
The MOSEK optimization toolbox for
MATLAB manual.

Version 7.0 (Revision 141).

ii

• Published by MOSEK ApS, Denmark.

• Copyright c© MOSEK ApS, Denmark. All rights reserved.

Contents

1 Changes and new features in MOSEK 5
1.1 Platform support . 5
1.2 General changes . 5
1.3 Optimizers . 6

1.3.1 Interior point optimizer . 6
1.3.2 The simplex optimizers . 6
1.3.3 Mixed-integer optimizer . 7

1.4 API changes . 7
1.5 Optimization toolbox for MATLAB . 7
1.6 License system . 7
1.7 Other changes . 7
1.8 Interfaces . 7
1.9 Platform changes . 8

2 Introduction 9
2.1 What is optimization? . 9
2.2 Why you need the MOSEK optimization toolbox . 9

2.2.1 Features of the MOSEK optimization toolbox . 9

3 Supported MATLAB versions 11

4 Installation 13
4.1 Locating the toolbox functions . 13

4.1.1 On Windows . 13
4.1.2 On Linux/UNIX/MAC OS X . 14
4.1.3 Permanently changing matlabpath . 14

4.2 Verifying that MOSEK works . 14
4.3 Troubleshooting . 15

4.3.1 Undefined function or variable ’mosekopt’ . 15
4.3.2 Invalid MEX-file . 15
4.3.3 Output arguments not assigned . 15

5 Getting support and help 17
5.1 MOSEK documentation . 17
5.2 Additional reading . 17

iii

iv CONTENTS

6 MOSEK / MATLAB integration 19
6.1 MOSEK replacements for MATLAB functions . 19
6.2 The license system . 19

6.2.1 Waiting for a free license . 20
6.2.2 Using MOSEK with the Parallel Computing Toolbox 20

7 A guided tour 21
7.1 Introduction . 21
7.2 The tour starts . 21
7.3 The MOSEK terminology . 22
7.4 Linear optimization . 22

7.4.1 Using msklpopt . 23
7.4.2 Using mosekopt . 23
7.4.3 Using linprog . 25

7.5 Convex quadratic optimization . 25
7.5.1 Two important assumptions . 26
7.5.2 Using mskqpopt . 26
7.5.3 Using mosekopt . 27

7.6 Conic optimization . 28
7.6.1 The conic optimization problem . 28
7.6.2 Solving an example . 29
7.6.3 Quadratic and conic optimization . 30
7.6.4 Conic duality and the dual solution . 32
7.6.5 Setting accuracy parameters for the conic optimizer 33

7.7 Semidefinite optimization . 34
7.7.1 The semidefinite optimization problem . 34
7.7.2 Solving an example . 35
7.7.3 Linear matrix inequalities . 37

7.8 Quadratically constrained optimization . 37
7.9 Linear least squares and related norm minimization problems 38

7.9.1 The case of the 2 norm . 39
7.9.2 The case of the infinity norm . 40
7.9.3 The case of the 1-norm . 41

7.10 Compatibility with MATLAB Optimization Toolbox 42
7.11 More about solving linear least squares problems . 43

7.11.1 Using conic optimization on linear least squares problems 47
7.12 Entropy optimization . 48

7.12.1 Using mskenopt . 48
7.13 Geometric optimization . 48

7.13.1 Using mskgpopt . 49
7.13.2 Comments . 51

7.14 Separable convex optimization . 52
7.14.1 Using mskscopt . 53

7.15 Mixed-integer optimization . 55
7.15.1 A linear mixed-integer example . 55
7.15.2 A conic quadratic mixed-integer example . 56

CONTENTS v

7.15.3 Speeding up the solution of a mixed-integer problem 57
7.16 Sensitivity analysis . 59
7.17 Inspecting a problem . 60
7.18 The solutions . 62

7.18.1 The constraint and variable status keys . 63
7.19 Viewing the task information . 63
7.20 Inspecting and setting parameters . 64
7.21 Advanced start (hot-start) . 65

7.21.1 Some examples using hot-start . 65
7.21.2 Adding a new variable . 66
7.21.3 Fixing a variable . 67
7.21.4 Adding a new constraint . 67
7.21.5 Removing a constraint . 68
7.21.6 Removing a variable . 69
7.21.7 Using numeric values to represent status key codes 69

