaterThan(15.0));
M.constraint('c3', Expr.dot(A(3,:), x), Domain.lessThan(25.0));

We end the definition of our optimization model setting the objective function: the coefficient are assumed
to be given in a single one dimensional array c.

4 Set the objective function to (c”t * z)
M.objective('obj', ObjectiveSense.Maximize, Expr.dot(c, x));

Finally, we only need to call the Yodel.solve method:

M.solve();

The values attained by each variable can be obtained using the Variable. level method.

The complete code follows in Listing 4.1.

Listing 4.1: Fusion implementation of model (4.1).

function 1lol1()
import mosek.fusion.x*;

c = [3.0, 1.0, 5.0, 1.0];

A=13.0, 2.0, 0.0, 1.0 ;
2.0, 3.0, 1.0, 1.0 ; .
0.0, 0.0, 3.0, 2.0 1;

/ Create a model with the name 'lol'
M = Model();

4 Create variable 'z' of length 4
x = M.variable('x', 4, Domain.greaterThan(0.0));

Y

Create three constraints

M.constraint('cl', Expr.dot(A(l,:), x), Domain.equalsTo(30.0));
M.constraint('c2', Expr.dot(A(2,:), x), Domain.greaterThan(15.0));
M.constraint('c3', Expr.dot(A(3,:), x), Domain.lessThan(25.0));

4 Set the objective function to (c"t * z)

M.objective('obj', ObjectiveSense.Maximize, Expr.dot(c, x));

% Solve the problem
M.solve();

/ Get the solution wvalues
sol = x.level();
disp(['[x1 x2 x3 x4] = ' mat2str(sol',7)]);

4.1. Linear Optimization 11

MOSEK Fusion API for Matlab, Release 8.0.0.94

4.2 Conic Quadratic Optimization

Conic optimization is a generalization of linear optimization, allowing constraints of the type
xt S K:t,

where 2! is a subset of the problem variables and K; is a convex cone. Actually, since the set R™ of real
numbers is also a convex cone, all variables can in fact be partitioned into subsets belonging to separate
convex cones, simply stated z € K .

MOSEK can solve conic quadratic optimization problems of the form

minimize e+ ef
subject to ¢ < Ax < wuc,
r < T < u”,
x ek,

where the domain restriction, z € IC, implies that all variables are partitioned into convex cones
r= (22" .. . 2P7), with 2" € K, C R™.

For convenience, the user only specify subsets of variables x! belonging to cones K; different from the
set R™ of real numbers. These cones can be a:

e Quadratic cone:

e Rotated quadratic cone:
n—1
Qr =qx eR": 2x9z1 > ZHJ?, 20>0, x1>0
Jj=2

From these definition it follows that

(I47$03 zQ) € Q37

Ty > /23 + 23

Furthermore, each variable may belong to one cone at most. The constraint x; — x; = 0 would however
allow x; and z; to belong to different cones with same effect.

is equivalent to

4.2.1 Example CQO1

We want to solve the following Conic Optimization Problem problem:

min y; +y2 +y3

s.t.
T —+ T2 + 20$3 = 10
T1,T2,T3 Z 0.0
(y17x17x2) € Q37
(y2,y3, 3) € QF

(4.2)

is an example of a conic quadratic optimization problem. The problem involves some linear constraints,
a quadratic cone and a rotated quadratic cone.

We start creating the optimization model:

12 Chapter 4. Basic Tutorials

MOSEK Fusion API for Matlab, Release 8.0.0.94

M = Model('cqgol');

We than define variables z and y, the former non negative, the latter free. Two logical variables 21 and
z2 are introduced as they will be used to define the second order cones.

x = M.variable('x', 3, Domain.greaterThan(0.0));

M.variable('y', 3, Domain.unbounded());

~
]

/ Create the aliases

4 z1 = [yl[1],z[1],z[2]]

4 and z2 = [y[2],y[3],2[3]]
Var.vstack(y.index (1), x.slice(1,3));
= Var.vstack(y.slice(2,4), x.index(3));

N N
N =
nwon

It is important to note that z1 and 22 are just logical variables, i.e. just map onto z,y. They are
introduced for convenience sake.

The linear constraint are defined simply multiplying an array of coefficients with z:

/ Create the constraint
A z[0] + x[1] + 2.0 z[2] = 1.0
M.constraint('lc', Expr.dot([1.0, 1.0, 2.0], x), Domain.equalsTo(1.0))

The conic constraints are defined using the logical views zI and 22:

/ Create the constraints

A z1 belongs to C_3

A z2 belongs to K_3

/ where C_3 and K_3 are respectively the quadratic and
/ rotated quadratic come of size 3, t.e.

A z1[0] > sqrt(z1[1]-2 + z1[2]°2)

J and 2.0 22[0] z2[1] > z2[2]"2

qcl = M.constraint('qcl', z1, Domain.inQCone())

qc2 = M.constraint('qc2', z2, Domain.inRotatedQCone())

Note that this is not the only way to define that conic constraints. But it is in this case probably the
cleanest and faster.

We only need our objective function:

/ Set the objective function to (y[0] + y[1] + y[2])
M.objective('obj', ObjectiveSense.Minimize, Expr.sum(y));

Just call the Model.solve method to run the solver:

M.solve();

The solution can be retrieve using Variable. level, while the dual multipliers of the constraints are
available via the Vartable.dual method. For the linear part

/ Get the linearsolution values
solx = x.level();
soly = y.level();

while the conic quadratic part can be retrieve easily as well.

4 Get conic solution of gcl
qcllvl = gcl.level();
qclsn = qcl.dual();

The complete code follows in Listing 4.2.

4.2. Conic Quadratic Optimization 13

MOSEK Fusion API for Matlab, Release 8.0.0.94

Listing 4.2: Fusion implementation of model (4.2).

function cqol()
import mosek.fusion.x*;

M = Model('cqol');
x = M.variable('x', 3, Domain.greaterThan(0.0));
y = M.variable('y', 3, Domain.unbounded());

/ Create the aliases

VA z1 = [yl[1],z[1],z[2]]

4 and 22 = [yl[2],y[3],2[3]]

z1 = Var.vstack(y.index (1), x.s8lice(1,3));
z2 = Var.vstack(y.slice(2,4), x.index(3));

/ Create the constraint
A z[0] + x[1] + 2.0 z[2] = 1.0
M.constraint('lc', Expr.dot([1.0, 1.0, 2.0], x), Domain.equalsTo(1.0))

/ Create the constraints

A z1 belongs to C_3

A z2 belongs to K_3

/ where C_3 and K_3 are respectively the quadratic and
/ rotated quadratic come of size 3, i.e.

A z1[0] > sqrt(z1[1]°2 + z1[2]"2)

4 and 2.0 2z2[0] z2[1] > z2[2]"2

qcl = M.constraint('qcl', zl1, Domain.inQCone())

qc2 = M.constraint('qc2', z2, Domain.inRotatedQCone())

]

/ Set the objective function to (y[0] + y[1] + y[2])
M.objective('obj', ObjectiveSense.Minimize, Expr.sum(y));

/4 Solve the problem
M.solve();

/ Get the linearsolution values

solx = x.level();

soly = y.level();

disp(['[x1 x2 %3] = ', mat2str(solx',7)]);
disp([' [yl y2 y3] ', mat2str(soly',7)1);

4 Get conic solution of gcl

qcllvl = qcl.level();

gqclsn = gcl.dual();

disp(['qcl levels = ', mat2str(qclilvl',7)]);

disp(['qcl dual conic var levels = ', mat2str(qclsn',7)]);

4.3 Semidefinite Optimization

Semidefinite optimization is a generalization of conic quadratic optimization, allowing the use of matrix
variables belonging to the convex cone of positive semidefinite matrices

T={Xe8:2"X2>0, VzeR"},

where 8" is the set of r X r real-valued symmetric matrices.

14 Chapter 4. Basic Tutorials

MOSEK Fusion API for Matlab, Release 8.0.0.94

MOSEK can solve semidefinite optimization problems of the form

minimize Z;l:_ol cjx; + Zé:é <6j7 Yj> +cf

subject to I§ < Z?;(Jl a;;xj + Z;’;é (Ai;, X;) < u, i=0,...,m—1,
7 < z; < wuj, j=0,....,n—-1,
e, X; €8V, j=0,...,p—1

where the problem has p symmetric positive semidefinite variables Yj € S_? of dimension r; with
symmetric coefficient matrices C; € 8" and A4; ; € S"i. We use standard notation for the matrix inner
product, i.e., for A, B € R™*" we have

m—1n—1

<A,B> = Z ZAUBU

i=0 j=0

4.3.1 Example SDO1

The problem

2 1 0
minimize < 1 2 1 ,X>+x0
0 1 2
1 0 0]
subject to 01 0|,X)4+xo = 1,
< 0 0 1 > (4.3)
101 1]
< 111 ,X>+x1+x2 = 1/2,
1 1 1

:EO_Z \/"17124—(%?7 Ytoa

is a mixed semidefinite and conic quadratic programming problem with a 3-dimensional semidefinite
variable

- Xoo Xm XQO
X = {10 {11 §21 € Si,
Xoo Xo1 Xoo

and a conic quadratic variable (zg,z1,2z2) € Q3. The objective is to minimize
2(Xo0 + X10 + X114+ Xo1 + Xo2) + 20,
subject to the two linear constraints

Xoo+ X11+ Xog + 120 =1,

and
Xoo + X11 + Xoz2 +2(X10 + Xoo + Xo1) + 21 + 22 = 1/2.
min Tr(é-Y)—l—:Eo
s.t.
Tr(EO.X)erO:lO (4.4)
Tr(A1~X)+x1+x2:% ’
(0, 2172) € Q°
Xeds,,
where
2101 [ro00] [111
C=1|12 1], 4=]010|, A4 =111
0 1 2 0 0 1 1 1 1

The complete code follows in Listing 4.3.

4.3. Semidefinite Optimization 15

MOSEK Fusion API for Matlab, Release 8.0.0.94

Listing 4.3: Fusion implementation of model (4.4).

import mosek.fusion.*;
M = Model('sdol');

4 Setting up the variables
X = M.variable('X', Domain.inPSDCone(3));

C = Matrix.demse([[2.,1.,0.]; [1.,2.,1.]; [0.,1.,2.]]);
Al = Matrix.demnse([[1.,0.,0.]; [0.,1.,0.]; [0.,0.,1.1]);
A2 = Matrix.demse([[1.,1.,1.]; [1.,1.,1.7; [1.,1.,1.]1]1);

/ Objective
obj = Expr.dot(C, X);

/ Constraints
M.constraint('cl', Expr.dot(Al, X), Domain.equalsTo(1.0));
M.constraint('c2', Expr.dot(A2, X), Domain.equalsTo(0.5));

try
M.objective(ObjectiveSense.Minimize, obj);
catch
disp('Still buggy.."')
end
M.solve()

Xshp = X.getShape()
Xshape = arrayfun(@(i) Xshp.dim(i), 1:Xshp.nd);
Xres = fusionLevel(X.level(), Xshape);

function val = fusionLevel(vec, shape)
val = permute(reshape(vec, fliplr(shape)), length(shape):-1:1);

4.4 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is denoted
an integer optimization problem.

Section /.4.2 shows how to input an initial feasible solution to help the solver.

4.4.1 Example MILO1

In this section the example

maximize g + 0.64x,
subject to 50z + 31z, 250,
3.’E0 - 21’1 —47
Tg,x1 >0 and integer

IV IA

(4.5)

is used to demonstrate how to solve a problem with integer variables.

The example (4.5) is almost identical to a linear optimization problem (see 4.1) except for some variables
being integer constrained. Therefore, only the specification of the integer constraints requires something
new compared to the linear optimization problem discussed previously.

The complete source for the example is listed in Listing 4.4.

16 Chapter 4. Basic Tutorials

MOSEK Fusion API for Matlab, Release 8.0.0.94

Listing 4.4: How to solve problem (4.5).

function milol1()
w
A Copyright: $$copyright

Z

A File: $8{file}

Z

A Purpose: Demonstrates how to solve a small mized
A integer linear optimization problem.

Z

import mosek.fusion.x*;

A=T[T[50.0, 31.0 1;
[3.0, -2.01 1;
c=1[1.0, 0.64 1;
M = Model('milol');
x = M.variable('x', 2, Domain.integral(Domain.greaterThan(0.0)));
/ Create the constraints
A 50.0 z[0] + 31.0 z[1] <= 250.0
A 3.0 z[0] - 2.0 z[1] >= -4.0

.constraint('cl', Expr.dot(A(1,:), x), Domain.lessThan(250.0));
.constraint('c2', Expr.dot(A(2,:), x), Domain.greaterThan(-4.0));

= =

Set max solution time
.setSolverParam('mioMaxTime', 60.0);

Set maz relative gap (to its default value)
.setSolverParam('mioTolRelGap', le-4);

Set maz absolute gap (to its default wvalue)
.setSolverParam('mioTolAbsGap', 0.0);

o R s R e

/ Set the objective function to (c°T * z)
.objective('obj', ObjectiveSense.Maximize, Expr.dot(c, x));

=

/ Solve the problem
M.solve();

/ Get the solution wvalues
sol = x.level();
disp(['[x1 x2] = ', mat2str(sol',7)])

4.4.2 Specifying an initial solution

Integer optimization problems are generally hard to solve, but the solution time can often be reduced by
providing an initial solution for the solver. It is not necessary to specify the whole solution. By setting
the mioConstructSol parameter to on and inputting values for the integer variables only, will force
MOSEK to compute the remaining continuous variable values.

If the specified integer solution is infeasible or incomplete, MOSEK will simply ignore it.
Consider the problem

maximize Txg + 10z + xo + a3

subject to To+ 1+ T2 +x3 <25
xg, %1, %3 € 7

X, T1,T2,23 > 0

4.4. Integer Optimization 17

MOSEK Fusion API for Matlab, Release 8.0.0.94

The following example demonstrates how to optimize the problem using a feasible starting solution
generated by selecting the integer values as x = {0,2,0,1} by the method Variable.setLevel.

The fundamental step is to feed MOSEK with the putative (feasible) solution: this is doe using the
Vartable.setLevel method, as reportedin Listing 4.5.

Listing 4.5: Fusion implementation of problem (4.6) specifying an initial solution.

x.setLevel(init_sol);

The complete code follows in Listing 4.6.

Listing 4.6: Fusion implementation of problem (4.6) specifying an initial solution.

function mioinitsol()

i

A Copyright: $$copyright

/

A File: $8{file}

/

A Purpose: Demonstrates how to solve a small mized
A integer linear optimization problem

A providing an initial feasible solution.
w

import mosek.fusion.x*;

c=1[7.0, 10.0, 1.0, 5.0];
init_sol =[0.0, 2.0, 0.0, 1.0];

M = Model('mioinitsol');
n = 4;
x = M.variable('x', n, Domain.integral(Domain.greaterThan(0.0)));

M.constraint (Expr.sum(x), Domain.lessThan(2.5));

M.setSolverParam('mioMaxTime', 60.0);
M.setSolverParam('mioTolRelGap', le-4);
M.setSolverParam('mioTolAbsGap', 0.0);

M.objective('obj', ObjectiveSense.Maximize, Expr.dot(c, x));
x.setLevel(init_sol);
M.solve();

ss = M.getPrimalSolutionStatus();

display(ss);

sol = x.level();

xx = sprintf('/d ', sol);

fprintf('x = Ys', xx);

fprintf ('\nMIP rel gap = %.2f (%f)', M.getSolverDoubleInfo('mioObjRelGap'),
M.getSolverDoubleInfo('mioObjAbsGap'));

18 Chapter 4. Basic Tutorials

CHAPTER

FIVE

DESIGN PRINCIPLES

Fusion has been designed based on many year of experience on Conic Optimization Problem. We believe
that a dedicated API for conic optimization can be valuable to many MOSEK users that regularly solve
Conic Optimization Problems and want to enjoy a simpler experience interfacing with the solver.

What Fusion is

An object-oriented framework for conic-optimization.

What Fusion is not

A modeling language.

Fusion is design for a fast and clean prototyping of Conic Optimization Problem, helping users in set
and run problems quickly. At the same time users should not suffer excessive performance degradation.

Fusion has been design with the following ideas in mind:

e Expressiveness: we try to make it nice! Despite not being a modeling language, Fusion yields a
pretty readable code that users mainteining and sharing their work.

e Seamlessly multi-language : Fusion users should be able to port Fusion based code across
different supported languages with almost no modifications, except for those dependent on the
languages themselves.

e What you write is what ** |mosek| **gets: Fusion do not perform any black-magic behind
the scene! The model is feed into the solver with (almost) no additional transformations.

In the next section we elaborate on this topics.

5.1 A Seamless Multi-language API

Fusion has been designed to allow users to port their code easily across the supported programming
languages. This means that all functionalities and naming conventions are the same, no matter what is
the language.

The main purposes of this design choice are:

e To make easier to share code among people using different languages - In some settings people work
together but like to use different languages.

e To improve code reusability - Code written in certain language may be needed in the future for
other projects that use a different language.

e To ease transition from RED to production - It is often easier to use fast-prototyping languages (as
Python or MATLAB) during R&D, but production may required a different language, not least
for performance sake.

19

MOSEK Fusion API for Matlab, Release 8.0.0.94

As an example, let’s see how a non-negative variable is declared in the supported languages:

Python

’x = M.variable('x',1,Domain.greaterThan(0.))

Java

’Variable x= M.variable("x", 1, Domain.greaterThan(0.));

C++

’auto x= M->variable("x", 1, Domain::greaterThan(0.));

.NET

’Variable x= M.Variable("x", 1, Domain.GreaterThan(0.0));

MATLAB

x= M.variable('x',1, Domain.greaterThan(0.));

The only significant differences are language related, i.e. they do not depends on Fusion. A careful
coding can minimize such differences and improve even further the cross-language portability. Designing
an interface spanning different programming languages is quite a challenge and leads to some limitations,
as reported in Section 5.7.1.

5.2 What You Write is What MOSEK Gets

Many object-oriented optimization frameworks allows a great flexibility of usage and they often support
several solvers. The price to pay is that the model, as defined by the user, must be transformed in the
formulation required by the solver. The framework may also perform some preprocessing autonomously
(for instance scaling or conic reformulation). As result, the model formulated by the user may not be
what the solver gets.

Fusion follows a different approach:
1. it clearly defines the formulation that the user must adhere to,
2. it only provides those functionalities required for that formulation,

3. it only performs transformations that involves additional variables required to correctly formulate
conic constraints.

The only transformation that Fusion performs is the following: for each conic constraint of the form
Ax+be K (5.1)

with A € R™*" x € R™, a vector of variables y € R™ is introduced along with linear constraints, so that
(5.1) is reformulated as

y=Azr+b

JeK (5.2)

20 Chapter 5. Design Principles

MOSEK Fusion API for Matlab, Release 8.0.0.94

This mapping is necessary to ensure that each variable only belongs to one cone. Users accessing
MOSEK through the low-level MOSEK Optimizer API for Matlab are required to make the mapping
themselves. So Fusion does not make any transformation that the user would not have done himself.

Let’s make an example: we want to define a constraint of the form
X1 Z (2262)2 + (4$3)2

which in conic form corresponds to
1 00
0 2 0 xg | €Q (5.3)
0 0 4

To bring equation (5.3) in the standard conic form accepted by the solver, we need to introduce additional
variables y; such that

1. each variable belongs to a single cone,
2. the cone can be formulated as zo > /> 7.

Thus the user is forced to transform the constraint in the form

1 0 O I

0 2 0 Ta =y,

00 4 3 (5-4)
yeQ

The user can decide to make this kind of transformation himself, or let Fusion automatized the process.
The results will be the same. To summarize:

e Fusion only allows user to define Conic Optimization Problem whose form is that of Problem (5.1).
e The only transformation performed by Fusion is the introduction of auxilary variables.
e Any other problem pre-solving and transformation are left to MOSEK.
The main benefits of this approach are:
1. The user knows what is the problem that the solver is actually solving.
2. Dual informations are readily available.
3. Reduced overhead.
4

. Better control over numerical issues: scaling and other transformation may introduce numerical
instability hard to detect.

5.2. What You Write is What MOSEK Gets 21

MOSEK Fusion API for Matlab, Release 8.0.0.94

22

Chapter 5. Design Principles

CHAPTER

SIX

CONIC OPTIMIZATION MODELING

The main purpose of Fusion is to provide a simple and intuitive modeling API for conic linear optimiza-
tion. A Conic Optimization Problem can be formulated compactly as

minimize,cgn ey
s.t. (6.1)
Aix+b, ek, i=1,....m

where K; € D = {R;,9Q,9,,51}. Fusion extends D considering also some handy set defined by linear
constraints:

o ranged variable: R" = {x e R"|l <z > u}

o upper bounded variable: U™ = {x € R"|x > u}

e lower bounded variable: L™ = {z € R"|l < z}

o unbounded variable: R™
Then cone Fusion accepts cones such as K; € DU{R,U, L, R}.
The building blocks of a Conic Optimization Problem are

o Variables

o Linear operators

e Domains

Combining variables and linear operators we obtain affine functions that we can use to define the objective
function and the constraint of our model.

e Objective Function we ask to minimize of maximize the affine function, see Section 6.7.
e Constraints we ask that the image of affine function must belong to a given domain.

To create linear expression also matrices and vectors are needed. Fusion accepts plain arrays or matrices.
However, it also provides simple classes to represent dense and sparse matrices.

Moreover, variables and epressions can be manipulated (stacking, reshaping or slicing) creating logical
views.

Warning: A model built using Fusion is always a Conic Optimization Problem.

6.1 Optimization Model

The optimization model is the object that contains all information that define an conic optimization
model:

min Lz

s.t.
Ar+be K

23

MOSEK Fusion API for Matlab, Release 8.0.0.94

It is represented by the class Xodel and it is responsible for

e creating all the items define the optimization problem, i.e. variables, contraints and objective
function;

e interface with the solver (see Section 8).

This is particularly convenient because the user mainly interact with this class and, more importantly,
leads to a safe and simple memory management. To create an optimization model, simply write

M = Model();

The name is optional. The returned object is what the user interacts with. It is important to keep in
mind that

Important: A model owns all entities that it creates and it is responsible for their destruction.

As a consequence each model component can not be shared among models. There may be multiple
models active at the same time.

Through an optimization model users can specify all the relevant component of an optimization model
such

o Variables
o Constraints
e Objective function

All these elements must be created using the corresponding methods in Model, i.e. Model.wvariable,
Model.constraint and Model.objective, respectively.

The Model is also the primary interface between the user and the solver (see Section §). For this reason
it provides methods for

e set up parameters (see Section 8.1)
e access problem and solution status (see Section 8.2)

e perform I/O operations (see Section 8.3)

Note: For those users familiar with the MOSEK Optimizer API: a Model instance is a wrapper on
top of the problem task.

6.2 Matrices

Fusion provides a minimal support for matrix representation. The main purposes are
1. to provide the user with a convenient storage when the native language does not provide any,
2. to give the user the possibility to write a cross-platform code,
3. allow for a generic code in which sparse and dense matrices can be use with no modifications.

However, Fusion is not focused on providing matrix operations or any kind of linear algebra routines.
The user should use specialized packages available for the programming language of interest.

Matrices in Fusion are stored either in dense or sparse format. Despite specific implementation are
provided, the user is only supposed to interact with the generic interface Matriz. Matrices must be
created by means of the static methods

e Matriz.dense for dense matrices,

e Matriz.sparse for sparse matrices.

24 Chapter 6. Conic Optimization Modeling

MOSEK Fusion API for Matlab, Release 8.0.0.94

Note: Fusion does not detect sparsity automatically.

A Matriz object is unmutable and therefore cannot be modified.

6.2.1 Dense Matrices

Dense matrices are the choice when the number of non zero entries is large. To specify a dense matrix
one must use the Matriz. dense static method.

A dense matrix is specified providing its dimensions and the values that contains. It can not be left
unspecified. Therefore the user must provide one of the following

]

e a common value for all entries: for instance

111
A:[111

one may write the following code:

ones= Matrix.ones(2,4);

A matrix with all entries equal to one can also be created by Matriz.ones.

e a complete set of values by a native representation, as for instance
1 2 3 4
A= [5 6 7 8 }

one may write the following code:

A= [[1.,2.,3.,4.1, [5.,6.,7.,8.]1 1;
Ad= Matrix.dense(A);

e a flattened representation, i.e. all values stored in a one-dimensional array. For instance, the to
declare

b
Il
—
Ut =
DN
N W
0~
[

one may write the following code:

A= T 1,2,3,4,5,6,7,8 1;
Af= Matrix.dense(2, 4,A);

The matrix is built row-wise.

6.2.2 Sparse Matrices

When the number of non zero elements is relatively small, then a sparse matrix is a preferable choice.
It only stores the non zero elements in triplet form, i.e. each entry is represented by a triplet (i,j,v)
where

e i is the row
e j is the column
e v is the non zero value

The order of the triplets is not relevant. To specify a sparse matrix one must use the Matriz. sparse
static method.

6.2. Matrices 25

MOSEK Fusion API for Matlab, Release 8.0.0.94

For instance, the representation of

in triplet form is
A={(0,0,1),(0,3,1),(1,1,1),(1,3,1)}

where we use the convention of 0-based indexes. In Fusion this corresponds to:

rows =[1, 1, 2, 2]
cols =1[1, 4, 2, 31
values= [1., 1., 1., 1. 1]

Matrix.sparse(4, 4, rows, cols, values)

Runnig the code will result in the following output

SparseMatrix(2,4, (0,0,1.0),(0,3,1.0),(1,1,1.0),(1,2,1.0))

Fusion provides also helper functions to create some of the most used sparse matrices:
e a diagonal matrix can be created simply by the Matriz.d7ag method,;

e the identity matrix of size n can be created using the Matriz. eye method. It is a short-hand for
the diagonal matrix.

6.2.3 Block Matrices

Many problems are characterized by linear expressions whose coefficient matrix has a block structure.
Fusion allows to input block diagonal matrices, i.e.

A 0 O
M=|0 B 0|,
0 0 C
where A, B and C may have different dimensions. Using the method Matriz.diag we can write

[L o
v=[% o]

with I} being the identity matrix of dimension k, as

B = Matrix.diag([Matrix.eye(2), Matrix.diag(3,2.0)]1)
B.toString()

The output is

'SparseMatrix (5,5, [(0,0,1.0),(1,1,1.0),(2,2,2.0),(3,3,2.0),(4,4,2.0) 1)

See Matriz.diag for details.

6.3 Domains

A domain specifies the set in which a linear expression must belong to. In particular, as explained in
Section 6.5, the feasible set of a conic optimization problem is defined by a set of constraints of the form:

Aix+b, €K, i=1,....m

26 Chapter 6. Conic Optimization Modeling

MOSEK Fusion API for Matlab, Release 8.0.0.94

for suitable matrices A; and vectors b;. Each constraint represents the intersection of a cone with a affine
set generated by the linear expression. For sake of simplicity we will focus instead on the expression

y € K.

MOSEK solves conic optimization problems involving the fundamental symmetric cones:
1. positive orthant: R} = {x € R"|z > 0}
2. Lorentz cone: Q1" = {(y,z) € R™™"|y > |z||2}
3. Rotated cone: Q*™" = {(y,w,z) € R""2yw > [|z]|2,w > 0,y > 0}
4. PSD matrices: ST ={X € S"ly"Xy >0 VyeR"}
With these fundamental cones we can describe all constraints supported by MOSEK.

Domains are represented by specific classes. To declare a domain, we use
the corresponding static method in Domain, as listed in the following table.
Name class method
unboundness Domain.unbounded
Linear -equalit}.f Doma'L:n. equalsTo
inequality < Domain. lessThan
inequality > Domain.greaterThan
Quadratic Lorentz cone Domain. infCone
Rotated Lorentz cone | Domain.inRotatedCone
PSD matrix Domain. inPSDCone
Symm. Matr. | linear PSD matrix Domain.isLinPSD
tri-linear PSD matrix | Domain.2sTrilPSD
Warning: If no domain is specified for a variable, then the variable is left unconstrained!

6.3.1 Linear Domains

Linear domains are based on the positive orthant cone
Ry = {z e R|z > 0},
combined with an affine transformation z = ay + b. That allows to define other useful and commonly
used domains:
e 1 > b setting a =1 (Domain.greaterThan),
o x < b setting a = —1 (Domain. lessThan),

Fusion also contemplates explicitly unboundeness by Domain.unbounded.

6.3.2 Quadratic Cones

Both
o Lorentz cone: Q1T™ = {(y,x) e Ry > ||x||2} and
e Rotated cone: Q2" = {(y,w,z) € R |2yw > [|z|2,w > 0,y > 0}

are available using the Domain. infCone and Domain.inRotated(Cone static methods, respectively. It
must be understood that it is possible to express one cone in terms of the other bby means of an
orthogonal transformation. That means one of the two cone is somehow redundant, but often very useful
fro ma modeling perspective. For instance, if we want to express a contraint like

lzll2 < &,

6.3. Domains 27

MOSEK Fusion API for Matlab, Release 8.0.0.94

then the Lorentz cone exactly matches this constraint definition. But on the other hand,
T FFTy = ||Fz||? <k

can be easily expressed by a rotated cone as

1
y:F:L'7 (2,k7y> € QT

Tip: Try to use the cone that closely match the problem definition!

6.3.3 Semidefinite Matrices

In Fusion there are three different domains derived from the cone of the semidefinite matrices.

Warning: None of the following domains explicitly enforce symmetry!

Symmetrized PSD

Given a matrix X € R™*" the domain imposes the constraint
1 T
§(X +X7)eSt

This is available using the Domain. inPSDCone.

Lower Triangular PSD Domain

Given a matrix X € R™*™ the domain imposes the constraint
Yij=Xi 127
Y eS8y

This is available using the Domain. 2sTri1PSD.

Warning: The upper triangular part of X is left unspecified!

Linearized PSD Domain

6.3.4 Domain Size and Dimensions

Each domain has an intrinsic number of dimenions and minimum size, listed in table Table 6.3.4.

Domain Dimensions | Minimum size
Linear 0 1
Lorentz cone 1 2
Rotated Cone | 1 3
Symm. Matr. | 2 1

The size and number of dimensions of a domain must match those of the object it must contains.
However the size of a domain may or may not be fully specified: this gives Fusion the freedom to adapt
the domain in order to match the dimension of the corresponding variable/constraint. If it is not possible
an exception FusionException is thrown. See Section 6.5.

28 Chapter 6. Conic Optimization Modeling

MOSEK Fusion API for Matlab, Release 8.0.0.94

6.3.5 Integral Domains

For all domains, except those involving semidefinite matrices, the method Domain. integral can be used
to restrict a given domain only to the integer values it contains. Therefore the specifier Domain. integral
can only be used in combination to other domains. For instance, to declare a single integer variable
z € [1,10] we may write:

’ z= M.variable('z', Domain.integral(Domain.inRange(1.,10.)));

Notice that binary variables are a special case of integer variables, and therefore to declare a binary
variable x we may write

’ x= M.variable(Domain.integral(Domain.inRange(0.,1.)));

A handy specialized domain is provided by the Domain.binary function. For example, a binary variable
y € {0,1}" can be declared as

’ y= M.variable('y', Domain.binary());

Integrality can also be forced or relaxed after a variable has been created by means of the method
Vartable.makeContinuous and Variable.makeInteger.

6.4 Variables

In Fusion variables are objects that represent n-dimensional arrays. The base class Variable is the
main interface the user works with.

Variables are declared using the Model.wvariable method that returns an object of type Variable
representing the variable itself.

Important:
e a variable belongs to the model it is constructed by,

e the variable dimension and shape are immutable.

On the other hand, reshaped views can be easily obtained (see Section 6.8).

The information that characterize a variable are:
e the variable shape and dimensions;
e the domain it must belong to using a domain specifier class of type Domain (see Section 6.3).
e an optional name.

For instance, to declare a non-negative one-dimensional variable x of length n we may write

x = M.variable('x', n, Domain.greaterThan(0.));

A multidimensional array is declared simply specifying an array with all dimension sizes. For instance,
a bi-dimensional n X n matrix of unbounded variables x can be declared as

’x = M.variable([n,n], Domain.unbounded());

Many other combinations of parameters are available and allow to declare also semidefinte matrices and
integer variables (see Section 6.4.1). All variant return an implementation of the Variable base class.
This type of object is a placeholder that can be used to

e form linear expressions and define constraints (see 6.5),

6.4. Variables 29

MOSEK Fusion API for Matlab, Release 8.0.0.94

e check the problem and solution status, along with the returned primal and dual values, after the
optimization (see 8.2).

6.4.1 Integer Variables

Integer variables are expressed in the same way as the continuous, but with an additional domain
specification to force integrality. Fusion will consider all integers in the specified domain. To add an
integer variable z € [1,10] we write

’z= M.variable('z', Domain.integral(Domain.inRange(1.,10.)));

Binary variables are declared either as

’x= M.variable(Domain.integral(Domain.inRange(0.,1.)));

or with the helper function Domain.binary

’y= M.variable('y', Domain.binary());

Warning: The interval limits must be real numbers.

In addition, integrality can be relaxed or enforced using the switch methods Variable.makeContinuous
and Variable.makeInteger.

6.4.2 Views

It is often convenient to access a subset of a variable elements, to combine two or more variables or
to reorganize a multidimensional variable in a different shape. For this reason Fusion provides a set of
functions that return a view of the original variables..

In all cased the returned object still refers to the original one. It is just a logical placeholder. In the
next subsections we will give some more details. For more details please refer to Section 6.8.

Reshaping

It keeps the same overall size but different number of dimension or their length. If the new shape is not
compatible with the original size, an excpetion of type DimensionError is thrown. Available functions
include

Function Description

Var.reshape General reshaping

Var. flatten Returns a one dimensional representation
Var.compress | Remove all redundant dimensions of length one

Vector and matrix variables can also be transpose by Variable. transpose.

Slicing

It selects a subset of a variable element. Selection can be performed in different ways, the most common
one being listed in the following table:

Function Description

Vartable.slice | select contiguous subsets
Vartable.pick select elements by set of indexes
Vartable.indez | select a single element by index

30 Chapter 6. Conic Optimization Modeling

MOSEK Fusion API for Matlab, Release 8.0.0.94

It is also possible to extract the diagonal of a two dimensional squared variable using the Variable.diag
function.

Stacking

It returns a logical view that merges several variables in a single one. Stacking is useful to combine
different variables in order to write a more compact set of contraints. We distinguish among three
stacking operations, as in the following table

Function Description

Var.hstack | concatenate along the first dimension
Var.vstack | concatenate along the second dimension
Var.stack general block stacking

It is important to stress that the returned variable is only a view of the original ones. For more details,
please refer to Section 6.85.

6.4.3 Variable Naming

As stated in Section 6./, an optional name can be specified for each variable. This is particularly useful
when debugging or storing a model, or reporting results. Names must be specified when variables are
declared and cannot be changed afterwards. Variable indices are automatically generated.

When saving a model to file, Fusion will also include all the auxiliary variables that has been generated
during the model building phase. The naming of these variables follows the following rules:

A careful choice of meaningful names can be of great help. Fusion puts no limitations on the names but
the following rules apply:

1. names must be unique for the model the variable belongs to;
2. the value None is allowed and correspond to automatic names;

3. they must not collide with automatically generated names.

6.4.4 Pretty Printing

Variable information can be printed out in a human-readable form wusing the method
Variable.toString. The text contains

® type,
e name and
e dimension.

The textual representation is generated as compact as possible. For instance a one dimensional variable
called x will be printed just saying

n = 4;
x = M.variable('x',n, Domain.greaterThan(0.));
display(x.toString())

with the following output

LinearVariable(('x',4))

Notice that if no names are assigned an empty string will be used instead, i.e. no automatic names are
generated.

6.4. Variables 31

MOSEK Fusion API for Matlab, Release 8.0.0.94

6.5 Linear Expressions

In Fusion linear expressions are constructed combining variables and matrices by linear operators. The
result is an object that represent the linear expression itself.

Important: Fusion only allows for those combinations of operators and arguments that yields linear
functions.

For instance the dot product between two vector of variables is not allowed, as it yields a quadratic
function. As a consequence, at most one of the arguments of the expression can be a variable.

For a given expression, we define as
e dimension the dimension of the result of the expression,
e size the product of the expression dimension times the input dimension.
For instance, given x € R™ and A € R™*"_ the dimension of Ax is m and its size is nm.

Linear expressions are used to define the constraints and the objective function.

6.5.1 Storing Expressions

Expressions are concrete implementations of the virtual interface Ezpression.

Note: Typically one never needs to directly use Ezpression and its descendants.

Expressions are organized in matrices, and therefore they inherit the possibility to be sliced, reshaped
and stacked. These operations could be useful in practice and yield very compact formulations. For
instance, if we want to express

we can think of z; € R™ as the column of a matrix and therefore write simply
AX =B, X=lz1...2,], B=1b1...by].

The resulting expression AX has dimension n X m, i.e. is a matrix expression.

6.5.2 Defining Expressions

Linear operators are provided as static method by the Ezpr class. Each operator returns an expression
object of type Ezpression.

Fusion currently support the linear operators listed in Table 6.1.

Table 6.1: Linear Operators

Method Description

Ezpr.add Element-wise addition of two matrices

Expr. sub Element-wise subtraction of two matrices

Ezpr.mul Matrix multiplication

Ezpr.neg Sign inversion

Ezpr.outer Vector outer-product

Ezpr.dot Dot product

Ezpr. sum Sum over a given dimension

Ezpr.mulDiag Sum over the diagonal of a matrix which is the result of a matrix multiplication
Ezpr.constTerm | Return a constant term

32 Chapter 6. Conic Optimization Modeling

MOSEK Fusion API for Matlab, Release 8.0.0.94

Note that some of the operators are provided for user convinence, as they could be obtained by means
of others. Please click on te corresponding link to see more details.

Dimensionality checking

Fusion perform dimensionality checking on the arguments of a linear operators: an exception of type
DimensionError will be thrown if errors are detected.

Composing expressions

Expression can be composed and nested. This allow to define more complex expressions: for instance
say we want to write

Az + By,

for appropriate matrices A, B and variables z,y. The code will look like:

Expr.add(Expr.mul(A,x), Expr.mul(B,y));

Given that expressions can be stored, one can also define expression separately and then combine them:

Ax
By

Expr.mul(A,x);
Expr.mul(B,y);

Expr.add(Ax,By)

Composition is pretty useful, but it may lead to unreadable code. Users should also consider using
list-based expressions if possible. To write an expression such as

rTt+y+z+w

where z,y, z, w are all vectors of variables of the same size, a first option is

’Expr.add(x, Expr.add(y, Expr.add(z,w)));

which is not very much readable. A cleaner way can be to store all terms in a list, for instance

’Expr.add([x, y, z, wl);

Similar function are provided for other expressions.

6.6 Constraints

A constraint in Fusion must have the form
l(z)e F
where [(z) is an affine function (see section 6.5), and F must be a domain among those provided by
Fusion (see Section 6.3).
A constraint is characterized by its
o type
o size

e number of dimensions of the image of I(x),

6.6. Constraints 33

MOSEK Fusion API for Matlab, Release 8.0.0.94

e number of non-zeros entries are the actual number of terms that defines the affine function. This
is one of the most important measure of the actual dimension of a Conic Optimization Problem.

For instance, the following set of linear constraints
xrT + 2(E2 =0

T =0

has size three, number of dimensions equals to one (the image is indeed a one dimensional array) and

five non zero elements.

The dimensions of F and [(x) must match, otherwise an error is reported. To this end Fusion tries to
smartly deduce the dimension of F', whenever possible and safe, to that of I(x).

6.6.1 Contraint Declaration
Constraints must be created using the static method Model.constraint. A constraint is defined by
three parameters:

1. An optional name: it is useful for debugging purposes or when dumping the model to file. However,
it may introduce a significant overhead for large models.

2. A linear expression
3. The domain of the image of the linear expression

The Model.constraint method returns a Constraint object that can be used by the user to access
constraint information, see Section Constraint Information.