7.22 Using names . 71
7.22.1 Blanks in names . 71

7.23 MPS and other file formats . 71
7.23.1 Reading an MPS file . 71
7.23.2 Writing a MPS files . 72
7.23.3 Other file formats . 72

7.24 User call-back functions . 73
7.24.1 Log printing via call-back function . 73
7.24.2 The iteration call-back function . 74

7.25 The license system . 75
7.26 Caveats using the MATLAB compiler . 75

8 Command reference 77
8.1 Data structures . 77

8.1.1 prob . 77
8.1.2 names . 83
8.1.3 cones . 84
8.1.4 barc . 85
8.1.5 bara . 86
8.1.6 sol . 86
8.1.7 prisen . 88
8.1.8 duasen . 89
8.1.9 info . 89
8.1.10 symbcon . 89
8.1.11 callback . 90

8.2 An example of a command reference . 90
8.3 Functions provided by the MOSEK optimization toolbox 91
8.4 MATLAB optimization toolbox compatible functions 94

8.4.1 Linear and quadratic optimization . 94
8.4.2 Linear optimization with binary variables . 98
8.4.3 For linear least squares problems . 99

vi CONTENTS

8.4.4 The optimization options . 103

9 Case studies 107
9.1 Robust linear optimization . 107

9.1.1 Introductory example . 107
9.1.2 Data uncertainty and its consequences. 109
9.1.3 Robust linear optimization methodology . 110
9.1.4 Random uncertainty and ellipsoidal robust counterpart 114
9.1.5 Further references . 122

9.2 Geometric (posynomial) optimization . 122
9.2.1 The problem . 122
9.2.2 Applications . 124
9.2.3 Modeling tricks . 124
9.2.4 Problematic formulations . 125
9.2.5 An example . 126
9.2.6 Solving the example . 126
9.2.7 Exporting to a file . 127
9.2.8 Further information . 127

10 The optimizers for continuous problems 129
10.1 How an optimizer works . 129

10.1.1 Presolve . 130
10.1.2 Dualizer . 131
10.1.3 Scaling . 132
10.1.4 Using multiple threads . 132

10.2 Linear optimization . 132
10.2.1 Optimizer selection . 132
10.2.2 The interior-point optimizer . 133
10.2.3 The simplex based optimizer . 138
10.2.4 The interior-point or the simplex optimizer? . 139
10.2.5 The primal or the dual simplex variant? . 139

10.3 Linear network optimization . 140
10.3.1 Network flow problems . 140

10.4 Conic optimization . 140
10.4.1 The interior-point optimizer . 140

10.5 Nonlinear convex optimization . 141
10.5.1 The interior-point optimizer . 141

10.6 Solving problems in parallel . 142
10.6.1 Thread safety . 142
10.6.2 The parallelized interior-point optimizer . 143
10.6.3 The concurrent optimizer . 143

11 The solution summary 145

12 The optimizers for mixed-integer problems 147
12.1 Some concepts and facts related to mixed-integer optimization 147
12.2 The mixed-integer optimizers . 148

CONTENTS vii

12.3 The mixed-integer conic optimizer . 149
12.3.1 Presolve . 149
12.3.2 Heuristic . 149
12.3.3 The optimization phase . 150
12.3.4 Caveats . 150

12.4 The mixed-integer optimizer . 150
12.4.1 Presolve . 150
12.4.2 Heuristic . 150
12.4.3 The optimization phase . 151

12.5 Termination criterion . 151
12.5.1 Relaxed termination . 151
12.5.2 Important parameters . 152

12.6 How to speed up the solution process . 152
12.7 Understanding solution quality . 153

13 The solution summary for mixed integer problems 155

14 The analyzers 157
14.1 The problem analyzer . 157

14.1.1 General characteristics . 158
14.1.2 Objective . 160
14.1.3 Linear constraints . 160
14.1.4 Constraint and variable bounds . 161
14.1.5 Quadratic constraints . 161
14.1.6 Conic constraints . 161

14.2 Analyzing infeasible problems . 161
14.2.1 Example: Primal infeasibility . 162
14.2.2 Locating the cause of primal infeasibility . 163
14.2.3 Locating the cause of dual infeasibility . 164
14.2.4 The infeasibility report . 164
14.2.5 Theory concerning infeasible problems . 168
14.2.6 The certificate of primal infeasibility . 168
14.2.7 The certificate of dual infeasibility . 169