For instance, the set of linear constraints (6.2) can be declared as

A =[1. .0, O
0. .0, 1.
1. .0, O
M.variable('x',3,Domain.unbounded());

M.constraint(Expr.mul(A,x), Domain.equalsTo(0.0));

el
1]

[e]
I

6.6.2 Constraint Information

There are several information that can be obtained from a costraint object.

The size and number of number of dimensions are available using the methods Constraint.size and
Constraint.get_nd.

It is also possible to recover dual information using the method Constraint.dual.

Warning: Dual information are only available for continuous problems and if a (near) optimal
solution has been found!

6.6.3 Pretty Printing
A human readable representation of the constraint can be obtain using the Constraint.toString
method.

The representation of a Constraint instance is the list of all contained constraints. For instance a set
of linear constraints of the form Iz = 0, with I being the identity matrix is implemented as

34 Chapter 6. Conic Optimization Modeling

MOSEK Fusion API for Matlab, Release 8.0.0.94

n = 4;
x = M.variable('x',n, Domain.greaterThan(0.));
¢ = M.constraint('c', Expr.mul(Matrix.eye(n),x), Domain.equalsTo(0.));

c.toString()

The output is

Constraint('c', (4),

cf0] : + 1.0 x[0] = 0.0,
c[1] : + 1.0 x[1] = 0.0,
cl[2] + 1.0 x[2] = 0.0,
cl3] + 1.0 x[3] =0.0)

Notice that only non zero entries are printed.

The printed representation also includes all auxiliary variables introduced by Fusion. For instance a
single second order cone of the form

(t,z) € Q

with t € R, x € R™, implemented as

n = 4;
M.variable('x', n, Domain.greaterThan(0.));
M.variable('t', 1, Domain.greaterThan(0.));

[
o

[e]
]

M.constraint (Expr.vstack(t,x), Domain.inQCone());

c.toString()

it will produce

ConicConstraint((5), QuadCone,

c[0] : + 1.0 t_[0] : element in a quadratic cone,
cl1] + 1.0 x_[1] : element in a quadratic cone,
c[2] + 1.0 x_[2] : element in a quadratic cone,
c[3] + 1.0 x_[3] : element in a quadratic cone,
cl4] + 1.0 x_[0] : element in a quadratic cone)

This method is particulary useful when the model must be inspected for debugging. However it must be
notice that

e when the number of variable involved in the constraint is large, it may generate a large amount of
output as well;

e meaningful names must be provided for the relevant variables.

Warning: If no names are given, Fusion will just display empty strings!

6.7 Objective Function

In Fusion the objective function must be an affine function of size one, i.e. returning a scalar, otherwise
an exception of type DimensionError is thrown.

The optimization sense can be either minimize or mazximize and

Note: in Fusion the optimization sense must always be specified.

6.7. Objective Function 35

MOSEK Fusion API for Matlab, Release 8.0.0.94

The only exception is the trivial case in which the objective function is a constant term.
The objective function is declared using the static method Model.objective. It requires:
e the optimization sense from the enumeration 0bjectiveSense,
e the linear expression defining the objective function and an optional name, see Section 6.5.

For instance, to minimize a variable ¢ we will write

t = M.variable('t') ;

M.objective(ObjectiveSense.Minimize, t) ;

T

The typical linear objective function ¢* z can be declared as

c=1[1.0, 1.0, 1.01;

[m,n] = size(c)

x = M.variable('x', n, Domain.greaterThan(0.0));
M.objective(ObjectiveSense.Minimize, Expr.mul(c,x));

Note that the objective function is a little peculiar in Fusion:
e it is the only component of an optimization model that can not be stored and reused,
e it cannot be modified,

e it can be overwritten.

6.7.1 Changing the Objective Function

The objective function can be overwritten at any time. This is particularly useful when solving a sequence
of problems in which only the objective function varies. For instance, if we want to minimize the following
linear function

f(z) = vz + By,

where v, 8, z,y € R, for different values of the parameter v > 0. The function is trivial, but it conveys
the overall ideas. We may use the following code:

gamma=[0., 0.5, 1.0];

beta=2.0;

x= M.variable('x',1, Domain.greaterThan(0.));

y = M.variable('y',1,Domain.greaterThan(0.));

beta_y = Expr.mul(beta,y);

for g = 1:3
M.objective(ObjectiveSense.Minimize, Expr.add(Expr.mul(g,x), beta_y));
M.solve();

end

This is particularly useful when performing for instance multi/objective optimization.

Tip: Notice how the common expression can be stored and reused.

6.8 Variable and Expression Views

In Fusion variables and expressions are organized as multi-dimensional objects. We will refer in general
to matriz-like object, or more simply to a matriz meaning both variables and expressions.

Matrix-like objects are characterized by a shape that accounts for the dimension of the space in which
the object lives in. The shape is represented by an array of integers such that

36 Chapter 6. Conic Optimization Modeling

MOSEK Fusion API for Matlab, Release 8.0.0.94

e the lenght is the dimension on the matrix,
e cach entry is the size along that dimension and

e the product of all dimensions is the size of the matrix.

12 3
A‘[456}

has shape {2, 3}, dimension 2 and size 2 x 3 = 6.

For instance the matrix

The shape is an intrinsic property that is immutable in Fusion, and can be obtain by the methods
Variable.getShape and Ezpression.getShape.

It is often useful to
e re-organize matrix elements in a different way, i.e. reshaping,
e only consider a subset of elements, i.e. picking and slicing and
e pack matrices together, i.e stacking.

All these operations do not require new variables or expressions, but just logical views. Fusion provides
an unified set of methods to creates views for variables and expressions. It is must be stressed that

Important: A views does not introduce neither new variables nor additional constraints. In general it
is a lightweight object that only requires a small amount of memory.

6.8.1 Reshaping

Reshaping a matrix means to rearrange its elements in a different shape, with the same size.

Flattening

This operation returns a one-dimensional representation of the matrix. The elements are listed travers-
ing the matrix in row-wise order. For a two dimensional matrix € R™*™ the result of the flatting
operation is

[x117 ml?? "'7'7"177’7,7 "'7x’l’7,17 xn?, "'7{'1;77,177,]

For instance the flattening of

is the following one-dimensional array f
= 2 3 4 5 6. (6.4)

Flattening is available both for variables (see Var. flatten) and expressions (see Ezpr. flatten).

General Reshaping
It returns a view of the matrix with a different shape with the same size. The entries of the original
matrix are mapped as follows:

1. first the matrix is flattened yielding an array f,

2. a new matrix with the new shape is created,

6.8. Variable and Expression Views 37

MOSEK Fusion API for Matlab, Release 8.0.0.94

3. the new matrix is filled using f.

Note that in general the number of dimensions may differs. The only strict requirements is that the size
must match.

For instances, let’s assume we are given a matrix as follows
1 2 3
a[ize], 05

but we need to see it as a matrix with three rows and two columns. A is first flattened, as in (6.4) and
then its values rolled over the new shape. The final result is

1
A=|3 (6.6)
5

S =N

Flattening is available both for variables (see Var.reshape) and expresisons (see Ezpr.reshape).

6.8.2 Slicing and Picking
Sometimes constraints and objective function only involve a sub-set of variables. It is then useful to have
a way to select them in a compact way.

e picking: it selesct a subset of possibly non-contiguous variable entries.

e slicing: it selects a continuous sebset of variable entries.

Clearly slicing is a special case of picking. However, slicing occours so frequently that deserve dedicated
methods.

Picking

Picking is the operation of selecting elements based on a list of indexes. The resulting view is a one
dimensional array.

For a given variable z, in the general case the user must provide a list L of indexes to identify the items
and the resulting array p will be arranged such that:

plil = x[L[i]]

For instance, given a two dimensional matrix A of dimension n x n
1 3

to select the upper-left and bottom-right item we specify a list that contains the coordinates of the
elements, i.e

(G20 \]

{(1,1),(2,3)}

The result is the one-dimeensional array {1,6}. If we specify

{(2’ 3)7 (17 1)}'
we obtain {6,1}.
Note how the element coordinates are tuples with the same dimension as the matrix.

Fusion provides several variant of the Variable.pick and Ezpression.pick methods. Single element
access by the methods Variable. indez and Ezpr.indez is a special cases of picking.

38 Chapter 6. Conic Optimization Modeling

MOSEK Fusion API for Matlab, Release 8.0.0.94

Slicing

Slicing refers to the selection of a submatrix. A slice is defined by the range of indexes selected for each
dimension: to select the elements in the range [first,last], we actually specify [first,last+1] = [l_1i, u_i].
In this way the length of the slice along that dimension is exactly [fu_ -l /.

Consider a matrix with shape 4 x 4, as depicted in Fig. 6.1.

Fig. 6.1: Two dimensional slicing.

To select the upper-left 2 x 2 sub-matrix, we specify the range [0,2] for both dimensions; on the other
hand, to select the cell on the bottom right corner, we use [3,4] again for both dimensions.

In Fusion slicing is obtained using the methods Variable.slice and Ezpression.slice, providing
separate arrays for the starting and ending indexes. For instance, the previous example would require

e a first array [0,0] and a second [2,2] for the upper left corner,
e a first array [3,3] and a second [4,4] for the lower right corner.

Fusion allows for slices in which dimensions can have zero length, i.e. where last equals to first. If last
is less than first, an exception of type IndezError is thrown.

6.8.3 Stacking

Stacking refers to the concatenation of matrices to form a new larger one.

Vertical Stacking

It concatenates matrices along the first dimension. In case of bi-dimensional matrices, they are put one
on top of the other, i.e. vertically. For instance, given two column vectors a, b, i.e. with second dimension
equals to one, the vertical stacking of @ on top of b is depicted in the following figure.

R

al| || v1[| _Ha:
22[1| w2 |—H 2

a3l b3 163

_/

On the other hand, if the second dimension is one, the results is the following

6.8. Variable and Expression Views 39

MOSEK Fusion API for Matlab, Release 8.0.0.94

allaZla3 allazla3

bllb2|b3

N
/

blbZ|b3

In Fusion this operation is performed by the Ezpr.vstack and Var.wvstack functions.

Horizontal stacking

It concatenates matrices along the second dimension. In case of bi-dimensional matrices, they are put
one beside the other, i.e. horizontally.

In Fusion this operation is performed by the Ezpr.hstack and Var.hstack functions.

Generalized stacking

It allows to combine several matrices as long as their dimensions match. For instance consider Fig. 6.2:
five two-dimensional matrices must be combine to obtain a larger one.

[-]

Fig. 6.2: An example of general stacking.

General stacking is supported for both variable (Var. stack) and expressions (Ezpr. stack).

Warning: Variables and expressions cannot mixed when stacking! You must promote variables to
expressions using Variable.asEzpr.

To better explain how stack works let’s consider the case in Fig. 6.8.3
vlist[0][0]

vlist[0][1]
vlist[0][2]

vlist[0]

vlist[1]

| | | | vlist[2]

The matrices are stored in a two-dimensional array named vlist such that

40 Chapter 6. Conic Optimization Modeling

MOSEK Fusion API for Matlab, Release 8.0.0.94

e Each rows of vlist contains matrices with the same number of rows and
e Each rows has the same total number of columns.

If vlist is composed by variables, then we may write something along this line

vlist = [M.variable([2,2]), M.variable([2,1]), M.variable([2,6]);
M.variable([3,1]), M.variable([3,5]), M.variable([3,3]);
M.variable([1,4]), M.variable([1,5]) 1;

M.constraint(Var.stack(vlist), Domain.equalsTo(0.));

6.8. Variable and Expression Views 41

MOSEK Fusion API for Matlab, Release 8.0.0.94

42

Chapter 6. Conic Optimization Modeling

CHAPTER

SEVEN

CASE STUDIES

In this section we present some case studies in which the Fusion API for Matlab is used to solve real-life
applications. These examples involve some more advanced modeling skills and possibly some input data.
The user is strongly recommended to first read the basic tutorials before going through these advanced

case studies.

Case Studies Type | Int. Keywords

Portfolio Optimization CQO | NO | stacking, objective function change,

Primal SVM CQO | NO | variable repeat

2D Total Variation CQO | NO | slicing, sliding windows

Inner and outer Lowner John Ellipsoids SDO | NO | determinant root

Nearest Correlation Matriz Problem SDO | NO | nuclear norm

Semmidefinite relazation of MIQCQP SDO | NO

problems

SUDOKU Game MILP | YES | assignement constraints

Multi_ Processors Scheduling MILP | YES | assignement constraints, initial
solution

Travelling Sales Man MILP | YES | graph, row generation

7.1 Portfolio Optimization

This case studies is devoted to the Portfolio Optimization Problem.

7.1.1 The Basic Model

The classical Markowitz portfolio optimization problem considers investing in n stocks or assets held
over a period of time. Let z; denote the amount invested in asset j, and assume a stochastic model
where the return of the assets is a random variable r with known mean

and covariance

S=E(r-pir-w’

The return of the investment is also a random variable y = r

and variance (or risk)

uw=Er

Ey = ,uTx

E(y — Ey)?> = 27>z,

T

2 with mean (or expected return)

43

MOSEK Fusion API for Matlab, Release 8.0.0.94

The problem facing the investor is to rebalance the portfolio to achieve a good compromise between risk
and expected return, e.g., maximize the expected return subject to a budget constraint and an upper
bound (denoted 7) on the tolerable risk. This leads to the optimization problem

maximize pTx
subject to e’z
Yz

xT

w + eT a0,

) (7.1)

VAN I

0.

The variables = denotes the investment i.e. x; is the amount invested in asset j and a:? is the initial
holding of asset j. Finally, w is the initial amount of cash available.

A popular choice is z° = 0 and w = 1 because then x; may be interpretated as the relative amount of
the total portfolio that is invested in asset j.

Since € is the vector of all ones then
n
T — .
e r = g x;
=1

is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which is

w+elal.

This leads to the first constraint

e r=w+e x .

The second constraint

2I'Yr < 72

ensures that the variance, or the risk, is bounded by the parameter v2. Therefore, v specifies an upper
bound of the standard deviation the investor is willing to undertake. Finally, the constraint

{ITj 2 0
excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is

allowed.
The covariance matrix ¥ is positive semidefinite by definition and therefore there exist a matrix G such
that

¥ =GGT. (7.2)

In general the choice of G is not unique and one possible choice of G is the Cholesky factorization of 3.
However, in many cases another choice is better for efficiency reasons as discussed in Section 7.1.2. For
a given G we have that

2T¥r = 27GGTx
= |l67a|".
Hence, we may write the risk constraint as
7z |G e

44 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

or equivalently
[v;G"a] € Q"F1.
where Q"1 is the n + 1 dimensional quadratic cone. Therefore, problem (7.1) can be written as

maximize pTx
subject to eTx
[v: GT'a]

X

w + eT:zro,
Qn+l

)
0,

(7.3)

vV m

which is a conic quadratic optimization problem that can easily be formulated and solved with Fusion.
Subsequently we will use the example data

0.1073
p=| 0.0737
0.0627

and

0.2778 0.0387 0.0021
¥=0.1,| 0.0387 0.1112 —0.0020
0.0021 —0.0020 0.0115

This implies

0.5271 0.0734 0.0040
GT =01 0 0.3253 —0.0070
0 0 0.1069

Listing 7.1 demonstrates how the basic Markowitz model (7.3) is implemented using Fusion.

Listing 7.1: Code implementing problem (7.3).

function er = BasicMarkowitz(n,mu,GT,x0,w,gamma)

Purpose:
Computes the optimal portfolio for a given risk

Input:
n: Number of assets
mu: An n dimmensional vector of expected returns
GT: A matriz with n columns so (GT')*GT = covariance matriz
z0: Initial holdings
w: Initial cash holding
gamma: Mazimum risk (=std. dev) accepted

Output:
Optimal expected return and the optimal portfolio

SN N I N N N NN

import mosek.fusion.x*;

M = Model('Basic Markowitz');

/ Redirect log output from the solver to stdout for debugging.
/4 if uncommented.

AM.setLogHandler (java.i0.Printiiriter(java. lang. System.out));

4 Defines the wariables (holdings). Shortselling is not allowed.
x = M.variable('x', n, Domain.greaterThan(0.0));

/4 Mazimize ezpected return

7.1. Portfolio Optimization 45

MOSEK Fusion API for Matlab, Release 8.0.0.94

M.objective('obj', ObjectiveSense.Maximize, Expr.dot(mu,x));

/ The amount tnvested must be identical to intial wealth
M.constraint ('budget', Expr.sum(x), Domain.equalsTo(w+sum(x0)));

/4 Imposes a bound on the risk
M.constraint('risk', Expr.vstack(gamma ,Expr.mul(GT,x)), Domain.inQCone());

/ Solves the model.
M.solve();

er = mu'*x.level();

M.dispose();

The source code should be self-explanatory except perhaps for

M.constraint('risk', Expr.vstack(gamma ,Expr.mul(GT,x)), Domain.inQCone());

where the linear expression
[1G7x]

is created using the Ezpr.vstack operator. Finally, the linear expression must lie in a quadratic cone
implying

vz |G|

7.1.2 The Efficient Frontier

The portfolio computed by the Markowitz model is efficient in the sense that there no other other portfolio
giving a strictly higher return for the same amount of risk. An efficient portfolio is also sometimes called
a Pareto optimal portfolio. Clearly, an investor should only invest in efficient portfolios and therefore it
may be relevant to present the investor for all efficient portfolios so the investor can choose the portfolio
that has the desired tradeoff between return and risk.

Given a nonnegative a then the problem

T

maximize p*r—as

subject to e’ =w+ela?,
[S; GT.’E] c Qn+17 (74)
T > 0.

computes an efficient portfolio. Note that the objective maximize the expected return while maximizing
—a times the standard deviation. Hence, the standard deviation is minimized while « specifies the
tradeoff between expected return and risk. Ideally the problem (7.4) should be solved for all values
« > 0 but in practice impossible. Using the example data from Section 7.1.1, the optimal values of
return and risk for several as are listed below:

Efficient frontier

alpha return risk

0.0000 1.0730e-01 7.2700e-01
0.0100 1.0730e-01 1.6667e-01
0.1000 1.0730e-01 1.6667e-01
0.2500 1.0321e-01 1.4974e-01
0.3000 8.0529e-02 6.8144e-02
0.3500 7.4290e-02 4.8585e-02
0.4000 7.1958e-02 4.2309e-02
0.4500 7.0638e-02 3.9185e-02

46 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

0.5000 6.9759e-02 3.7327e-02
0.7500 6.7672e-02 3.3816e-02
1.0000 6.6805e-02 3.2802e-02
1.5000 6.6001e-02 3.2130e-02
2.0000 6.5619e-02 3.1907e-02
3.0000 6.5236e-02 3.1747e-02
10.0000 6.4712e-02 3.1633e-02

Example code

Listing 7.2 demonstrates how to compute the efficient portfolios for several values of « in Fusion.

Listing 7.2: Code for the computation of the efficient frontier based on problem (7.4).

function frontier = EfficientFrontier(n,mu,GT,x0,w,alphas)

Purpose:
Computes several portfolios on the optimal portfolios by

for alpha in alphas:
mazimize expected return - alpha * standard deviation
subject to the constraints

Input:
n: Number of assets
mu: An n dimmensional vector of expected returns
GT: A matriz with n columns so (GT')*GT = covariance matriz
z0: Initial holdings
w: Initial cash holding
alphas: List of the alphas

Output:
The efficient frontier as list of tuples (alpha,ezpected return,risk)

D T T T T T O O O O O e O N N W

import mosek.fusion.*;

M = Model('Efficient frontier');

AM.setLogHandler (java.i0.Printhiriter(java. lang. System.out));

/ Defines the variables (holdings). Shortselling is not allowed.

x = M.variable('x', n, Domain.greaterThan(0.0)); / Portfolio wvariables
s = M.variable('s', 1, Domain.unbounded()); / Risk wariable

M.constraint ('budget', Expr.sum(x), Domain.equalsTo (w+sum(x0)));

4 Computes the risk
M.constraint('risk', Expr.vstack(s,Expr.mul(GT,x)) ,Domain.inQCone());

frontier = [];
mudotx = Expr.dot (mu,x)
for alpha = alphas

/ Define objective as a weighted combination of return and risk

M.objective('obj', ObjectiveSense.Maximize, Expr.sub(mudotx,Expr.mul(alpha,s)));

M.solve();

frontier = [frontier; [alpha,mu'*x.level(),s.level()] 1];

7.1. Portfolio Optimization

47

MOSEK Fusion API for Matlab, Release 8.0.0.94

if true
disp(sprintf ('\nEfficient frontier'))
disp(sprintf('’-12s 7%-12s ¥%-12s', 'alpha', 'return', 'risk'))
disp(sprintf ('%-12.4f %-12.4e %-12.4e',
frontier(end,1), frontier(end,2), frontier(end,3)));
end
end

M.dispose();

Note the efficient frontier could also have been computed using the code in Section 7.1.1 by varying
~v. However, when the constraints of a Fusion model is changed the model has to be rebuild whereas a
rebuild is not needed if only the objective is modified.

7.1.3 Improving the Computational Efficiency

In practice it is often important to solve the portfolio problem in a short amount of time. Therefore,
in this section it is discussed what can be done at the modelling stage to improve the computational
efficiency.

The computational cost is of course to some extent dependent on the number of constraints and variables
in the optimization problem. However, in practice a more important factor is the number nonzeros used
to represent the problem. Indeed it is often better to focus at the number of nonzeros in G see (7.2) and
try to reduce that number by for instance changing the choice of G.

In other words if the computational efficiency should be improved then it is always good idea to start
with focusing at the covariance matrix. As an example assume that

S=D+VVT

where D is a positive definite diagonal matrix. Moreover, V is a matrix with n rows and p columns.
Such a model for the covariance matrix is called a factor model index{factor model} and usually p is
much smaller than n. In practice p tends be a small number independent of n say less than 100.

One possible choice for G is the Cholesky factorization of ¥ which requires storage proportional to
n(n + 1)/2. However, another choice is

a7 — [DV2VT]
because then
GG"=D+VVT.
This choice requires storage proportional to n 4+ pn which is much less than for the Cholesky choice of

G. Indeed assuming p is a constant then the difference in storage requirements is a factor of n.

The example above exploits the so-called factor structure and demonstrates that an alternative choice
of G may lead to a significant reduction in the amount of storage used to represent the problem. This
will in most cases also lead to a significant reduction in the solution time.

The lesson to be learned is that it is important to investigate how the covariance is formed. Given this
knowledge it might be possible to make a special choice for G that helps reducing the storage requirements
and enhance the computational efficiency.

7.1.4 Slippage Cost

The basic Markowitz model assumes that there are no costs associated with trading the assets and that
the returns of the assets is independent of the amount traded. None of those assumptions are usually

48 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

valid in practice. Therefore, a more realistic model is

maximize pu’x

subject to eTx + Z;.Lzl Tj(x; —2)) = w+ela’ (7.5)
2Ty < 42, ’
x > 0,

where the function

Tj(x; — x9)

specifies the transaction costs when the holding of asset j is changed from its initial value.

7.1.5 Market Impact Costs

If the initial wealth is fairly small and no short selling is allowed, then the holdings will be small and
then the amount traded of each asset must also be small. Therefore, it is reasonable to assume that the
prices of the assets is independent of the amount traded. However, if a large volume of an assert is sold
or purchased it can be expected that the price change and hence the expected return also change. This
effect is called market impact costs. It is common to assume that the market impact cost for asset j can
be modelled by

mj\/|zj —)|

according where m; is a constant that is estimated in some way. See /GK00] |p. 452] for details. Hence,

we have
Tj(xj — 29) = myla; — 29|\ /|2; — 29 = mj|z; — 2P/2.

From /[MOSEKApS12] it is known
{(t,z) : t > 232 2> 0} = {(t,2) : (s,,2),(2,1/8,5) € Q>}

where 2 is the 3 dimensional rotated quadratic cone. Hence, it follows

Zj = |xj - x?‘v
(57,15 2): (25, 1/8,55) € Q.
Zj:l T(x; —xj) = Zj:l tj

Unfortunately this set of constraints is nonconvex due to the constraint

zj = |z; — aj] (7.6)

but in many cases the constraint may be replaced by the relaxed constraint

2 2 |aj -). (7.7)

which is equivalent to

Zj 2 xj— x%
7.8
zj > —(z; — 2j). 78)

For instance if the universe of assets contains a risk free asset then

zj > |y —

cannot hold for an optimal solution.

Now given that the optimal solution has the property that (7.9) holds then the market impact costs
within the model is larger than the true market impact cost and hence money are essentially considered

7.1. Portfolio Optimization 49

MOSEK Fusion API for Matlab, Release 8.0.0.94

garbage and removed by generating transaction costs. This may happen if a portfolio with very small
risk is requested because then the only way to obtain a small risk is to get rid of some of the assets by
generating transaction costs. It is assumed this is not the case and hence the models (7.6) and (7.7) are
equivalent.

The above observations leads to

maximize pu’x

subject to eTax +mTt = w+elal,
(v, G"x) e Qv
2 >z —x?, j=1,...,n, (7.10)
Zj > xg‘)ijﬁ .7:13 , 1,
[vjsti 2 (253 1/8 0] € Q7 j=1,...,n,
T > 0.

The revised budget constraint
efe=w+elz® —mTt
specifies that the total investment must be equal to the initial wealth minus the transaction costs.

Moreover, observe the variables v and z are some auxiliary variables that model the market impact cost.
Indeed it holds

0
zj 2 |xj —]
and
3/2
tj Z Zj .

Tag proceeding it should be mentioned that transaction costs of the form

where p and ¢ are both integers and p > ¢ can be modelled using quadratic cones. See [MOSEKApS12]
for details.

Example code

Listing 7.3 demonstrates how to compute an optimal portfolio when market impact cost are included
using Fusion.

Listing 7.3: Implementation of model (7.10).

function [er, x] = MarkowitzWithMarketImpact(n,mu,GT,x0,w,gamma,m)

A

X Description:

A Extends the basic Markowitz model with a market cost term.

A

A Input:

A n: Number of assets

A mu: An n dimmenstional vector of expected returns

A GT: 4 matriz with n columns so (GT')*GT = covariance matriz

A z0: Initial holdings

A w: Initial cash holding

A gamma: Mazimum risk (=std. dev) accepted

X m: It is assumed that market impact cost for the j'th asset s
X m_jlz_j-z0_35/°3/2

Z

A Output:

4 Optimal expected return and the optimal portfolio

Z

50 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

import mosek.fusion.x*;
M = Model('Markowitz portfolio with market impact');
AM.setLogHandler(java.io.Printiiriter(java. lang. System.out));

/ Defines the variables. No shortselling is allowed.
x = M.variable('x', n, Domain.greaterThan(0.0));

/4 Addtional "helper" wariables

t = M.variable('t', n, Domain.unbounded());
z = M.variable('z', n, Domain.unbounded());
v = M.variable('v', n, Domain.unbounded());

/4 Mazimize ezpected return
M.objective('obj', ObjectiveSense.Maximize, Expr.dot(mu,x));

/4 Invested amount + slippage cost = intitial wealth
M.constraint ('budget', Expr.add(Expr.sum(x),Expr.dot(m,t)), Domain.equalsTo(w+sum(x0)));

/4 Imposes a bound on the risk
M.constraint('risk', Expr.vstack(gamma,Expr.mul(GT,x)), Domain.inQCone());

1z >= |z-z0/
.constraint('buy', Expr.sub(z,Expr.sub(x,x0)),Domain.greaterThan(0.0));
M.constraint('sell', Expr.sub(z,Expr.sub(x0,x)),Domain.greaterThan(0.0));

=

N

t >= 271.5, z >= 0.0. Needs two rotated quadratic cones to model this term
.constraint('ta', Expr.hstack(v,t,z),Domain.inRotatedQCone());
M.constraint('tb', Expr.hstack(z, Expr.constTerm(n,1.0/8.0),v),...
Domain.inRotatedQCone());

=

M.solve();

if true
disp(sprintf ('\nMarkowitz portfolio optimization with market impact cost'))
disp(sprintf ('Expected return: %.4e Std. deviation: %.4e Market impact cost: %.4e',
mu'*x.level() ,gamma,m'*t.level()))

end
er = mu'x*x.level();
x = x.level();

M.dispose();

The major new feature compared to the previous examples are

M.constraint('ta', Expr.hstack(v,t,z),Domain.inRotatedQCone());

and

M.constraint('tb', Expr.hstack(z, Expr.constTerm(n,1.0/8.0),v),...
Domain.inRotatedQCone());

In the first line the variables v, ¢ and z are stacked horizontally which corresponds to creating a list of
linear expressions where the j‘th element has the form

and finally each linear expression are constrained to be in rotated quadratic cone i.e.

2u5t; > zj2 and v;,t; > 0.

7.1. Portfolio Optimization 51

MOSEK Fusion API for Matlab, Release 8.0.0.94

Similarly the second line is equivalent to the constraint
Zj
1/8 | €@?

Uj

or equivalently

1
22j§ > U? and z; > 0.

7.1.6 Transaction Costs

Now assume there is a cost associated with trading asset j and the cost is given by

_ 0, A.’Ej = 0,
Tj(A:L’j) = { fi+ gj\ijL otherwise.

Delta z_j is the change in the holding of asset j i.e.

.0
Az; =z ;.

Hence, whenever asset j is traded a fixed cost of f; has to be paid and a variable cost of g; per unit traded.
Given the assumptions about transaction costs in this section then problem (7.5) may be formulated as

maximize pTx

subject to eTx + Z;L=1(ijj +9,2;) w+eTx0,
[v; GTx] e Q,
Zj > :Ej—x]Q, j=1...,n, (7.11)
Zj > x?—xj, j=1,...,n, '
Zj < U]‘yj7 j:l,...,n,
Y S {071}, j=1...,n,
T > 0.

First observe that
0
zj > |wj — xj|
and hence z; is bounded below by |Az;|. U; is some a prior chosen upper bound on the amount of trading

in asset j and therefore if z; > 0 then y; = 1 has to be the case. This implies that the transaction costs
for the asset j is given by autonomous

fivi + 9525
Example code

The following example code demonstrates how to compute an optimal portfolio when transaction costs
are included.

Listing 7.4: Code solve problem (7.11).

function [er, x] = MarkowitzWithTransactionsCost(n,mu,GT,x0,w,gamma,f,g)

SO

Description:
Extends the basic Markowitz model with a market cost term.

D

52 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

Input:
n: Number of assets
mu: An n dimmensional vector of expected returns
GT: 4 matriz with n columns so (GT')*GT = covariance matric
z0: Initial holdings
w: Initial cash holding
gamma: Mazimum risk (=std. dev) accepted
f: If asset j is traded then a fized cost f_j must be paid
g: If asset j is traded then a cost g_j must be paid for each unit traded

Output:
Optimal expected return and the optimal portfolio

S¢S N N N N N e e e e e N

import mosek.fusion.*;

4 Upper bound on the traded amount
u = (w+sum(x0))*ones(n,1);

M = Model('Markowitz portfolio with transaction costs');
AM.setLogHandler (java.i0.Printhiriter(java. lang. System.out));

/ Defines the vartables. No shortselling is allowed.
x = M.variable('x', n, Domain.greaterThan(0.0));

4 Addtional "helper" wariables

z = M.variable('z', n, Domain.unbounded());
/ Binary wvarables

y = M.variable('y', n, Domain.binary());

/4 Mazimize expected return
M.objective('obj', ObjectiveSense.Maximize, Expr.dot(mu,x));

/ Invest amount + transactions costs = initial wealth
M.constraint ('budget', Expr.add(Expr.add(Expr.sum(x),Expr.dot(£f,y)),Expr.dot(g,z)),
Domain.equalsTo (w+sum(x0))) ;

/4 Imposes a bound on the risk
M.constraint('risk', Expr.vstack(gamma,Expr.mul(GT,x)), Domain.inQCone());

4z >= |z-z0]

M.constraint('buy', Expr.sub(z,Expr.sub(x,x0)),Domain.greaterThan(0.0));
M.constraint('sell', Expr.sub(z,Expr.sub(x0,x)),Domain.greaterThan(0.0));
4 Alternatively, formulate the two constraints as

WM. constraint ('trade’, Expr.hstack(z,Ezpr.sub(z,z0)), Domain.in{cone())

4 Constraints for turning y off and on. z-diag(u)*y<=0 t.e. z_j <= u_j*y_j
M.constraint('y_on_off', Expr.sub(z,Expr.mul(Matrix.diag(u),y)), Domain.lessThan(0.0));

/4 Integer optimization problems can be very hard to solve so limiting the
4 mazimum amount of time is a wvaluable safe guard
M.setSolverParam('mioMaxTime', 180.0);

M.solve();

if true
disp(sprintf (' \nMarkowitz portfolio optimization with transactions cost'))
disp(sprintf ('Expected return: J.4e Std. deviation: %.4e Transactions cost: %.4e',
mu'*x.level() ,gamma,f'*y.level ()+g'*z.level()))
end

er = mu'*x.level();
x = x.level();
M.dispose();

7.1. Portfolio Optimization

53

MOSEK Fusion API for Matlab, Release 8.0.0.94

7.2 Primal Support-Vector Machine (SVM)

Machine-Learning (ML) has become a common widespread tool in many applications that affect our
everyday life. In many cases, at the very core of these techniques there is an optimization problem. This
case studies focuses on the Support-Vector Machine (SVM).

In words, the basic SVM model can be stated as:

We are given a set of points m in a n-dimensional space, partitioned in two groups. Find,
if any, the separating hyperplane of the two subsets with the largest margin, i.e. as far as
possible from the points.

Mathematical Model

We must determine an hypeplane w”z = b that separate two sets of points leaving the largest margin

possible. It can be proved that the margin is given by 2||w||(see [CV95]).

Therefore, we need to solve the problem of maximizing 2||w|| with respect of w,b with the constraints
that points of the same class must lie on the same side of the hyperplane. Denoting with z; € R™ the
i-th observation and assuming that each point is given a label y; € {—1,+1}, it is easy to see that the
separation is equivalent to:

yi(wT xz; — b) > 1.
The separating hyperplane is the solution of the following optimization problem:

minimize, ., 3 |w|?
yi(wle; —b)>1 i=1,...,m

If a solution exists, w,b define the separating hyperplane and the sign of w”z — b can be used to decide
the class in which a point x falls.

To allow more flexibility the soft-margin SVM classifier is often used instead. It allows for violation of
the classification. To this extent a non-negative slack variable is added to each linear constraint and
penalized in the objective function.

minimize, ., 3|w|?+CY", &
yi(wle;, —b)>1-¢& i=1,....m
§& >0 i=1,....m
In matrix form we have

minimizey ¢ %|w||> + CeT¢
yx(Xw—be)+E&>e
£>0

where * denotes the component-wise product, and e a vector with all components equal to one. The
constant C' > 0 acts both as scaling factor and as weight. Varying C' yields different trade-off between
accuracy and robustness.

Implementing the matrix formulation of the soft-margin SVM in Fusion is very easy. We only need to
cast the problem in conic form, which in this case only involves converting the quadratic term of the
objective function in a conic constraint:

minimizey ¢ ¢+ CceT¢
E+yx(Xw—be)>e
(1,t,w) € Q*?
§>0

(7.12)

where Qv denotes a rotated cone of dimension n + 2.

54 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

Fusion implementation

We show now how implement model (7.12). Let assume now we are given an array y of labels, a matrix
X where input data are stored row-wise and a set of values CC for we want to test. The implementation
in Fusion of our conic model starts declaring the model class:

M = Model('primal SVM');

Then we proceed defining the variables

w = M.variable('w', n, Domain.unbounded());
t = M.variable('t', 1, Domain.unbounded());
b = M.variable('b', 1, Domain.unbounded());
xi = M.variable('xi', m, Domain.greaterThan(0.));

The conic constraint is obtained stacking the three values

M.constraint(Expr.vstack(1., t, w) , Domain.inRotatedQCone());

Note how the dimension of the cone is deduced from the arguments. The relaxed classification constran-
ints can be expressed using the built-in expressions available in Fusion. In particular, it is very helpful
to

1. use the element wise multiplication to perform y x -, using the Ezpr.mulElm function;
2. construct a vector whose entries are all repetition of b by calling Var.repeat.

The results is

M.constraint (Expr.add(Expr.mulElm(y, Expr.sub(Expr.mul(X,w),
Var.repeat(b,m))), xi) , Domain.
—greaterThan(1.));

Finally, the objective function is defined as

M.objective (ObjectiveSense.Minimize, Expr.add(t, Expr.mul(c,
Expr.sum(xi))));

Since our aim is to solve sequence of problem varying C, then we can simply iterates along those values
changing the objective function:

for i = 1:nc

c i*500.0;
M.objective(ObjectiveSense.Minimize, Expr.add(t, Expr.mul(c,
Expr.sum(xi))));

M.solve();
disp([num2str(c),' | ', num2str(b.level()) , ' ", num2str(w.level()') 1);

end

The overall code follows:

Listing 7.5: The code implementing model (7.12)

M = Model('primal SVM');

w = M.variable('w', n, Domain.unbounded());

t = M.variable('t', 1, Domain.unbounded());

b = M.variable('b', 1, Domain.unbounded());

xi = M.variable('xi', m, Domain.greaterThan(0.));

7.2. Primal Support-Vector Machine (SVM) 55

MOSEK Fusion API for Matlab, Release 8.0.0.94

M.constraint (Expr.add(Expr.mulElm(y, Expr.sub(Expr.mul(X,w),

Var.repeat(b,m))), xi) , Domain.
—greaterThan(1.));
M.constraint(Expr.vstack(1., t, w) , Domain.inRotatedQCone());

M.acceptedSolutionStatus(AccSolutionStatus.NearOptimal);

disp(' ¢ | b [w');
for i = 1:nc

c = i%*500.0;
M.objective(ObjectiveSense.Minimize, Expr.add(t, Expr.mul(c,
Expr.sum(xi))));
M.solve();
disp([num2str(c),' | ', num2str(b.level()) , ' ", num2str(w.level()') 1);

end

end

Computational Tests

We show now few simple tests.

We generate random data composed by two sets of points using the following code:

nc = 10;
m = 50;
n = 3;

rng(0, 'twister');

nump= randi(m) - 1 ;
numm= m - nump;

y = cat(1 , ones(nump,1) , -ones(numm,1));
mean = 1.;
var = 1.;

X= cat(l, var.*randn(nump,n) + mean, var.*randn(numm,n) - mean) ;

disp(['Number of data : ', num2str(m)])
disp(['Number of features: ', num2str(n)])

As first tests, we generate two sets of random two dimensional points each from a Gaussian distribution:
we use a set centered at (1.0,1.0) and another at (—1.0,—1.0).

With a standard deviation o = 1/2 we obtain a separable sets of points and for C' we obtain the result
in Fig. 7.1.

For o = 1 separability is lost and we obtain the hyper plane as for Fig. 7.2.

7.3 2D Total Variation

This case studies is mainly based on the paper by Goldfarb and Yin /GY05/.

56 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

Fig. 7.1: Separating hyper plane for two group of points in two dimensions.

T T T T T T

_al |
1 1 L I 1 L 1 1
-4 -3 -2 -1 4] 1 2 3

Fig. 7.2: Soft separating hyper plane for two group of points in two dimensions.

7.3. 2D Total Variation 57

MOSEK Fusion API for Matlab, Release 8.0.0.94

Mathematical Formulation

We are given a n x m grid and for each cell (4, j) an observed value f;; that can expressed as
fij = wij + vij,

where u;; is the actual value and v;; is the noise. The aim is to reconstruct f subtracting the noise from
the observations.

We assume the 2-norm of the overall noise to be bounded: the corresponding constraint is
lu = fll2 <o

which translate in a simple conic quadratic constraint as
(ou—f)eQ

Then our aim is to minimized the change in both axis moving from one cell to the adjacent ones. To
this end we define the adjacent differences vector as

o, Uit s — U s
8+ = (%7) = (itl,j tJ) s 713
& 05 Ui g1 = Ui (7.13)
for each pair of cells 1 < ,5 < n. The idea is depicted in the following figure.

i

* l

For each cells we want to minimize the norm of 8

1+ and therefore we introduce auxiliary variables t;;
such that

tiy > |05 1l2 Vi, j,
that we reformulate as
(tijﬁ{;) €Q Vij,

and minimize the sum of all ¢;;.

The complete model takes the form:
min Z1gi,jgn Lij

3;; = (Uig1,j — Ui, Wi 41 — Ui,j)T Vi<i,j<n
7.14
(tij, 05) € @ V1<i,j<n (7.14)

(o, vect(u — f)) € Q

uw'E[O,l] Vi<i,5<n

58 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

Implementation

The Fusion implementation of model (7.14) relies on the possibility of define variable and expression
slices.

First of all we start creating the optimization model and variables t and u:

M = Model('TV');

u= M.variable([ncols+l,nrows+1], Domain.inRange(0.,1.0));
t= M.variable([ncols, nrows], Domain.unbounded());

Note how u is larger than the actual grid dimension to account for additional cells. Then we define a
slice of u that contains the actual cells of the grid:

ucore= u.slice([1,1], [nrows+1,ncols+1]);

The next steps is to define the partial variation on each axis, as in (7.13):

deltax= Expr.sub(u.slice([2,1] ,[nrows+2,ncols+1]), ucore);
deltay= Expr.sub(u.slice([1,2] ,[nrows+1,ncols+2]), ucore);

Slices are in this case created on the fly as they are not going to be reused thereafter. Now we can set
the conic constraints on the norm of the total variations. To this extent:

1. we proceed flattening deltax,deltay and t so that they become three one-dimensional arrays;
2. they can then be stacked horizontally using Ezpr.hstack, obtaining a matrix of expressions

3. each row of that matrix can be assigned to a rotated quadratic cone simply using
Domain. inRotatedflCone.

All these steps can be condensed in the following line:

’M.constraint(Expr.stack(2, t, deltax, deltay), Domain.inQCone().axis(2)); ‘

We need now to bound the norm of the error cell-wise. A conic constraint suffices using £ as an one-
dimensional array:

’M.constraint(Expr.vstack(sigma, Expr.flatten(Expr.sub(f, wucore))), Domain.inQCone()); ‘

We only need to set the objective function as the sum of all ¢;;‘s:

’M.objective(ObjectiveSense.Minimize, Expr.sum(t)); ‘

The overall code follows.

Listing 7.6: The Fusion implementation of model (7.14).

function total_variation()
nrows = 50;

ncols = 50;

seed=0;

rng(seed) ;

sigma = 1.0;

£

min(ones(nrows,ncols), max(zeros(nrows,ncols) , rand(nrows,ncols) + randn(nrows,ncols))) ;

total_var(nrows, ncols, f , sigma);

[=]
1]

deltas= abs(u-f);

7.3. 2D Total Variation 59

MOSEK Fusion API for Matlab, Release 8.0.0.94

fprintf('max deltas= %f\n', max(max(deltas)))
fprintf('min deltas= %f\n', min(min(deltas)))

end

function ret = total_var(ncols,nrows,f,sigma)
import mosek.fusion.*

M = Model('TV');

u= M.variable([ncols+1,nrows+1], Domain.inRange(0.,1.0));
t= M.variable([ncols, nrows], Domain.unbounded());

ucore= u.slice([1,1], [nrows+1,ncols+1]);

deltax= Expr.sub(u.slice([2,1] ,[nrows+2,ncols+1]), ucore);
deltay= Expr.sub(u.slice([1,2] ,[nrows+1,ncols+2]), ucore);

M.constraint(Expr.stack(2, t, deltax, deltay), Domain.inQCone().axis(2));

M.constraint (Expr.vstack(sigma, Expr.flatten(Expr.sub(£, wucore))), Domain.inQCone());
Aboundary conditions are not actually needed

sprint ('boundary conditions u_ntl,* = u_n,* ...')

AM.constraint(Ezpr.sub(w.slice([n-1,0] ,[n,m]), w.slice([n,0],[n+1,m])), Domain.
—equalsTo(0.))

sprint ('boundary conditions u_*,n+l = u_*,n ...')

AM.constraint(Ezpr.sub(u.slice([0,n-1] ,[n,m]), w.slice([0,n],[n,m*1])), Domain.
—equalsTo(0.))

M.objective(ObjectiveSense.Minimize, Expr.sum(t));

M.solve()

ret= reshape(u.slice([1,1] , [nrows+l,ncols+1]).level() ,
[nrows,ncols]);

end

7.4 Inner and outer Lowner-John Ellipsoids

In this section we show how to compute the Léwner-John inner and outer ellipsoidal approximations of
a polytope.

This is possible because for a given polytope, the volume of the inscribed (or enclosing) ellipsoid is
proportional to a the n-th power of the determinant of the a specific positive semidefinite matrix. Details
are given in Section 7.4.5.

7.4.1 Inner Lowner-John Ellipsoids

The inner ellipsoidal approximation to a polytope
S={zeR"| Az < b}

maximizes the volume of the inscribed ellipsoid,

{z|z=Cu+d,|ul2 <1}

60 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

The volume is proportional to det(C)l/ ™. so the problem can be solved as

maximize ¢

subject to t < det(C)/"
Cailly <b; —ald, i=1,....,m
C>0

(7.15)

which is equivalent to a mixed conic quadratic and semidefinite programming problem.

The source code follows in Listing 7.7. See also Section 7.4.3.

Listing 7.7: Fusion implementation of model (7.15).

function [C, d] = lownerjohn_inner(A, Db)
import mosek.fusion.*;
M = Model('lownerjohn_inner');
[m, n] = size(A);

A 4 = Matriz.dense(4);

B

Setup vartables

= M.variable('t', 1, Domain.greaterThan(0.0));
= M.variable('C', [n,n], Domain.unbounded());
M.variable('d', n, Domain.unbounded());

Qa Q o
|

J (bi - ai"T*d, C*ai) \in @
M.constraint('qc', Expr.hstack(Expr.sub(b, Expr.mul(A,d)), Expr.mul(A,C.transpose())),
—Domain.inQCone());

4t <= det(C)~{1/n}
model_utils.det_rootn(M, C, t);

/# Objective: Mazimize t
M.objective(ObjectiveSense.Maximize, t);

M.solve();
C = reshape(C.level(), n, n);
d = reshape(d.level(), n, 1);

M.dispose();
end

7.4.2 Outer Lowner-John Ellipsoids

The outer ellipsoidal approximation to a polytope given as the convex hull of a set of points
S =conv{zy, T2, ...,Tm}
minimizes the volume of the enclosing ellipsoid,

{z[[[P(z—c)lla <1}

The volume is proportional to det(P)~'/", so the problem can be solved as

minimize ¢

subject to t > det(P)~1/™
|Px; +clly <1,i=1,...,m
P >0.

(7.16)

The source code follows in Listing 7.8. See also Section 7.4.3.

7.4. Inner and outer Léwner-John Ellipsoids 61

MOSEK Fusion API for Matlab, Release 8.0.0.94

Listing 7.8: Fusion implementation of model (7.16).

function [P, c] = lownerjohn_outer(x)
import mosek.fusion.*;
M = Model('lownerjohn_outer');

[m, n] = size(x);

=

Setup variables

t = M.variable('t', 1, Domain.greaterThan(0.0));
P = M.variable('P', [n,n], Domain.unbounded());
¢ = M.variable('c', n, Domain.unbounded());

4 (1, P(*zitc)) \in @

=

.constraint('qc',
Expr.hstack(Expr.ones(m) ,
Expr.sub(Expr.mul (x,P.transpose()),
Variable.reshape(Variable.repeat(c,m), [m,2]))),
Domain.inQCone());

J t <= det(P)~{1/n}
model_utils.det_rootn(M, P, t);

/ Objective: Mazimize t
M.objective(ObjectiveSense.Maximize, t);
M.solve();

P = reshape(P.level(), n, n);
reshape(c.level(), n, 1);

(]
]

M.dispose();
end

7.4.3 Bound on the Determinant Root.

Using SDP variables it is possible to bound the n-power of the determinant of a positive definite matrix,
by modeling its hypograph:

C={(X,t) € ST x R|t <= det(X)"/"} (7.17)
The set (7.17) can be modeled as the intersection of a semidefinite cone
(X, Z; Z" Diag(Z)] > 0
and a number of rotated quadratic cones and affine hyperplanes,
t <= (Z11% Z22% ...« Znn)*/",
which model the geometric mean hypograph
S={(z,t) eR" xR|z > 0,t < [Jai(xl - 22- ... 2n)1/n)}

as the intersection of rotated quadratic cones and affine hyperplane.
See [BenTalN01] for further reading.

The Fusion implementation of the constraint on the n-th power of the root of the determinant is reported
in Listing 7.9.

62 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

Listing 7.9: Bound on the root determinant n-th power, see (7.17).

function [] = det_rootn(M, X, t)

A Purpose: Models the hypograph of the n-th power of the
4 determinant of a positive definite matriz.
4
A The convez set (a hypograph)
A
YA ={ (X, t) \in S°n_+ xc R | t <= det(X) {1/n} },
A
A can be modeled as the intersection of a semidefinite cone
4
A [X, Z; Z°T Diag(Z)] >= 0
A
4 and a number of rotated quadratic cones and affine hyperplanes,
A
A t <= (Z11%Z22*...*Znn) {1/n} (see geometric_mean).
4
A References:
A [1] "Lectures on Modern Optimization"”, Ben-Tal and Nemirouski, 2000.
import mosek.fusion.*;
= X.shape.dim(0) ;
/ Setup wariables
Y = M.variable(Domain.inPSDCone (2*n)) ;
4 Setup Y = [X, Z; Z°T diag(Z)]
Y11 = Y.slice([1, 11, [n+1, n+1]);
Y21 = Y.slice([n+1, 1], [2*n+1, n+1]);
Y22 = Y.slice([n+1, n+1], [2*n+1, 2*n+1]);
S = Matrix.sparse(n, n, 1:n, 1:n, ones(l,n));
M.constraint (Expr.sub(Expr.mulElm(S,Y21), Y22), Domain.equalsTo(0.0));
M.constraint (Expr.sub(X, Y11), Domain.equalsTo(0.0));
A tn <= (Z11%Z22%...%Znn)
model_utils.geometric_mean(M, Y22.diag(), t);
end

The code is relies on a recursive implementation of the constraint on the geometric mean, as in Listing
7.10.

Listing 7.10: Bound on the geometric mean.

function geometric_mean(M, x, t)
Purpose: Models the convex set

={ (e, t) \in R°n z R | © >= 0, t <= (z1 * 2 * ... *zn)"(1/n) }.
as the intersection of rotated quadratic cones and affine hyperplanes,
see [1, p. 105]. This set can be interpreted as the hypograph of the

geometric mean of T.

We 2llustrate the modeling procedure using the following example.
Suppose we have

= (z1 * 2 * ©3)°(1/3)

3¢ 3¢ B¢ S N N N e e e e e e e e

for some t >= 0, © >= 0. We rewrite it as

7.4. Inner and outer Léwner-John Ellipsoids 63

MOSEK Fusion API for Matlab, Release 8.0.0.94

A
A t~4 <=zl ¥ 2 * 3 * zf, T4 =t
4
A which is equivalent to (see [1])
4
A 1172 <= 2%zxl*z2, z12°2 <= 2*x3*zri,
A
A 2172 <= 2*xll*zl2,
4
VA sqrt(8)*z21 = t, =) = t.
4
A References:
A [1] "Lectures on Modern Optimization"”, Ben-Tal and Nemirovski, 2000.
import mosek.fusion.*;
n = x.size();
1 = ceil(log2(n));
m=2"1 - n;
if (m == 0)
x0 = x;
else
x0 = Variable.vstack(x, M.variable(m, Domain.greaterThan(0.0)));
end
z = x0;
for i=1:1-1,
xi = M.variable(2~(1-i), Domain.greaterThan(0.0));
for k=1:2"(1-1i),
M.constraint (Variable.hstack(z.index(2*k-1),z.index(2*k),xi.index(k)),...
Domain.inRotatedQCone()) ;
end
z = xi;
end
t0 = M.variable(l, Domain.greaterThan(0.0));
M.constraint (Variable.vstack(z, t0), Domain.inRotatedQCone());
M.constraint (Expr.sub(Expr.mul(2~(0.5%1),t),t0), Domain.equalsTo(0.0));
for i=2"1-m+1:2"1
M.constraint (Expr.sub(x0.index(i), t), Domain.equalsTo(0.0));
end
t0 = M.variable(l, Domain.greaterThan(0.0));
M.constraint(Variable.vstack(z, t0), Domain.inRotatedQCone());
M.constraint (Expr.sub(Expr.mul(2~(0.5%1),t),t0), Domain.equalsTo(0.0));
for i=2"1-m+1:2"1
M.constraint (Expr.sub(x0.index (i), t), Domain.equalsTo(0.0));
end
end

7.5 Nearest Correlation Matrix Problem

In the nearest correlation problem we are given a symmetric matrix A and we wish to find the closest
correlation matrix, with respect to a given norm. A correlation matrix must be a positive-semidefinite

64 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

matrix. In the next sections we will show two typical approaches:
e use the Frobenius norm,
e use the so-called nuclear norm.

In both cases we can exploit the symmetry of the correlation matrix to reduce the problem dimension.
We will make use of the following mapping from a symmetric matrix to vector containing the (scaled)
lower triangular part of the matrix,

vec(M) : R**™ — Rn(n+1)/2
vee(M)g = Mi; for k= i(i+1)/2+j,i = j (7.18)
vec(M)y = \/éMij for k=1i(i +1)/2,i < j.

In Listing 7.11 the Fusion implementation of vec.

Listing 7.11: Implementation of function vec in (7.18).

function r = vec(e)
/A Assuming that e is an NzN expression, return the lower triangular part as a vector.
import mosek.fusion.x*;

N = e.getShape() .dim(1);

subi = [1: N * (N+1) / 21;
subj = zeros(N*(N+1)/2,1);

val = zeros(N*(N+1)/2,1);
k=1;
for j=1:N,
for i=j:N,
subj (k) = i+(j-1)*N;
if (i==j),
val(k) = 1;
else
val(k) = sqrt(2);
end;
k=k + 1;
end
end

S = Matrix.sparse(N * (N+1) / 2, N * N, subi, subj, val);
Expr.mul(S, Expr.reshape(e, N*N));

o]
1]

7.5.1 Nearest Correlation with Frobeniues Norm

In this section we use the Frobineus norm, i.e. the nearest correlation matrix is given by
X* =argmin [|[A — X||p
€S
where
S={X e R"™" | X > 0,diag(X) = e}.

To exploit symmetry of A — X we use the vec mapping in (7.18). We then get an optimization problem
with both conic quadratic and semidefinite constraints,

minimize ¢

subject to (t,vec(A— X)) € Q
diag(X) =e
X =0,

(7.19)

7.5. Nearest Correlation Matrix Problem 65

MOSEK Fusion API for Matlab, Release 8.0.0.94

Source code: Nearest correlation

The code implementing problem (7.19) is reported in Listing 7.12.

Listing 7.12: Implementation of problem (7.19).

function nearestcorr_frobenius(A,N)

import mosek.fusion.x*;

/ Create a model with the name NearestCorrelation
M = Model('NearestCorrelation');

/ Setting up the wariables
X = M.variable('X', Domain.inPSDCone(N));
t = M.variable('t', 1, Domain.unbounded());

4 (t, vec (4-X)) \in @
M.constraint (Expr.vstack(t, vec(Expr.sub(A,X))), Domain.inQCone());

/ diag(X) = e
M.constraint(X.diag(), Domain.equalsTo(1.0));

4 Objective: minimize t
M.objective(ObjectiveSense.Minimize, t);

% Solve the problem
M.solve();

/ Get the solution wvalues
reshape(X.level(), N,N)
M.dispose();

We use the following input

Listing 7.13: Input for the nearest correlation problem.

0.0, 0.5, -0.1, -0.2, 0.5;
0.5, 1.25, -0.05, -0.1, 0.25;
-0.1, -0.05, 0.51, 0.02, -0.05;
-0.2, -0.1, 0.02, 0.54, -0.1;
0.5, 0.25, -0.05, -0.1, 1.25 1;

The expected out is the following (small differences may apply):

ans =

1.0000 0.5000 -0.1000 -0.2000 0.5000
0.5000 1.0000 -0.0500 -0.1000 0.2500
-0.1000 -0.0500 1.0000 0.0200 -0.0500
-0.2000 -0.1000 0.0200 1.0000 -0.1000
0.5000 0.2500 -0.0500 -0.1000 1.0000

7.5.2 Nearest Correlation with Nuclear-norm Penalty

This is a variation of the nearest correlation matrix, where we estimate a correlation matrix X > 0,
where X — diag(w) > 0 has low rank induced by a nuclear norm constraint, and w > 0.

66 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

We solve the problem

minimize || X + diag(w) — Al p +7Tr(X)
subject to
X >=0,w>0.

Again we can exploit symmetry of A — X using the vec mapping in (7.18). We then get an optimization
problem with both conic quadratic and semidefinite constraints.

minimize ¢+ yTr(X)
subject to (t,vec(X + diag(w) — A4)) € Q
X e S+, w > 0

The source code for this example follows in Listing 7.14.

Listing 7.14: Nearest correlation with nuclear norm.

function nearestcorr_nucnorm(A, N, gammas)

import mosek.fusion.x*;

=

= Model('NucNorm');

NS

Setup variables

= M.variable('t', 1, Domain.unbounded());

= M.variable('X', Domain.inPSDCone(N));
M.variable('w', N, Domain.greaterThan(0.0));

s oo
|

1]

4 (t, vec (X + diag(w) - 4)) in @
D = Expr.mulEIlm(Matrix.eye(N), Var.repeat(w,1,N));

M.constraint (Expr.vstack(t, vec(Expr.sub(Expr.add(X, D), Matrix.dense(4)))),
Domain.inQCone());
TX = Expr.sum(X.diag());
iM.setLogHandler(java.io.Printiiriter(java. lang. System.out));
for g=gammas
/4 Objective: Minimize t + gamma*Tr(X)
M.objective(ObjectiveSense.Minimize, Expr.add(t, Expr.mul(g,TX)));

M.solve()

X1 = reshape(X.level(),N,N);
wl = w.level();

d
r

eig(X1);
A - (X1 + diag(wl));

disp(sprintf ('gamma=%f, res=Je, rank=/d', g, norm(r,'fro'), sum(d>1le-6)))
end
M.dispose();

We feed MOSEK with the same input as in Section 7.5.1. The problem is solved for a range of gamma
values, to show how the penalty term helps achieve low rank solution. To this extent we report both the
rank of the solution and the norm residual. The rank is computed using the LinAlg.syeig available in
the MOSEK.

7.5. Nearest Correlation Matrix Problem 67

MOSEK Fusion API for Matlab, Release 8.0.0.94

7.6 Semidefinite Relaxation of MIQCQP Problems

In this case studies we will discuss a fairly common application for Semidefinite Optimization: to define
continuous coninc relaxation of Mixed-Integer optimization problems.

We will focus on problems of the form:
min 2T Pz +2¢Tx

(7.20)
T €L

where ¢ € R” and P € S7*". There are many important problems that can be reformulated as problem
(7.20):

e integer least squares problem min ||Ax — b||3,s.t.z € Z"
o closest vector problem min ||v — z||2,s.t.z € {Bz|x € Z"}

Following /PB15], we can derive a continuous conic model. We first relax the integrality constraint
min 2T Pz +2¢Tx
$i($i—1) ZO i:l,...,n.

The last constraint is still non-convex. We introduce a new variable X € R"*", such that X = z - z7.
The last constraint then reads

diag(X) —x > 0,

and with few passages we can write

To get a conic problem we relax the last constraint and apply the Schur complement. The final relaxation
follows:

min Tr(PX)+2¢"x

diag(X) >z (7.21)

We refer to [PB15] for more details.

Fusion Implementation

Implementing model (7.21) in Fusion is very simple. We assume we are given as input n, P and ¢. Then
we proceed creating the optimization model

M =Model();

The important step is to define a single PSD variable

X n+1
Z:{xT 1]€S++.

Our code will create Z and two slices that corresponds to X, z:

68 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

Z = M.variable(n+1, Domain.inPSDCone());

X= Z.slice([1,1], [n+1,n+1]);
x= Z.slice([1,n+1], [n+1,n+2]);

The constraints are declared as follow

M.constraint(Expr.sub(X.diag(),x), Domain.greaterThan(0.));

M.constraint(Z.index(n+1,n+1), Domain.equalsTo(1.));

The objective function uses several available linear expressions:

M.objective(ObjectiveSense.Minimize, Expr.add(Expr.sum(Expr.mulElm(Matrix.dense(P), X)),
—Expr.mul (2.0, Expr.dot(x, q@))));

Note that the trace operator is not directly available in Fusion, but its definition can be easily used
instead.

The complete code follows in Listing 7.15.

Listing 7.15: Fusion implementation of model (7.21).

M =Model();

7Z = M.variable(n+1, Domain.inPSDCone());

X= Z.slice([1,1], [n+1,n+11);

x= Z.slice([1,n+1], [n+1,n+2]);

M.constraint (Expr.sub(X.diag(),x), Domain.greaterThan(0.));

M.constraint(Z.index(n+1,n+1), Domain.equalsTo(1.));

M.objective(ObjectiveSense.Minimize, Expr.add(Expr.sum(Expr.mulElm(Matrix.dense(P), X)),
—Expr.mul(2.0, Expr.dot(x, q))));

M.solve();

Numerical Examples

We present now some simple numerical experiments. The input data are generate following again /PB15]/.

1. We generate a matrix A € R™*", such that whose entries are normally distributed, i.e. A;; =

N(0,1)
2. define P = AAT
3. generate a vector x5 whose entries are random number uniformly distributed in [0, 1].

4. define ¢ = —Px,

7.7 SUDOKU

SUDOKU is a famous simple yet mind-blowing simple game. The objective is to fill a 9x9 grid with
digits so that each column, each row, and each of the nine 3x3 sub-grids that compose the grid (also
called bozes, blocks, regions, or sub-squares) contains all of the digits from 1 to 9. For more information
see http://en.wikipedia.org/wiki/Sudoku. Here is a simple example:

In a more general setting we are given a grid of dimension n x n, with n = m?,m € N. Each cell (i, 5)
must be filled with an integer y;; € [1,n]. Along each row and each column there must be no repetitions.

7.7. SUDOKU 69

http://en.wikipedia.org/wiki/Sudoku

MOSEK Fusion API for Matlab, Release 8.0.0.94

4 4
8 3 8 3
1 28 9 1 8 9
311 8|4 7131 8|4
411 91217 411 91217
4 6|5 8 4 6|5 8
4 1|6 4 1|6
9 9
A simple unsolved Sudoku The solution

No repetitions are allowed also in each sub-grid with corners {(mt + 1), (mi+ 1), (m(t+ 1)), (m(+ 1))},
fort,1=0,...,m— 1.

In general, each SUDOKU instance comes along with some values already determined. The purpose of
that values is:

e reduce the complexity of the game removing symmetries and guiding the initial moves of the player;
e ensure that there will be a unique solution.

The latter point requires a careful selection of the given cells, that is beyond the scope of this post. We
only provide the model with the set F' randomly generated. We represent such set in as list of triplets

(i, v)-

Note that SUDOKU is a feasibility problem. A typical Integer Programming formulation is straight-
forward: let x;;; be a binary variable that takes 1 if k is put in cell (¢, j). Then we look for a feasible
solution of the system of constraints:

SUDOKU has been also a nice problem to fiddle with for many researchers in the optimization and
related community. Indeed, its simple structure and the the easy way in which the results can be tested,
makes it a perfect test problem.

SUDOKU is a typical assignment problem. Its constraints are commonly found in optimization problems
about scheduling, resource allocations.

We will approach SUDOKU as a standard integer linear program, and we will show how easily and
elegantly it can be implemented in Fusion.

Mathematical Formulation

In this section we formulate SUDOKU as a mixed-integer linear optimization problem. Let’s introduce
a binary variable x;;; that takes 1 if the the digit k is put in the cell (4, j), or 0 otherwise. We must ask
that for each cell only one digit is selected, i.e.

n—1
=1 i,j=0,...,n—1 (7.22)
k=0

Similar constraints can be used to force each digit to appears only once in each row or column

Z?;olxijkzl 4, k=0,...,n—1

- 7.23
Z?zolxijk-=1 ,k=0,...,n—1 ()
To force a digit to appears only once in each sub-grid we can use the following
m—1m—1
SN warmgrr =1 k=0,...,n—landt,1=0,...,m—1 (7.24)

i=0 j=0

70 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

For each given cell (,7) in F' we must set the corresponding value k, i.e.
Tijr = L.

Summarizing, and considering that there is no objective function to minimize, the optimization model
for the SUDOKU problem takes the form

min 0
s.t.
S wie =1 jk=0,...,n—1
Z;:olfl?ijkil ,k=0,...,n—1
o Tk = 1 i,j=0,....,n—1 (7.25)

ZZZ_OI Z;n:_ol T(ittm)(G+t)k = 1 k=0,...,n—1and
t,l=0,....m—1

ZTije =1 V(i,j, k) € F
Implementation with Fusion

The implementation in Fusion is straightforward. First, we represent the x variable using a three
dimensional Fusion variable:

x= M.variable([n,n,n], Domain.binary());

Then we can define constraints (7.22) and (7.23) simply using the Ezpr.sum operator, that allows to
sum the elements of an expression (in this case a the variable itself) along arbitrary dimensions. The
code reads:

Jeach value only once per dim
for d = 1:m

M.constraint (Expr.sum(x,d-1), Domain.equalsTo(1.));
end

The last set of constraints (7.24) , i.e. the sum over block, needs a little more effort: we must loop over
all blocks and select the proper slice:

Jeach number must appears only once inm a block

for k = 1:n
for i = 1:m
for j = 1:m

M.constraint(Expr.sum(x.slice([1+(i-1)*m,1+(j-1)*m,k], [1+i*m, 1+j*m, k+1])),

Domain.equalsTo(1.));
end
end
end

To set the triplets given in the set F' we can use the Vartable.pick method that returns a one dimen-
sional view of an arbitrary set of elements of the variable.

M.constraint(x.pick(hr_fixed), Domain.equalsTo(1.0))

SUDOKU: the complete example code.

The complete code for the SUDOKU problem is shown in Listing 7.16.

7.7. SUDOKU 71

MOSEK Fusion API for Matlab, Release 8.0.0.94

Listing 7.16: Fusion implementation to solve SUDOKU.

74
/4 Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

A

4 File: sudoku.m

A

/4 Purpose: A MILP-based SUDOKU solver
i

function sudoku()

import mosek.fusion.x*;

m= 3

n= m*m;

hr_fixed= [1,5,4; ...
2,2,5; 2,3,8; 2,6,3; ...
3,2,1; 3,4,2; 3,5,8; 3,7,9; ...
4,2,7; 4,3,3; 4,4,1; 4,7,8; 4,8,4;
6,2,4; 6,3,1; 6,6,9; 6,7,2; 6,8,7;
7,3,4; 7,5,6; 7,6,5; 7,8,8;
8,4,4; 8,7,1; 8,8,6;
9,5,9

1;

M= Model('SUDOKU') ;
x= M.variable([n,n,n], Domain.binary());
/Jeach value only once per dim
for d = 1:m
M.constraint (Expr.sum(x,d-1), Domain.equalsTo(1.));

end

/Jeach number must appears only once in a block

for k = 1:n
for i = 1:m
for j = 1:m
M.constraint (Expr.sum(x.slice([1+(i-1)*m,1+(j-1)*m,k], [1+i*m, 1+j*m, k+1])),
.
Domain.equalsTo(1.));
end
end
end

M.constraint (x.pick(hr_fixed), Domain.equalsTo(1.0))

M.setLogHandler (java.io.PrintWriter (java.lang.System.out));
M.solve();

Aprint the solution, if any...
if M.getPrimalSolutionStatus() == SolutionStatus.Optimal ||
M.getPrimalSolutionStatus() == SolutionStatus.NearOptimal

fprintf('\n');

for i = 1:n
fprintf (' |');
for j = 1:n

72 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

for k = 1:n
if x.index([i,j,k]).level()>0.5
fprintf (' %d', k)
break;
end
end
if mod(j,m) ==
fprintf (' |');
end

end

fprintf('\n');

if mod(i,m) ==
fprintf('\n');

end

end
else
fprintf('No solution found!\n');
end

M.dispose()

The problem instance corresponding to Fig. 7.7 is hard-coded for sake of simplicity. It will produce the
following output

Computer
Platform : Linux/64-X86
Cores : 20
Problem
Name : SUDOKU
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 296
Cones : 0
Scalar variables 1 729
Matrix variables : 0
Integer variables 1 729

Optimizer started.

Mixed integer optimizer started.

Threads used: 20

Presolve started.

Presolve terminated. Time = 0.00

Presolved problem: 206 variables, 154 constraints, 683 non-zeros
Presolved problem: O general integer, 206 binary, O continuous
Clique table size: 154

BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_0BJ BEST_RELAX_0BJ REL_GAP(%) TIME
0 1 0 0 NA -0.0000000000e+00 NA 0.0
0 1 0 0 NA -0.0000000000e+00 NA 0.0
0 1 0 0 NA -0.0000000000e+00 NA 0.0
0 1 0 0 NA -0.0000000000e+00 NA 0.0
0 1 0 0 NA -0.0000000000e+00 NA 0.0
0 1 0 0 NA -0.0000000000e+00 NA 0.0
Cut generation started.

0 2 0 0 NA -0.0000000000e+00 NA 0.0
Cut generation terminated. Time = 0.00

0 3 1 0 0.0000000000e+00 -0.0000000000e+00 0.00e+00 0.0

An optimal solution satisfying the relative gap tolerance of 1.00e-02(%) has been located.
The relative gap is 0.00e+00(%) .

7.7. SUDOKU 73

MOSEK Fusion API for Matlab, Release 8.0.0.94

An optimal solution satisfying the absolute gap tolerance of 0.00e+00 has been located.
The absolute gap is 0.00e+00.

Objective of best integer solution : 0.000000000000e+00

Best objective bound : -0.000000000000e+00
Construct solution objective : Not employed
Construct solution # roundings : 0
User objective cut value : 0
Number of cuts generated : 18
Number of Gomory cuts 1 18
Number of branches : 0
Number of relaxations solved : 3
Number of interior point iterations: 4
Number of simplex iterations : 39
Time spend presolving the root : 0.00
Time spend in the heuristic : 0.00
Time spend in the sub optimizers : 0.00
Time spend optimizing the root : 0.01

Mixed integer optimizer terminated. Time: 0.04
Optimizer terminated. Time: 0.04

Integer solution solution summary
Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 0.0000000000e+00 Viol. con: 0e+00 var: 0e+00 itg: 0e+00

©
N
\]
I
(9]
[N
w

1941765382
53914281167 |
26713911458

7.8 Multi-processors Scheduling

In this case of study we consider a simple scheduling problem in which a set of jobs must be assigned to
a set of identical machines. We want to minimize the makespan of the overall processing, i.e. the latest
machine termination time.

The main aims of this case study are
e show how to define a Integer Linear Programming model,
e take advantage of Fusion operators to compactly express set of constraitns,

e provide to the solver an incumbent integer feasible solution.

Mathematical formulation

We are given a set of jobs J with |J| = n to be assigned to a set M of identical machines with |M| = m.
Each job j € J has a processing time 7; > 0 and can be assigned to any machine. Our aim is to find

74 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

the job scheduling that minimizes the overall makespan, i.e. the maximum complation time among all
machiens.

Formally, we introduce a binary variable x;; that takes value one if the job j is assigned to the machine
i, zero otherwise. The only constraint we need to set is the requirement that a job must be assigned to
a single machine. The optimization model takes the following form:

min max;e ps ZjeJ Tjxij

s.t.
Dien Tij =1 JEJ (7.26)
a:ije{(),l} Vie M,jeld

Model (7.26) can be easily transformed in an integer linear programing model as the following

mint

s.t.

diem Tig =1 jeJ

t Z ZjEJ 7}501] i€ M (727)
z;; € {0,1} Vie M,jeJ.

The implementation of this model in Fusion is straightforward:

M= Model('Multi-processor scheduling');

x= M.variable('x', [m,n], Domain.binary());

t= M.variable('t',1);

M.constraint(Expr.sum(x,0), Domain.equalsTo(1l.));

M.constraint (Expr.sub(Var.repeat(t,m), Expr.mul(x,T)), Domain.greaterThan(0.));

M.objective(ObjectiveSense.Minimize, t);

Most of the code is self-explaining. The only critical point is

M.constraint (Expr.sub(Var.repeat(t,m), Expr.mul(x,T)), Domain.greaterThan(0.));

that implements the set of constraints
t> Z zjij ieM
jeJ
To fit in Fusion we restate the constraints as

t—> Tizi; >0 ieM
JjeJ

which corresponds in matrix form to

t1— 2T > 0. (7.28)

The function Var.repeat creates a vector of lenght m, which is what is stated in (7.28). The same results
can be obtained as matrix multiplication, i.e. using Ezpr.mul, but in this particular case Var.repeat
is faster as it does only a logical operation.

Longest Processing Time first rule (LPT)

The multiprocessor scheduling is known to be an NP-complete problem (see [G.J79]). Neverthless there
are effective heuristics, with proven worst case bound, that are able to provided a good integer solution

7.8. Multi-processors Scheduling 75

MOSEK Fusion API for Matlab, Release 8.0.0.94

quickly. In particular, we will use the so-called Longest Processing Time first rule (LPT, proposed in
[Gra69]).

The informal algorithm sketch is the following:
e while M is not empty do
— let k the machine with the smallest load so far
— let i be the job in M with the longest completion time
— assign job i to machine k
— update machine k load
— remove i from M

This simple algorithm is a 1/3(4—1/m) approximation. So for m = 1 we get the optimal solution (indeed
there is no choices with a single machine); for m — oo the approximation tends to its worst case of 4/3
(againg see [Gra69]).

A simple implementation is given below.

JLPT heuristic
schedule= zeros([m,1]);
init= zeros([m*n,1]);

for i = 1:n
[val,indx]= min(schedule);
schedule(indx) = schedule(indx) + T(i);
init(n*(indx-1) + i)=1.0;

end

An efficient implementation of the LPT rule is beyond the scope of this section. The important is that
the scheduling produced by the LPT algorithm can be used as incumbent solution for the MOSEK
mixed-integer linear programming solver. The availability of an integer feasible solution can significantly
improve the performance of the solver.

To input the solution we only need to use the Variable.setLevel method, as shown below

x.setLevel (init);

The effect of the availability of an incumbent solution can be easily seen looking at the solver output.
For instance, let’s consider the following input

Running MOSEK the solution is the following

initial solution:

Mo [1, 0, 0,0,1, 0, 0,0,1, 0, 0,0, 1, 0, 0,]1
M1l([0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,]1
M2 [0, 0, 1, O, O, O, 1, O, O, O, 1, O, O, O, 1, 1]
vM3 [0, 0,b0,1,0,0,0,1,0,0,0,1, 0, 0,0,]1
MOSEK solution:

Mo (1, O, 1, 0, 0, 1, 1,0, O, O, 1, O, O, O, O, 1]
M1 [0, 1, 0,0,0,00,0,0,0,0,0,0,1,1,]1
vMy2 [0, 00,1,1,0,0,0,1,0,0,1, 0, 0, 0, 1]
¥ 3 [0, O, O, O, O, O, O, 1, O, 1, O, O, 1, O, O, 1]

The running is very short. Without initial solution it much higher.

The complete code follows.

Listing 7.17: Complete code for LPT scheduling example.

V74
/4 Copyright: Copyright (c) MOSEK ApS, Denmmark. All rights reserved.

76 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

A

4 File: Ipt.m

A

/A Purpose: Demonstrates how to solve the multi-processor
A scheduling problem using the Fusion API.

i

function 1pt()

import mosek.fusion.*;

n = 1000; Alumber of tasks

m = 8; /lumber of processors

1b = 1.0; /The range of lengths of short tasks
ub = 5.0;

sh = 0.8; /AThe proportion of short tasks

n_short = floor(n*sh);
n_long = n-n_short;

rng(0);
T= sort([rand([n_short,1])*(ub-1b)+1b; 20*(rand([n_long,1])*(ub-1b)+1b)], 'descend');

fprintf('jobs: %d\n',n);
fprintf ('machines: %d\n',m);

M= Model('Multi—processor scheduling');

x= M.variable('x', [m,n], Domain.binary());

t= M.variable('t',1);

M.constraint (Expr.sum(x,0), Domain.equalsTo(l.));

M.constraint (Expr.sub(Var.repeat(t,m), Expr.mul(x,T)), Domain.greaterThan(0.));
M.objective(ObjectiveSense.Minimize, t);

JLPT heuristic
schedule= zeros([m,1]);
init= zeros([m*n,1]);

for i = 1:n
[val,indx]= min(schedule);
schedule(indx) = schedule(indx) + T(i);
init(n*(indx-1) + i)=1.0;

end

/Comment this line to switch off feeding in the initial LPT solution
x.setLevel (init);

M.setLogHandler (java.io.PrintWriter(java.lang.System.out)) ;
M.setSolverParam('mioTolRelGap', .1);
M.solve();

fprintf('initial solution:\n');
for i = 1:m
fprintf('M %d: ',i);
for j =1:n
fprintf ('%f, ', init((i-1)*n+j));
end
fprintf('\n');

7.8. Multi-processors Scheduling 77

MOSEK Fusion API for Matlab, Release 8.0.0.94

end

fprintf ('MOSEK solution:\n');
for i = 1:m
fprintf ('M %d: ',i);
for j = 1:n
value= x.index(i,j).level();
fprintf('%f, ', value(l));
end
fprintf('\n');
end

M.dispose();

7.9 Traveling Salesman Problem (TSP)

The Traveling Salesman Problem is one of the most famous and studied problem in combinatorics and
integer optimization.

The main purpose of this case studies is to:
e show how to compactly define a model with Fusion;
e implement an iterative algorithm that solves a sequence of optimization problems;
e modify an optimization problem by additional constraints;
e accessing the solution of an optimization problem.
The material presented in this section draws inspiration from [Pat03].

We are given a directed graph G = (N, A), where N is the set of nodes and A is the set of arcs. To each
arc (i,7) € A corresponds a nonnegative cost ¢;;. We aim to find a tour on G, i.e. a path touching all
nodes only once, with minimum cost. For example let’s consider the simple graph in Fig. 7.3.

That corresponds to following adjacency and cost matrices A and c respectively:

01 11 0 1 01 0.1
A 1 010 o= 01 0 1 0
01 01 0 01 O 1
10 0 0 1 0 0 0

Typically, the problem is modelled introducing a set of binary variables x;; such that

U if arc (i,7) is in the tour
1 1 otherwise.

TSP is based on a simple assignement model:

min Zi<j CijTij
ZLSU”:]. Vjil,,’ﬂ,
Tij € {0,].} Vi, j

(7.29)

Problem (7.29) can be easily implemented in Fusion:

M

Model();

M.variable(NDSet(n,n), Domain.binary());

e
I

M.constraint(Expr.sum(x,0), Domain.equalsTo(1.0));
M.constraint(Expr.sum(x,1), Domain.equalsTo(1.0));

M.objective(ObjectiveSense.Minimize, Expr.sum(Expr.mulElm(C ,x)));

78 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

Fig. 7.3: A TSP example.

7.9. Traveling Salesman Problem (TSP) 79

MOSEK Fusion API for Matlab, Release 8.0.0.94

Note in particular how:
e we can sum over rows and/or column using the Ezpr. sum function;
e we can use Ezpr.dot to compute the objective function.

Solving problem (7.29) will not yield a valid TSP, but only ensure the path will pass only once through
each node. It can be shown that the solution of problem (7.29) actually is composed by a set of node
disjoined sub-tours. In our example we get the solution depicted in Fig. 7.4.

Fig. 7.4: Infeasible TSP solution: it has two disjoint loops.

i.e. there are two loops, namely 0->3->0 and 1->2->1.

To obtain a solution to the TSP, we need some more constraints. One of the classical approach is the
so-called subtour elimination: give a solution of (7.29) that is composed by at least two subtours, we
add constraints that explicitly avoid that subtours:

Z zij <lc|]—1 VYeeC (7.30)
(i,4)€c

Thus the problem we want to solve at each step is

min Zi<j CijTij

ZZZ”:]. VJ:L,TL
>t =1 Vi=1,...,n (7.31)
Tij € {0,1} VZ7]

Z(i,j)Gc .’17” S |C‘ -1 VC S C

The overall scheme is the following:

1. set C' as the empty set

80 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

2. solve problem (7.31)
3. if z has only one cycle stop
4. else add cycles to C and goto 2

Cycle detection is a fairly easy task. We omit the procedure here for sake of simplicity. We only assume
that as results we obtain a list of cycles C' , each one listing the arcs it is composed by.