15 Primal feasibility repair 171
15.1 Manual repair . 171
15.2 Automatic repair . 172

15.2.1 Caveats . 173
15.3 Feasibility repair in MOSEK . 174

15.3.1 An example using feasibility repair . 174

16 Sensitivity analysis 179
16.1 Introduction . 179
16.2 Restrictions . 179
16.3 References . 179
16.4 Sensitivity analysis for linear problems . 180

16.4.1 The optimal objective value function . 180

viii CONTENTS

16.4.2 The basis type sensitivity analysis . 181
16.4.3 The optimal partition type sensitivity analysis 182
16.4.4 Example: Sensitivity analysis . 183

16.5 Sensitivity analysis in the MATLAB toolbox . 186
16.5.1 On bounds . 186
16.5.2 Selecting analysis type . 188
16.5.3 An example . 188

17 Problem formulation and solutions 193
17.1 Linear optimization . 193

17.1.1 Duality for linear optimization . 194
17.1.2 Infeasibility for linear optimization . 196

17.2 Conic quadratic optimization . 197
17.2.1 Duality for conic quadratic optimization . 198
17.2.2 Infeasibility for conic quadratic optimization . 199

17.3 Semidefinite optimization . 200
17.3.1 Duality for semidefinite optimization . 200
17.3.2 Infeasibility for semidefinite optimization . 201

17.4 Quadratic and quadratically constrained optimization 202
17.4.1 Duality for quadratic and quadratically constrained optimization 202
17.4.2 Infeasibility for quadratic and quadratically constrained optimization 203

17.5 General convex optimization . 203
17.5.1 Duality for general convex optimization . 204

18 The MPS file format 207
18.1 MPS file structure . 207

18.1.1 Linear example lo1.mps . 209
18.1.2 NAME . 209
18.1.3 OBJSENSE (optional) . 209
18.1.4 OBJNAME (optional) . 210
18.1.5 ROWS . 210
18.1.6 COLUMNS . 210
18.1.7 RHS (optional) . 211
18.1.8 RANGES (optional) . 212
18.1.9 QSECTION (optional) . 212
18.1.10BOUNDS (optional) . 214
18.1.11CSECTION (optional) . 214
18.1.12ENDATA . 216

18.2 Integer variables . 217
18.3 General limitations . 217
18.4 Interpretation of the MPS format . 217
18.5 The free MPS format . 218

19 The LP file format 219
19.1 The sections . 220

19.1.1 The objective . 220
19.1.2 The constraints . 221

CONTENTS ix

19.1.3 Bounds . 222
19.1.4 Variable types . 222
19.1.5 Terminating section . 222
19.1.6 Linear example lo1.lp . 223
19.1.7 Mixed integer example milo1.lp . 223

19.2 LP format peculiarities . 223
19.2.1 Comments . 223
19.2.2 Names . 223
19.2.3 Variable bounds . 224
19.2.4 MOSEK specific extensions to the LP format . 224

19.3 The strict LP format . 225
19.4 Formatting of an LP file . 225

19.4.1 Speeding up file reading . 226
19.4.2 Unnamed constraints . 226

20 The OPF format 227
20.1 Intended use . 227
20.2 The file format . 227

20.2.1 Sections . 228
20.2.2 Numbers . 232
20.2.3 Names . 232

20.3 Parameters section . 232
20.4 Writing OPF files from MOSEK . 233
20.5 Examples . 233

20.5.1 Linear example lo1.opf . 233
20.5.2 Quadratic example qo1.opf . 234
20.5.3 Conic quadratic example cqo1.opf . 235
20.5.4 Mixed integer example milo1.opf . 236

21 The Task format 239

22 The XML (OSiL) format 241

23 Parameters 243
23.1 MSKdparame: Double parameters . 257

23.1.1 MSK DPAR ANA SOL INFEAS TOL . 257
23.1.2 MSK DPAR BASIS REL TOL S . 257
23.1.3 MSK DPAR BASIS TOL S . 258
23.1.4 MSK DPAR BASIS TOL X . 258
23.1.5 MSK DPAR CHECK CONVEXITY REL TOL 258
23.1.6 MSK DPAR DATA TOL AIJ . 259
23.1.7 MSK DPAR DATA TOL AIJ HUGE . 259
23.1.8 MSK DPAR DATA TOL AIJ LARGE . 259
23.1.9 MSK DPAR DATA TOL BOUND INF . 260
23.1.10 MSK DPAR DATA TOL BOUND WRN . 260
23.1.11 MSK DPAR DATA TOL C HUGE . 260
23.1.12 MSK DPAR DATA TOL CJ LARGE . 261