Now we need to add a constraint for for each cycle. Since we have the list of arcs, and each one
corresponds to a variable zfiffj], we can use the arc list and the function Variable.pick to define
compactly constraints of the form (7.30)

M.constraint (Expr.sum(x.pick(I,J)), Domain.lessThan(l.0*length(I) - 1));

Executing our procedure will yield the following output

it #1 - solution cost: 2.200000

cycles:
(0,31 - [3,0] -
(1,21 - [2,1] -

it #2 - solution cost: 4.000000

cycles:
(0,11 - [1,2]1 - [2,3] - [3,0] -

solution:

0O 1 0 O
0O 0 1 O
0O 0 0 1
1 0 0 O

Thus we first discover the two cycle solution we knew; then the second iteration is forced not to include
those cycles, and a new solution is located. This time it is composed by one loop, and as expected the
cost is higher. The solution is depicted in Fig. 7.5.

Formulation (7.31) can be improved in some cases exploiting the graph structure. Some simple tricks
follow.

Self-loops

In case the graph contains self-loops, they are of no interest. Typically self-loop removal relies either on
the definition of huge costs on that arcs or on the subtours elimination. Despite this works in practice,
it is more advisable to just fix the corresponding variables to zero, i.e.

3?“‘:0 Vi=1,...,n (732)

These constraints will remove not only redundant variables, but also avoid unecessary large coeflicients
that can negatively affect the solver.

Constraints (7.32) are easily implemented as follows:

M.constraint(x.diag(), Domain.equalsTo(0.));

Two-arc loops removal

Assuming that we want to work on networks with more than two nodes, then it is reasonable to remove
loops composed by only two arcs. This kind of loops are simple to define and come in reasonable number.

7.9. Traveling Salesman Problem (TSP) 81

MOSEK Fusion API for Matlab, Release 8.0.0.94

Fig. 7.5: The solution of the TSP example.

82

Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

The constraints we need to add are
Tij + x5 <1 Vi,j=1,...,n (733)

Constraints (7.33) are easily implemented as follows:

M.constraint(Expr.add(x, x.transpose()),
Domain.lessThan(1.0));

Forcing graph topology

In many application the graph is actually quite sparse, as for instance if it is a road network. For this
reason many T;; ‘s can be fixed to zero. Defining A as the adjacency matrix of G , then we can just force
the following constraints

Constraints (7.34) translate in Fusion as:

M.constraint(x, Domain.lessThan(A));

The complete working example

The complete code follows in Listing 7.18.

Listing 7.18: The complete code for the TSP examples.

function tsp()

import mosek.fusion.x*;

=
[}
|

= [1,2,3,4,2,1,3,1]
[2,3,4,1,1,3,2,4]

=
1]

Cv=17_[1.,1.,1.,1.,0.1,0.1,0.1,0.1]
n= max(max(A_i) ,max(A_j))

x = tsp_fusion(n, Matrix.sparse(n,n,A_i,A_j,1.), Matrix.sparse(n,n,A_i,A_j,C_v) , true, true,
< true)

x = tsp_fusion(n, Matrix.sparse(n,n,A_i,A_j,1.), Matrix.sparse(n,n,A_i,A_j,C_v) , true, true,
. false)

end

function solution = tsp_fusion(n, A, C, graph_topology, remove_loops, remove_2_hop_loops)

import mosek.fusion.x*;
M = Model();

x = M.variable(NDSet(n,n), Domain.binary());

M.constraint(Expr.sum(x,0), Domain.equalsTo(1.0));
M.constraint(Expr.sum(x,1), Domain.equalsTo(1.0));

M.objective(ObjectiveSense.Minimize, Expr.sum(Expr.mulElm(C ,x)));

7.9. Traveling Salesman Problem (TSP) 83

MOSEK Fusion API for Matlab, Release 8.0.0.94

M.setLogHandler (java.io.PrintWriter(java.lang.System.out));

if graph_topology == true
M.constraint(x, Domain.lessThan(A));

end
if remove_loops == true
M.constraint(x.diag(), Domain.equalsTo(0.));
end
if remove_2_hop_loops == true

M.constraint(Expr.add(x, x.transpose()),
Domain.lessThan(1.0));

end

it = 0;
solution = [];
not_done = 1

while not_done

it = it + 1
fprintf ('\n\n---------—-—-———————- \nIteration',it);
M.solve();

fprintf('\nsolution cost: %f', M.primalObjValue());
sol = reshape(x.level(), n,n)

start = 1
fprintf ('looking for cycles...')

while length(find(sol>0.5)) > O
cycle = zeros(n,n);
i = start;
while true

xi = sol(i,:);
j = £ind(xi>0.5);

if length(j) ==
cycle (i,j) = 1;
sol(i,j) = 0;
if start ==
break
end

end

[I,J]J= ind2sub([n,n],find(cycle>0.5));
cycle
if length(I) == n
Jwe have found the solution
not_done = 0

84 Chapter 7. Case Studies

MOSEK Fusion API for Matlab, Release 8.0.0.94

break;
end
M.constraint(Expr.sum(x.pick(I,J)), Domain.lessThan(l.0*length(I) - 1));
end

end

end

7.9. Traveling Salesman Problem (TSP) 85

MOSEK Fusion API for Matlab, Release 8.0.0.94

86

Chapter 7. Case Studies

CHAPTER

EIGHT

INTERACTION WITH THE SOLVER

The Model class is the interface to the solver for that specific model. When a Model class is instantiated,
the solver environment is created.

Through the Model methods the user can retrieve information from the solver as:
o last 6.7:(3(311,257?077//30lutmn status
and set options about
e algorithm selection
e algorithm tolerances and stopping criteria
e input/output format options for the input/output operation.

The Fusion API provides the most commonly used solver functionality and options. If some advanced
functionalities are needed, low level access t othe solver can be obtained from the model, see Section 8.4.

Additional issues:

e how to stop the solver when key—pressed CTRL+C is not available is covered in Section 8.5.

Section index:

8.1 Solver Parameters

MOSEK comes with a large number of parameters that allows the user to tune its behavior. In Fusion,
parameters can be set using the method Model.setSolverParam. Fach parameter is identified by a
unique string and accept either integers, floating point values or symbolic strings. Fusion tries to convert
the value given by the user to the relevant type for the parameter.

If the conversion fails, an exception of type FustionEzception is thrown. Therefore it is always a good
idea to incapsulate code setting parameters by an exception-catching block.

A complete reference of the parameters is available in Section 13./.

Real and Integer Parameters

These parameters can be specified both as a numerical type or a string. Fusion will cast the input to
the desired type.

For instance a real parameter as optimizerMazTime, the command

’M.setSolverParam('optimizerMaxTime' , 100.0);

would have the same effect as

’M. setSolverParam('optimizerMaxTime', 100);

87

MOSEK Fusion API for Matlab, Release 8.0.0.94

or

M.setSolverParam('optimizerMaxTime', '100.0');

On the other hand,

try
M.setSolverParam('optimizerMaxTime', '100 s.');
catch err
'wrong parameter value'
end

will fail throwing an exception of type FustonEzception.

String and Symbolic Parameters

These parameters accept strings, and therefore any other data type is not accepted.

Some parameters accept symbolic strings. For instance the parameter presolvelUse accept a string
among on, msk:const:off, free:

’M.setSolverParam('presolveUse', "off');

Any other string will not be accepted.

8.2 Problem and Solution Status

Once the solver terminates, it is time to check the results. The solver provides two different statuses
that the user can inquery upon:

e solution status: information about the solution optimality degreee (optimal, nearly-optimal,...)
e problem status: information about the problem itseelf (feasibility, unboundness,...)

It is of the utmost importance to be able to fully understand the statuses that can be returned by the
solver.

8.2.1 Solution Status

In principle, the only meaningful solution the user should care for is the optimal one. When it is not
available the solver should have issued an infeasibility certificate. This behavior is clearly overoptimistic:
for instance the solver might have been stopped by a time limit reached, or the execution stalled just
before optimality had been reached. For this reason MOSEK actually distinguishes several solution
statuses, some being

e optimal (Optimal)
e near optimal (VearOptimal)
e unknown (Unknown)

The complete list is available SolutionStatus. After MOSEK terminates, users should check the solu-
tion status using the functions Model. getPrimalSolutionStatus and Model.getDualSolutionStatus.
Depending on that status the user can decide the action to be taken. Often a suboptimal solution is still
valuable and deserve attention.

When a solution is recovered from a Variable object, it is only available if its status is among those
considered acceptable. Otherwise an exception of type SolutzonError is thrown.

It is therefore a good practice to

88 Chapter 8. Interaction With the Solver

MOSEK Fusion API for Matlab, Release 8.0.0.94

e protect the code against such exceptions
e investigate the reasons whenever they happens.

By default, acceptable status is ~NearOptimal. This can be changed wusing the function
Model.acceptedSolutionStatus. For instance, if we want to accept every solution which is at least
feasible we may write

’M.acceptedSolutionStatus(AccSolutionStatus.Feasible)

while with

’M.acceptedSolutionStatus(AccSolutionStatus.Anything)

we accept all available solutions.

Important: It is a user responsibility to check the actual solution quality.

To enquiry about the solution status accepted by a given Model instance just say

M.getAcceptedSolutionStatus();

8.2.2 Problem Status

The problem status is mainly concerned about whether the given optimization model is feasible.
MOSEK is able to certified the infeasibility of conic problems up to a certain degree of numerical
accuracy. The problem status can be checked using the Model.getProblemStatus.

Once the optimization terminates, it is good practice to inspect the results not only in terms of solution
status, but also to check whether the problem has been certified feasible. In particular, if the solution
status is not optimal, then the problem may be infeasible. To check for infeasibility we may write

prob_stat = M.getProblemStatus(SolutionType.Interior)

if prob_stat == ProblemStatus.PrimalAndDualFeasible |
prob_stat == ProblemStatus.PrimalFeasible ||
prob_stat == ProblemStatus.DualFeasible
/ Here I should get the solution....

end

8.2.3 Accessing Solution Values

If a solution has been accepted, we can query for the objective function value for the primal and dual
problems. They are readly available by the Yodel.primalObjValue and Model.dualObjValue, respec-
tively.

Values attained by variables and constraints are available by the Variable.level method in classes
Variable and Constraint, respectively: Fusion returns a flat array of values that the user can after-
wards reshape.

In the same way users can access the corresponding dual values for variables and constraints, using the
Constraint.dual method.

8.3 Input/Output

Through the Model class users can also control the solver 1/O. This includes:

8.3. Input/Output 89

MOSEK Fusion API for Matlab, Release 8.0.0.94

e Fxecution logging
e Pretty printing

e Dump problem to disk.

8.3.1 Logging

By default the solver runs silently and does not produce any output. In fact the output is dis-
carded. However, the output of the solver can be redirected to any output stream using the method
Model.setLogHandler. For instance, we can use the standard output

M.setLogHandler(java.io.PrintWriter(java.lang.System.out));

A stream can be detached by passing NULL.

8.3.2 Pretty Printing

Fusion includes pretty printing for variables, matrices, expressions and constraints: a call to the method
toString() returns a plain text representation of the object. This is particularly useful during development
when one need to debug models and make sure that the model that has been defined is what it is meant
to be.

In general, Fusion prints
e object type
e size and dimension
e a human readable representation

In general, a sparse representation of any object is printed whenever possible.

Warning: Pretty printing of too large models is most likely unreadable!

Specific information follows.

fusion. Variable

A compact textual representation can be easily obtained: for instance a one dimensional variable called
z will be printed just saying

n = 4;
x = M.variable('x',n, Domain.greaterThan(0.));
display(x.toString())

with the following output

LinearVariable(('x',4))

fusion.Matrix

Matrices are printed either in dense row-wise form or sparse triplet form. For instance, given a 2 x 4
matrix filled with ones, we can print it out as

display(myones.toString())

90 Chapter 8. Interaction With the Solver

MOSEK Fusion API for Matlab, Release 8.0.0.94

producing the following output

DenseMatrix(2,4: [1.0,2.0,3.0,4.0]1,[5.0,6.0,7.0,8.0 1)

For a sparse matrix, for instance the identity

myeye = Matrix.eye(4)
display(myeye.toString())

we get

SparseMatrix (4,4, [(0,0,1.0),(1,1,1.0),(2,2,1.0),(3,3,1.0) 1)

fusion. Expression

Expressions are organized as matrices, and they share the overall layout. In particular, expressions are
printed in sparse format. For instance

x = M.variable('x', 4, Domain.unbounded());
ee = Expr.mul (Matrix.eye(4), x);
display(ee.toString())

It will produce the following output

Expr(ndim=(4),

[+1.0 x[0],
+ 1.0 x[1],
+ 1.0 x[2],
+ 1.0 x[3] 1)

In this case the expression is stored as a one dimensional array. The following case shows what happens
with sparsity: we multipy element-wise the identity matrix times a bi-dimensional squared variable, i.e.

x = M.variable('x', [4,4], Domain.unbounded());
ee = Expr.mulElm(Matrix.eye(4), x);
display(ee.toString())

It will produce the following output

Expr(ndim=(4,4),

[([0 0]) -> + 1.0 Xx[0,0],
(f1 11) -> + 1.0 Xx[1,1],
([2 2]) -> + 1.0 Xx[2,2],
([331) -> +1.0X[3,3] D

As expected the result is a squared matrix of the same dimension, but only the non zeros entries are
printed.

fusion.Constraint

A compact representation a the constraint can be obtain using the Constraint.toString. For instance
a set of linear constraints of the form Ix = 0, with I being the identity matrix is implemented can be
visualize as

n = 4;
x = M.variable('x',n, Domain.greaterThan(0.));
M.constraint('c', Expr.mul(Matrix.eye(n),x), Domain.equalsTo(0.));

C

c.toString()

8.3. Input/Output 91

MOSEK Fusion API for Matlab, Release 8.0.0.94

The output is

Constraint('c', (4),
c[o] + 1.0 x[0] = 0.0,
c[1] : + 1.0 x[1] = 0.0,
cl2] + 1.0 x[2] = 0.0,
c[3] + 1.0 x[3] =0.0)

Notice that only non zero entries are printed.

The printed representation also includes all auxiliary variables introduced by Fusion. For instance a
single second order cone of the form

8.3.3 Dumping a Problem to File

A model can be dump to file using the Model.writeTask, just specifying the file name. The file type
will be deduced automatically by the extension. For instance

’ M.writeTask('dump.mps');

will dump the model to an MPS file. Supported formats are listed in Section 1/ .

All format can be gzipped appending the .gz extension, i.e. the command

’ M.writeTask('dump.mps.gz');

will produce an MPS file compressed in gzipped format.

Warning: The dumped model also contains all the additional variables generated when defining
cones.

It is therefore advisable to assign meaningful names to variables when debugging, in order to improved
readibility.

For more details please refer to Section 14 .

8.4 Access to Optimizer API Task

The Model class acts as a tiny wrapper on top of a MOSEK task. Some low-level functionalities provided
by the task in the optimizer API are not directly supported by Fusion. Instead, the task handler can be
obtained by the method Model. getTask.

Warning: The task handler is not a copy and any modification may invalidate or corrupt the
model.

Therefore the access to the task should be considered carefully and avoided unless special functionalities
are required.

8.5 Stopping the Solver Execution

To force MOSEK to stop, Fusion class Model provides the method Model.breakSolver that notifies
the solver that it must stop as soon as possible. The solver periodically test for such notification and as
it happens, it will stop the execution. The state of the solver and solution may be undefined (see Section

8.2).

92 Chapter 8. Interaction With the Solver

MOSEK Fusion API for Matlab, Release 8.0.0.94

Note: The built-in stopping criteria should be used instead whenever possible!

The typical steps are the following:
1. build the optimization model (say M) as usual;
2. create a separate task in which M will run;

3. once the termination criterion is met call the function Yodel.breakSolver on M.

Warning: These steps are very language dependent and particular care must be taken to avoid
stalling or other undesired side effects.

8.5.1 A Working Example: Setting a Time Limit

In this example we will use a time limit as an additional stopping criterion, despite the fact that a time
limit is available as a parameter in MOSEK.
We will use a simple MIP model which we know it runs for quite long time

min). x;

s.t. Zierxi:]' i=1,....m
xiE{O,l} 7=1...,n

where P; is a permutation of {1,...,n} such that |P;| = p. This model is declared as

Model M = Model("SolveBinary") ;
/M.setLogHandler(new java.io.Printiiriter(System.out));

x = M.variable("x", n, Domain.binary());
M.objective(ObjectiveSense.Minimize, Expr.sum(x));

idxs = zeros(n,1)
for i = 1:n

idxs(i) = 1i;
end

for i = 1:m

nshuffle(R,idxs,p);

M.constraint (Expr.sum(x.pick(java.util.Arrays.copyOf (idxs,p))) ,Domain.equalsTo(p / 2));
end

Once the model has been built, we proceed creating a new thread that will be responsible for the actual
solver execution:

Thread T = new Thread() { public void run() { M.solve(); } };
T.start();

Then in the main thread we can check for the criterion to be satisfied
e 3 time limit of five seconds
e the user pressing CTRL+C

It must be notice that we need to ensure that the execution on the main threads resumes after the solver
actually terminates, i.e. the auxiliary threads returns. This is performed by the following lines:

8.5. Stopping the Solver Execution 93

MOSEK Fusion API for Matlab, Release 8.0.0.94

TO = System.currentTimeMillis();
while True:

if (System.currentTimeMillis() - TO > timeout*1000)
ASystem.out.println("Solver terminated due to timeout!");
M.breakSolver();
T.join();
break;

end

if (! T.isAlive())
/ASystem.out.println("Solver terminated before anything happened!");
T.join();
break;

end

end

The complete source code follows in Listing 8.1 .

Listing 8.1: Example on how stop solver execution.

package com.mosek.fusion.examples;
import mosek.fusion.x*;
import java.util.Random;

function breaksolver ()

timeout = 5;

n = 200;
m=n/5;
p=n/5;

rng (1234, 'twister');

System.out.println("Build problem...");
Model M = Model("SolveBinary");

AM.setLogHandler (new java.tio.PrintWriter(System.out));

x = M.variable("x", n, Domain.binary());
M.objective(ObjectiveSense.Minimize, Expr.sum(x));

idxs = zeros(n,1)
for i = 1:n

idxs(i) = i
end

for i = 1:m

nshuffle(R,idxs,p);

M.constraint (Expr.sum(x.pick(java.util.Arrays.copyOf (idxs,p))) ,Domain.equalsTo(p / 2));
end

ASystem.out.printlin("Start thread...");
Thread T = new Thread() { public void run() { M.solve(); } };
T.start();

TO = System.currentTimeMillis();
while True:

if (System.currentTimeMillis() - TO > timeout*1000)
/ASystem.out.println("Solver terminated due to timeout!");
M.breakSolver();

94 Chapter 8. Interaction With the Solver

MOSEK Fusion API for Matlab, Release 8.0.0.94

T.join();
break;

end

if (! T.isAlive())
ASystem.out.printin("Solver terminated before anything happened!");
T.join();
break;

end

end

function nshuffle(int[] a, int n)
for i = 1:n

(int) (R.nextDouble() * (a.length-i))+i;
alil; alil = alidx]; alidx] = tmp;

idx

tmp
end

8.5. Stopping the Solver Execution

95

MOSEK Fusion API for Matlab, Release 8.0.0.94

96

Chapter 8.

Interaction With the Solver

CHAPTER

NINE

PERFORMANCE CONSIDERATIONS

9.1 Sparse Matrices

Deciding whether a matrix should be stored in dense or sparse format is not always trivial and it does
not only depend on storage considerations. For a given n X m matrix with [non zero entries, the storage
required is proportional to

e n-m for a dense matrix,
e 3 .| for a sparse matrix.

Therefore if [<< n -m, then the required storage in sparse form is much smaller than in dense format.
The consequences are

e reduced memory requirements,
e faster expression computation,
e meet the internal solver representation.

However, there are borderline cases in which these advantages may vanish due to overhaed on creating
the triplets representation.

Sparsity is a key feature of many optimization models and happens often naturally. For instance, linear
constraints arising from networks or multi-period planning are typically sparse. Fusion does not detect
sparsity but leaves to the user the responsibility to choose the msot appropriate storage format. It
provides adaptors for sparse matrices by Matriz static methods such as Matriz. sparse or Matriz.diag.

9.2 Nested Expressions

A possible source of performance degradation is an excessive use of nested expressions. For example
> A
i=1

x; € Rk,Ai S Rka,

it could be expressed in a loop as

ee = Expr.constTerm(k, 0.)
for i in range(n):
ee = Expr.add(ee, Expr.mul(A[i],x[i]))

A better way is to store intermediate expressions for A;z; and sum all of them in one step:

Exp.add([Expr.mul(AA,xx) for (AA,xx) in zip(AA,xx)])

This implementation is more efficient as it reduces the number of intermediate expressions.

97

MOSEK Fusion API for Matlab, Release 8.0.0.94

9.3 Names

Fusion makes very easy to specify names for variables, constraints and the objective function. It is very
useful for debugging and improves the readability of problems stored in files. But unfortunately it comes
at a price:

e Fusion must check and make sure that names are unique

To reduce the overhead, names are actually generated when some operation explicitly ask for them. For
example, if we want to print a variable information with the following code

x = m.variable("x", 10, Domain.unbounded())

print(x.toString())

with the following output
Fusion generates unique names for the x entries when Vartable. toString is called.

To optimize performances it is therefore advisable to not specify names at all. Notice that a careful
choice of variable names makes the code very readable with no needs for labels.

98 Chapter 9. Performance considerations

CHAPTER

TEN

PROBLEM FORMULATION AND SOLUTIONS

In this chapter we will discuss the following issues:
e The formal definitions of the problem types that MOSEK can solve.
e The solution information produced by MOSEK.
e The information produced by MOSEK if the problem is infeasible.

10.1 Linear Optimization

A linear optimization problem can be written as

minimize e+ ef
subject to ¢ < Az < uc, (10.1)
= < x <

where
e m is the number of constraints.
e n is the number of decision variables.
e z € R" is a vector of decision variables.
e ¢ € R” is the linear part of the objective function.
e A € R™*™ ig the constraint matrix.
e [° € R™ is the lower limit on the activity for the constraints.
e u¢ € R™ is the upper limit on the activity for the constraints.
e [€ R" is the lower limit on the activity for the variables.
e y” € R" is the upper limit on the activity for the variables.

A primal solution (z) is (primal) feasible if it satisfies all constraints in (10.1). If (10.1) has at least one
primal feasible solution, then (10.1) is said to be (primal) feasible.

In case (10.1) does not have a feasible solution, the problem is said to be (primal) infeasible

10.1.1 Duality for Linear Optimization

Corresponding to the primal problem (10.1), there is a dual problem

maximize (1)Tsf — (u)Ts¢ + (1%)Ts¥ — (u®)Ts® + ¢f
T T oT
. ATyt s =5, © (10.2)
subject to —y + s8] — s, 0,

C C T xT
Sy, 85, 8) 8 > 0.

99

MOSEK Fusion API for Matlab, Release 8.0.0.94

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at 0,
and we use the convention that the product of the bound value and the corresponding dual variable is
0. E.g.

lj=-0c0 = (sf)j=0and[j-(s7); =0.

This is equivalent to removing variable (s7); from the dual problem. A solution

(875 80 515 54)

to the dual problem is feasible if it satisfies all the constraints in (10.2). If (10.2) has at least one
feasible solution, then (10.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

A Primal-dual Feasible Solution

A solution
C C LT T
(xvyvsl75u75lasu)

is denoted a primal-dual feasible solution, if (x) is a solution to the primal problem (10.1) and

(y,s7,85,s7,s5) is a solution to the corresponding dual problem (10.2).

The Duality Gap

Let
(@*, 5% (s7)", (s3)", (s7)", (s2)")
be a primal-dual feasible solution, and let
()" = Ax™.

For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

Tar e - {(lC)T(— (u) T (s5)" + (1) (s7)* = ()" (s5)* + ¢ }
=) [() ((9 =15+ (s ”) (uf — (af)*)] (10.3)
Zn([_Z"K +(5 U —ac)}

where the first relation can be obtained by transposing and multiplying the dual constraints (10.2) by
z* and (z°)* respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

An Optimal Solution

It is well-known that a linear optimization problem has an optimal solution if and only if there exist fea-
sible primal and dual solutions so that the duality gap is zero, or, equivalently, that the complementarity
conditions

Slc):(xf)*_lzc) = Oa Z_Ow--am 17
(s0)i(uf —(2§)") = 0, i=0,....m—1,
(s¥);(x; =15) = 0, j=0,...,n—1,
(sp)j(uj —=x) = 0, j=0,...,n—1,

are satisfied.

If (10.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and dual
solution are reported, including a status indicating the exact state of the solution.

100 Chapter 10. Problem Formulation and Solutions

MOSEK Fusion API for Matlab, Release 8.0.0.94

10.1.2 Infeasibility for Linear Optimization

Primal Infeasible Problems

If the problem (10.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem
maximize (1°)7sf — (u®)TsS + (1%)Ts? — (u®)TsZ
subject to
ATy +sf — 57 =0, (10.4)
—y + sj — 55 =0,
8808150 2 0,

such that the objective value is strictly positive, i.e. a solution
(v (s0)", (s0)7 (s7)% (s3)")
to (10.4) so that
)T ()" = ()T (s5)* + ()T (s7)" — (u™) T (s5)" > 0.

Such a solution implies that (10.4) is unbounded, and that its dual is infeasible. As the constraints to
the dual of (10.4) are identical to the constraints of problem (10.1), we thus have that problem (10.1) is
also infeasible.

Dual Infeasible Problems

If the problem (10.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

T

minimize c'x
subject to ¢ < Az < 4° (10.5)
T < x < a®,
where
o 0 if I§ > —o0) 0 ifuf <o
Cc __ 1) "(}, — 7)
L _{ —oo otherwise, } and i : { oo otherwise, }
and
- 0 if T > —o0 0 ifu? <o
%= g d 4% := g oo
J { —o0 otherwise, } anc. { oo otherwise, }
such that

Tz <.

Such a solution implies that (10.5) is unbounded, and that its dual is infeasible. As the constraints to
the dual of (10.5) are identical to the constraints of problem (10.2), we thus have that problem (10.2) is
also infeasible.

Primal and Dual Infeasible Case

In case that both the primal problem (10.1) and the dual problem (10.2) are infeasible, MOSEK will
report only one of the two possible certificates — which one is not defined (MOSEK returns the first
certificate found).

10.1. Linear Optimization 101

MOSEK Fusion API for Matlab, Release 8.0.0.94

Minimalization vs. Maximalization

When the objective sense of problem (10.1) is maximization, i.e.

maximize e+ ef
subject to ¢ < Az < uc,
r < T < u®,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (10.2). The dual problem thus takes the form

minimize (1°)7sf — (u®)T'sS + (1%)7s¥ — (u®)T'sZ + cf
subject to
ATy +s7 — 5% =,
-y + 57 — 55, =0,
sy, 85,87, 55 < 0.

This means that the duality gap, defined in (10.3) as the primal minus the dual objective value, becomes
nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective.
The primal infeasibility certificate will be reported by MOSEK as a solution to the system

ATy + 87 — 5% =0,
—y 45— s =0, (10.6)
S?a sfu sfa Sﬁ S 07
such that the objective value is strictly negative
)T ()" = ()T (s5)* + ()T (s7)* — (u™) T (s5)" < 0.
.

Similarly, the certificate of dual infeasibility is an z satisfying the requirements of (10.5) such that
T
cx>0.

10.2 Conic Quadratic Optimization

Conic quadratic optimization is an extension of linear optimization (see Section 10.1) allowing conic
domains to be specified for subsets of the problem variables. A conic quadratic optimization problem
can be written as

minimize e+ ef
subject to ¢ < Ax < uc,
o< - < (10.7)
x ek,

where set K is a Cartesian product of convex cones, namely K = Ky x --- x K,. Having the domain
restriction, x € I, is thus equivalent to

II}t S ICt g Rnt,
where x = (z!,...,2P) is a partition of the problem variables. Please note that the n-dimensional
Euclidean space R™ is a cone itself, so simple linear variables are still allowed.
MOSEK supports only a limited number of cones, specifically:
e The R™ set.

e The quadratic cone:

e The rotated quadratic cone:

102 Chapter 10. Problem Formulation and Solutions

MOSEK Fusion API for Matlab, Release 8.0.0.94

n
or = xGR":2x1x222x?, 1 >0, x22>0
—

Although these cones may seem to provide only limited expressive power they can be used to model a
wide range of problems as demonstrated in [MOSEKApS12].

10.2.1 Duality for Conic Quadratic Optimization

The dual problem corresponding to the conic quadratic optimization problem (10.7) is given by

maximize (19)Ts¢ — (u®)TsS + (1%)Ts¥ — (u®)TsZ + ¢f
subject to
ATy 4+ s7 — s +s2 =c
—y + sf — 55 =0,
s7,85,87, 85 >0,
sy e Kr,

(10.8)

where the dual cone K* is a Cartesian product of the cones
Kr=K] x- x K,

where each I} is the dual cone of ;. For the cone types MOSEK can handle, the relation between the
primal and dual cone is given as follows:

e The R" set:
Ki=R" & K/ ={seR": s=0}.

e The quadratic cone:

Ki=9Q" & Ki=Q"=qsecR":5 >

e The rotated quadratic cone:

Nt
Ki=9r & Ki=9Q%= SERnt:QSLSQZZS?, s1>0, s3>0
=3

Please note that the dual problem of the dual problem is identical to the original primal problem.

10.2.2 Infeasibility for Conic Quadratic Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. This works
exactly as for linear problems (see Section 10.1.2).

Primal Infeasible Problems

If the problem (10.7) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual
solution reported is the certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize (1¢)Ts§ — (u®)TsS + (1%)Ts¥ — (u®)Ts

subject to
ATy + s7 — s% + s = 0,
—y + s — 55, = 0,
7,86, 87, st > 0,
sy € K,

such that the objective value is strictly positive.

10.2. Conic Quadratic Optimization 103

MOSEK Fusion API for Matlab, Release 8.0.0.94

Dual infeasible problems

If the problem (10.8) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal
solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

T

minimize c'x
subject to ¢ < Ax < ac,
r < T < 4%,
z €K,
where
- 0 if [§ > —o0 e 0 ifuf<oo
5= oo T and 45 = v
—oo otherwise, oo otherwise,
and

- 0 if ¥ > —oc0 0 ifu? <oo
T _ J ’ 0% = J ’
L { —oo otherwise, } and - aj : { oo otherwise, }

such that the objective value is strictly negative.

10.3 Semidefinite Optimization

Semidefinite optimization is an extension of conic quadratic optimization (see Section 10.2) allowing
positive semidefinite matrix variables to be used in addition to the usual scalar variables. A semidefinite
optimization problem can be written as

minimize Py Olc]mJ—FZ {0, X)) +¢f
subject to 1§ < Z] Oal]x] Zp 1<Z Yj> < w§, i=0,....,m—1 (10.9)
o< T, < wuj, j=0,....,n-1
ek, X; €8, j=0,...,p—1

where the problem has p symmetric positive semidefinite variables Yj € S_? of dimension r; with
symmetric coefficient matrices C; € 8" and A4; ; € S"i. We use standard notation for the matrix inner
product, i.e., for U,V € R™*" we have

(U.V)= 2> UiV

With semidefinite optimization we can model a wide range of problems as demonstrated in
[MOSEKApS12].

10.3.1 Duality for Semidefinite Optimization

The dual problem corresponding to the semidefinite optimization problem (10.9) is given by

maximize (1¢)Ts¢ — (u®)TsS + (17)Ts¥ — (u®)T'sZ + ¢f

subject to
c— ATy + s% — s7 = sZ,
C,; Zoyz =S, j=0,...,p—1 (10.10)
Slis 7y7
Slvsu’sl, u>0
st ek, §;e87, j=0,...,p—1

104 Chapter 10. Problem Formulation and Solutions

MOSEK Fusion API for Matlab, Release 8.0.0.94

where A € R™*™, A;; = a;;, which is similar to the dual problem for conic quadratic optimization (see
Section 10.2.1), except for the addition of dual constraints

<Cj — ZyiAij> S S:_J
=0

Note that the dual of the dual problem is identical to the original primal problem.

10.3.2 Infeasibility for Semidefinite Optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works
exactly as for linear problems (see Section 10.1.2).

Primal Infeasible Problems

If the problem (10.9) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual
solution reported is a certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize (ZC)TSZC — (u)Ts¢ + (l”)Tsf — (u)TsT
subject to
ATy+sf—sﬁ+st:07
Z?;oli‘/iAij'f‘Sj:O, j=0,...,p—1
—y+si—s;,=0,
5,85, 7, 5% > 0,
st e Kx, SjeS:_j, j=0,...,p—1

such that the objective value is strictly positive.

Dual Infeasible Problems

If the problem (10.10) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal
solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize >0 ¢y + 2020 (Ch, Xy)
subject to [f < doio @iy + Z?;& (Aij, X;) < 4, i=0,...,m—1
< x < 4",
rek, X;e8Y, j=0,...,p—1
where
- 0 if [§ >;—o0 0 ifuf<;00
(.Z — 2)) "? — 2))
L { —oo otherwise, and - a;: { oo otherwise,
and
- 0 if 1% >;—o0 0 ifu? <500
¥ = J ’, ’ d o% = J ’ ’
J { —oo otherwise, anc. 4 { oo otherwise,

such that the objective value is strictly negative.

10.3. Semidefinite Optimization 105

MOSEK Fusion API for Matlab, Release 8.0.0.94

106 Chapter 10. Problem Formulation and Solutions

CHAPTER

ELEVEN

THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

The most essential part of MOSEK is the optimizers. Each optimizer is designed to solve a particular
class of problems, i.e. linear, conic, or general nonlinear problems. The purpose of the present chapter
is to discuss which optimizers are available for the continuous problem classes and how the performance
of an optimizer can be tuned, if needed. This chapter deals with the optimizers for continuous problems
with no integer variables.

When the optimizer is called, it roughly performs the following steps:
1. Presolve: Preprocessing to reduce the size of the problem.
2. Dualizer: Choosing whether to solve the primal or the dual form of the problem.
3. Scaling: Scaling the problem for better numerical stability.
4. Optimize: Solve the problem using selected method.

The first three preprocessing steps are transparent to the user, but useful to know about for tuning
purposes. In general, the purpose of the preprocessing steps is to make the actual optimization more
efficient and robust.

Using multiple threads

The interior-point optimizers in MOSEK have been parallelized. This means that if you solve linear,
quadratic, conic, or general convex optimization problem using the interior-point optimizer, you can take
advantage of multiple CPU’s.

By default MOSEK will automatically select the number of threads to be employed when solving
the problem. However, the number of threads employed can be changed by setting the parameter
numThreads. This should never exceed the number of cores on the computer.

The speed-up obtained when using multiple threads is highly problem and hardware dependent, and
consequently, it is advisable to compare single threaded and multi threaded performance for the given
problem type to determine the optimal settings.

For small problems, using multiple threads is not be worthwhile and may even be counter productive.

11.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

1. remove redundant constraints,
2. eliminate fixed variables,

3. remove linear dependencies,

4

. substitute out (implied) free variables, and

107

MOSEK Fusion API for Matlab, Release 8.0.0.94

5. reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [AA95] and [AGMX96].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes too
much time or memory compared to the reduction in problem size gained it may be disabled. This is
done by setting the parameter presolvelUse to off.

The two most time-consuming steps of the presolve are
e the eliminator, and
e the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare cases
the presolved problem may be harder to solve then the original problem. The presolve may also be
infeasible although the original problem is not.

If it is suspected that presolved problem is much harder to solve than the original then it is suggested
to first turn the eliminator off by setting the parameter presolveEliminatorMazliumTries to 0. If that
does not help, then trying to turn presolve off may help.

Since all computations are done in finite prescision then the presolve employs some tolerances when con-
cluding a variable is fixed or constraint is redundant. If it happens that MOSEK incorrectly concludes a
problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters presolvelTolX
and presolvelolS. However, if reducing the parameters actually helps then this should be taken as an
indication that the problem is badly formulated.

Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

Y
Yy,

Zj Ly,
0,

vVl

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the
eliminator consumes too much time or memory compared to the reduction in problem size gained it may
be disabled. This can be done by setting the parameter presolveEliminatorMazNumTries to 0. In rare
cases the eliminator may cause that the problem becomes much hard to solve.

Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equalities.
For instance, the three linear equalities

Ty +T2+23 = 1,
r1 4+ 0.5z = 0.5,
0.529 +2x3 = 0.5

contain exactly one linear dependency. This implies that one of the constraints can be dropped without
changing the set of feasible solutions. Removing linear dependencies is in general a good idea since it
reduces the size of the problem. Moreover, the linear dependencies are likely to introduce numerical
problems in the optimization phase.

108 Chapter 11. The Optimizers for Continuous Problems

MOSEK Fusion API for Matlab, Release 8.0.0.94

It is best practise to build models without linear dependencies. If the linear dependencies are removed
at the modeling stage, the linear dependency check can safely be disabled by setting the parameter
presolvelindepUse to off.

Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is most efficient to solve the primal or dual
problem. The form (primal or dual) solved is displayed in the MOSEK log. Should the internal heuristics
not choose the most efficient form of the problem it may be worthwhile to set the dualizer manually by
setting the parameters:

e intpntSolveForm: In case of the interior-point optimizer.
e simSolveForm: In case of the simplex optimizer.

Note that currently only linear problems may be dualized.

Scaling

Problems containing data with large and/or small coefficients, say 1.0e + 9 or 1.0e — 7, are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result
in the optimizer relying on inaccurate calculations. Since computers work in finite precision, extreme
coefficients should be avoided. In general, data around the same order of magnitude is preferred, and
we will refer to a problem, satisfying this loose property, as being well-scaled. If the problem is not well
scaled, MOSEK will try to scale (multiply) constraints and variables by suitable constants. MOSEK
solves the scaled problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution of this issue is to reformulate the problem, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point and simplex
optimizers can be controlled with the parameters intpntScaling and simScaling respectively.

11.2 Linear Optimization

11.2.1 Optimizer Selection

Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternatives are simplex methods. The optimizer can be selected using the parameter
optimizer.

11.2.2 The Interior-point Optimizer
The purpose of this section is to provide information about the algorithm employed in MOSEK interior-
point optimizer.

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
of standard form

minimize Tz
subject to Az = b, (11.1)
xz > 0.

11.2. Linear Optimization 109

MOSEK Fusion API for Matlab, Release 8.0.0.94

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then converts it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (11.1) has an optimal solution, is primal infeasible or
is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason that
MOSEK solves the so-called homogeneous model

Ar —br = 0,
ATy+s—cr = 0,

—Te+bTy—r = 0, (11.2)
z,8, 7,k > 0

)

where y and s correspond to the dual variables in (11.1), and 7 and & are two additional scalar variables.
Note that the homogeneous model (11.2) always has solution since

(x,y,s,7,k) = (0,0,0,0,0)
is a solution, although not a very interesting one.
Any solution
(¥, 4%, &%, 7%, K¥)
to the homogeneous model (11.2) satisfies

E3
ZjSj

=0and 77" = 0.
Moreover, there is always a solution that has the property
T+ Kk > 0.

First, assume that 7 > 0 . It follows that

*

‘ 8

AT
Ty | s
A T* +‘r*

T x* Ty"
—C F+b %

* ¥
AVAN|
con o

x*, 8%, T K"
This shows that f—* is a primal optimal solution and (3—*, ;—1) is a dual optimal solution; this is reported

as the optimal interior-point solution since

() * y* s*
z,Y,Ss)= e ek
Y xR

is a primal-dual optimal solution.
On other hand, if k* > 0 then

Ax*
ATy* +5*
7CTx* +bTy*

\
ox o0

AVAN

T, 5T K
This implies that at least one of

—cl'z* >0 (11.3)
or

bly* >0 (11.4)

is satisfied. If (11.3) is satisfied then z* is a certificate of dual infeasibility, whereas if (11.4) is satisfied
then y* is a certificate of dual infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required
for a solution to the original problem is obtained. A solution to the homogeneous model can be computed
using a primal-dual interior-point algorithm [And09/.

110 Chapter 11. The Optimizers for Continuous Problems

MOSEK Fusion API for Matlab, Release 8.0.0.94

Interior-point Termination Criterion
For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal

solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion
has to be employed.

In every iteration, k, of the interior-point algorithm a trial solution
(2", 4, 5% 7%, Kkh)

to homogeneous model is generated where
xk,Sk,Tk,Iik > 0.

Whenever the trial solution satisfies the criterion

|aze —o| < e@+ibl),
AT 42 —c| < a1+ elly), and (11.5)
min (S50 [-) < gpum (1, 2L,
the interior-point optimizer is terminated and
(2", 4", s*)
-k

is reported as the primal-dual optimal solution. The interpretation of (11.5) is that the optimizer is
terminated if

° f—: is approximately primal feasible,

° {%7 f_—t} is approximately dual feasible, and

e the duality gap is almost zero.

On the other hand, if the trial solution satisfies

B O G (& ST
G oy 14

then the problem is declared dual infeasible and z* is reported as a certificate of dual infeasibility. The
motivation for this stopping criterion is as follows: First assume that ||A:vk}|OC =0 ; then 2" is an exact
certificate of dual infeasibility. Next assume that this is not the case, i.e.

l42*(| . >0,

and define

= e (L [lbllog) i
|42 Nl

It is easy to verify that

~max (1, [b]])

1Az, = € '
* 7 el

and —c x> 1,

which shows Z is an approximate certificate of dual infeasibility where €; controls the quality of the
approximation. A smaller value means a better approximation.

Finally, if

b
ebTyk > 116/l) ||ATyk+8kHOO

max (L, [|e]|

11.2. Linear Optimization 111

MOSEK Fusion API for Matlab, Release 8.0.0.94

then y* is reported as a certificate of primal infeasibility.

It is possible to adjust the tolerances €, €4, €4 and €; using parameters; see Table 11.1 for details.

Table 11.1: Parameters employed in termi-
nation criterion

ToleranceParameter | name

Ep tntpntTolPfeas
€d wntpntTolDfeas
Eg tntpntTolRelGap
€; wntpntTolInfeas

The default values of the termination tolerances are chosen such that for a majority of problems appearing
in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances usually
is not worthwhile. However, an inspection of (11.5) reveals that quality of the solution is dependent on
16]] ., and ||c||.; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal and
dual feasibility at the same rate [And09/. This means that if the optimizer is stopped prematurely then
it is very unlikely that either the primal or dual solution is feasible. Another consequence is that in most
cases all the tolerances, €,, €4 and €4, have to be relaxed together to achieve an effect.

In some cases the interior-point method terminates having found a solution not too far from meeting the
optimality condition (11.5). A solution is defined as near optimal if scaling €, eq and 4 by any number
€n € [1.0,400] conditions (11.5) are satisfied.

A near optimal solution is therefore of lower quality but still potentially valuable. If for instance the
solver stalls, i.e. it can make no more significant progress towards the optimal solution, a near optimal
solution could be available and be good enough for the user.

The basis identification discussed in Section Basis Identification requires an optimal solution to work
well; hence basis identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

Basis Identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique
primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing
step that computes an optimal basic solution starting from the optimal interior-point solution. More
information about the basis identification procedure may be found in /AY96/. In the following we provide
an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:
e a basic solution is often more accurate than an interior-point solution,
e a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,

e a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is partic-
ularly appealing when solving continuous relaxation of mixed integer problems, as well as in all
applications in which sparser solutions are preferred.

To illustrate how the basis identification routine works, we use the following trivial example:

minimize T+y
subject to zx+y = 1,
z,y > 0.

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions
namely

112 Chapter 11. The Optimizers for Continuous Problems

MOSEK Fusion API for Matlab, Release 8.0.0.94

The interior point algorithm will actually converge to the center of the optimal set, i.e. to (z*,y*) =
(1/2,1/2) (to see this in MOSEK deactivate Presolve).

In practice, when the algorithm gets close to the optimal solution, it is possible to construct in polynomial
time an initial basis for the simplex algorithm from the current interior point solution. This basis is used
to warm-start the simplex algorithm that will provide the optimal basic solution.

In most cases the constructed basis is optimal, or very few iterations are required by the simplex algorithm
to make it optimal and hence the final clean phase be short. However, in some cases for nasty problems
e.g. ill-conditioned problems the additional simplex clean up phase may take of lot a time.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the basis
identification procedure can be turned off. The parameters

e intpntBasis,
e biIgnoreMazIter, and
e bilgnoreNumError
control when basis identification is performed.

The type of simplex algorithm to be used can be tuned by the biCleanlUptimizer parameter i.e. primal
or dual simplex, and the maximum number of iterations can be set by the biMazIterations.

Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

The Interior-point Log

Below is a typical log output from the interior-point optimizer presented:

Optimizer - threads 1

Optimizer - solved problem : the dual

Optimizer - Constraints : 2

Optimizer - Cones : 0

Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: 0 scalarized : 0

Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 3 after factor : 3

Factor - dense dim. : 0 flops : 7.00e+001
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.0e+000 0.00
1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.5e+000 0.00
2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-001 0.00
3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-002 0.01
4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-004 0.01
5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-008 0.01
6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-012 0.01

The first line displays the number of threads used by the optimizer and second line tells that the optimizer
chose to solve the dual problem rather than the primal problem. The next line displays the problem

dimensions as seen by the optimizer, and the Factor. ..

by the iteration log.

lines show various statistics. This is followed

Using the same notation as in Section 77.2.2 the columns of the iteration log have the following meaning:

e ITE: Iteration index.

e PFEAS: ||AzF —brF| .

zero but may stall at low level due to rounding errors.

The numbers in this column should converge monotonically towards to

e DFEAS: HATyk + sk —erk HOO . The numbers in this column should converge monotonically toward
to zero but may stall at low level due to rounding errors.

11.2. Linear Optimization

113

MOSEK Fusion API for Matlab, Release 8.0.0.94

e GFEAS: | — cT'z% +bTy* — k¥| . The numbers in this column should converge monotonically toward
to zero but may stall at low level due to rounding errors.

e PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges
to —1 if that is not the case.

e POBJ: cT'z¥/7%. An estimate for the primal objective value.

e DOBJ: bT'y* /7%, An estimate for the dual objective value.

(:Ek)TSkJerK/k

e MU: pras |

. The numbers in this column should always converge monotonically to zero.

e TIME: Time spend since the optimization started.

11.2.3 The simplex Based Optimizer

An alternative to the interior-point optimizer is the simplex optimizer.

The simplex optimizer uses a different method that allows exploiting an initial guess for the optimal
solution to reduce the solution time. Depending on the problem it may be faster or slower to use an
initial guess; see section 11.2./ for a discussion.

MOSEK provides both a primal and a dual variant of the simplex optimizer — we will return to this
later.

Simplex Termination Criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate. A
basic solution is optimal when it is primal and dual feasible; see Section 10.1 and 10.1.1 for a definition
of the primal and dual problem. Due to the fact that computations are performed in finite precision
MOSEK allows violation of primal and dual feasibility within certain tolerances. The user can control
the allowed primal and dual tolerances with the parameters basisTolX and basisTolS.

Starting From an Existing Solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a warm-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will warm-start automatically.

Setting the parameter optimizer to freeSimplex instructs MOSEK to select automatically between
the primal and the dual simplex optimizers. Hence, MOSEK tries to choose the best optimizer for the
given problem and the available solution.

By default MOSEK uses presolve when performing a warm-start. If the optimizer only needs very few
iterations to find the optimal solution it may be better to turn off the presolve.

Numerical Difficulties in the Simplex Optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK counts a “numerical unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are implemented to avoid long sequences where
the optimizer tries to recover from an unstable situation.

Set-backs are, for example, repeated singularities when factorizing the basis matrix, repeated loss of
feasibility, degeneracy problems (no progress in objective) and other events indicating numerical difficul-
ties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in such
a situation try to reformulate into a better scaled problem. Then, if a lot of set-backs still occur, trying
one or more of the following suggestions may be worthwhile:

114 Chapter 11. The Optimizers for Continuous Problems

MOSEK Fusion API for Matlab, Release 8.0.0.94

e Raise tolerances for allowed primal or dual feasibility: Hence, increase the value of
— bastsTolX, and
— basisTolS.

e Raise or lower pivot tolerance: Change the simplezdbsTolPiv parameter.

e Switch optimizer: Try another optimizer.

e Switch off crash: Set both simPrimalCrash and simDualCrash to 0.

e Experiment with other pricing strategies: Try different values for the parameters
— simPrimalSelection and
— simDualSelection.

e If you are using warm-starts, in rare cases switching off this feature may improve stability. This is
controlled by the simHotstart parameter.

e Increase maximum set backs allowed controlled by simMazNumSetbacks .

e If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See
the parameter simDegen for details.

11.2.4 The Interior-point or the Simplex Optimizer?

Given a linear optimization problem, which optimizer is the best: The primal simplex, the dual simplex
or the interior-point optimizer?

It is impossible to provide a general answer to this question. However, the interior-point optimizer
behaves more predictably: it tends to use between 20 and 100 iterations, almost independently of problem
size, but cannot perform warm-start, while simplex can take advantage of an initial solution, but is less
predictable for cold-start. The interior-point optimizer is used by default.

11.2.5 The Primal or the Dual Simplex Variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer
is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and
computational improvements, which, in our experience, makes it faster on average than the primal
simplex optimizer. Still, it depends much on the problem structure and size.

Setting the optimizer parameter to freeSimplex instructs MOSEK to choose which simplex optimizer
to use automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, you should try
all the optimizers.

11.3 Conic Optimization

11.3.1 The Interior-point Optimizer

For conic optimization problems only an interior-point type optimizer is available. The interior-point
optimizer is an implementation of the so-called homogeneous and self-dual algorithm. For a detailed
description of the algorithm, please see [ART03].

11.3. Conic Optimization 115

MOSEK Fusion API for Matlab, Release 8.0.0.94

Interior-point Termination Criteria

The parameters controlling when the conic interior-point optimizer terminates are shown in Table 11.2.

Table 11.2: Parameters employed in termination criterion.

Parameter name Purpose

intpntCoTolPfeas Controls primal feasibility

intpntCoTolDfeas Controls dual feasibility

intpntCoTolRelGap | Controls relative gap

intpntTolInfeas Controls when the problem is declared infeasible
intpntCoTolMuRed Controls when the complementarity is reduced enough

11.4 Using Multiple Threads in an Optimizer

If multiple cores are available then it is possible for MOSEK to take advantage of them to speed up
the computation. However, please note the speedup achieved is going to be dependent on the problem
characteristics e.g. the size of problem. Typically for smallish problems no speedup is obtained by
exploiting multiple cores. In fact forcing MOSEK to use one core can increase speed because parallel
overhead is avoided.

11.4.1 Thread Safety

The MOSEK API is thread-safe provided that a task is only modified or accessed from one thread at
any given time. Also accessing two or more separate tasks from threads at the same time is safe. Sharing
an environment between threads is safe.

11.4.2 Determinism

The optimizers are run-to-run deterministic which means if a problem is solved twice on the same
computer using the same parameter setting and exactly the same input then exactly the same results is
obtained. One qualification is that no time limits must be imposed because the time taken to perform
an operation on a computer is dependent on many factors such as the current workload.

11.4.3 The Parallelized Interior-point Optimizer

By default the interior-point optimizer exploits multiple cores using multithreading. Hence, big tasks
such as large dense matrix multiplication may be divided into several independent smaller tasks that
can be computed independently. However, there is a computational overhead associated with exploiting
multiple threads e.g. cost of the additional coordination etc. Therefore, it may be advantageous to turn
off the mutithreading for smallish problem using the parameter intpntMultiThread.

Moreover, when the interior-point optimizer is allowed to exploit multiple threads, then the parameter
numThreads controls the maximum number of threads (and therefore the number of cores) that MOSEK
will employ.

116 Chapter 11. The Optimizers for Continuous Problems

CHAPTER

TWELVE

THE OPTIMIZER FOR MIXED-INTEGER PROBLEMS

A problem is a mixed-integer optimization problem when one or more of the variables are constrained
to be integer valued. MOSEK can solve mixed-integer

e linear,
e quadratic and quadratically constrained, and
e conic qudratic

problems.

Readers unfamiliar with integer optimization are recommended to consult some relevant literature, e.g.
the book [TWol98] by Wolsey.

12.1 Some Concepts and Facts Related to Mixed-integer Opti-
mization

It is important to understand that in a worst-case scenario, the time required to solve integer optimization
problems grows exponentially with the size of the problem. For instance, assume that a problem contains
n binary variables, then the time required to solve the problem in the worst case may be proportional
to 2™ . The value of 2" is huge even for moderate values of n .

In practice this implies that the focus should be on computing a near optimal solution quickly rather
than on locating an optimal solution. Even if the problem is only solved approximately, it is important
to know how far the approximate solution is from an optimal one. In order to say something about the
quality of an approximate solution the concept of relazation is important.

The mixed-integer optimization problem

z* = minimize 'z
subject to Ax = b,
2> 0 (12.1)
T; € Z, VieJd,
has the continuous relaxation

Z = minimize Tz
subject to Ax = b, (12.2)

z>0

The continuos relaxation is identical to the mixed-integer problem with the restriction that some variables
must be integers removed.

There are two important observations about the continuous relaxation. First, the continuous relaxation
is usually much faster to optimize than the mixed-integer problem. Secondly if & is any feasible solution
to (12.1) and

117

MOSEK Fusion API for Matlab, Release 8.0.0.94

then
2 <z <z

This is an important observation since if it is only possible to find a near optimal solution within a
reasonable time frame then the quality of the solution can nevertheless be evaluated. The value z is a
lower bound on the optimal objective value. This implies that the obtained solution is no further away
from the optimum than Z — z in terms of the objective value.

Whenever a mixed-integer problem is solved MOSEK reports this lower bound so that the quality of
the reported solution can be evaluated.

12.2 The Mixed-integer Optimizer

The mixed-integer optimizer can handle problems with linear, quadratic objective and constraints and
conic constraints. However, a problem can not contain both quadratic objective or constraints and conic
constraints.

The mixed-integer optimizer is specialized for solving linear and conic optimization problems. It can also
solve pure quadratic and quadratically constrained problems; these problems are automatically converted
to conic problems before being solved.

The mixed-integer optimizer is run-to-run deterministic. This means that if a problem is solved twice
on the same computer with identical options then the obtained solution will be bit-for-bit identical for
the two runs. However, if a time limit is set then this may not be case since the time taken to solve
a problem is not deterministic. The mixed-integer optimizer is parallelized i.e. it can exploit multiple
cores during the optimization.

The solution process can be split into these phases:

1. Presolve: In this phase the optimizer tries to reduce the size of the problem and improve the formu-
lation using preprocessing techniques. The presolve stage can be turned off using the presolveUse
parameter

2. Cut generation: Valid inequalities (cuts) are added to improve the lower bound

3. Heuristic: Using heuristics the optimizer tries to guess a good feasible solution. Heuristics can
be controlled by the parameter mioHeuristicLevel

4. Search: The optimal solution is located by branching on integer variables

12.3 Termination Criterion

In general, it is time consuming to find an exact feasible and optimal solution to an integer optimization
problem, though in many practical cases it may be possible to find a sufficiently good solution. Therefore,
the mixed-integer optimizer employs a relaxed feasibility and optimality criterion to determine when a
satisfactory solution is located.

A candidate solution that is feasible for the continuous relaxation is said to be an integer feasible solution
if the criterion

min(z; — [z;], [z;] —x;) <6 VieJ

is satisfied, meaning that x; is at most J; from the nearest integer.

Whenever the integer optimizer locates an integer feasible solution it will check if the criterion

Z — 2z < max(dq, 63 max(10719 | 2]))

118 Chapter 12. The Optimizer for Mixed-integer Problems

MOSEK Fusion API for Matlab, Release 8.0.0.94

is satisfied. If this is the case, the integer optimizer terminates and reports the integer feasible solution
as an optimal solution. Please note that z is a valid lower bound determined by the integer optimizer
during the solution process, i.e.

z < z*.

The lower bound z normally increases during the solution process.

12.3.1 Relaxed Termination

If an optimal solution cannot be located within a reasonable time, it may be advantageous to employ a
relaxed termination criterion after some time. Whenever the integer optimizer locates an integer feasible
solution and has spent at least the number of seconds defined by the mioDisableTermTime parameter
on solving the problem, it will check whether the criterion

Z — z < max(dy, 65 max(10719 | 2]))
is satisfied. If it is satisfied, the optimizer will report that the candidate solution is near optimal and

then terminate. Please note that since this criterion depends on timing, the optimizer will not be run to
run deterministic.

12.4 Parameters Affecting the Termination of the Integer Opti-
mizer.

All 6 tolerances can be adjusted using suitable parameters — see Table 12.1.

Table 12.1: Tolerances for the
mixed-integer optimizer.

Tolerance | Parameter name

01 mioTolAdbsRelaxzInt
O mioTolAbsGap

03 mioTolRelGap

04 mioNearTolAbsGap
05 mioNearTolRelGap

In Table 12.2 some other parameters affecting the integer optimizer termination criterion are shown.
Please note that if the effect of a parameter is delayed, the associated termination criterion is applied
only after some time, specified by the mioDisableTermTime parameter.

Table 12.2: Other parameters affecting the integer optimizer termination criterion.

Parameter name Delayed | Explanation

mioMaxNumBranches Yes Maximum number of branches allowed.
mioMaxNumRelazxs Yes Maximum number of relaxations allowed.
mioMazNumSolutions | Yes Maximum number of feasible integer solutions allowed.

12.5 How to Speed Up the Solution Process

As mentioned previously, in many cases it is not possible to find an optimal solution to an integer
optimization problem in a reasonable amount of time. Some suggestions to reduce the solution time are:

e Relax the termination criterion: In case the run time is not acceptable, the first thing to do is to
relax the termination criterion — see Section 12.3 for details.

12.4. Parameters Affecting the Termination of the Integer Optimizer. 119

MOSEK Fusion API for Matlab, Release 8.0.0.94

e Specify a good initial solution: In many cases a good feasible solution is either known or easily
computed using problem specific knowledge. If a good feasible solution is known, it is usually
worthwhile to use this as a starting point for the integer optimizer.

e Improve the formulation: A mixed-integer optimization problem may be impossible to solve in one
form and quite easy in another form. However, it is beyond the scope of this manual to discuss good
formulations for mixed-integer problems. For discussions on this topic see for example [TWol98].

12.6 Understanding Solution Quality

To determine the quality of the solution one should check the following;:
e The solution status key returned by MOSEK

e The optimality gap: A measure of how much the located solution can deviate from the optimal
solution to the problem

e Feasibility. How much the solution violates the constraints of the problem
The optimality gap is a measure for how close the solution is to the optimal solution. The optimality
gap is given by

e = |(objective value of feasible solution) — (objective bound)].

The objective value of the solution is guarantied to be within e of the optimal solution.

The optimality gap can be retrieved through the solution item mioObjAbsGap. Often it is more meaningful
to look at the optimality gap normalized with the magnitude of the solution. The relative optimality
gap is available in mioObjRelGap.

120 Chapter 12. The Optimizer for Mixed-integer Problems

CHAPTER

THIRTEEN

FUSION APl REFERENCE

13.1 Class list

Most commonly used

Constraint: Abstract base class for Constraint objects.

Domain: Base class for variable and constraint domains.

Ezpr: Represents a linear expression and provides linear operators.

Ezpression: Abstract base class for all objects which can be used as linear expressions.
Matriz: Base class for all matrix objects.

Model: The object containing all data related to a single optimization model.
NDSparsedrray: Representation of a sparse n-dimensional array

Set: Base class shape specification objects.

SymmetricLinearDomain: Represent a linear domain with symmetry.

Var: Provides basic operations on variable objects.

Variable: Abstract base class for Variable objects.

For advanced users

BaseSet: Base class for 1-dimensional sets.
BaseVariable: Abstract base class for Variable objects with default implementations.

BoundInterfaceConstraint: Interface to either the upper bound or the lower bound of a ranged
constraint.

BoundInterfaceVariable: Interface to either the upper bound or the lower bound of a ranged
variable.

CompoundConstraint: Stacking of contraints.

CompoundVariable: A stack of several other variables.

ConicConstraint: Represent a conic constraint.

ConiclVariable: Represent a conic variable.

FlatEzpr: A simple sparse representation of a linear expression.

LinPSDDomain: Represent a linear PSD domain.

LinearConstraint: An object representing a block of linear constraints of the same type.

LinearDomain: Represent a domain defined by linear constraints

121

MOSEK Fusion API for Matlab, Release 8.0.0.94

e LinearPSDConstraint: Represents a semidefinite conic constraint.

e LinearPSDVariable: This class represents a positive semidefinite variable.

e LinearVariable: An object representing a block of linear variables of the same type.
e NodelConstraint: Represent a block of constraints.

e ModelVariable: Represent a block of variables.

e PSDConstraint: Represents a semidefinite conic constraint.

e PSDDomain: Represent the domain od PSD matrices.

e PSDVariable: This class represents a positive semidefinite variable.

e PicklVariable: Represents an set of variable entries

e ProductSet: None

e (JConeDomain: A domain representing the Lorentz cone.

e RangeDomatin: The range domain represents a ranged subset of the euclidian space.

e RangedConstraint: Defines a ranged constraint.

e RangedlVariable: Defines a ranged variable.

e SliceConstraint: An alias for a subset of constraints from a single ModelConstraint.
e SliceVariable: An alias for a subset of variables from a single model variable.

e SymLinearVariable: An object representing a block of linear variables of the same type.
e SymRangedVariable: Defines a symmetric ranged variable.

e SymmetricEzpr: An object representing a symmetric expression.

o SymmetricRangeDomain: Represent a ranged domain with symmetry.

e SymmetricVariable: An object representing a symmetric variable.

13.1.1 Class BaseSet

mosek.fusion.BaseSet
Base class for 1-dimensional sets.

Members

BaseSet.dim — Return the size of the given dimension.

Set.compare — Compare two sets and return true if they have the same shape and size.
Set.getSize — Total number of elements in the set.

Set.getname — Return a string representing the index.

Set.idrtokey — Convert a linear index to a N-dimensional key.

Set.realnd — Number of dimensions of more than 1 element, or 1 if the number of significant
dimensions is 0.

Set.slice — Create a set object representing a slice of this set.
Set.stride — Return the stride size in the given dimension.

Set.toString — Return a string representation of the set.
Implements
Set

ret = BaseSet.dim(i)
Return the size of the given dimension.
Parameters

122 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

ei (int32) — Dimension index.
Return

eret (int32) — The size of the requested dimension.

13.1.2 Class BaseVariable

mosek.fusion.BaseVariable
An abstract variable object. This is class provides various default implementations of methods in
Variable.

Members

BaselVariable.antidiag — Return the antidiagonal of a square variable matrix.
Baselariable.asEzpr — Create an expression corresponding to the variable object.
BaseVariable.diag — Return the diagonal of a square variable matrix.
BaseVariable.dual — Get the dual solution value of the variable.
BaselVariable.getModel — Return the model to which the variable belongs
BaseVariable.getShape — Return the model to which the variable belongs

BaseVariable.indez — Return a variable slice of size 1 corresponding to a single element in the
variable object..

Baselariable. level — Get the primal solution value of the variable.
BaseVariable.makeContinuous — Drop integrality constraints on the variable, if any
BaselVariable.makeInteger — Apply integrality constraints on the variable
Baselariable.pick — Create a slice variable by picking a list of indexes from this variable.
BaseVariable.setLevel — Input solution values for this variable

BaselVariable.shape — Return the shape of the variable.

BaseVariable.stize — Get the number of elements in the variable.

BaselVariable.slice — Create a slice variable by picking a range of indexes for each variable
dimension

BaseVariable.toString — Create a string-representation of the variable.

BaseVariable. transpose — Transpose a vector or matrix variable
Implemented by
PickVariable, ModelVariable, Slicelariable, CompoundVariable

ret = BaseVariable.antidiag()
ret = BaseVariable.antidiag(index)

Return the antidiagonal of a square variable matrix.
Parameters

eindex (int32) — Index of the anti-diagonal
Return

eret (Variable)

ret = BaseVariable.asExpr ()
Create an expression corresponding to the variable object.
Return

eret (Ezpression)

ret = BaseVariable.diag()
ret = BaseVariable.diag(index)
Return the diagonal of a square variable matrix.

13.1. Class list 123

MOSEK Fusion API for Matlab, Release 8.0.0.94

Parameters

eindex (int32) — Index of the anti-diagonal
Return

eret (Variable)

ret — BaseVariable.dual()
Get the dual solution value of the variable.
Return

eret (double[])

ret = BaseVariable.getModel()
Return the model to which the variable belongs
Return

eret (Model)

ret = BaseVariable.getShape()
Return the model to which the variable belongs
Return

eret (Set)

ret — BaseVariable.index(index)
ret = BaseVariable.index(index2)
ret = BaseVariable.index(i0, i1)
ret — BaseVariable.index(i0, i1, i2)

Return a variable slice of size 1 corresponding to a single element in the variable object..

Parameters
eindex (int32)
eindex2 (int32[])

¢i0 (int32) — Index in the first dimension of the element requested.

eil (int32) — Index in the second dimension of the element requested.

ei2 (int32) — Index in the second dimension of the element requested.

Return
eret (Variable)

ret = BaseVariable.level()
Get the primal solution value of the variable.
Return

eret (double[])

ret = BaseVariable.makeContinuous ()
Drop integrality constraints on the variable, if any
Return

eret (void)

ret = BaseVariable.makeInteger ()
Apply integrality constraints on the variable
Return

eret (void)

ret = BaseVariable.pick(idxs)
ret = BaseVariable.pick(midxs)
ret = BaseVariable.pick(iO, il)
ret = BaseVariable.pick(iO, i1, i2)
Create a slice variable by picking a list of indexes from this variable.
Parameters

124 Chapter 13.

Fusion AP| Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

eidxs (int32[]1) — Indexes of the elements requested.

emidxs (int32) — Matrix of indexes of the elements requested.
ei0 (int32[])

eil (int32[]) — Index along the first dimension.

ei2 (int32[]) — Index along the second dimension.
Return

eret (Variable)

ret = BaseVariable.setLevel(v)
Input solution values for this variable
Parameters

ov (double[]) — An array of values to be assigned to the variable.
Return

eret (void)

ret = BaseVariable.shape()
Return the shape of the variable.
Return

eret (Set)

ret — BaseVariable.size()
Get the number of elements in the variable.
Return

eret (int64)

ret — BaseVariable.slice(first, last)
ret — BaseVariable.slice(first2, last2)

Create a slice variable by picking a range of indexes for each variable dimension
Parameters

efirst (int32) — The index of the first element(s) of the slice.
elast (int32) — The index of the first element after the end of the slice.
efirst2 (int32[]) — The index of the first element(s) of the slice.

elast2 (int32[])
Return

eret (Variable)

ret = BaseVariable.toString()
Create a string-representation of the variable.
Return

eret (string)

ret = BaseVariable.transpose()
Transpose a vector or matrix variable
Return

eret (Variable)

13.1.3 Class BoundInterfaceConstraint

mosek.fusion.BoundInterfaceConstraint
Interface to either the upper bound or the lower bound of a ranged constraint.

13.1. Class list

125

MOSEK Fusion API for Matlab, Release 8.0.0.94

This class is never explicitly instantiated; is is created by a RangedConstraint to allow accessing a
bound value and the dual variable value corresponding to the relevant bound as a separate object.
The constraint

b < alz < bu,
has two bounds and two dual variables; these are not immediately available through the
RangedConstraint object, but can be accessed through a BoundInterfaceConstraint.
Members
Constraint.add — Add an expression to the constraint expression.
Constraint.dual
Constraint.get_model — Get the original model object.
Constraint.get_nd — Get the number of dimensions of the constraint.
Constraint.indez — Get a single element from a one-dimensional constraint.
Constraint.level — Get the primal solution value of the variable.
Constraint.shape
Constraint.toString — Create a human readable representation of the constraint.
SliceConstraint.size — Get the total number of elements in the constraint.

SliceConstraint.slice

Implements

SliceConstraint

13.1.4 Class BoundInterfaceVariable

mosek.fusion.BoundInterfaceVariable

Interface to either the upper bound or the lower bound of a ranged variable.

This class is never explicitly instantiated; is is created by a RangedVariable to allow accessing a
bound value and the dual variable value corresponding to the relevant bound as a separate object.
The variable

by <z <b,
has two bounds and two dual variables; these are not immediately available through the
RangedVariable object, but can be accessed through a BoundInterfacelVariable.
Members
BaselVariable.antidiag — Return the antidiagonal of a square variable matrix.
Baselariable.asEzpr — Create an expression corresponding to the variable object.
BaseVariable.diag — Return the diagonal of a square variable matrix.
BaselVariable.dual — Get the dual solution value of the variable.
Baselariable.getModel — Return the model to which the variable belongs
BaseVariable.getShape — Return the model to which the variable belongs

BaseVariable.indez — Return a variable slice of size 1 corresponding to a single element in the
variable object..

Baselariable. level — Get the primal solution value of the variable.
Baselariable.makeContinuous — Drop integrality constraints on the variable, if any

BaseVariable.makeInteger — Apply integrality constraints on the variable

126

Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

Baselariable.pick — Create a slice variable by picking a list of indexes from this variable.
BaseVariable.setLevel — Input solution values for this variable

BaselVariable.shape — Return the shape of the variable.

BaselVariable.size — Get the number of elements in the variable.
BaseVariable.toString — Create a string-representation of the variable.

BaseVariable. transpose — Transpose a vector or matrix variable

SliceVariable.slice — Create a slice variable by picking a range of indexes for each variable
dimension

Implements
Slicelariable

13.1.5 Class CompoundConstraint
mosek.fusion.CompoundConstraint
Stacking of constraints.

A CompoundConstraint represents a stack or other variable objects and can be used as
a 1l-dimensional variable. The class is never explicitly instantiated, but is created using
Constraint.stack.

As this class is derived from Variable, it may be used as a normal variable when creating expres-
sions.

Members

CompoundConstraint.slice — Unimplemented method!.

Constraint.add — Add an expression to the constraint expression.
Constraint.dual

Constraint.get_model — Get the original model object.
Constraint.get_nd — Get the number of dimensions of the constraint.
Constraint.indezr — Get a single element from a one-dimensional constraint.
Constraint.level — Get the primal solution value of the variable.
Constraint.shape

Constraint.size — Get the total number of elements in the constraint.

Constraint.toString — Create a human readable representation of the constraint.
Implements
Constraint

ret = CompoundConstraint.slice(first, last)

ret = CompoundConstraint.slice(firsta, lasta)
Unimplemented method!.

Parameters

efirst (int32) — Index of the first element in the slice.
elast (int32) — Index if the last element in the slice.
efirsta (int32[]) — Array of start elements in the slice.

elasta (int32[]) — Array of end element in the slice.
Return

eret (Constraint)

13.1. Class list 127

MOSEK Fusion API

for Matlab, Release 8.0.0.94

13.1.6 Class CompoundVariable

mosek.fusion.CompoundVariable
A stack of several other variables.

A compound variable represents a stack og other variable objects and can be used as a 1-dimensional
variable. The class is never explicitly instantiated, but is created using Var.stack.

Members

Baselariable.
Baselariable.
Baselariable.
Baselariable.
BaselVariable.

BaseVarzable.

antidiag — Return the antidiagonal of a square variable matrix.
diag — Return the diagonal of a square variable matrix.

dual — Get the dual solution value of the variable.

getModel — Return the model to which the variable belongs
getShape — Return the model to which the variable belongs

indez — Return a variable slice of size 1 corresponding to a single element in the

variable object..

Baselariable.
BaselVariable.
BaselVariable.
Baselariable.
Baselariable.
BaselVariable.
Baselariable.
Baselariable.

BaselVartable.

level — Get the primal solution value of the variable.

makeContinuous — Drop integrality constraints on the variable, if any
makeInteger — Apply integrality constraints on the variable

pick — Create a slice variable by picking a list of indexes from this variable.
setLevel — Input solution values for this variable

shape — Return the shape of the variable.

size — Get the number of elements in the variable.

toString — Create a string-representation of the variable.

transpose — Transpose a vector or matrix variable

CompoundVariable.asExpr — Create an expression corresponding to the variable object.

CompoundVariable.slice — Create a slice variable by picking a range of indexes for each variable

dimension
Implements
BaselVariable

ret = CompoundVariable.asExpr ()
Create an expression corresponding to the variable object.

Return

eret (Ezpression)

ret = CompoundVariable.slice(first, last)
ret = CompoundVariable.slice(first2, last2)
Create a slice variable by picking a range of indexes for each variable dimension

Parameters

efirst (int32) — The index of the first element(s) of the slice.

elast (int32) — The index of the first element after the end of the slice.

efirst2 (int32[]) — The index of the first element(s) of the slice.

elast2 (int32[])

Return

eret (Variable)

128

Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

13.1.7 Class ConicConstraint

mosek.fusion.ConicConstraint

This class represents a conic constraint of the form

Ar—be Kk
where /C is either a quadratic cone or a rotated quadratic cone. Then class is never explicitly
instantiated, but is created using Xodel. constraint by specifying a conic domain.

Note that a conic constraint in Fusion is always dense in the sense that all member constraints are
created in the underlying optimization problem immediately.

Members

ConicConstraint.toString — Create a human readable representation of the constraint.
Constraint.add — Add an expression to the constraint expression.

Constraint.dual

Constraint.get_model — Get the original model object.

Constraint.get_nd — Get the number of dimensions of the constraint.
Constraint.index — Get a single element from a one-dimensional constraint.
Constraint.level — Get the primal solution value of the variable.

Constraint.shape

Constraint.size — Get the total number of elements in the constraint.

ModelConstraint.slice

Implements

ModelConstraint

ret = ConicConstraint.toString()

Create a human readable representation of the constraint.

Return

eret (string)

13.1.8 Class ConicVariable

mosek.fusion.ConicVariable

This class represents a conic variable of the form

Ax—be Kk
where K is either a quadratic cone or a rotated quadratic cone. Then class is never explicitly
instantiated, but is created using Xodel.variable by specifying a conic domain.

Note that a conic variable in Fusion is always dense in the sense that all member variables are
created in the underlying optimization problem immediately.

Members

BaseVariable.antidiag — Return the antidiagonal of a square variable matrix.
BaseVariable.asEzpr — Create an expression corresponding to the variable object.
BaselVariable.diag — Return the diagonal of a square variable matrix.
BaselVariable.dual — Get the dual solution value of the variable.
BaseVariable.getModel — Return the model to which the variable belongs

BaselVariable.getShape — Return the model to which the variable belongs

13.1.

Class list 129

MOSEK Fusion API for Matlab, Release 8.0.0.94

BaseVariable. indez — Return a variable slice of size 1 corresponding to a single element in the
variable object..

BaseVariable. level — Get the primal solution value of the variable.
BaseVariable.makeContinuous — Drop integrality constraints on the variable, if any
BaselVariable.makeInteger — Apply integrality constraints on the variable
Baselariable.pick — Create a slice variable by picking a list of indexes from this variable.
BaselVariable.setLevel — Input solution values for this variable

BaseVariable.shape — Return the shape of the variable.

BaseVariable.size — Get the number of elements in the variable.

Baselariable. transpose — Transpose a vector or matrix variable

ConicVariable. toString — Create a string-representation of the variable.

ModelVariable.slice — Create a slice variable by picking a range of indexes for each variable
dimension

Implements
ModelVariable

ret = ConicVariable.toString()
Create a string-representation of the variable.
Return

eret (string)

13.1.9 Class Constraint
mosek.fusion.Constraint
An abstract constraint object. This is the base class for all constraint types in Fusion.

The Constraint object can be an interface to the mnormal model constraint, e.g.
LinearConstraint and ConicConstraint, to slices of other constraints or to concatenations of
other constraints.

Primal and dual solution values can be accessed through the Constraint object.
Members

Constraint.add — Add an expression to the constraint expression.
Constraint.dual

Constraint.get_model — Get the original model object.

Constraint.get_nd — Get the number of dimensions of the constraint.
Constraint.indez — Get a single element from a one-dimensional constraint.
Constraint.level — Get the primal solution value of the variable.
Constraint.shape

Constraint.size — Get the total number of elements in the constraint.
Constraint.slice

Constraint.toString — Create a human readable representation of the constraint.

Static Members Constraint.stack
Implemented by
CompoundConstraint , ModelConstraint, SliceConstraint

ret = Constraint.add(expr)
ret = Constraint.add(v)

130 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret2 = Constraint.add(cs)
ret2 = Constraint.add(c)

Add an expression to the constraint expression.
Parameters

eexpr (Ezpression)
ov (Variable)
ecs (double[])

ec (double)
Return

eret (Constraint) — The constraint itself.
eret2 (Constraint)

ret = Constraint.dual ()

ret2 = Constraint.dual (firstidx, lastidx)
ret3 = Constraint.dual (firstidx2, lastidx2)
Parameters

efirstidx (int32) — Index of the first element in the range.
elastidx (int32) — Index of the last element (inclusive) in the range.
efirstidx2 (int32[]) — Array of indexes of the first element in each dimension.

elastidx2 (int32[]) — Array of indexes of the last element (inclusive) in each dimension.
Return

eret (double[]) — An array of values corresponding to the dual solution values of the con-
straint.

eret2 (double[]) — An array of solution values.

eret3 (double[]) — An array of solution values. When the selected slice is multi-dimensional,
this corresponds to the flattened slice of solution values.

ret = Constraint.get_model ()
Get the original model object.
Return

eret (Model) — The model to which the constraint belongs.

ret = Constraint.get_nd()
Get the number of dimensions of the constraint.
Return

eret (int32) — The number of dimensions in the constraint.

ret = Constraint.index(idx)
ret = Constraint.index(idx2)

Get a single element from a one-dimensional constraint.
Parameters

eidx (int32) — The element index.

eidx2 (int32[]1) — Array of integers entry in each dimension.
Return

eret (Constraint) — A new slice containing a single element.

ret = Constraint.level()
Get the primal solution value of the variable.
Return

eret (double[]) — An array of solution values. When the selected slice is multi-dimensional,
this corresponds to the flattened slice of solution values.

13.1. Class list 131

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret = Constraint.shape()
Return

eret (Set)

ret — Constraint.size()
Get the total number of elements in the constraint.
Return

eret (int64) — The total numbe of elements in the constraint.

ret = Constraint.slice(first, last)
ret = Constraint.slice(first2, last2)
Parameters

efirst (int32) — Index of the first element in the slice.
elast (int32) — Index if the last element in the slice.
efirst2 (int32[]1) — Array of start elements in the slice.

elast2 (int32[]) — Array of end element in the slice.
Return

eret (Constraint) — A new constraint object representing a slice of this object.

ret = Constraint.stack(vl, v2)
ret = Constraint.stack(vl, v2, v3)
ret — Constraint.stack(clist)
Parameters

evl (Constraint) — The first constraint in the stack.
ov2 (Constraint) — The second constraint in the stack.
ov3 (Constraint) — The second constraint in the stack.

eclist (Constraint) — The constraints in the stack.
Return

eret (Constraint) — An object representing the concatenation of the constraints.

ret = Constraint.toString()
Create a human readable representation of the constraint.
Return

eret (string) — A string with the constraint representation.

13.1.10 Class Domain

mosek.fusion.Domain
The Domain class defines a set of static method for creating various variable and constraint domains.
A Domain object specifies a subset of R™, which can be used to define the feasible domain of variables
and expressions.

For further details on the use of these, see
elModel.variable
eModel.constraint
Static Members
Domain.azis — Set the dimension along which the cones are created
Domain.binary — Creates a domain of binary variables.

Domain. equalsTo — Defines the domain consisting of a fixed point.