x CONTENTS

23.1.13 MSK DPAR DATA TOL QIJ . 261
23.1.14 MSK DPAR DATA TOL X . 261
23.1.15 MSK DPAR FEASREPAIR TOL . 262
23.1.16 MSK DPAR INTPNT CO TOL DFEAS . 262
23.1.17 MSK DPAR INTPNT CO TOL INFEAS . 263
23.1.18 MSK DPAR INTPNT CO TOL MU RED . 263
23.1.19 MSK DPAR INTPNT CO TOL NEAR REL . 263
23.1.20 MSK DPAR INTPNT CO TOL PFEAS . 264
23.1.21 MSK DPAR INTPNT CO TOL REL GAP . 264
23.1.22 MSK DPAR INTPNT NL MERIT BAL . 264
23.1.23 MSK DPAR INTPNT NL TOL DFEAS . 265
23.1.24 MSK DPAR INTPNT NL TOL MU RED . 265
23.1.25 MSK DPAR INTPNT NL TOL NEAR REL . 265
23.1.26 MSK DPAR INTPNT NL TOL PFEAS . 266
23.1.27 MSK DPAR INTPNT NL TOL REL GAP . 266
23.1.28 MSK DPAR INTPNT NL TOL REL STEP . 266
23.1.29 MSK DPAR INTPNT TOL DFEAS . 267
23.1.30 MSK DPAR INTPNT TOL DSAFE . 267
23.1.31 MSK DPAR INTPNT TOL INFEAS . 267
23.1.32 MSK DPAR INTPNT TOL MU RED . 268
23.1.33 MSK DPAR INTPNT TOL PATH . 268
23.1.34 MSK DPAR INTPNT TOL PFEAS . 268
23.1.35 MSK DPAR INTPNT TOL PSAFE . 269
23.1.36 MSK DPAR INTPNT TOL REL GAP . 269
23.1.37 MSK DPAR INTPNT TOL REL STEP . 269
23.1.38 MSK DPAR INTPNT TOL STEP SIZE . 270
23.1.39 MSK DPAR LOWER OBJ CUT . 270
23.1.40 MSK DPAR LOWER OBJ CUT FINITE TRH 270
23.1.41 MSK DPAR MIO DISABLE TERM TIME . 271
23.1.42 MSK DPAR MIO HEURISTIC TIME . 271
23.1.43 MSK DPAR MIO MAX TIME . 272
23.1.44 MSK DPAR MIO MAX TIME APRX OPT . 272
23.1.45 MSK DPAR MIO NEAR TOL ABS GAP . 273
23.1.46 MSK DPAR MIO NEAR TOL REL GAP . 273
23.1.47 MSK DPAR MIO REL ADD CUT LIMITED 274
23.1.48 MSK DPAR MIO REL GAP CONST . 274
23.1.49 MSK DPAR MIO TOL ABS GAP . 274
23.1.50 MSK DPAR MIO TOL ABS RELAX INT . 275
23.1.51 MSK DPAR MIO TOL FEAS . 275
23.1.52 MSK DPAR MIO TOL REL DUAL BOUND IMPROVEMENT 275
23.1.53 MSK DPAR MIO TOL REL GAP . 276
23.1.54 MSK DPAR MIO TOL REL RELAX INT . 276
23.1.55 MSK DPAR MIO TOL X . 276
23.1.56 MSK DPAR NONCONVEX TOL FEAS . 277
23.1.57 MSK DPAR NONCONVEX TOL OPT . 277
23.1.58 MSK DPAR OPTIMIZER MAX TIME . 277

CONTENTS xi

23.1.59 MSK DPAR PRESOLVE TOL ABS LINDEP 278
23.1.60 MSK DPAR PRESOLVE TOL AIJ . 278
23.1.61 MSK DPAR PRESOLVE TOL REL LINDEP 278
23.1.62 MSK DPAR PRESOLVE TOL S . 279
23.1.63 MSK DPAR PRESOLVE TOL X . 279
23.1.64 MSK DPAR QCQO REFORMULATE REL DROP TOL 279
23.1.65 MSK DPAR SIM LU TOL REL PIV . 280
23.1.66 MSK DPAR SIMPLEX ABS TOL PIV . 280
23.1.67 MSK DPAR UPPER OBJ CUT . 280
23.1.68 MSK DPAR UPPER OBJ CUT FINITE TRH 281