132 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

Domain.
value in

Domain.
Domain.
Domain.
Domain
Domain.
Domain.
Domain.

Domain.
value in

Domain.
Domain.
Domain.

ret = Domain

greaterThan — Defines the domain consisting of the half-open space bounded below by a
each dimension.

1nPSDCone — Defines the domain of Positive Semidefinite matrices.
infCone — Defines the domain of quadratic cones

inRange — Creates a domain representing a fixed range in any number of dimensions

.inRotatedCone — Defines the domain of quadratic cones

integral — Creates a domain of integral variables.
1s5LinPSD — Creates a domain of Positive Semidefinite matrices.
15Tri1PSD — Creates a domain of Positive Semidefinite matrices.

lessThan — Defines the domain consisting of the half-open space bounded above by a
each dimension.

sparse — Ask to use a sparse representation
symmetric — Impose symmetry on a given linear domain
unbounded — Creates a domain in which variables are unbounded.

.axis(c, a)

Set the dimension along which the cones are created

Parameters

ec (§ConeDomain)

ea (int32)
Return

eret ({ConeDomain)
ret = Domain.binary(n)
ret = Domain.binary(m, n)
ret = Domain.binary(dims)
ret = Domain.binary()

Create a
Parameters

domain composed by n binary variables.

en (int32) — First dimension size.

em (int32) — Second dimension size.

edims (int32[]1) — A list of dimension sizes.

Return

eret

ret = Domain.
ret — Domain.
ret = Domain.
ret — Domain.

ret = Domain

ret = Domain.
ret = Domain.
ret = Domain.

(RangeDomain)

equalsTo(b)
equalsTo(b, n)
equalsTo(b, m, n)
equalsTo (b, dims)
.equalsTo(al)
equalsTo(a2)
equalsTo(al, dims)
equalsTo (mx)

Defines the domain consisting of a fixed point.

Parameters

eb (double) — A single value. This is scalable: For, say, a M x N variable, it means that each
element in the variable is fixed to b.

en (int32) — First dimension size.

em (int32) — Second dimension size.

13.1. Class list 133

MOSEK Fusion API for Matlab, Release 8.0.0.94

eal (double[]) — A one-dimensional array of bounds. The size and shape must match the
variable or constraint with which it is used.

edims (int32[]) — A list of dimension sizes.

ea?2 (double) — A two-dimensional array of bounds. The size and shape must match the variable
or constraint with which it is used.

emx (Matriz) — A matrix of bound values. The shape must match the variable or constraint
with which it is used.
Return

eret (LinearDomain)

ret = Domain.greaterThan(b)
ret = Domain.greaterThan (b, n)
ret = Domain.greaterThan(b, m, n)
ret = Domain.greaterThan(b, dims)
ret = Domain.greaterThan(al)
ret = Domain.greaterThan(a2)
ret = Domain.greaterThan(al, dims)
ret = Domain.greaterThan (mx)
Defines the domain consisting of the half-open space bounded below by a value in each dimension.
Parameters

eb (double) — A single value. This is scalable: For, say, a M x N variable, it means that each
element in the variable is less than to b.

en (int32) — First dimension size.

em (int32) — Second dimension size.

eal (doublel[])

edims (int32[]1) — A list of dimension sizes.
ea2 (double)

enx (Matriz) — A matrix of bound values. The shape must match the variable or constraint
with which it is used.
Return

eret (LinearDomain)

ret = Domain.inPSDCone ()
ret = Domain.inPSDCone (n)
ret = Domain.inPSDCone (n, m)
Creates an object representing m (by default 1) cone(s) of the form:

1
{X ERVM (X +XT) € Si}
The shape of the result is n x n if m was not given, and n x n x m if it is..
Parameters

en (int32) — Dimension of the cone.

en (int32) — Number of cones. By default this is 1.
Return

eret (PSDDomain)

ret — Domain.inQCone()
ret = Domain.inQCone (n)
ret = Domain.inQCone (m, n)

134 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret — Domain.inQCone(dims)
Defines the domain of quadratic cones:

n
{o: € R"|2? > fo, x> O}

=2

If m is given, it produces a domain definind the set if m cones of this type.
Parameters

en (int32) — The size of each cone; at least 2.
em (int32) — The number of cones; at least 1.

edims (int32[])
Return

eret ({ConeDomain)

ret = Domain. inRange (1b, ub)
ret = Domain.inRange (1b, uba)
ret = Domain.inRange(1lba, ub)
ret = Domain.inRange (1ba, uba)
ret = Domain.inRange (1b, ubm)
ret = Domain.inRange (1bm, ub)
ret = Domain.inRange (1bm, ubm)

Create a domain defining a fixed lower and upper bound for each scalar element.

Note that of both upper and lower bounds are defined by a scalar, the resulting domain will scale

to any size.
Parameters

elb (double) — The lower end of the range as a common scalar value.
eub (double) — The upper end of the range as a common scalar value.
elba (double[]) — The lower end of the range as an array.
euba (double[]) — The upper end of the range as an array.
elbm (¥Yatriz) — The lower end of the range as a Matriz object.

(

eubm (Matriz) — The upper end of the range as a Matriz object.
Return

eret (RangeDomain)

ret = Domain.inRotatedQCone ()
ret — Domain.inRotatedQCone (n)
ret = Domain.inRotatedQCone (m, n)
ret — Domain.inRotatedQCone (dims)
Defines the domain of rotated quadratic cones:

n
{1‘ € R"|xi12q > Zsrf, T1, T > O}

=3

If m is given, it produces a domain definind the set if m cones of this type.
Parameters

en (int32) — The size of each cone; at least 3.
em (int32) — The number of cones; at least 1.

edims (int32[])
Return

eret ({ConeDomain)

ret = Domain.integral(c)

13.1. Class list

135

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret2 = Domain. integral (1d)
ret3 = Domain.integral (rd)

Modify a given domain restricting its elements to be integral.
Parameters

ec (§ConeDomain) — A conic quadratic domain.
e1ld (LinearDomain) — A linear domain.

erd (RangeDomain) — A ranged domain.
Return

eret ({ConeDomain)
eret2 (LinearDomain)
eret3 (RangeDomain)

ret = Domain.isLinPSD()
ret = Domain.isLinPSD(n)
ret = Domain.isLinPSD(n, m)
Creates an object representing the product of m cones of the form:

{X e R™"[tril(X) € ST}

i.e. the lower triangular part of X define the symmetric matrix that is semidefinite.

The shape of the result is n x n X m.
Parameters

en (int32) — Dimension of the cone.

em (int32) — Number of cones. By default this is 1.
Return

eret (LinPSDDomain)

ret = Domain.isTrilPSD()
ret = Domain.isTrilPSD(n)
ret = Domain.isTrilPSD(n, m)
Creates an object representing the product of m cones of the form:

{X e R™"tril(X) € ST}

i.e. the lower triangular part of X define the symmetric matrix that is semidefinite.

The shape of the result is n x n x m.
Parameters

en (int32) — Dimension of the cone.

em (int32) — Number of cones. By default this is 1.
Return

eret (PSDDomain)

ret = Domain.lessThan(b)
ret = Domain.lessThan(b, n)
ret = Domain.lessThan(b, m, n)
ret = Domain.lessThan(b, dims)
ret = Domain.lessThan(al)
ret = Domain.lessThan(a2)
ret — Domain.lessThan(al, dims)
ret = Domain.lessThan (mx)
Defines the domain consisting of the half-open space bounded above by a value in each dimension.
Parameters

136 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

Return

eb (double) — A single value. This is scalable: For, say, a M x N variable, it means that each
element in the variable is less than to b.

en (int32) — First dimension size.
em (int32) — Second dimension size.

eal (double[]) — A one-dimensional array of bounds. The size and shape must match the
variable or constraint with which it is used.

edims (int32[]) — A list of dimension sizes.

ea2 (double) — A two-dimensional array of bounds. The size and shape must match the variable
or constraint with which it is used.

emx (Matriz) — A matrix of bound values. The shape must match the variable or constraint
with which it is used.

eret (LinearDomain)

ret = Domain.sparse(1d)

ret2 = Domain.sparse(rd)
Given a linear domain d, this method explicitly sugest to Fusion that a sparse representation is
helpful.

Parameters

Return

eld (LinearDomain) — The putative linear sparse domain

erd (RangeDomain) — The putative ranged sparse domain

eret (LinearDomain)

eret2 (RangeDomain)

ret = Domain.symmetric(1d)
ret2 = Domain.symmetric(rd)
Given a linear domain d, this method returns a domain such that

{re DCRVM gy =aji fori=1,....N j=1,...,M.}

Parameters

Return

eld (LinearDomain) — The linear domain to be modified

erd (RangeDomain) — The ranged domain to be modified

eret (SymmetricLinearDomain)

eret2 (SymmetricRangeDomain)

ret — Domain.unbounded ()
ret = Domain.unbounded (n)
ret = Domain.unbounded (m, n)
ret = Domain.unbounded (dims)
Creates a domain in which variables are unbounded.
Parameters

Return

en (int32) — First dimension size.
em (int32) — Second dimension size.

edims (int32[]1) — A list of dimension sizes.

eret (LinearDomain)

13.1.

Class list 137

MOSEK Fusion API for Matlab, Release 8.0.0.94

13.1.11 Class Expr

mosek.fusion.Expr

It represents an expression of the form Ax + b, where A is a matrix on sparse form, x is a variable
vector and b is a vector of scalars.

Additionally, the class defines a set of static method for constructing various expressions.
Members

Ezpr.eval — Evaluate the expression info to a simple array-based form

Ezpr.getModel — Return the model to which the expression belongs

Ezpr.getShape — Return the shape of the expression

Ezpr.inder — Return a specific term of the expression

Expr.numlonzeros — Return the number of non zero elements in the expression.
Ezpr.pick — Create an expression vector by picking elements from this expression.
Ezpr.shape — Returns the shape of the expression.

Ezpr.size — Return the expression size

Ezpr.slice — Return a slice of the expression

Ezpr.toString — Create a human readable representation of the expression.
Ezpr.transpose — Transpose the expression

Static Members

Ezpr.add — Construct an expression as the sum items.

Ezpr.constTerm — Create an expression consisting of a constant vector of values.
Ezpr.dot — Return an object representing the dot-product of two values.

Ezpr. flatten — Rehshape the expression into a vector

Ezpr.hstack — Stack a list of expressions horizontally (i.e. along the second dimension).
Ezpr.mul — Multiply two items.

Ezpr.mulDiag — Compute the diagonal of the product of two matrixes and return it as a vector.

Ezpr.mulElm — Element-wise multiplication of two items. The two operands must have the same
shape.

Ezpr.neg — Change the sign of an expression

Ezpr.ones — Create a vector of ones as an expression.

Ezpr.outer — Return an object representing the outer-product of two vectors.

Ezpr.repeat — Repeart an expression a number of times in the given dimension.

Ezpr.reshape — Reshape the expression into a different shape with the same number of elements.
Ezpr.stack — Stack a list of expressions in an arbitrary dimension.

Ezpr.sub — Construct an expression as the difference of two items.

Ezpr.sum — Sum the elements of an expression

Ezpr.vstack — Stack a list of expressions vertically (i.e. along the first dimension).

Ezpr.zeros — Create a vector of zeros as an expression.

ret = Expr.add(el, e2)
ret = Expr.add(el, v2)
ret = Expr.add(vl, e2)
ret = Expr.add(el, al)

138

Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret = Expr.add(el, a2)
ret = Expr.add(al, e2)
ret = Expr.add(a2, e2)
ret = Expr.add(el, c)
ret = Expr.add(c, e2)
ret = Expr.add(el, m)
ret = Expr.add(m, e2)
ret = Expr.add(el, n)
ret = Expr.add(n, e2)
ret = Expr.add(vl, v2)
ret = Expr.add(vl, al)
ret = Expr.add(vl, a2)
ret = Expr.add(al, v2)
ret = Expr.add(a2, v2)
ret = Expr.add(vi, c)
ret = Expr.add(c, v2)
ret = Expr.add(vl, m)
ret = Expr.add(m, v2)
ret = Expr.add(vi, n)
ret = Expr.add(n, v2)
ret = Expr.add(vs)
ret = Expr.add(exps)
Following combinations of operands are allowed:

A

B

Variable Variable

Expression Expression

double

double[]

doublel[,]

Matrix

NDSparseArray

i.e. both add(A,B) and add(B,A) are available.

Note that the size and shape of the operand matter and must adhere to the rules of matrix
multiplication.
Parameters

Return

ecl (Ezpression) — An expression.

ec2 (Ezpression) — An expression.

eal (double[]) — A one-dimensional array of constants.
ea2 (double) — A two-dimensional array of constants.
ec (double) — A constant.

en (Matriz) — A Matrix object.

en (IVDSparsedrray) — An NDSparseArray object.

evl (Variable) — An variable.

ov2 (Variable) — An variable.

evs (Variable) — A list of Variables. All variables in the array must have the same shape and
size. The list must contain at least one element.

ecxps (Ezpression) — A list of expressions. All expressions in the array must have the same
size. The list must contain at least one element.

eret (Ezpression)

13.1.

Class list 139

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret = Expr.constTerm(valsl)
ret2 = Expr.constTerm(vals2)
ret = Expr.constTerm(size, val)
ret2 = Expr.constTerm(shp, val2)
ret2 = Expr.constTerm(val2)
ret2 = Expr.constTerm(m)
ret2 = Expr.constTerm(nda)
Create an expression consisting of a constant vector of values.
Parameters

evalsl (double[]) — Values to put in vector

evals2 (double)

esize (int32) — Length of the vector

eval (double) — Value to put in vector

eshp (Set) — Defines the shape of the expression

eval2 (double) — A scalar value to put in vector or matrix expression
em (Matriz) — A Matrix of values to put in the expression

enda (VDSparsedrray) — An n-dimensional sparse array of values to put in the expression
Return

eret (Ezpression) — An expression representing a vector.
eret2 (Ezpression)

ret = Expr.dot (v, al)

ret = Expr.dot (v, a2)

ret = Expr.dot (v, m)

ret = Expr.dot (v, spm)

ret = Expr.dot (expr, spm)

ret = Expr.dot(expr, al)

ret = Expr.dot (expr, a2)

ret = Expr.dot (expr, m)

ret = Expr.dot(al, expr)

ret = Expr.dot(al, v)

ret = Expr.dot (a2, expr)

ret = Expr.dot (a2, v)

ret = Expr.dot (spm, expr)

ret = Expr.dot (spm, v)

ret = Expr.dot(m, v)

ret = Expr.dot(m, expr)
Return an object representing the inner product (“dot product”) of two vectors, i.e. the sum of the
element-wise multiplication.

Parameters

ov (Variable) — A variable object.

eal (double[]) — A one-dimensional coefficeint array.

en (Matriz) — A matrix object.

espm (VDSparsedrray) — A multidimensional sparse array object.
ea2 (double) — A two-dimensional coefficeint array.

eexpr (Ezpression) — An expression object.
Return

eret (Ezpression)

ret = Expr.eval()
Evaluate the expression info to a simple array-based form

140 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

Return
eret (FlatEzpr)

ret = Expr.flatten(e)
Rehshape the expression into a vector
Parameters

eec (Ezpression)
Return

eret (Ezpression)

ret = Expr.getModel ()
Return the model to which the expression belongs
Return

eret (Model)

ret = Expr.getShape ()
Return the shape of the expression
Return

eret (Set)

ret = Expr.hstack(exprs)
ret = Expr.hstack(el, e2)
ret = Expr.hstack(el, a2)
ret = Expr.hstack(el, v2)
ret = Expr.hstack(al, v2)
ret = Expr.hstack(al, e2)
ret = Expr.hstack(vl, a2)
ret = Expr.hstack(vl, v2)
ret = Expr.hstack(vil, e2)
ret = Expr.hstack(al, a2, v3)
ret = Expr.hstack(al, a2, e3)
ret = Expr.hstack(al, v2, a3)
ret = Expr.hstack(al, v2, v3)
ret = Expr.hstack(al, v2, e3)
ret = Expr.hstack(al, e2, a3)
ret = Expr.hstack(al, e2, v3)
ret = Expr.hstack(al, e2, e3)
ret = Expr.hstack(vl, a2, a3)
ret = Expr.hstack(vl, a2, v3)
ret = Expr.hstack(vl, a2, e3)
ret = Expr.hstack(vl, v2, a3)
ret = Expr.hstack(vl, v2, v3)
ret = Expr.hstack(vl, v2, e3)
ret = Expr.hstack(vl, e2, a3)
ret = Expr.hstack(vl, e2, v3)
ret = Expr.hstack(vl, e2, e3)
ret = Expr.hstack(el, a2, a3)
ret = Expr.hstack(el, a2, v3)
ret = Expr.hstack(el, a2, e3)
ret = Expr.hstack(el, v2, a3)
ret = Expr.hstack(el, v2, v3)
ret = Expr.hstack(el, v2, e3)
ret = Expr.hstack(el, e2, a3)
ret = Expr.hstack(el, e2, v3)
ret = Expr.hstack(el2, e22, e32)
All expressions must have the same shape, except for the second dimension. If expressions are

13.1. Class list 141

MOSEK Fusion API for Matlab, Release 8.0.0.94

el, e2, e3,

then

dim(el,1) = dim(e2,1) = dim(e3,1) = ...
dim(el,3) = dim(e2,3) = dim(e3,3) = ...

and the dimension of the result is

dim(el,1),
(dim(el,2) + dim(e2,2) + ...,
dim(el,3),

.y

The arguments may be any combination of expressions, scalar constants and variables.
Parameters

eexprs (Ezpression) — A list of expressions.

ecl (Ezpression) — An expression, a scalar constant or a variable.
ec2 (Ezpression) — An expression, a scalar constant or a variable.
ov3 (Variable) — A variable.

eal (double) — A scalar constant.

ea2 (double) — a scalar constant.
ec3

Ezpression) — An expression, a scalar constant or a variable.

(

(

evl (Variable) — A variable.

ov2 (Variable) — A variable.
(

ea3 (double) — a scalar constant.

ecl12 (Ezpression) — An expression object.

ec22 (Ezpression) — An expression object.
(

ee32 (Ezpression) — An expression object.
Return

eret (Ezpression)

ret = Expr.index(first)

ret = Expr.index(firsta)
Given an expression object e or a variable object v it returns a new expression -e and -v respec-
tively.

Parameters

efirst (int32) — The index of the terms.

efirsta (int32[]) — The indexs of the terms.
Return

eret (Ezpression)

ret = Expr.mul (mx, v)
ret2 = Expr.mul (v, mx)
ret = Expr.mul(v, vals)
ret = Expr.mul(vals, v)
ret = Expr.mul(val, v)
ret = Expr.mul (v, val)
ret = Expr.mul(vals2, v)
ret = Expr.mul (v, vals2)

142 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret = Expr.mul (expr, val)
ret = Expr.mul(val, expr)
ret3 = Expr.mul(vals, expr)
ret = Expr.mul (expr, vals)
ret = Expr.mul (expr, mx)
ret = Expr.mul (mx, expr)
Following combinations of operands are allowed:

A B

double Variable
double[] Expression
doublel,]

Matrix

i.e. both mul(A,B) and mul (B,A) are available.

Note that the size and shape of the operand matter and must adhere to the rules of matrix
multiplication.
Parameters

emx (Matriz) — A matrix.

ev (Variable) — A variable object that may be a scalar or a matrix.
eval (double) — A scalar value.

evals2 (double)

evals (double[]) — A vector of scalars.

eexpr (Ezpression) — An expression object. The shape must match the right-hand side.
Return

eret (Ezpression)
eret2 (Ezpression) — A new expression object representing the product of the two operands.
eret3 (Ezpression) — A new expression.

ret = Expr.mulDiag(a, expr)

ret = Expr.mulDiag(expr, a)

ret = Expr.mulDiag(a, v)

ret = Expr.mulDiag(v, a)

ret2 = Expr.mulDiag(mx, expr2)

ret2 = Expr.mulDiag(expr2, mx)

ret2 = Expr.mulDiag(mx2, v)

ret2 = Expr.mulDiag(v2, mx)
Compute the diagonal of the product of two matrixes, A € M(m,n) and B € M(n,p). This
amounts to a vector v = (v1,...,v,) where v; = al b.;.

Parameters

ea (double)

ecxpr (Ezpression) — An expression object.

emx (Matriz) — An m X n matrix object.

eexpr2 (Ezpression) — An n X p expression object.
emx2 (Matriz) — An matrix object.

ov (Variable) — A variable object.

ov2 (Variable) — An n x p variable object.
Return

eret (Ezpression)

eret2 (Ezpression) — A new Ezpr object.

13.1. Class list 143

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret = Expr.mulElm(v, al)
ret = Expr.mulElm(v, a2)
ret = Expr.mulElm(v, spm)
ret = Expr.mulElm(v, m)

ret = Expr.mulElm(expr, spm)
ret = Expr.mulElm(expr, al)
ret = Expr.mulElm(expr, a2)
ret = Expr.mulElm(expr, m)
ret = Expr.mulElm(al, expr)
ret = Expr.mulElm(al, v)

ret = Expr.mulElm(a2, expr)
ret = Expr.mulElm(a2, v)

ret = Expr.mulElm(spm, expr)

ret = Expr.mulElm(spm, v)
ret = Expr.mulElm(m, v)
ret = Expr.mulElm(m, expr)

Element-wise multiplication of two items. The two operands must have the same shape.

Parameters

oV

(Variable) — A variable object.

eal (double[]) — A one-dimensional coefficeint array.

espm (VDSparsedrray) — A multidimensional sparse array object.

om

(Matriz) — A matrix object.

ea2 (double) — A two-dimensional coefficeint array.

eexpr (Ezpression) — An expression object.

Return

eret (Ezpression)

ret = Expr.neg(e)
ret = Expr.neg(v)

Given an expression object e or a variable object v it returns a new expression -e and -v respec-

tively.
Parameters

ec (Ezpression) — An expression object.

ov (Vartiable) — A variable object.
Return

eret (Ezpression)

ret = Expr.numNonzeros ()
Return the number of non zero elements in the expression.
Return

eret (int64) — The number of non zero elements.

ret = Expr.ones (num)
Create a vector of ones as an expression.
Parameters

enum (int32) — The size of the expression.
Return

eret (Ezpression) — An expression representing a vector of ones.

ret = Expr.outer (v, a)
ret = Expr.outer(a, v)
ret = Expr.outer (e, a)

ret = Expr.outer(a, e)
Return an object representing the outer product of two vectors.

144

Chapter 13.

Fusion AP| Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

Parameters
ov (Variable) — A vector or matrix variable
ea (double[]) — A vector of constants

ec (Ezpression) — A vector expression
Return

eret (Ezpression)

ret = Expr.pick(indexes)
ret = Expr.pick(indexrows)

Create an expression vector by picking elements from this expression.
Parameters

eindexes (int32[]) — A list of integers specifying which indexes to take from an one-
dimensional Expression.

eindexrows (int32) — A n X m array of integers where each row specifies an m-dimensional
index to pick.
Return

eret (Ezpression)

ret = Expr.repeat(e, n, d)
Repeart an expression a number of times in the given dimension.
Parameters

ec (Ezpression) — The expression to repeat.
en (int32) — Number of time to repeat. Must be strictly positive.

ed (int32) — The dimension in which to repeat. Must define a valid dimension index.
Return

eret (Ezpression)

ret = Expr.reshape (e, shp)
ret = Expr.reshape(e, size)
ret = Expr.reshape (e, dimi, dimj)
Reshape the expression into a different shape with the same number of elements.
Parameters

ec (Ezpression) — The expression to reshape.

eshp (Set) — The new shape of the expression; this must have the same total size as the old
shape.

esize (int32) — Reshape into a one-dimensional expression of this size.
edimi (int32) — The first dimension size.

edimj (int32) — The second dimension size.
Return

eret (Ezpression)

ret = Expr.shape()
Returns the shape of the expression.
Return

eret (Set)

ret = Expr.size()
Return the expression size
Return

eret (int64) — The expression size.

ret = Expr.slice(first, last)

13.1. Class list 145

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret = Expr.slice(firsta, lasta)

Return a slice of the expression

Parameters

efirst (int32) — The index from which the slice begins.

elast (int32) — The index after the last elements of the slice.

efirsta (int32[]) — The indexs from which the slice begins.

elasta (int32[]) — The indexs after the last elements of the slice.

Return

eret (Ezpression)

ret = Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret = Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret = Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret = Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret = Expr.
ret — Expr.
ret — Expr.
ret — Expr.

stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,
stack(dim,

exprs)
el, e2)
el, a2)
el, v2)
al, v2)
al, e2)
vi, a2)
vi, v2)
vi, e2)
al, a2,
al, a2,
al, v2
al, v2
al, v2,
al, e2,
al, e2,
al, e2,
vl, a2
vl, a2,
vl, a2,
vl, v2,
vl, v2,
vi, v2
vl, e2,
vl, e2,
vl, e2,
el, a2,
el, a2
el, a2,
el, v2,
el, v2,
el, v2,
el, e2,

7 7

)

)

)

)

7)

stack(exprs2)
All expressions must have the same shape, except for dimension dim. If expressions are

v1)
el)
a3)
v3)
e3)
a3)
v3)
e3)
a3)
v3)
e3)
a3)
v3)
e3)
a3)
v3)
e3)
a3)
v3)
e3)
a3)
v3)
e3)
a3)
v3)
e3)

The arguments may be any combination of expressions, scalar constants and variables.

Parameters

edim (int32)

eexprs (Ezpression) — A list of expressions.

ecl (Ezpression) — An expression, a scalar constant or a variable.

ec2 (Ezpression) — An expression, a scalar constant or a variable.

146

Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

ea3 (double) — a scalar constant.
ov3 (Variable) — A variable.

ec3 (Ezpression) — An expression, a scalar constant or a variable.

ov2 (Variable) — A variable.

eal (double) — A scalar constant.

(
(
(
(
(
(

ea2 (double) — a scalar constant.
evl (Variable) — A variable.

eexprs2 (Ezpression) — A list of expressions.
Return

eret (Ezpression)

ret = Expr.sub(el, e2)
ret = Expr.sub(el, v2)
ret = Expr.sub(vl, e2)
ret = Expr.sub(el, al)
ret = Expr.sub(el, a2)
ret = Expr.sub(al, e2)
ret = Expr.sub(a2, e2)
ret = Expr.sub(el, c)
ret = Expr.sub(c, e2)
ret = Expr.sub(el, m)
ret = Expr.sub(m, e2)
ret = Expr.sub(el, n)
ret = Expr.sub(n, e2)
ret = Expr.sub(vl, v2)
ret = Expr.sub(vl, al)
ret = Expr.sub(vl, a2)
ret = Expr.sub(al, v2)
ret = Expr.sub(a2, v2)
ret = Expr.sub(vl, c)
ret = Expr.sub(c, v2)
ret = Expr.sub(vl, m)
ret = Expr.sub(m, v2)
ret = Expr.sub(vi, n)
ret = Expr.sub(n, v2)
Following combinations of operands are allowed:

A B
Variable Variable
Expression Expression
double
double[]
doublel[,]
Matrix
NDSparseArray

i.e. both sub(A,B) and sub(B,A) are available.

Note that the size and shape of the operand matter and must adhere to the rules of matrix
multiplication.
Parameters

ecl (Ezpression) — An expression.
ec2 (Ezpression) — An expression.

eal (double[]) — An array of constants.

13.1. Class list 147

MOSEK Fusion API for Matlab, Release 8.0.0.94

ea2 (double) — An array of constants.

oC

om

(double)

(Matriz)

en (VDSparsedrray)

evl (Variable) — An variable.

ov2 (Variable) — An variable.

Return

eret (Ezpression)

ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret — Expr.
ret = Expr.

sum (expr)
sum(v)
sum (v, d)

sum(v, dfirst, dlast)

sum(expr, d)

sum(expr, dfirst, dlast)

Sum the elements of an expression. Without extra arguments, all elements are summed into an
expression of size 1.

With arguments dfirst, dlast or d, elements are summed in a specific dimension or a range of
dimensions, resulting in an expression of reduced dimension.

Note that the result of summing over a dimension of size 0 is 0.0. This means that for an expression
of shape (2,0,2), summing over the second dimension yields an expression of shape (2,2) of zeros.

Parameters

eexpr (Ezpression) — An expression object.

ed (int32) — The dimension to sum.

ov (Variable) — An variable.

edfirst (int32) — The first dimension to sum.

edlast (int32) — The last-plus-one dimension to sum.

Return

eret (Ezpression)

ret = Expr.toString()

Create a human readable representation of the expression.

Return

eret (string) — A string with the representation expression.

ret = Expr.transpose()
Transpose the expression

Return

eret (Ezpression)

ret = Expr.vstack(exprs)
ret = Expr.vstack(el, e2)
ret = Expr.vstack(el, v2)
ret = Expr.vstack(el, a2)
ret = Expr.vstack(vil, e2)
ret = Expr.vstack(vil, v2)
ret = Expr.vstack(vl, a2)
ret = Expr.vstack(al, e2)
ret = Expr.vstack(al, v2)
ret = Expr.vstack(el, e2, e3)
ret = Expr.vstack(el, e2, v3)
ret = Expr.vstack(el, e2, a3)
148 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret = Expr.vstack(el, v2, e3)
ret = Expr.vstack(el, v2, v3)
ret = Expr.vstack(el, v2, a3)
ret = Expr.vstack(el, a2, e3)
ret = Expr.vstack(el, a2, v3)
ret = Expr.vstack(el, a2, a3)
ret = Expr.vstack(vl, e2, e3)
ret = Expr.vstack(vl, e2, v3)
ret = Expr.vstack(vl, e2, a3)
ret = Expr.vstack(vl, v2, e3)
ret = Expr.vstack(vl, v2, v3)
ret = Expr.vstack(vl, v2, a3)
ret = Expr.vstack(vl, a2, e3)
ret = Expr.vstack(vl, a2, v3)
ret = Expr.vstack(vl, a2, a3)
ret = Expr.vstack(al, e2, e3)
ret = Expr.vstack(al, e2, v3)
ret = Expr.vstack(al, e2, a3)
ret = Expr.vstack(al, v2, e3)
ret = Expr.vstack(al, v2, v3)
ret = Expr.vstack(al, v2, a3)
ret = Expr.vstack(al, a2, e3)
ret = Expr.vstack(al, a2, v3)
ret = Expr.vstack(al, a2, a3)

The expressions must have the same shape, except for the first dimension. If expressions are

el, e2

then

dim(el,2) = dim(e2,2)
dim(el,3) = dim(e2,3)

and the dimension of the result is

(dim(el,1) + dim(e2,1)
dim(el,2),
dim(el,3),

.y

The arguments may be any combination of expressions, scalar constants and variables.
Parameters

eexprs (Ezpression) — A list of expressions.

ecl (Ezpression) — An expression, a scalar constant or a variable.
ec2 (Ezpression) — An expression, a scalar constant or a variable.
ee3 (Ezpression) — An expression, a scalar constant or a variable.
evl (Variable) — A variable.

v2 (Vartable) — A variable.

w N

[]
ov3 (Variable) — A variable.

(

(

eal (double) — A scalar constant.

ea2 (double) — a scalar constant.
(

ea3 (double) — a scalar constant.
Return

eret (Ezpression)

13.1. Class list 149

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret = Expr.zeros (num)
Create a vector of zeros as an expression.
Parameters

enum (int32) — The size of the expression.
Return

eret (Ezpression) — An expression representing a vector of zeros.

13.1.12 Class Expression

mosek.fusion.Expression
Abstract base class for all objects which can be used as linear expressions of the form Ax + b.

The main use of this class is to store the result of expressions created by the static methods provided
by Ezpr.

Members

Ezpression.eval — Evaluate the expression into simple sparse form.
Ezpression.getModel — Return the Model object.

Ezpression.getShape — Initialize the expression as belonging to a given model.
Ezpression.inder — Get a single element of the expression

Ezpression.pick — Get a list of elements of the expression

Ezpression.shape — Returns the shape of the expression.

Ezpression.slice

Ezpression.toString — Return a string representation of the expression object.

Ezpression.transpose — Transpose the expression
Implemented by
Ezpr

ret = Expression.eval()
Evaluate the expression into simple sparse form.
Return

eret (FlatEzpr) — The evaluated expression.

ret = Expression.getModel ()
Return the Model object.
Return

eret (Model) — The Model object.

ret = Expression.getShape ()
Initialize the expression as belonging to a given model.
Return

eret (Set)

ret — Expression.index (i)
ret2 = Expression.index(indexes)

Get a single element of the expression
Parameters

ei (int32) — Index of the element to pick

eindexes (int32[]) — List of indexes of the element to pick
Return

eret (Ezpression) — A new expression object.

150 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

eret2 (Ezpression)

ret = Expression.pick(indexes)
ret = Expression.pick(indexrows)

Get a list of elements of the expression
Parameters

eindexes (int32[]) — Indexes of the elements to pick

eindexrows (int32) — Indexes of the elements to pick. Each row defines a separate index.
Return

eret (Ezpression) — A one dimensional expression object.

ret = Expression.shape()
Returns the shape of the expression.
Return

eret (Set) — A shape object

ret = Expression.slice(firsta, lasta)
ret2 = Expression.slice(first, last)
Parameters

efirsta (int32[]) — Start of the slice in each dimension
elasta (int32[]) — Env of the slice in each dimension
efirst (int32) — Start of the slice

elast (int32) — Env of the slice
Return

eret (Ezpression) — A one dimensional expression object.
eret2 (Ezpression) — A new expression object.

ret = Expression.toString()
Return a string representation of the expression object.
Return

eret (string) — A string representation of the object.

ret = Expression.transpose()
Transpose the expression
Return

eret (Ezpression) — A new expression object.

13.1.13 Class FlatExpr

mosek.fusion.FlatExpr
Defines a simple structure containing a sparse representation of a linear expression; basically the
result of evaluating an Ezpression object.

Members
FlatEzpr.size — Get the number of non-zero elements in the expression.
FlatEzpr.toString — Create a human readable representation of the expression.

ret = FlatExpr.size()
Get the number of non-zero elements in the expression.
Return

eret (int32) — The number of non-zero elements in the expression.

ret = FlatExpr.toString()
Create a human readable representation of the expression.

13.1. Class list 151

MOSEK Fusion API for Matlab, Release 8.0.0.94

Return

eret (string) — A string with the representation expression.

13.1.14 Class LinPSDDomain

mosek.fusion.LinPSDDomain
Represent a linear PSD domain.

13.1.15 Class LinearConstraint

mosek.fusion.LinearConstraint
A linear constraint defines a block of constraints with the same linear domain. The domain is
either a product of product of one-dimensional half-spaces (linear inequalities), a fixed value vector
(equalities) or the whole space (free constraints).

The type of a linear variable is immutable; it is either free, an inequality or an equality, but the
linear expression and the right-hand side can be modified.

The class is not meant to be instantiated directly, but must be created by calling the
Model.variable method.

Members

Constraint.add — Add an expression to the constraint expression.
Constraint.dual

Constraint.get_model — Get the original model object.
Constraint.get_nd — Get the number of dimensions of the constraint.
Constraint.indexr — Get a single element from a one-dimensional constraint.
Constraint.level — Get the primal solution value of the variable.
Constraint.shape

Constraint.size — Get the total number of elements in the constraint.
ModelConstraint.slice

ModelConstraint.toString — Create a human readable representation of the constraint.
Implements
ModelConstraint

13.1.16 Class LinearDomain

mosek.fusion.LinearDomain
Represent a domain defined by linear constraints

Members

LinearDomain. integral — Creates a domain of integral variables.
LinearDomain. sparse — Creates a domain exploiting sparsity.
LinearDomain. symmetric — Creates a symmetric domain

ret = LinearDomain.integral()
Creates a domain of integral variables.
Return

eret (LinearDomain)

152 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret = LinearDomain.sparse()
Creates a domain exploiting sparsity.
Return

eret (LinearDomain)

ret = LinearDomain.symmetric()
Creates a symmetric domain
Return

eret (SymmetricLinearDomain)

13.1.17 Class LinearPSDConstraint

mosek.fusion.LinearPSDConstraint
This class represents a semidefinite conic constraint of the form

Az —b >0

i.e. Ax — b must be positive semidefinite

Members

Constraint.add — Add an expression to the constraint expression.
Constraint.dual

Constraint.get_model — Get the original model object.
Constraint.get_nd — Get the number of dimensions of the constraint.
Constraint.indezr — Get a single element from a one-dimensional constraint.
Constraint.level — Get the primal solution value of the variable.
Constraint.shape

Constraint.size — Get the total number of elements in the constraint.
LinearPSDConstraint. toString — Create a human readable representation of the constraint.

ModelConstraint.slice
Implements
ModelConstraint

ret = LinearPSDConstraint.toString()
Create a human readable representation of the constraint.
Return

eret (string)

13.1.18 Class LinearPSDVariable

mosek.fusion.LinearPSDVariable
This class represents a positive semidefinite variable.

Members

BaselVariable.antidiag — Return the antidiagonal of a square variable matrix.
BaselVariable.asEzpr — Create an expression corresponding to the variable object.
BaseVariable.diag — Return the diagonal of a square variable matrix.
BaseVariable.dual — Get the dual solution value of the variable.

Baselariable.getModel — Return the model to which the variable belongs

13.1. Class list 153

MOSEK Fusion API for Matlab, Release 8.0.0.94

BaseVariable.getShape — Return the model to which the variable belongs

BaseVariable.indez — Return a variable slice of size 1 corresponding to a single element in the
variable object..

BaselVariable. level — Get the primal solution value of the variable.
BaseVariable.makeContinuous — Drop integrality constraints on the variable, if any
BaselVariable.makeInteger — Apply integrality constraints on the variable
BaseVariable.pick — Create a slice variable by picking a list of indexes from this variable.
BaseVariable.setLevel — Input solution values for this variable

BaselVariable.shape — Return the shape of the variable.

BaseVariable.size — Get the number of elements in the variable.

BaseVariable. transpose — Transpose a vector or matrix variable

LinearPSDVariable. toString — Create a string-representation of the variable.

ModelVariable.slice — Create a slice variable by picking a range of indexes for each variable
dimension

Implements

ModelVariable

ret = LinearPSDVariable.toString()

Create a string-representation of the variable.

Return

eret (string)

13.1.19 Class LinearVariable

mosek.fusion.LinearVariable

A linear variable defines a block of variables with the same linear domain. The domain is ei-
ther a product of product of one-dimensional half-spaces (linear inequalities), a fixed value vector
(equalities) or the whole space (free variables).

The type of a linear variable is immutable; it is either free, an inequality or an equality.

The class is not meant to be instantiated directly, but must be created by calling the
Model.variable method.

Members

BaselVariable.antidiag — Return the antidiagonal of a square variable matrix.
BaseVariable.asEzpr — Create an expression corresponding to the variable object.
BaselVariable.diag — Return the diagonal of a square variable matrix.
BaselVariable.dual — Get the dual solution value of the variable.
BaseVariable.getModel — Return the model to which the variable belongs
BaselVariable.getShape — Return the model to which the variable belongs

BaselVariable. indez — Return a variable slice of size 1 corresponding to a single element in the
variable object..

BaselVariable. level — Get the primal solution value of the variable.
BaseVariable.makeContinuous — Drop integrality constraints on the variable, if any
BaselVariable.makeInteger — Apply integrality constraints on the variable

Baselariable.pick — Create a slice variable by picking a list of indexes from this variable.

154

Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

BaseVariable.setLevel — Input solution values for this variable
BaseVariable.shape — Return the shape of the variable.
BaseVariable.size — Get the number of elements in the variable.
BaselVariable. toString — Create a string-representation of the variable.
Baselariable. transpose — Transpose a vector or matrix variable

ModelVariable.slice — Create a slice variable by picking a range of indexes for each variable
dimension

Implements
ModelVariable

13.1.20 Class Matrix

mosek.fusion.Matrix
Base class for all matrix objects.

Members

Matriz. get — Get non-zero at position (i,j).

Matriz. getDatadsAdrray — Return the data a dense array of values.
Matriz.getDatadsTriplets — Return the matrix data in triplet format.
Matriz.isSparse — Returns true if the matrix is sparse.