23.2 MSKiparame: Integer parameters . 281
23.2.1 MSK IPAR ALLOC ADD QNZ . 281
23.2.2 MSK IPAR ANA SOL BASIS . 282
23.2.3 MSK IPAR ANA SOL PRINT VIOLATED . 282
23.2.4 MSK IPAR AUTO SORT A BEFORE OPT . 282
23.2.5 MSK IPAR AUTO UPDATE SOL INFO . 283
23.2.6 MSK IPAR BASIS SOLVE USE PLUS ONE . 283
23.2.7 MSK IPAR BI CLEAN OPTIMIZER . 283
23.2.8 MSK IPAR BI IGNORE MAX ITER . 284
23.2.9 MSK IPAR BI IGNORE NUM ERROR . 284
23.2.10 MSK IPAR BI MAX ITERATIONS . 285
23.2.11 MSK IPAR CACHE LICENSE . 285
23.2.12 MSK IPAR CHECK CONVEXITY . 286
23.2.13 MSK IPAR COMPRESS STATFILE . 286
23.2.14 MSK IPAR CONCURRENT NUM OPTIMIZERS 286
23.2.15 MSK IPAR CONCURRENT PRIORITY DUAL SIMPLEX 287
23.2.16 MSK IPAR CONCURRENT PRIORITY FREE SIMPLEX 287
23.2.17 MSK IPAR CONCURRENT PRIORITY INTPNT 287
23.2.18 MSK IPAR CONCURRENT PRIORITY PRIMAL SIMPLEX 288
23.2.19 MSK IPAR FEASREPAIR OPTIMIZE . 288
23.2.20 MSK IPAR INFEAS GENERIC NAMES . 288
23.2.21 MSK IPAR INFEAS PREFER PRIMAL . 289
23.2.22 MSK IPAR INFEAS REPORT AUTO . 289
23.2.23 MSK IPAR INFEAS REPORT LEVEL . 289
23.2.24 MSK IPAR INTPNT BASIS . 290
23.2.25 MSK IPAR INTPNT DIFF STEP . 290
23.2.26 MSK IPAR INTPNT FACTOR DEBUG LVL 291
23.2.27 MSK IPAR INTPNT FACTOR METHOD . 291
23.2.28 MSK IPAR INTPNT HOTSTART . 291
23.2.29 MSK IPAR INTPNT MAX ITERATIONS . 292
23.2.30 MSK IPAR INTPNT MAX NUM COR . 292
23.2.31 MSK IPAR INTPNT MAX NUM REFINEMENT STEPS 292
23.2.32 MSK IPAR INTPNT OFF COL TRH . 293
23.2.33 MSK IPAR INTPNT ORDER METHOD . 293
23.2.34 MSK IPAR INTPNT REGULARIZATION USE 294
23.2.35 MSK IPAR INTPNT SCALING . 294