Matriz.numColumns — Returns the number columns in the matrix.
Matriz.numlonzeros — Returns the number of non-zeros in the matrix.
Matriz.numRows — Returns the number rows in the matrix.

Matriz.toString — Get a string representation of the matrix.

Matriz. transpose — Transpose the matrix.

Static Members

Matriz.antidiag — Create a sparse square matrix with a given vector as anti-diagonal
Matriz.dense — Create a sparse square matrix with a given vector as anti-diagonal
Matriz.diag — Create a sparse square matrix with a given vector as diagonal
Matriz. eye — Create the identity matrix.

Matriz.ones — Create a matrix filled with all ones.

Matriz.sparse — Create a sparse square matrix with a given vector as anti-diagonal

ret = Matrix.antidiag(d)
ret = Matrix.antidiag(d, k)
ret = Matrix.antidiag(n, val)
ret = Matrix.antidiag(n, val, k)
Create a sparse square matrix with a given vector as anti-diagonal
Parameters

ed (double[]) — The diagonal vector

ek (int32) — The diagonal index. k = 0 is the default and means the main diagonal. k£ > 0
means diagonals above the main, and & < 0 means the diagonals below the main.

en (int32) — The size of each side in the matrix.

eval (double) — Use this value for all diagonal elements.
Return

13.1. Class list 155

MOSEK Fusion API for Matlab, Release 8.0.0.94

eret (Matriz)

ret = Matrix.dense(data)
ret = Matrix.dense(dimi, dimj, data2)
ret = Matrix.dense(dimi, dimj, value)
ret = Matrix.dense(other)
Create a sparse square matrix with a given vector as anti-diagonal
Parameters

edata (double) — A one- or two-dimensional array of matrix coefficients.
edimi (int32) — Number of rows in matrix.

edimj (int32) — Number of columns in matrix.

edata2 (double[]) — A one- or two-dimensional array of matrix coefficients.
evalue (double) — Use this value for all elements.

eother (Matriz) — Create a dense matrix from another matrix.
Return

eret (Matriz)

ret = Matrix.diag(d)
ret = Matrix.diag(d, k)
ret = Matrix.diag(n, val)
ret = Matrix.diag(n, val, k)
ret2 = Matrix.diag(md)
ret = Matrix.diag(num, mv)
Create a sparse square matrix with a given vector as diagonal
Parameters

ed (double[]) — The diagonal vector

ok (int32) — The diagonal index. k = 0 is the default and means the main diagonal. k& > 0
means diagonals above the main, and & < 0 means the diagonals below the main.

en (int32) — The size of each side in the matrix.

eval (double) — Use this value for all diagonal elements.

emd (Matriz) — A list of square matrixes that are used to create a block-diagonal square matrix.
enum (int32) — Number of times to repeat the mv matrix.

env (Matriz)
Return

eret (Matriz)
eret2 (Matriz) — A sparse block diagonal matrix.

ret = Matrix.eye(n)
Create the identity matrix.
Parameters
en (int32)
Return

eret (Matriz) — The identity matrix of size n.

ret = Matrix.get (i, j)
Get non-zero at position (i,j).

Parameters
ei (int32)
ej (int32)
Return

156 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

eret (double)

ret = Matrix.getDataAsArray ()
Return the data a dense array of values.
Return

eret (double[])

ret = Matrix.getDataAsTriplets(subi, subj, val)
Return the matrix data in triplet format.
Parameters

esubi (int32[]) — Row subscripts are returned in this array.
esubj (int32[1) — Column subscripts are returned in this array.

eval (double[]) — Coefficient values are returned in this arary.
Return

eret (void)

ret = Matrix.isSparse()
Returns true if the matrix is sparse.
Return

eret (bool)

ret — Matrix.numColumns ()
Returns the number columns in the matrix.
Return

eret (int32) — The number of columns.

ret — Matrix.numNonzeros ()
Returns the number of non-zeros in the matrix.
Return

eret (int64) — The number of non-zeros.

ret — Matrix.numRows ()
Returns the number rows in the matrix.
Return

eret (int32) — The number of rows.

ret = Matrix.ones(n, m)
Create a matrix filled with all ones.

Parameters
en (int32)
en (int32)
Return

eret (Matriz) — An n X m matrix fileld by ones.

ret = Matrix.sparse(nrow, ncol, subi, subj, val)
ret = Matrix.sparse(subi, subj, val)
ret = Matrix.sparse(subi, subj, val2)
ret = Matrix.sparse(nrow, ncol, subi, subj, val2)
ret = Matrix.sparse(nrow, ncol)
ret = Matrix.sparse(data)
ret = Matrix.sparse(blocks)
ret = Matrix.sparse (mx)
Create a sparse square matrix with a given vector as anti-diagonal
Parameters

enrow (int32)

13.1. Class list 157

MOSEK Fusion API for Matlab, Release 8.0.0.94

encol (int32)

esubi (int32[]) — Row subscripts of non-zero elements.
esubj (int32[]) — Column subscripts of non-zero elements.
eval (double[]) — Coefficients of non-zero elements.

eval2 (double) — Coefficients of non-zero elements.

edata (double) — Dense data array.

eblocks (Matriz) — The matrix data. This is a two-dimensional array of Matriz objects or
NULL. In blocks, all elements in a row must have the same height, and all elements in a
column must have the same width.

Entries that are NULL will be interpreted as a block of zeros whose height and width are
deduced from the other elements in the same row and column. Any row that contains only
NULL entries will have height 0, and any column that contains only NULL entries will have
width 0.

emx (Matriz) — A Matriz object
Return

eret (Matriz)

ret = Matrix.toString()
Get a string representation of the matrix.
Return

eret (string) — A string representation of the matrix.

ret = Matrix.transpose()
Transpose the matrix.
Return

eret (Matriz)

13.1.21 Class Model

mosek.fusion.Model
The object containing all data related to a single optimization model.

Members

Model.acceptedSolutionStatus — Get or set the accepted solution status.
Model.addConstraint — Add a set of constraints to one that is already in the model.
Model.addVariable — Add a set of variable to one that is already in the model.
Model.breakSoluer — Request that the solver terminates as soon as possible.
Model.clone — Clone the model.

Model.constraint — Create a new constraint in the model.

Model.dispose — Destroy the Model object

Model.dualObjValue — Get the dual objective value.

Model. flushSolutions — If any solution values have been inputted, flush those values to the
underlying task.

Model.getdcceptedSolutionStatus — Get the the accepted solution status.
Model.getConstraint — Get the constraint corresponding to the given name or index
Model.getDualSolutionStatus

Model.getName — Return the model name, or an empty string if it has not been set.

158 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

Model.getPrimalSolutionStatus

Model.getProblemStatus — Return the problem status
Model.getSolverDoublelInfo — Fetch a solution information item from the solver
Model.getSolverIntInfo — Fetch a solution information item from the solver
Model.getSolverLIntInfo — Fetch a solution information item from the solver
Model.getTask — Return the underlying MOSEK task object.
Model.getVariable — Get the variable corresponding to the given name or index
Model.hasConstraint — Return whether the model contains a constraint with a given name.
Model.hasVariable — Return whether the model contains a variable with a given name.
Model.numConstraints — Return the number of constraints
Model.numVariables — Return the number of variables

Model.objective — Replace the objective expression.

Model.primalObjValue — Get the primal objective value.
Model.selectedSolution — Set which solution to take values from.
Model.setCallbackHandler — Attach a callback handler.

Model.setLogHandler — Attach a log handler.

Model.setSolverParam — Set a solver parameter

Model.solve — Attempt to optimize the model.

Model.variable — Create a new variable in the model.

Model.writeTask — Dump the current solver task to a file.

Static Members

Model.putlicensecode — Set the license code in the global environment
Model.putlicensepath — Set the license path in the global environment

Model.putlicensewait — Set the license wait flag in the global environment
Implements
BaseModel

ret = Model.acceptedSolutionStatus(what)
This sets or gets the flag that indicated what solutions are accepted as exrpected when fetching
primal and dual solution values.

When fetching a solution value the status of the solution is checked against the flag. If
it matches, the solution is returned, otherwise an exception is thrown. The two methods
Model.getPrimalSolutionStatus and Model.getDualSolutionStatus can be used to get the
actual status of the solutions.

By default the accepted solution status is VearOptimal.
Parameters

evhat (4dccSolutionStatus) — The new accepted solution status.
Return

eret (void)

ret = Model.addConstraint (name, v)
Add a set of constraints to one that is already in the model.
Parameters

ename (string) — The name of the constraint set in the model

ov (ModelConstraint) — The new contraint set

13.1. Class list 159

MOSEK Fusion API for Matlab, Release 8.0.0.94

Return
eret (void)

ret = Model.addVariable (name, v)
Add a set of variable to one that is already in the model.
Parameters

ename (string) — The name of the variable set in the model

ov (ModelVariable) — The new variable set
Return

eret (void)

ret = Model.breakSolver ()
Request that the solver terminates as soon as possible.
Return

eret (void)

ret — Model.clone()
Clone the model.
Return

eret (Model)

ret = Model.constraint (name, expr, dom)

ret = Model.constraint (expr, dom)

ret = Model.constraint (name, expr, dom2)
ret = Model.constraint (expr, dom2)

ret = Model.constraint (name, shape, expr, dom3)
ret = Model.constraint (shape, expr, dom3)
ret = Model.constraint (name, expr, dom3)
ret = Model.constraint (expr, dom3)

ret = Model.constraint (name, shape, expr, dom4)
ret = Model.constraint (shape, expr, dom4)
ret = Model.constraint (name, expr, dom4)
ret = Model.constraint (expr, dom4)

ret = Model.constraint (name, shape, expr, dom5)
ret = Model.constraint (shape, expr, dom5)
ret = Model.constraint (name, expr, domb)
ret = Model.constraint (expr, dom5)

ret = Model.constraint (name, v, dom)

ret = Model.constraint (v, dom)

ret = Model.constraint (name, v, dom2)

ret = Model.constraint (v, dom2)

ret = Model.constraint (name, shape, v, dom3)
ret = Model.constraint (shape, v, dom3)

ret — Model.constraint (name, v, dom3)

ret = Model.constraint (v, dom3)

ret = Model.constraint (name, shape, v, dom4)
ret = Model.constraint (shape, v, dom4)

ret = Model.constraint (name, v, dom4)

ret = Model.constraint (v, dom4)

ret = Model.constraint (name, shape, v, dom5)
ret = Model.constraint (shape, v, dom5)

ret = Model.constraint (name, v, dom5)

ret = Model.constraint (v, dom5)

Parameters

ename (string) — Name of the constraint. This must be unique among all constraints in the
model. The value NULL is allowed instead of a unique name.

160 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

Return

eexpr (Ezpression) — An expression.

edom (PSDDomain) — Defines the domain of the expression. The shape and size of the domain
must match the shape og the expression.

edom2 (LinPSDDomain) — Defines the domain of the expression. The shape and size of the
domain must match the shape og the expression.

edom4 (RangeDomain) — Defines the domain of the expression. The shape and size of the
domain must match the shape og the expression.

edom5 ({ConeDomain) — Defines the domain of the expression. The shape and size of the
domain must match the shape og the expression.

eshape (Set) — Defines the shape of the constraint. If this is NULL, the shape will be derived
from the shape of expr.

ov (Vartable) — A variable used as an expression.

edom3 (LinearDomain) — Defines the domain of the expression. The shape and size of the
domain must match the shape og the expression.

eret (Constraint)

ret = Model.dispose()
Destroy the Model object

Return

eret (void)

ret = Model.dualObjValue()
Get the dual objective value.

Return

eret (double)

ret = Model.flushSolutions()
If any solution values have been inputted, flush those values to the underlying task.

Return

eret (void)

ret = Model.getAcceptedSolutionStatus()
Get the the accepted solution status.

Return

eret (4ccSolutionStatus)

ret = Model.getConstraint (name)
ret = Model.getConstraint (index)

Get the constraint corresponding to the given name or index
Parameters

Return

ename (string) — The constraint name

eindex (int32) — The constraint index

eret (Constraint)

ret = Model.getDualSolutionStatus (which)
ret2 = Model.getDualSolutionStatus()
Parameters

Return

ewhich (SolutionType) — the type of the solution (see SolutionType)

eret (SolutionStatus) — The dual solution SolutionStatus

13.1.

Class list 161

MOSEK Fusion API for Matlab, Release 8.0.0.94

eret2 (SolutionStatus)

ret = Model.getName ()
Return the model name, or an empty string if it has not been set.
Return

eret (string) — The model name.

ret = Model.getPrimalSolutionStatus(which)
ret2 = Model.getPrimalSolutionStatus ()
Parameters

ewhich (SolutionType) — the type of the solution (see SolutionType)
Return

eret (SolutionStatus) — The primal solution SolutionStatus
eret2 (SolutionStatus)

ret = Model.getProblemStatus (which)
Return the problem status
Parameters

ewhich (SolutionType) — the type of the solution (see SolutionType)
Return

eret (ProblemStatus) — The problem status ProblemStatus

ret = Model.getSolverDoubleInfo (name)
Fetch a solution information item from the solver
Parameters

ename (string) — A string identifying the information to be fetched.
Return

eret (double)

ret = Model.getSolverIntInfo(name)
Fetch a solution information item from the solver
Parameters

ename (string)
Return

eret (int32)

ret = Model.getSolverLIntInfo(name)
Fetch a solution information item from the solver
Parameters

ename (string)
Return

eret (int64)

ret = Model.getTask()
Return the underlying MOSEK task object.
Return

erct (Task)

ret = Model.getVariable (name)
ret = Model.getVariable(index)

Get the variable corresponding to the given name or index
Parameters

ename (string) — The variable name

eindex (int32) — The variable index
Return

162 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

eret (Variable)

ret — Model.hasConstraint (name)
Return whether the model contains a constraint with a given name.
Parameters

ename (string) — The constraint name
Return

eret (bool)

ret = Model.hasVariable (name)
Return whether the model contains a variable with a given name.
Parameters

ename (string) — The variable name
Return

eret (bool)

ret — Model.numConstraints ()
Return the number of constraints
Return

eret (int64)

ret — Model.numVariables()
Return the number of variables
Return

eret (int64)

ret = Model.objective(name, sense, expr)
ret = Model.objective (name, sense, v)
ret = Model.objective(name, sense, c)
ret = Model.objective(name, c)
ret = Model.objective(sense, expr)
ret = Model.objective(sense, v)
ret = Model.objective(sense, c)
ret = Model.objective(c)

Replace the objective expression.
Parameters

ename (string) — Name of the obective; this may be any string, and its has no function except
when writing the problem to an external file formal.

esense (ObjectiveSense) — The objective sense; defines whether the objective must be mini-
mized or maximized.

eexpr (Ezpression) — The objective expression. This must be an expression containing exactly
one row.

ov (Variable) — The objective variable. This must be a scaler variable.

ec (double)
Return
eret (void)

ret = Model.primalObjValue()
Get the primal objective value.
Return

eret (double)

ret = Model.putlicensecode(code)
Set the license code in the global environment
Parameters

13.1. Class list 163

MOSEK Fusion API for Matlab, Release 8.0.0.94

ecode (int32[])
Return

eret (void)

ret = Model.putlicensepath(licfile)
Set the license path in the global environment
Parameters

elicfile (string)
Return

eret (void)

ret = Model.putlicensewait(wait)
Set the license wait flag in the global environment
Parameters

ewait (bool)
Return

eret (void)

ret = Model.selectedSolution(soltype)
Set which solution to take values from.
Parameters

esoltype (SolutionType)
Return

eret (void)

ret — Model.setCallbackHandler (h)
Attach a callback handler.
Parameters

eh (System.CallbackHandler) — The callback handler or NULL.
Return

eret (void)

ret = Model.setLogHandler (h)
Attach a log handler.
Parameters

eh (System.StreamWriter) — The log handler object or NULL.
Return

eret (void)

ret = Model.setSolverParam(name, strval)

ret = Model.setSolverParam(name, intval)

ret = Model.setSolverParam(name, floatval)
Solver parameter values can be either symbolic values, integers or doubles, depending on the
parameter. The value is automatically converted to a suitable type, or, if this fails, an exception
will be thrown. For example, if the parameter accepts a double value and is give a string, the string
will be parsed to produce a double.

See 13.4.1 for a listing of all parameter settings.
Parameters

ename (string) — Name of the parameter to set
estrval (string) — A string value to assign to the parameter.
eintval (int32) — An integer value to assign to the parameter.

efloatval (double) — A float value to assign to the parameter.
Return

164 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

eret (void)

ret = Model.

solve()

Attempt to optimize the model.

Return

eret (void)

ret = Model
ret — Model
ret = Model
ret = Model
ret = Model
ret = Model

ret = Model
ret = Model
ret = Model
ret = Model
ret = Model

ret — Model
ret = Model
ret = Model
ret = Model

ret = Model
ret = Model
ret = Model
ret = Model
ret = Model

ret = Model
ret = Model
ret = Model
ret = Model

ret = Model
ret = Model
ret = Model

ret = Model

.variable(name)
.variable(name, size)
.variable(name, size2)
.variable(name, size, dom)
.variable(name, size, dom2)
.variable(name, size, dom3)
.variable (name, shp, dom)
.variable(name, shp, dom2)
.variable(name, shp, dom3)
.variable(name, size2, dom)
.variable(name, size2, dom2)
.variable(name, dom)
.variable (name, dom2)
.variable(name, dom3)
.variable()
.variable(size)
.variable(size2)
.variable(size, dom)
.variable(size, dom2)
.variable(size, dom3)
.variable(shp, dom)
.variable(shp, dom2)
.variable(shp, dom3)
.variable(size2, dom)
.variable(size2, dom2)
.variable(dom)
.variable(dom2)
.variable(dom3)

ret2 = Model.variable (name, size, dom4)
ret2 = Model.variable(size, dom4)

ret = Model

ret = Model
ret = Model
ret = Model
ret = Model
ret = Model
ret = Model
ret = Model

ret = Model
ret = Model
ret = Model
ret = Model
ret = Model

ret = Model

.variable(name, shp, dom5)
.variable (name, n, dom5)
.variable(name, n, m, dom5)
.variable (name, dom5)
.variable(n, dom5)
.variable(n, m, dom5)
.variable(domb)
.variable(name, shp, dom6)
.variable(name, n, dom6)
.variable(name, n, m, dom6)
.variable (name, dom6)
.variable(n, dom6)
.variable(n, m, dom6)
.variable(dom6)

The shape and the domain of the variable must match.

There are a long list of overloaded methods for variable creation, but they are all variations over
the same method:

variable(name, shp, dom)

where any or all of name and shp can be left out, and dom can be either a Domain or a RangeDomain.

13.1. Class list

165

MOSEK Fusion API for Matlab, Release 8.0.0.94

Parameters

Return

ename (string) — Name of the variable. This must be unique among all variables in the model.
The value NULL is allowed instead of a unique name.

esize (int32) — Size of the variable. The variable becomes a one-dimensional vector of the
given size.

edon (LinearDomain) — Defines the domain of the variable. The shape and the domain must
match: The domain must either be scalable, e.g. Domain.equalsTo(0.0), or the size and
shape must be matched by the shape defined by either shape or size.

edomd (SymmetricLinearDomain) — Defines the domain of the variable. The shape and the
domain must match: The domain must either be scalable, e.g. Domain.equalsTo (0.0), or the
size and shape must be matched by the shape defined by either shape or size.

eshp (Set) — Defines the shape of the variable.

esize2 (int32[]) — Size of the variable. The variable becomes a one-dimensional vector of the
given size.

edom2 (RangeDomain) — Defines the domain of the variable. The shape and the domain must
match: The domain must either be scalable, e.g. Domain.equalsTo(0.0), or the size and
shape must be matched by the shape defined by either shape or size.

edom3 ({ConeDomain) — Defines the domain of the variable. The shape and the domain must
match: The domain must either be scalable, e.g. Domain.equalsTo(0.0), or the size and
shape must be matched by the shape defined by either shape or size.

edom5 (PSDDomain) — Defines the domain of the variable. The shape and the domain must
match: The domain must either be scalable, e.g. Domain.equalsTo(0.0), or the size and
shape must be matched by the shape defined by either shape or size.

en (int32)
em (int32)

edom6 (LinPSDDomain) — Defines the domain of the variable. The shape and the domain must
match: The domain must either be scalable, e.g. Domain.equalsTo(0.0), or the size and
shape must be matched by the shape defined by either shape or size.

eret (Variable)

eret2 (SymmetricVariable)

ret — Model .writeTask(filename)
Dump the current solver task to a file.
Parameters

Return

efilename (string) — Name of the file to write.

eret (void)

13.1.22 Class ModelConstraint

mosek.fusion.ModelConstraint
Base class for all constraints that directly corresponds to a block of constraints in the underlying
task, i.e. all objects created from Model.constraint.

Members

Constraint.add — Add an expression to the constraint expression.

Constraint. dual

Constraint.get_model — Get the original model object.

166

Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

Constraint.get_nd — Get the number of dimensions of the constraint.
Constraint.indexr — Get a single element from a one-dimensional constraint.
Constraint.level — Get the primal solution value of the variable.
Constraint.shape

Constraint.size — Get the total number of elements in the constraint.
ModelConstraint.slice

ModelConstraint.toString — Create a human readable representation of the constraint.
Implements
Constraint
Implemented by
LinearPSDConstraint , ConicConstraint, RangedConstraint, PSDConstraint,
LinearConstraint

ret = ModelConstraint.slice(first, last)
ret = ModelConstraint.slice(first2, last2)
Parameters

efirst (int32) — Index of the first element in the slice.
elast (int32) — Index if the last element in the slice.
efirst2 (int32[]) — Array of start elements in the slice.

elast2 (int32[]) — Array of end element in the slice.
Return

eret (Constraint)

ret = ModelConstraint.toString()
Create a human readable representation of the constraint.
Return

eret (string)

13.1.23 Class ModelVariable

mosek.fusion.ModelVariable
Base class for all variables that directly corresponds to a block of variables in the underlying task,
i.e. all objects created from Model.wvariable.

Members

BaselVariable.antidiag — Return the antidiagonal of a square variable matrix.
BaseVariable.asEzpr — Create an expression corresponding to the variable object.
BaselVariable.diag — Return the diagonal of a square variable matrix.
BaselVariable.dual — Get the dual solution value of the variable.
BaseVariable.getModel — Return the model to which the variable belongs
BaselVariable.getShape — Return the model to which the variable belongs

BaselVariable. indexz — Return a variable slice of size 1 corresponding to a single element in the
variable object..

BaseVariable. level — Get the primal solution value of the variable.
BaseVariable.makeContinuous — Drop integrality constraints on the variable, if any
BaselVariable.makeInteger — Apply integrality constraints on the variable

Baselariable.pick — Create a slice variable by picking a list of indexes from this variable.

13.1. Class list 167

MOSEK Fusion API for Matlab, Release 8.0.0.94

BaseVariable.setLevel — Input solution values for this variable
BaseVariable.shape — Return the shape of the variable.
BaseVariable.size — Get the number of elements in the variable.
BaselVariable. toString — Create a string-representation of the variable.
BaseVariable. transpose — Transpose a vector or matrix variable

ModelVariable.slice — Create a slice variable by picking a range of indexes for each variable
dimension

Implements
Baselariable

Implemented by
LinearVariable, LinearPSDVariable, RangedVariable, ConiclVariable,
SymLinearVariable , PSDVariable, SymRangedVariable

ret = ModelVariable.slice(first, last)
ret = ModelVariable.slice(first2, last2)

Create a slice variable by picking a range of indexes for each variable dimension
Parameters

efirst (int32) — The index of the first element(s) of the slice.
elast (int32) — The index of the first element after the end of the slice.
efirst2 (int32[]) — The index of the first element(s) of the slice.

elast2 (int32[])
Return

eret (Variable)

13.1.24 Class NDSparseArray

mosek.fusion.NDSparseArray
Representation of a sparse n-dimensional array

Static Members NDSparsedrray.make Create a sparse n-dimensional matrix (tensor)

ret = NDSparseArray.make(dims, sub, cof)
ret = NDSparseArray.make(dims, inst, cof)
ret = NDSparseArray.make (m)
Create a sparse n-dimensional matrix (tensor)
Parameters

edims (int32[1) — Array dimensions

esub (int32[][]) — Array of non-zero n-dimensional subscripts
ecof (double[]) — Array of coeflicients corresponding to subscripts
einst (int64[]1) — Array of linear indexes of non-zero subscripts

en (Matriz)
Return

eret (NVDSparsedrray)

13.1.25 Class PSDConstraint

mosek.fusion.PSDConstraint
This class represents a semidefinite conic constraint of the form

Az —b >0

168 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

i.e. Ax — b must be positive semidefinite

Members

Constraint.add — Add an expression to the constraint expression.
Constraint.dual

Constraint.get_model — Get the original model object.
Constraint.get_nd — Get the number of dimensions of the constraint.
Constraint.indez — Get a single element from a one-dimensional constraint.
Constraint.level — Get the primal solution value of the variable.
Constraint.shape

Constraint.size — Get the total number of elements in the constraint.
ModelConstraint.slice

PSDConstraint.toString — Create a human readable representation of the constraint.
Implements
ModelConstraint

ret = PSDConstraint.toString()
Create a human readable representation of the constraint.
Return

eret (string)

13.1.26 Class PSDDomain

mosek.fusion.PSDDomain
Represent the domain od PSD matrices.

13.1.27 Class PSDVariable

mosek.fusion.PSDVariable
This class represents a positive semidefinite variable.

Members

Baselariable.antidiag — Return the antidiagonal of a square variable matrix.
BaseVariable.asEzpr — Create an expression corresponding to the variable object.
BaseVariable.diag — Return the diagonal of a square variable matrix.
BaselVariable.dual — Get the dual solution value of the variable.
BaseVariable.getModel — Return the model to which the variable belongs
BaselVariable.getShape — Return the model to which the variable belongs

BaselVariable. indexz — Return a variable slice of size 1 corresponding to a single element in the
variable object..

BaseVariable. level — Get the primal solution value of the variable.
BaseVariable.makeContinuous — Drop integrality constraints on the variable, if any
BaselVariable.makeInteger — Apply integrality constraints on the variable
Baselariable.pick — Create a slice variable by picking a list of indexes from this variable.
BaseVariable.setLevel — Input solution values for this variable

BaseVariable.shape — Return the shape of the variable.

13.1. Class list 169

MOSEK Fusion API for Matlab, Release 8.0.0.94

Baselariable.size — Get the number of elements in the variable.
Baselariable. transpose — Transpose a vector or matrix variable

ModelVartable.slice — Create a slice variable by picking a range of indexes for each variable
dimension

PSDVariable.toString — Create a string-representation of the variable.
Implements
ModelVariable

ret = PSDVariable.toString()
Create a string-representation of the variable.
Return

eret (string)

13.1.28 Class PickVariable

mosek.fusion.PickVariable
Represents an set of variable entries

Members

BaselVariable.antidiag — Return the antidiagonal of a square variable matrix.
BaselVariable.asEzpr — Create an expression corresponding to the variable object.
Baselariable.diag — Return the diagonal of a square variable matrix.
BaselVariable.dual — Get the dual solution value of the variable.
BaselVariable.getModel — Return the model to which the variable belongs
Baselariable.getShape — Return the model to which the variable belongs

BaseVariable.indez — Return a variable slice of size 1 corresponding to a single element in the
variable object..

BaseVariable. level — Get the primal solution value of the variable.
BaseVariable.makeContinuous — Drop integrality constraints on the variable, if any
BaselVariable.makeInteger — Apply integrality constraints on the variable
BaseVariable.pick — Create a slice variable by picking a list of indexes from this variable.
BaseVariable.setLevel — Input solution values for this variable

BaselVariable. shape — Return the shape of the variable.

BaseVariable.size — Get the number of elements in the variable.

BaseVariable. toString — Create a string-representation of the variable.

BaseVariable. transpose — Transpose a vector or matrix variable

PickVariable.slice — Create a slice variable by picking a range of indexes for each variable
dimension

Implements
BaselVariable

ret = PickVariable.slice(first, last)
ret — PickVariable.slice(first2, last2)

Create a slice variable by picking a range of indexes for each variable dimension
Parameters

efirst (int32) — The index of the first element(s) of the slice.

elast (int32) — The index of the first element after the end of the slice.

170 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

efirst2 (int32[]) — The index of the first element(s) of the slice.

elast2 (int32[])
Return

eret (Variable)

13.1.29 Class ProductSet

mosek.fusion.ProductSet
One-dimensional set defined as a range of integers.

Members ProductSet.indexToString

ret = ProductSet.indexToString(index)
Parameters

eindex (int64)
Return

eret (string)

13.1.30 Class QConeDomain

mosek.fusion.QConeDomain
A domain representing the Lorentz cone.

Members

{ConeDomain.axis — Set the dimension along which the cones are created.
@ConeDomain. getdzis — Get the dimension along which the cones are created.
(QConeDomain.integral — Creates a domain of integral variables.

ret — QConeDomain.axis(a)
Set the dimension along which the cones are created.
Parameters

ea (int32)
Return

eret ({ConeDomain)

ret = QConeDomain.getAxis()
Get the dimension along which the cones are created.
Return

eret (int32)

ret = QConeDomain.integral ()
Creates a domain of integral variables.
Return

eret ({ConeDomain)

13.1.31 Class RangeDomain

mosek.fusion.RangeDomain
The RangeDomain object is never instantiated directly: Instead use the relevant methods in Domain.
Members

RangeDomain.integral — Creates a domain of integral variables.

13.1. Class list 171

MOSEK Fusion API for Matlab, Release 8.0.0.94

RangeDomain. sparse — Creates a domain exploiting sparsity.

RangeDomain. symmetric — Creates a symmetric domain.
Implemented by
SymmetricRangeDomain

ret = RangeDomain.integral ()
Creates a domain of integral variables.
Return

eret (RangeDomain)

ret = RangeDomain.sparse()
Creates a domain exploiting sparsity.
Return

eret (RangeDomain)

ret = RangeDomain.symmetric()
Creates a symmetric domain.
Return

eret (SymmetricRangeDomain) — A new domain

13.1.32 Class RangedConstraint

mosek.fusion.RangedConstraint

Defines a ranged constraint.

Since this actually defines one constraint with two inequalities, there will be two dual values (slc and
suc) corresponding to the lower and upper bounds. When asked for the dual solution, this constraint
will return (y=slc-suc), but in some cases this is not enough (the individual dual constraints may
be required for a certificate of infeasibility). The methods RangedConstraint.lowerBoundCon
and RangedConstraint.upperBoundCon returns Variable objects that interface to the lower and
upper bounds respectively.

Members

Constraint.add — Add an expression to the constraint expression.
Constraint.dual

Constraint.get_model — Get the original model object.
Constraint.get_nd — Get the number of dimensions of the constraint.
Constraint.indez — Get a single element from a one-dimensional constraint.
Constraint.level — Get the primal solution value of the variable.
Constraint.shape

Constraint.size — Get the total number of elements in the constraint.
ModelConstraint.slice

ModelConstraint.toString — Create a human readable representation of the constraint.

RangedConstraint. lowerBoundCon — Get a constraint object corresponding to the lower bound
of the ranged constraint.

RangedConstraint.upperBoundCon — Get a constraint object corresponding to the upper bound
of the ranged constraint.

Implements

ModelConstraint

ret = RangedConstraint.lowerBoundCon()

Get a constraint object corresponding to the lower bound of the ranged constraint.

Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

Return
eret (Constraint) — A new constraint object representing the lower bound of the constraint.

ret = RangedConstraint.upperBoundCon()
Get a constraint object corresponding to the upper bound of the ranged constraint.
Return

eret (Constraint) — A new constraint object representing the upper bound of the constraint.

13.1.33 Class RangedVariable

mosek.fusion.RangedVariable
Defines a ranged variable.

Since this actually defines one variable with two inequalities, there will be two dual variables
(slx and sux) corresponding to the lower and upper bounds. When asked for the dual solution,
this variable will return (y=slx-sux), but in some cases this is not enough (the individual dual
variables may be required by e.g. a certificate). The methods RangedVariable. lowerBoundVar
and RangedVariable.upperBoundVar returns Variable objects that interface to the lower and
upper bounds respectively.

Members

BaseVariable.antidiag — Return the antidiagonal of a square variable matrix.
BaselVariable.asEzpr — Create an expression corresponding to the variable object.
BaselVariable.diag — Return the diagonal of a square variable matrix.
BaseVariable.dual — Get the dual solution value of the variable.
Baselariable.getModel — Return the model to which the variable belongs
BaseVariable.getShape — Return the model to which the variable belongs

BaseVariable.indez — Return a variable slice of size 1 corresponding to a single element in the
variable object..

BaselVariable. level — Get the primal solution value of the variable.
BaseVariable.makeContinuous — Drop integrality constraints on the variable, if any
BaseVariable.makeInteger — Apply integrality constraints on the variable
BaseVariable.pick — Create a slice variable by picking a list of indexes from this variable.
BaseVariable.setLevel — Input solution values for this variable

BaseVariable.shape — Return the shape of the variable.

BaselVariable.size — Get the number of elements in the variable.

BaseVariable. toString — Create a string-representation of the variable.

BaseVariable. transpose — Transpose a vector or matrix variable

ModelVariable.slice — Create a slice variable by picking a range of indexes for each variable
dimension

RangedVariable. lowerBoundVar — Get a variable object corresponding to the lower bound of the
ranged variable.

RangedVariable.upperBoundVar — Get a variable object corresponding to the upper bound of the
ranged variable.

Implements
ModelVarzable

ret = RangedVariable.lowerBoundVar ()
Get a variable object corresponding to the lower bound of the ranged variable.

13.1. Class list 173

MOSEK Fusion API for Matlab, Release 8.0.0.94

Return

eret (Variable) — A variable object representing the lower bound of the variable.

ret = RangedVariable.upperBoundVar ()

Get a variable object corresponding to the upper bound of the ranged variable.

Return

eret (Variable) — A variable object representing the upper bound of the variable.

13.1.34 Class Set

mosek.fusion.Set
Base class shape specification objects.

Members

Set.compare — Compare two sets and return true if they have the same shape and size.

Set.dim — Return the size of the given dimension.
Set.getSize — Total number of elements in the set.

Set.getname — Return a string representing the index.

Set.idztokey — Convert a linear index to a N-dimensional key.

Set.realnd — Number of dimensions of more than 1 element, or 1 if the number of significant

dimensions is 0.

Set.slice — Create a set object representing a slice of this set.

Set.stride — Return the stride size in the given dimension.

Set.toString — Return a string representation of the set.

Static Members
Set.make — Creates a set object

Set.scalar — Create a set of size 1
Implemented by
BaseSet

ret = Set.compare (other)

Compare two sets and return true if they have the same shape and size.

Parameters

eother (Set) — The set to compare against.
Return

eret (bool) — Whether the two set are equal.

ret = Set.dim(i)
Return the size of the given dimension.
Parameters

ei (int32) — Dimension index.
Return

eret (int32) — The size of the requested dimension.

ret = Set.getSize()
Total number of elements in the set.
Return

eret (int64) — The number of elements.

ret = Set.getname (key)

174

Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret = Set.getname (keya)
Return a string representing the index.
Parameters

ekey (int64) — A linear index.

ekeya (int32[]) — An N-dimensional index.
Return

eret (string) — Get a string representing the item identified by the key.

ret = Set.idxtokey(idx)
Convert a linear index to a N-dimensional key.
Parameters

eidx (int64) — A linear index.
Return

eret (int32[]) — The N-dimensional key for the linear index.

ret = Set.make (names)
ret — Set.make(sz)
ret = Set.make(sl, s2)
ret = Set.make(sl, s2, s3)
ret = Set.make(sizes)
ret = Set.make(s12, s22)
ret = Set.make(ss)
This static method is a factory for different kind of set objects:

oA (multi-dimensional) set of integers.
oA set whose elements are strings.

oA set obtained as Cartesian product of sets given in a list.
Parameters

enames (string[]) — A list of strings

esz (int32) — The dimension for a integer set

esl (int32) — Size of the first dimension

es2 (int32) — Size of the second dimension

es3 (int32) — Size of the third dimension

esizes (int32[]) — The sizes of dimensions for a integer set
es12 (Set) — Size of the first dimension

es22 (Set) — Size of the second dimension

ess (Set) — A list of sets
Return

eret (Set)

ret = Set.realnd()
Number of dimensions of more than 1 element, or 1 if the number of significant dimensions is 0.
Return

eret (int32) — The number of dimensions.

ret — Set.scalar()
Create a set of size 1
Return

eret (Set) — The new set.

ret = Set.slice(first, last)

13.1. Class list 175

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret = Set.slice(firsta, lasta)
Create a set object representing a slice of this set.
Parameters

efirst (int32) — First index in the range.
elast (int32) — Last index in the range.
efirsta (int32[]) — First index in each dimension in the range.

elasta (int32[]) — Last index in each dimension in the range.
Return

eret (Set) — A new Set object representing the slice.

ret = Set.stride(i)
Return the stride size in the given dimension.
Parameters

ei (int32) — Dimension index.
Return

eret (int64) — The stride size in the requested dimension.

ret = Set.toString()
Return a string representation of the set.
Return

eret (string) — A string representation of the set.

13.1.35 Class SliceConstraint

mosek.fusion.SliceConstraint
An alias for a subset of constraints from a single ModelConstraint.

This class acts as a proxy for accessing a portion of a ModelConstraint. It is possible to access
and modify the properties of the original variable using this alias. It does not access the Model
directly, only through the original variable.

Members

Constraint.add — Add an expression to the constraint expression.
Constraint.dual

Constraint.get_model — Get the original model object.

Constraint.get_nd — Get the number of dimensions of the constraint.
Constraint.indezr — Get a single element from a one-dimensional constraint.
Constraint.level — Get the primal solution value of the variable.
Constraint.shape

Constraint.toString — Create a human readable representation of the constraint.
SliceConstraint.size — Get the total number of elements in the constraint.

SliceConstraint.slice
Implements
Constraint
Implemented by
BoundInterfaceConstraint

ret — SliceConstraint.size()
Get the total number of elements in the constraint.
Return

176 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

eret (int64)

ret = SliceConstraint.slice(firstidx, lastidx)
ret = SliceConstraint.slice(firstidx2, lastidx2)
Parameters

efirstidx (int32)
elastidx (int32)
efirstidx2 (int32[])

elastidx2 (int32[])
Return

eret (Constraint)

13.1.36 Class SliceVariable

mosek.fusion.SliceVariable
An alias for a subset of variables from a single XodelVariable.

This class acts as a proxy for accessing a portion of a ModelVariable. It is possible to access
and modify the properties of the original variable using this alias, and the object can be used in
expressions as any other Variable object.

Members

BaselVariable.antidiag — Return the antidiagonal of a square variable matrix.
BaseVariable.asEzpr — Create an expression corresponding to the variable object.
BaseVariable.diag — Return the diagonal of a square variable matrix.
BaselVariable.dual — Get the dual solution value of the variable.
BaseVariable.getModel — Return the model to which the variable belongs
BaselVariable.getShape — Return the model to which the variable belongs

BaselVariable.index — Return a variable slice of size 1 corresponding to a single element in the
variable object..

BaseVariable. level — Get the primal solution value of the variable.
BaseVariable.makeContinuous — Drop integrality constraints on the variable, if any
BaselVariable.makeInteger — Apply integrality constraints on the variable
Baselariable.pick — Create a slice variable by picking a list of indexes from this variable.
BaseVariable.setLevel — Input solution values for this variable

BaselVariable.shape — Return the shape of the variable.

BaselVariable.size — Get the number of elements in the variable.
BaseVariable.toString — Create a string-representation of the variable.

Baselariable. transpose — Transpose a vector or matrix variable

SlicelVariable.slice — Create a slice variable by picking a range of indexes for each variable
dimension
Implements
BaselVariable
Implemented by
BoundInterfacelVariable

ret = SliceVariable.slice(firstidx, lastidx)

13.1. Class list 177

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret = SliceVariable.slice(firstidx2, lastidx?2)
Create a slice variable by picking a range of indexes for each variable dimension
Parameters

efirstidx (int32)
elastidx (int32)
efirstidx2 (int32[])

elastidx2 (int32[])
Return

eret (Variable)

13.1.37 Class SymLinearVariable

mosek.fusion.SymlLinearVariable
A linear variable defines a block of variables with the same linear domain. The domain is ei-
ther a product of product of one-dimensional half-spaces (linear inequalities), a fixed value vector
(equalities) or the whole space (free variables).