xii CONTENTS

23.2.36 MSK IPAR INTPNT SOLVE FORM . 294
23.2.37 MSK IPAR INTPNT STARTING POINT . 295
23.2.38 MSK IPAR LIC TRH EXPIRY WRN . 295
23.2.39 MSK IPAR LICENSE ALLOW OVERUSE . 296
23.2.40 MSK IPAR LICENSE DEBUG . 296
23.2.41 MSK IPAR LICENSE PAUSE TIME . 296
23.2.42 MSK IPAR LICENSE SUPPRESS EXPIRE WRNS 297
23.2.43 MSK IPAR LICENSE WAIT . 297
23.2.44 MSK IPAR LOG . 297
23.2.45 MSK IPAR LOG BI . 298
23.2.46 MSK IPAR LOG BI FREQ . 298
23.2.47 MSK IPAR LOG CHECK CONVEXITY . 299
23.2.48 MSK IPAR LOG CONCURRENT . 299
23.2.49 MSK IPAR LOG CUT SECOND OPT . 299
23.2.50 MSK IPAR LOG EXPAND . 300
23.2.51 MSK IPAR LOG FACTOR . 300
23.2.52 MSK IPAR LOG FEAS REPAIR . 301
23.2.53 MSK IPAR LOG FILE . 301
23.2.54 MSK IPAR LOG HEAD . 301
23.2.55 MSK IPAR LOG INFEAS ANA . 302
23.2.56 MSK IPAR LOG INTPNT . 302
23.2.57 MSK IPAR LOG MIO . 302
23.2.58 MSK IPAR LOG MIO FREQ . 303
23.2.59 MSK IPAR LOG NONCONVEX . 303
23.2.60 MSK IPAR LOG OPTIMIZER . 303
23.2.61 MSK IPAR LOG ORDER . 304
23.2.62 MSK IPAR LOG PARAM . 304
23.2.63 MSK IPAR LOG PRESOLVE . 304
23.2.64 MSK IPAR LOG RESPONSE . 305
23.2.65 MSK IPAR LOG SENSITIVITY . 305
23.2.66 MSK IPAR LOG SENSITIVITY OPT . 305
23.2.67 MSK IPAR LOG SIM . 306
23.2.68 MSK IPAR LOG SIM FREQ . 306
23.2.69 MSK IPAR LOG SIM MINOR . 306
23.2.70 MSK IPAR LOG SIM NETWORK FREQ . 307
23.2.71 MSK IPAR LOG STORAGE . 307
23.2.72 MSK IPAR MAX NUM WARNINGS . 307
23.2.73 MSK IPAR MIO BRANCH DIR . 308
23.2.74 MSK IPAR MIO BRANCH PRIORITIES USE 308
23.2.75 MSK IPAR MIO CONSTRUCT SOL . 308
23.2.76 MSK IPAR MIO CONT SOL . 309
23.2.77 MSK IPAR MIO CUT LEVEL ROOT . 309
23.2.78 MSK IPAR MIO CUT LEVEL TREE . 310
23.2.79 MSK IPAR MIO FEASPUMP LEVEL . 310
23.2.80 MSK IPAR MIO HEURISTIC LEVEL . 311
23.2.81 MSK IPAR MIO HOTSTART . 311

CONTENTS xiii

23.2.82 MSK IPAR MIO KEEP BASIS . 312
23.2.83 MSK IPAR MIO LOCAL BRANCH NUMBER 312
23.2.84 MSK IPAR MIO MAX NUM BRANCHES . 312
23.2.85 MSK IPAR MIO MAX NUM RELAXS . 313
23.2.86 MSK IPAR MIO MAX NUM SOLUTIONS . 313
23.2.87 MSK IPAR MIO MODE . 314
23.2.88 MSK IPAR MIO MT USER CB . 314
23.2.89 MSK IPAR MIO NODE OPTIMIZER . 314
23.2.90 MSK IPAR MIO NODE SELECTION . 315
23.2.91 MSK IPAR MIO OPTIMIZER MODE . 316
23.2.92 MSK IPAR MIO PRESOLVE AGGREGATE . 316
23.2.93 MSK IPAR MIO PRESOLVE PROBING . 316
23.2.94 MSK IPAR MIO PRESOLVE USE . 317
23.2.95 MSK IPAR MIO ROOT OPTIMIZER . 317
23.2.96 MSK IPAR MIO STRONG BRANCH . 318
23.2.97 MSK IPAR MIO USE MULTITHREADED OPTIMIZER 318
23.2.98 MSK IPAR MT SPINCOUNT . 318
23.2.99 MSK IPAR NONCONVEX MAX ITERATIONS 319
23.2.100MSK IPAR NUM THREADS . 319
23.2.101MSK IPAR OPF MAX TERMS PER LINE . 319
23.2.102MSK IPAR OPF WRITE HEADER . 320
23.2.103MSK IPAR OPF WRITE HINTS . 320
23.2.104MSK IPAR OPF WRITE PARAMETERS . 320
23.2.105MSK IPAR OPF WRITE PROBLEM . 321
23.2.106MSK IPAR OPF WRITE SOL BAS . 321
23.2.107MSK IPAR OPF WRITE SOL ITG . 321
23.2.108MSK IPAR OPF WRITE SOL ITR . 322
23.2.109MSK IPAR OPF WRITE SOLUTIONS . 322
23.2.110MSK IPAR OPTIMIZER . 323
23.2.111MSK IPAR PARAM READ CASE NAME . 323
23.2.112MSK IPAR PARAM READ IGN ERROR . 324
23.2.113MSK IPAR PRESOLVE ELIM FILL . 324
23.2.114MSK IPAR PRESOLVE ELIMINATOR MAX NUM TRIES 324
23.2.115MSK IPAR PRESOLVE ELIMINATOR USE . 325
23.2.116MSK IPAR PRESOLVE LEVEL . 325
23.2.117MSK IPAR PRESOLVE LINDEP ABS WORK TRH 325
23.2.118MSK IPAR PRESOLVE LINDEP REL WORK TRH 326
23.2.119MSK IPAR PRESOLVE LINDEP USE . 326
23.2.120MSK IPAR PRESOLVE MAX NUM REDUCTIONS 326
23.2.121MSK IPAR PRESOLVE USE . 327
23.2.122MSK IPAR PRIMAL REPAIR OPTIMIZER . 327
23.2.123MSK IPAR QO SEPARABLE REFORMULATION 328
23.2.124MSK IPAR READ ANZ . 328
23.2.125MSK IPAR READ CON . 328
23.2.126MSK IPAR READ CONE . 329
23.2.127MSK IPAR READ DATA COMPRESSED . 329