The type of a linear variable is immutable; it is either free, an inequality or an equality.

The class is not meant to be instantiated directly, but must be created by calling the
Model.variable method.

Members

BaseVariable.antidiag — Return the antidiagonal of a square variable matrix.
BaselVariable.asEzpr — Create an expression corresponding to the variable object.
BaselVariable.diag — Return the diagonal of a square variable matrix.
BaselVariable.dual — Get the dual solution value of the variable.
BaseVariable.getModel — Return the model to which the variable belongs
BaselVariable.getShape — Return the model to which the variable belongs

BaselVariable. indez — Return a variable slice of size 1 corresponding to a single element in the
variable object..

BaseVariable. level — Get the primal solution value of the variable.
BaselVariable.makeContinuous — Drop integrality constraints on the variable, if any
BaselVariable.makeInteger — Apply integrality constraints on the variable
Baselariable.pick — Create a slice variable by picking a list of indexes from this variable.
BaseVariable.setLevel — Input solution values for this variable

BaseVariable.shape — Return the shape of the variable.

Baselariable.size — Get the number of elements in the variable.

BaselVariable. transpose — Transpose a vector or matrix variable

ModelVariable.slice — Create a slice variable by picking a range of indexes for each variable
dimension

SymLinearVariable. toString — Create a string-representation of the variable.
Implements
ModelVariable

ret = SymLinearVariable.toString()
Create a string-representation of the variable.
Return

178 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

eret (string)

13.1.38 Class SymRangedVariable

mosek.fusion.SymRangedVariable
Defines a ranged variable.

Since this actually defines one variable with two inequalities, there will be two dual variables
(slx and sux) corresponding to the lower and upper bounds. When asked for the dual solution,
this variable will return (y=slx-sux), but in some cases this is not enough (the individual dual
variables may be required by e.g. a certificate). The methods RangedVariable. LowerBoundVar
and RangedVartable.upperBoundVar returns Variable objects that interface to the lower and
upper bounds respectively.

Members

Baselariable.
BaselVariable.
BaselVariable.
Baselariable.
Baselariable.
BaselVariable.

BaseVartable.

antidiag — Return the antidiagonal of a square variable matrix.
asEzpr — Create an expression corresponding to the variable object.
diag — Return the diagonal of a square variable matrix.

dual — Get the dual solution value of the variable.

getModel — Return the model to which the variable belongs
getShape — Return the model to which the variable belongs

indez — Return a variable slice of size 1 corresponding to a single element in the

variable object..

Baselariable.
BaselVariable.
BaselVariable.
Baselariable.
BaselVariable.
BaselVariable.
Baselariable.

BaselVarzable.

level — Get the primal solution value of the variable.

makeContinuous — Drop integrality constraints on the variable, if any
makeInteger — Apply integrality constraints on the variable

pick — Create a slice variable by picking a list of indexes from this variable.
setLevel — Input solution values for this variable

shape — Return the shape of the variable.

size — Get the number of elements in the variable.

transpose — Transpose a vector or matrix variable

ModelVariable.slice — Create a slice variable by picking a range of indexes for each variable

dimension

SymRangedVariable. toString — Create a string-representation of the variable.

Implements

ModelVariable

ret = SymRangedVariable.toString()
Create a string-representation of the variable.

Return

eret (string)

13.1.39 Class SymmetricExpr

mosek.fusion.SymmetricExpr
A guaranteed symmetric square matrix expression.

13.1. Class list

179

MOSEK Fusion API for Matlab, Release 8.0.0.94

It is defined as

Z(Mzﬂ%) +0,

K2

where : math : ‘M;‘isa : msk : func: ‘SymmetricMatrix‘and : math : ‘z;‘isascalarvariable.

Members SymmetricEzpr.toString Returns a human readable representation of the expression.

ret = SymmetricExpr.toString()

Returns a human readable representation of the expression.
Return

eret (string) — A string representing the expression.

13.1.40 Class SymmetricLinearDomain
mosek.fusion.SymmetricLinearDomain
Represent a linear domain with symmetry.
Members
SymmetricLinearDomain. integral — Creates a domain of integral variables.
SymmetricLinearDomain. sparse — Creates a domain exploiting sparsity.

ret = SymmetricLinearDomain.integral()
Creates a domain of integral variables.
Return

eret (SymmetriclinearDomain)

ret = SymmetricLinearDomain.sparse()
Creates a domain exploiting sparsity.
Return

eret (SymmetriclinearDomain)

13.1.41 Class SymmetricRangeDomain
mosek.fusion.SymmetricRangeDomain
Represent a ranged domain with symmetry.
Members
RangeDomain.integral — Creates a domain of integral variables.
RangeDomain. sparse — Creates a domain exploiting sparsity.

RangeDomain. symmetric — Creates a symmetric domain.
Implements
RangeDomain

13.1.42 Class SymmetricVariable

mosek.fusion.SymmetricVariable
An object representing a symmetric variable.

Members
Variable.antidiag — Return the antidiagonal of a square variable matrix.
Vartiable.asEzpr — Create an expression corresponding to the variable object.

Variable.diag — Return the diagonal of a square variable matrix.

180 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

Variable.dual — Return the dual value of the variable as an array.
Variable.getModel — Return the model to which the variable belongs
Variable. getShape — Return the model to which the variable belongs

Variable.indez — Return a variable slice of size one corresponding to a single element in the
variable object.

Variable. level — Return the primal value of the variable as an array.
Variable.makeContinuous — Drop integrality constraints on the variable, if any
Variable.makelInteger — Apply integrality constraints on the variable

Variable.pick — Create a slice variable by picking a list of indexes from this variable.
Variable.setLevel — Input solution values for this variable

Variable.shape — Return the shape of the variable.

Variable.size — Get the number of elements in the variable.

Variable.slice — Create a slice variable by picking a range of indexes for each variable dimension.
Variable. toString — Create a string-representation of the variable.

Vartable. transpose — Transpose a vector or matrix variable
Implements

Variable
Implemented by

SymLinearVariable , PSDVariable, SymRangedVartiable

13.1.43 Class Var

mosek.fusion.Var
An abstract variable object. This is the base class for all variable types in Fusion, and it contains
several static methods for manipulating variable objects.

The Vartable object can be an interface to the normal model variables, e.g. LinearVariable
and ConicVariable, to slices of other variables or to concatenations of other variables.

Primal and dual solution values can be accessed through the Vartable object.
Static Members

Var.compress — Reshape a variable object by removing all dimensions of size 1.
Var. flatten — Create a one-dimensional logical view of a variable object.
Var.hrepeat — Create a variable by repeating a variable in the second dimension.
Var.hstack — Create a stacked variable in second dimension.

Var.repeat — Create a variable by repeating a variable in a given dimension.
Var.reshape — Create a reshaped version of the given variable.

Var.stack — Create a stacked variable in dimension dim.

Var.vrepeat — Create a variable by repeating a variable in a first dimension.
Var.vstack — Create a stacked variable in first dimension.

ret = Var.compress (v)
Reshape a variable object by removing all dimensions of size 1.
Parameters

ov (Variable) — The variable object to reshape.
Return

13.1. Class list 181

MOSEK Fusion API for Matlab, Release 8.0.0.94

eret (Variable)

ret = Var.flatten(v)
Create a one-dimensional logical view of a variable object.
Parameters

ov (Variable) — The variable to be flattened
Return

eret (Variable) — A one-dimensional Variable object.

ret = Var.hrepeat (v, n)
Create a variable by repeating a variable in the second dimension.
Parameters

ov (Variable) — A variable object.

en (int32) — Number of times to repeat v.
Return

eret (Variable)

ret = Var.hstack(v)
ret = Var.hstack(vl, v2)
ret = Var.hstack(vl, v2, v3)
Create a stacked variable in second dimension.
Parameters

ov (Variable) — List of variable to stack.
evl (Variable) — The first variable in the stack.
ov2 (Variable) — The second variable in the stack.

ov3 (Variable) — The third variable in the stack.
Return

eret (Variable) — An object representing the concatenation of the variables.

ret = Var.repeat (v, dim, n)

ret = Var.repeat (v, n)
Create a variable by repeating a variable in the given dimension. For an m-dimensional variable
with the shape (dy,...,d;): If the dimension, dim is negative, a new first dimension is inserted
of size n, and the result will have shape (n,d,...,d,,). Otherwise the result will have shape
(di,...,dain, -, dm)-

By default it will repeat in the first dimension.
Parameters

ov (Vartable) — A variable object.

edim (int32) — Dimension to repeat in. If this is negative, it means that the result adds a new
dimension.

en (int32) — Number of times to repeat v.
Return

eret (Variable)

ret = Var.reshape (v, s)
ret2 = Var.reshape(v2, dims)
ret2 = Var.reshape(v2, d1, d2)
ret2 = Var.reshape(v2, d1)
Create a reshaped version of the given variable.
Parameters

ov (Variable) — The variable to be reshaped
es (Set) — The new shape of the variable

182 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

ov2 (Variable) — A variable object.
edims (int32[]) — An array containing the shape of the new variable.
edl (int32) — Size of first dimension in the result.

ed2 (int32) — Size of second dimension in the result.
Return

eret (Variable) — A new variable object with the shape defined by s
eret2 (Variable)

ret = Var.stack(v, dim)
ret = Var.stack(vl, v2, dim)
ret = Var.stack(vl, v2, v3, dim)
ret2 = Var.stack(vlist)
Create a stacked variable in dimension dim.
Parameters
ov (Variable) — List of variable to stack.
edim (int32) — Dimension in which to stack.
evl (Variable) — First variable in the stack.
ov2 (Variable) — Second variable in the stack.
ov3 (Variable) — Third variable in the stack.

evlist (Variable) — The variables in the stack.
Return

eret (Variable)

eret2 (Variable) — An object representing the concatenation of the variables.

ret = Var.vrepeat (v, n)
Create a variable by repeating a variable in the first dimension.
Parameters

ev (Variable) — A variable object.

en (int32) — Number of times to repeat v.
Return

eret (Variable)

ret = Var.vstack(v)
ret = Var.vstack(vl, v2)
ret = Var.vstack(vl, v2, v3)
Create a stacked variable in first dimension.
Parameters

ov (Variable) — List of variable to stack.
evl (Variable) — First variable in the stack.
ov2 (Variable) — Second variable in the stack.

ov3 (Variable) — Third variable in the stack.
Return

eret (Variable) — An object representing the concatenation of the variables.

13.1. Class list

183

MOSEK Fusion API for Matlab, Release 8.0.0.94

13.1.44 Class Variable

mosek.fusion.Variable
An abstract variable object. This is the base class for all variable types in Fusion, and it contains
several static methods for manipulating variable objects.

The Vartable object can be an interface to the normal model variables, e.g. LinearVariable
and ConicVariable, to slices of other variables or to concatenations of other variables.

Primal and dual solution values can be accessed through the Variable object.
Members

Variable.antidiag — Return the antidiagonal of a square variable matrix.
Variable.asEzpr — Create an expression corresponding to the variable object.
Variable.diag — Return the diagonal of a square variable matrix.
Variable.dual — Return the dual value of the variable as an array.
Variable.getModel — Return the model to which the variable belongs
Variable.getShape — Return the model to which the variable belongs

Variable.index — Return a variable slice of size one corresponding to a single element in the
variable object.

Variable. level — Return the primal value of the variable as an array.
Variable.makeContinuous — Drop integrality constraints on the variable, if any
Variable.makelInteger — Apply integrality constraints on the variable

Variable.pick — Create a slice variable by picking a list of indexes from this variable.
Variable.setLevel — Input solution values for this variable

Variable.shape — Return the shape of the variable.

Variable.size — Get the number of elements in the variable.

Variable.slice — Create a slice variable by picking a range of indexes for each variable dimension.
Variable. toString — Create a string-representation of the variable.

Vartable. transpose — Transpose a vector or matrix variable
Implemented by
BaselVariable, SymmetriclVariable

ret = Variable.antidiag(index)
ret = Variable.antidiag()

Return the antidiagonal of a square variable matrix.
Parameters

eindex (int32) — Defining the index of the anti-diagonal. 0 is the diagonal starting at element
(1,n). Positive values are the super-diagonals (diagonals in the upper triangular part, and
negative are indexes of the sub-diagonals (in the lower triangular part).
Return

eret (Variable)

ret = Variable.asExpr()
Create an expression corresponding to the variable object.
Return

eret (Ezpression) — An Expression object representing the V' variable.

ret = Variable.diag(index)
ret = Variable.diag()
Return the diagonal of a square variable matrix.

184 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

Parameters

eindex (int32) — Defining the index of the diagonal. 0 is the diagonal starting at element
(1,1). Positive values are the super-diagonals (diagonals in the upper triangular part, and
negative are indexes of the sub-diagonals (in the lower triangular part).
Return

eret (Variable)

ret = Variable.dual()
Return the dual value of the variable as an array.
Return

eret (double[]) — An array of solution values. When the selected slice is multi-dimensional,
this corresponds to the flattened slice of solution values.

ret = Variable.getModel()
Return the model to which the variable belongs
Return

eret (Model)

ret = Variable.getShape ()
Return the model to which the variable belongs
Return

eret (Set)

ret = Variable.index(il)
ret = Variable.index(il, i2)
ret = Variable.index(il, i2, i3)
ret = Variable.index (idx)
Return a variable slice of size one corresponding to a single element in the variable object.
Parameters

eil (int32) — Index in the first dimension of the element requested.
ei2 (int32) — Index in the second dimension of the element requested.

ei3 (int32) — Index in the third dimension of the element requested.

eidx (int32[]) — List of indexes of the elements requested.
Return

eret (Variable)

ret = Variable.level()
Return the primal value of the variable as an array.
Return

eret (double[]) — An array of solution values. When the selected slice is multi-dimensional,
this corresponds to the flattened slice of solution values.

ret — Variable.makeContinuous()
Drop integrality constraints on the variable, if any
Return

eret (void)

ret = Variable.makeInteger ()
Apply integrality constraints on the variable
Return

eret (void)

ret = Variable.pick(idxs)
ret = Variable.pick(midxs)
ret = Variable.pick(il, i2)

13.1. Class list 185

MOSEK Fusion API for Matlab, Release 8.0.0.94

ret = Variable.pick(il, i2, i3)
Create a slice variable by picking a list of indexes from this variable.
Parameters

eidxs (int32[]) — Indexes of the elements requested.

emidxs (int32) — Matrix of indexes of the elements requested.
eil (int32[]) — Index along the first dimension.

ei2 (int32[]) — Index along the second dimension.

ei3 (int32[]) — Index along the third dimension.
Return

eret (Variable)

ret = Variable.setLevel(v)
Input solution values for this variable
Parameters

ov (double[]) — An array of values to be assigned to the variable.
Return

eret (void)

ret = Variable.shape()
Return the shape of the variable.
Return

eret (Set) — A set representing the shape.

ret — Variable.size()
Get the number of elements in the variable.
Return

eret (int64)

ret = Variable.slice(first, last)
ret = Variable.slice(firsta, lasta)

Create a slice variable by picking a range of indexes for each variable dimension.
Parameters

efirst (int32) — The index of the first element of the slice.
elast (int32) — The index of the first element after the end of the slice.
efirsta (int32[]) — The indexes of the first elements of the slice along each dimension.

elasta (int32[]) — The indexes of the first elements after the end of the slice along each
dimension.
Return

eret (Variable) — A new variable object representing a slice of this object.

ret = Variable.toString()
Create a string-representation of the variable.
Return

eret (string) — A string representing the variable.

ret = Variable.transpose()
Transpose a vector or matrix variable
Return

eret (Variable) — A new variable object.

186 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

13.2 Exceptions

e DimensionError: Thrown when a given object has the wrong number of dimensions, or they have
not the right size.

e DomainError: Invalid domain.

e EzpressionError: Tried to construct an expression from invalid.

e FatalError: A fatal error has happened.

e FusionEzception: Base class for all normal exceptions in fusion.

e FusionRuntimeEzception: Base class for all run-time exceptions in fusion.

e I0Error: Error when reading or writing a stream, or opening a file.

e IndexzError: Index out of bound, or a multi-dimensional index had wrong number of dimensions.
e LengthError: None

e MatrizError: Thrown if data used in construction of a matrix contained inconsistencies or errors.
e ModelError: Thrown when objects from different models were mixed.

e NameError: Name clash; tries to add a variable or constraint with a name that already exists.

e (ptimizeError: An error occurred during optimization.

e ParameterError: Tried to use an invalid parameter for a value that was invalid for a specific
parameter.

e RangeError: Invalid range specified

e SetDefintitionError: Invalid data for constructing set.

e SliceError: Invalid slice definition, negative slice or slice index out of bounds.

e SolutionError: Requested a solution that was undefined or whose status was not acceptable.

e SparseFormatError: The given sparsity patters was invalid or specified an index that was out of
bounds.

o UnezpectedError: An unexpected error has happened. No specific excepion could have been risen.
e UnimplementedError: Called a stub. Functionality has not yet been implemented.

e ValueConverstonError: Error casting or converting a value.

13.2.1 Exception DimensionError

mosek.fusion.DimensionError
Thrown when a given object has the wrong number of dimensions, or they have not the right size.

Members FustonRuntimeException.toString Return the exception message.
Implements
FustonRuntimeException

13.2.2 Exception DomainError

mosek.fusion.DomainError
Invalid domain.

Members FusionRuntimeEzception.toString Return the exception message.
Implements
FustonRuntimeEzception

13.2. Exceptions 187

MOSEK Fusion API for Matlab, Release 8.0.0.94

13.2.3 Exception ExpressionError

mosek.fusion.ExpressionError
Tried to construct an expression from invalid.

Members FusionRuntimeEzception. toString Return the exception message.
Implements
FusionRuntimeEzception

13.2.4 Exception FatalError

mosek.fusion.FatalError
A fatal error has happened.

Members RuntimeException.toString Return the exception message.
Implements
RuntimeException

13.2.5 Exception FusionException

mosek.fusion.FusionException
Base class for all normal exceptions in fusion.

Members FusionEzception.toString Return the exception message.
Implements

Exception
Implemented by

SolutionError

ret = FusionException.toString()
Return the exception message.
Return

erct (string) — The message.

13.2.6 Exception FusionRuntimeException

mosek.fusion.FusionRuntimeException
Base class for all run-time exceptions in fusion.

Members FusionRuntimeEzception.toString Return the exception message.
Implements
RuntimeException
Implemented by
OptimizeError, DomainError, DimenstonError, ExpressionError, IOError,
LengthError, SliceError, ParameterError, SparseFormatError, ModelError,
NameError, MatrizError, SetDefinitionError, IndexError, RangeError,
ValueConverstonError

ret = FusionRuntimeException.toString()
Return the exception message.
Return

eret (string) — The message.

13.2.7 Exception IOError

mosek.fusion.IOError
Error when reading or writing a stream, or opening a file.

188 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

Members FusionRuntimeEzception.toString Return the exception message.
Implements
FusionRuntimeEzception

13.2.8 Exception IndexError
mosek.fusion.IndexError
Index out of bound, or a multi-dimensional index had wrong number of dimensions.

Members FustonRuntimeEzception.toString Return the exception message.
Implements
FustonRuntimeEzception

13.2.9 Exception LengthError
mosek.fusion.LengthError
An array did not have the required length, or two arrays were expected to have same length.

Members FusionRuntimeEzception.toString Return the exception message.
Implements
FustonRuntimeEzception

13.2.10 Exception MatrixError
mosek.fusion.MatrixError
Thrown if data used in construction of a matrix contained inconsistencies or errors.

Members FusionRuntimeExzception.toString Return the exception message.
Implements
FustonRuntimeException

13.2.11 Exception ModelError

mosek.fusion.ModelError
Thrown when objects from different models were mixed.

Members FusionRuntimeEzception.toString Return the exception message.
Implements
FustionRuntimeException

13.2.12 Exception NameError
mosek.fusion.NameError
Name clash; tries to add a variable or constraint with a name that already exists.

Members FusionRuntimeException.toString Return the exception message.
Implements
FusionRuntimeEzception

13.2.13 Exception OptimizeError

mosek.fusion.OptimizeError
An error occurred during optimization.

Members FustonRuntimeEzception.toString Return the exception message.

13.2. Exceptions 189

MOSEK Fusion API for Matlab, Release 8.0.0.94

Implements
FustonRuntimeException

13.2.14 Exception ParameterError

mosek.fusion.ParameterError
Tried to use an invalid parameter for a value that was invalid for a specific parameter.

Members FusionRuntimeEzception.toString Return the exception message.
Implements
FusionRuntimeEzception

13.2.15 Exception RangeError

mosek.fusion.RangeError
Invalid range specified

Members FustonRuntimeEzception.toString Return the exception message.
Implements
FustonRuntimeEzception

13.2.16 Exception SetDefinitionError

mosek.fusion.SetDefinitionError
Invalid data for constructing set.

Members FusionRuntimeEzception.toString Return the exception message.
Implements
FustonRuntimeEzception

13.2.17 Exception SliceError

mosek.fusion.SliceError
Invalid slice definition, negative slice or slice index out of bounds.

Members FusionRuntimeExzception.toString Return the exception message.
Implements
FusionRuntimeEzception

13.2.18 Exception SolutionError

mosek.fusion.SolutionError
Requested a solution that was undefined or whose status was not acceptable.

Members FusionException.toString Return the exception message.
Implements
FusionExzception

13.2.19 Exception SparseFormatError

mosek.fusion.SparseFormatError
The given sparsity patters was invalid or specified an index that was out of bounds.

Members FustonRuntimeEzception.toString Return the exception message.
Implements
FusionRuntimeEzception

190 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

13.2.20 Exception UnexpectedError

mosek.fusion.UnexpectedError
An unexpected error has happened. No specific excepion could have been risen.

Members RuntimeException.toString Return the exception message.
Implements
RuntimeException

13.2.21 Exception UnimplementedError

mosek.fusion.UnimplementedError
Called a stub. Functionality has not yet been implemented.

Members RuntimeException.toString Return the exception message.
Implements
RuntimeException

13.2.22 Exception ValueConversionError

mosek.fusion.ValueConversionError
Error casting or converting a value.

Members FusionRuntimeEzception.toString Return the exception message.
Implements
FustonRuntimeEzception

13.3 Enumerations

AccSolutionStatus
Constants used for defining which solutions statuses are acceptable.

Anything
Accept all solution status except Undefined.

Optimal
Accept only optimal solution status.

NearOptimal
Accept only optimal solution status.

Feasible
Accept any feasible solution, even if not optimal.

Certificate
Accept only a certificate.

ObjectiveSense
Used in Model.objective to define the objective sense of the Model.

Undefined
The sense is not defined; trying to optimize a Model whose objective sense is undefined is an
error.

Minimize
Minimize the objective.

Maximize
Maximize the objective.

13.3. Enumerations 191

MOSEK Fusion API for Matlab, Release 8.0.0.94

PSDKey

IsSymPSD
IsTrilPSD

ProblemStatus

Constants used for defining which solutions statuses are acceptable.

Unknown
Unknown problem status.

PrimalAndDualFeasible
The problem is feasible.

PrimalFeasible
The problem is at least primal feasible.

DualFeasible
The problem is at least least dual feasible.

PrimalInfeasible
The problem is primal infeasible.

DualInfeasible
The problem is dual infeasible.

PrimalAndDualInfeasible
The problem is primal and dual infeasible.

I11Posed
The problem is illposed.

PrimalInfeasibleOrUnbounded
The problem is primal infeasible or unbounded.

QConeKey

InQCone

InRotatedQCone

RelationKey

Used internally in Fusion to define the domain type for a constraint or variable.
EqualsTo

LessThan

GreaterThan

IsFree

InRange

SolutionStatus

Defines properties of either a primal or a dual solution. A model may contain multiple solutions
which may have different status.

Specifically, there will be individual solutions, and thus solution statuses, for the interior-point,
simplex and integer solvers.

Undefined
Undefined solution. This means that no values exist for the relevant solution.

Unknown
The solution status is unknown; this will happen if the user inputs values or a solution is read
from a file.

192

Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

Optimal
The solution values are feasible and optimal.

NearOptimal
The solution values are feasible and nearly optimal.

Feasible
The solution is feasible.

NearFeasible
The solution is nearly feasible.

Certificate
The solution is a certificate of infeasibility (primal or dual, depending no which solution it
belongs to).

NearCertificate
The solution is nearly a certificate of infeasibility (primal or dual, depending no which solution
it belongs to).

IllposedCert

SolutionType
Used when requesting a specific solution from a Model.

Default
Auto-select the default solution; usually this will be the integer solution, if available, otherwise
the basic solution, if available, otherwise the interior-point solution.

Basic
Select the basic solution.

Interior
Select the interior-point solution.

Integer
Select the integer solution.

StatusKey
Defines the status of a single solution value.

Unknown
The status is unknown; this will happen if, for example, the solution was read from a file or
inputted by the user.

Basic
The solution is basic.

SuperBasic
The value is superbasic.

OnBound
The value is on its bound.

Infinity
The solution value is infinite, or sufficiently large to be deemed infinite.

13.4 Parameters
All parameters (alphabetical order)

Parameters grouped by topic

Note: some parameters may appear in more than one group.

13.4. Parameters 193

MOSEK Fusion API for Matlab, Release 8.0.0.94

e Conic interior-point method
e License manager

e Logging

e Presolve

o Primal simplex optimizer
e Dual simplex optimizer

e Data input/output

o Querall solver

e Data check

e Basis identification

o Simplex optimizer

e Qutput information

e Solution input/output

e Infeasibility report

o Nonlinear convex method
e Analysis

e Mixed-integer optimization
o Termination criterion

e Optimization system

e [nterior-point method

13.4.1 Parameters List (alphabetically)

Double Parameters

anaSolInfeasTol
If a constraint violates its bound with an amount larger than this value, the constraint name, index
and violation will be printed by the solution analyzer.

Accepted Values: [0.0 ;+inf |
Default Value: 1le-6
Groups: Analysis

basisRelTolS
Maximum relative dual bound violation allowed in an optimal basic solution.

Accepted Values: [0.0 ;+inf |
Default Value: 1.0e-12
Groups: Simplex optimizer, Termination criterion

basisTolS
Maximum absolute dual bound violation in an optimal basic solution.

Accepted Values: [1.0e-9 ;+inf |
Default Value: 1.0e-6

Groups: Sitmplex optimizer, Termination criterion

194 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

basisTolX
Maximum absolute primal bound violation allowed in an optimal basic solution.

Accepted Values: [1.0e-9 ;+inf |
Default Value: 1.0e-6
Groups: Simplex optimizer, Termination criterion

intpntCoTolDfeas
Dual feasibility tolerance used by the conic interior-point optimizer.

Accepted Values: [0.0;1.0 |
Default Value: 1.0e-8
Groups: Interior-point method, Termination criterion, Conic interior-point method

intpntCoTolInfeas
Controls when the conic interior-point optimizer declares the model primal or dual infeasible. A
small number means the optimizer gets more conservative about declaring the model infeasible.

Accepted Values: [0.0;1.0 |
Default Value: 1.0e-10
Groups: Interior-point method, Termination criterion, Conic interior-point method

intpntCoTolMuRed
Relative complementarity gap feasibility tolerance used by the conic interior-point optimizer.

Accepted Values: [0.0;1.0 |
Default Value: 1.0e-8
Groups: Interior-point method, Termination criterion, Conic interior-point method

intpntCoTolNearRel
If MOSEK cannot compute a solution that has the prescribed accuracy, then it will multiply the
termination tolerances with value of this parameter. If the solution then satisfies the termination
criteria, then the solution is denoted near optimal, near feasible and so forth.

Accepted Values: [1.0 ;+inf |
Default Value: 1000
Groups: Interior-point method, Termination criterion, Conic interior-point method

intpntCoTolPfeas
Primal feasibility tolerance used by the conic interior-point optimizer.

Accepted Values: [0.0;1.0 |
Default Value: 1.0e-8
Groups: Interior-point method, Termination criterion, Conic interior-point method

intpntCoTolRelGap
Relative gap termination tolerance used by the conic interior-point optimizer.

Accepted Values: [0.0;1.0 |
Default Value: 1.0e-7
Groups: Interior-point method, Termination criterion, Conic interior-point method

intpntQoTolDfeas
Dual feasibility tolerance used when the interior-point optimizer is applied to a quadratic optimiza-
tion problem..

Accepted Values: [0.0;1.0 |
Default Value: 1.0e-8

13.4. Parameters 195

MOSEK Fusion API for Matlab, Release 8.0.0.94

Groups: Interior-point method, Termination criterion

intpntQoTolInfeas
Controls when the conic interior-point optimizer declares the model primal or dual infeasible. A
small number means the optimizer gets more conservative about declaring the model infeasible.

Accepted Values: [0.0;1.0 |
Default Value: 1.0e-10
Groups: Interior-point method, Termination criterion

intpntQoTolMuRed
Relative complementarity gap feasibility tolerance used when interior-point optimizer is applied to
a quadratic optimization problem.

Accepted Values: [0.0;1.0 |
Default Value: 1.0e-8
Groups: Interior-point method, Termination criterion

intpntQoTolNearRel
If MOSEK cannot compute a solution that has the prescribed accuracy, then it will multiply the
termination tolerances with value of this parameter. If the solution then satisfies the termination
criteria, then the solution is denoted near optimal, near feasible and so forth.

Accepted Values: [1.0 ;+inf |
Default Value: 1000
Groups: Interior-point method, Termination criterion

intpntQoTolPfeas
Primal feasibility tolerance used when the interior-point optimizer is applied to a quadratic opti-
mization problem.

Accepted Values: [0.0;1.0 |
Default Value: 1.0e-8
Groups: Interior-point method, Termination criterion

intpntQoTolRelGap
Relative gap termination tolerance used when the interior-point optimizer is applied to a quadratic
optimization problem.

Accepted Values: [0.0;1.0 |
Default Value: 1.0e-8
Groups: Interior-point method, Termination criterion

intpntTolDfeas
Dual feasibility tolerance used for linear and quadratic optimization problems.

Accepted Values: [0.0;1.0 |
Default Value: 1.0e-8
Groups: Interior-point method, Termination criterion

intpntTolDsafe
Controls the initial dual starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it might
be worthwhile to increase this value.

Accepted Values: [1.0e-4 ;+inf |
Default Value: 1.0

Groups: Interior-point method

196 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

intpntTolInfeas
Controls when the optimizer declares the model primal or dual infeasible. A small number means
the optimizer gets more conservative about declaring the model infeasible. A value of 0.0 means
the optimizer must have an exact certificate of infeasibility and this is very unlikely to happen.

Accepted Values: [0.0;1.0 |
Default Value: 1.0e-10
Groups: Interior-point method, Termination criterion, Nonlinear convex method

intpntTolMuRed
Relative complementarity gap tolerance.

Accepted Values: [0.0;1.0 |
Default Value: 1.0e-16
Groups: Interior-point method, Termination criterion

intpntTolPath
Controls how close the interior-point optimizer follows the central path. A large value of this
parameter means the central is followed very closely. On numerical unstable problems it may be
worthwhile to increase this parameter.

Accepted Values: [0.0;0.9999 |
Default Value: 1.0e-8
Groups: Interior-point method

intpntTolPfeas
Primal feasibility tolerance used for linear and quadratic optimization problems.

Accepted Values: [0.0;1.0]
Default Value: 1.0e-8
Groups: Interior-point method, Termination criterion

intpntTolPsafe
Controls the initial primal starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly and/or the constraint or variable bounds are very large, then it may be
worthwhile to increase this value.

Accepted Values: [1.0e-4 ;+inf |
Default Value: 1.0
Groups: Interior-point method

intpntTolRelGap
Relative gap termination tolerance.

Accepted Values: [1.0e-14 ;+inf |
Default Value: 1.0e-8
Groups: Termination criterion, Interior-point method

intpntTolRelStep
Relative step size to the boundary for linear and quadratic optimization problems.

Accepted Values: [1.0e-4 ;0.999999 |
Default Value: 0.9999
Groups: Interior-point method

intpntTolStepSize
If the step size falls below the value of this parameter, then the interior-point optimizer assumes

13.4. Parameters 197

MOSEK Fusion API for Matlab, Release 8.0.0.94

that it is stalled. In other words the interior-point optimizer does not make any progress and
therefore it is better stop.

Accepted Values: [0.0;1.0 |
Default Value: 1.0e-6
Groups: Interior-point method

lowerObjCut
If either a primal or dual feasible solution is found proving that the optimal objective value is
outside, the interval [Lower0ObjCut, upper0bjCut |, then MOSEK is terminated.

Accepted Values: [-inf ;+inf |

Default Value: -1.0e30

Groups: Termination criterion
lowerObjCutFiniteTrh

If the lower objective cut is less than the value of this parameter value, then the lower objective
cut i.e. lowerObjCut is treated as —oo.

Accepted Values: [-inf ;+inf |
Default Value: -0.5e30
Groups: Termination criterion

mioDisableTermTime
This parameter specifies the number of seconds n during which the termination criteria governed
by

emioMazlNumRelazs
emioMazNumBranches
emiolearTolAbsGap
emiolNearTolRelGap
is disabled since the beginning of the optimization.
A negative value is identical to infinity i.e. the termination criteria are never checked.
Accepted Values: [-inf ;+inf |
Default Value: -1.0
Groups: Mized-integer optimization, Termination criterion

mioMaxTime
This parameter limits the maximum time spent by the mixed-integer optimizer. A negative number
means infinity.

Accepted Values: [-inf ;+inf |

Default Value: -1.0

Groups: Mized-integer optimization, Termination criterion
mioNearTolAbsGap

Relaxed absolute optimality tolerance employed by the mixed-integer optimizer. This termination
criteria is delayed. See mioDisableTermTime for details.

Accepted Values: [0.0 ;+inf |
Default Value: 0.0

Groups: Mized-integer optimizalion

198 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

mioNearTolRelGap
The mixed-integer optimizer is terminated when this tolerance is satisfied. This termination criteria
is delayed. See mioDisableTermTime for details.

Accepted Values: [0.0 ;+inf |
Default Value: 1.0e-3
Groups: Mized-integer optimization, Termination criterion

mioRelGapConst
This value is used to compute the relative gap for the solution to an integer optimization problem.

Accepted Values: [1.0e-15 ;+inf |
Default Value: 1.0e-10
Groups: Mized-integer optimization, Termination criterion

mioTolAbsGap
Absolute optimality tolerance employed by the mixed-integer optimizer.

Accepted Values: [0.0 ;+inf |
Default Value: 0.0
Groups: Mized-integer optimization

mioTolAbsRelaxInt
Absolute relaxation tolerance of the integer constraints. Le. min(|x| — |x], [z] — |z|) is less than
the tolerance then the integer restrictions assumed to be satisfied.

Accepted Values: [le-9 ;-+inf |
Default Value: 1.0e-5
Groups: Mized-integer optimization

mioTolFeas
Feasibility tolerance for mixed integer solver.

Accepted Values: [le-9;le-3]
Default Value: 1.0e-6
Groups: Mized-integer optimization

mioTolRelDualBoundImprovement
If the relative improvement of the dual bound is smaller than this value, the solver will terminate
the root cut generation. A value of 0.0 means that the value is selected automatically.

Accepted Values: [0.0;1.0]
Default Value: 0.0
Groups: Mized-integer optimizalion

mioTolRelGap
Relative optimality tolerance employed by the mixed-integer optimizer.

Accepted Values: [0.0 ;+inf |
Default Value: 1.0e-4
Groups: Mized-integer optimization, Termination criterion

optimizerMaxTime
Maximum amount of time the optimizer is allowed to spent on the optimization. A negative number
means infinity.

Accepted Values: [-inf ;+inf |
Default Value: -1.0

13.4. Parameters 199

MOSEK Fusion API for Matlab, Release 8.0.0.94

Groups: Termination criterion

presolveTolAbsLindep
Absolute tolerance employed by the linear dependency checker.

Accepted Values: [0.0 ;+inf |
Default Value: 1.0e-6
Groups: Presolve

presolveTolAij
Absolute zero tolerance employed for a;; in the presolve.

Accepted Values: [1.0e-15 ;+inf |
Default Value: 1.0e-12
Groups: Presolve

presolveTolRelLindep
Relative tolerance employed by the linear dependency checker.

Accepted Values: [0.0 ;+inf |
Default Value: 1.0e-10
Groups: Presolve

presolveTolS
Absolute zero tolerance employed for s; in the presolve.

Accepted Values: [0.0 ;+inf |
Default Value: 1.0e-8
Groups: Presolve

presolveTolX
Absolute zero tolerance employed for z; in the presolve.

Accepted Values: [0.0 ;+inf |
Default Value: 1.0e-8
Groups: Presolve

semidefiniteTolApprox
Tolerance to define a matrix to be positive semidefinite.

Accepted Values: [1.0e-15 ;+inf |
Default Value: 1.0e-10
Groups: Data check

simplexAbsTolPiv
Absolute pivot tolerance employed by the simplex optimizers.

Accepted Values: [1.0e-12 ;+inf |
Default Value: 1.0e-7
Groups: Simplex optimizer

simlLuTolRelPiv
Relative pivot tolerance employed when computing the LU factorization of the basis in the simplex
optimizers and in the basis identification procedure.

A value closer to 1.0 generally improves numerical stability but typically also implies an increase
in the computational work.

Accepted Values: [1.0e-6 ;0.999999 |

200 Chapter 13. Fusion API Reference

MOSEK Fusion API for Matlab, Release 8.0.0.94

Default Value: (.01
Groups: Basis identification, Simplex optimizer

upper0bjCut
If either a primal or dual feasible solution is found proving that the optimal objective value is
outside, the interval [Lower0bjCut, upperdbjCut |, then MOSEK is terminated.

Accepted Values: [-inf ;+inf |
Default Value: 1.0e30
Groups: Termination criterion

upperObjCutFiniteTrh
If the upper objective cut is greater than the value of this parameter, then the upper objective cut
upperlbjCut is treated as oo.

Accepted Values: [-inf ;+inf |
Default Value: 0.5e30

Groups: Termination criterion

Integer Parameters

autoUpdateSolInfo
Controls whether the solution information items are automatically updated after an optimization
is performed.

Accepted Values: ON, OFF
Default Value: off

Groups: Optimization system
biCleanOptimizer
Controls which simplex optimizer is used in the clean-up phase.
Accepted Values: FREE, INTPNT, CONIC, PRIMAL SIMPLEX, DUAL SIMPLEX,

FREE SIMPLEX, MIXED INT
Default Value: free
Groups: Basis identification, Overall solver

bilgnoreMaxIter
If the parameter intpntBasis has the value noError and the interior-point optimizer has termi-
nated due to maximum number of iterations, then basis identification is performed if this parameter
has the value on.

Accepted Values: ON, OFF
Default Value: off
Groups: Interior-point method, Basis identification

bilgnoreNumError
If the parameter intpntBasis has the value noError and the interior-point optimizer has termi-
nated due to a numerical problem, then basis identification is performed if this parameter has the
value on.

Accepted Values: ON, OFF
Default Value: off

Groups: Interior-point method, Basis identification

13.4. Parameters 201

MOSEK Fusion API for Matlab, Release 8.0.0.94

biMaxIterations
Controls the maximum number of simplex iterations allowed to optimize a basis after the basis
identification.

Accepted Values: [0 ;+inf]
Default Value: 1000000
Groups: Basis identification, Termination criterion

cachelLicense
Specifies if the license is kept checked out for the lifetime of the mosek environment (on) or returned
to the server immediately after the optimization (off).

By default the license is checked out for the lifetime of the MOSEK environment by the first call
to the optimizer.

Check-in and check-out of licenses have an overhead. Frequent communication with the license
server should be avoided.

Accepted Values: ON, OFF

Default Value: on
Groups: License manager
infeasPreferPrimal

If both certificates of primal and dual infeasibility are supplied then only the primal is used when
this option is turned on.

Accepted Values: ON, OFF

Default Value: on
Groups: Owerall solver
intpntBasis

Controls whether the interior-point optimizer also computes