xiv CONTENTS

23.2.128MSK IPAR READ DATA FORMAT . 329
23.2.129MSK IPAR READ KEEP FREE CON . 330
23.2.130MSK IPAR READ LP DROP NEW VARS IN BOU 330
23.2.131MSK IPAR READ LP QUOTED NAMES . 331
23.2.132MSK IPAR READ MPS FORMAT . 331
23.2.133MSK IPAR READ MPS KEEP INT . 331
23.2.134MSK IPAR READ MPS OBJ SENSE . 332
23.2.135MSK IPAR READ MPS RELAX . 332
23.2.136MSK IPAR READ MPS WIDTH . 333
23.2.137MSK IPAR READ QNZ . 333
23.2.138MSK IPAR READ TASK IGNORE PARAM . 333
23.2.139MSK IPAR READ VAR . 334
23.2.140MSK IPAR SENSITIVITY ALL . 334
23.2.141MSK IPAR SENSITIVITY OPTIMIZER . 334
23.2.142MSK IPAR SENSITIVITY TYPE . 335
23.2.143MSK IPAR SIM BASIS FACTOR USE . 335
23.2.144MSK IPAR SIM DEGEN . 336
23.2.145MSK IPAR SIM DUAL CRASH . 336
23.2.146MSK IPAR SIM DUAL PHASEONE METHOD 337
23.2.147MSK IPAR SIM DUAL RESTRICT SELECTION 337
23.2.148MSK IPAR SIM DUAL SELECTION . 337
23.2.149MSK IPAR SIM EXPLOIT DUPVEC . 338
23.2.150MSK IPAR SIM HOTSTART . 338
23.2.151MSK IPAR SIM HOTSTART LU . 339
23.2.152MSK IPAR SIM INTEGER . 339
23.2.153MSK IPAR SIM MAX ITERATIONS . 339
23.2.154MSK IPAR SIM MAX NUM SETBACKS . 340
23.2.155MSK IPAR SIM NON SINGULAR . 340
23.2.156MSK IPAR SIM PRIMAL CRASH . 340
23.2.157MSK IPAR SIM PRIMAL PHASEONE METHOD 341
23.2.158MSK IPAR SIM PRIMAL RESTRICT SELECTION 341
23.2.159MSK IPAR SIM PRIMAL SELECTION . 341
23.2.160MSK IPAR SIM REFACTOR FREQ . 342
23.2.161MSK IPAR SIM REFORMULATION . 342
23.2.162MSK IPAR SIM SAVE LU . 343
23.2.163MSK IPAR SIM SCALING . 343
23.2.164MSK IPAR SIM SCALING METHOD . 344
23.2.165MSK IPAR SIM SOLVE FORM . 344
23.2.166MSK IPAR SIM STABILITY PRIORITY . 344
23.2.167MSK IPAR SIM SWITCH OPTIMIZER . 345
23.2.168MSK IPAR SOL FILTER KEEP BASIC . 345
23.2.169MSK IPAR SOL FILTER KEEP RANGED . 345
23.2.170MSK IPAR SOL READ NAME WIDTH . 346
23.2.171MSK IPAR SOL READ WIDTH . 346
23.2.172MSK IPAR SOLUTION CALLBACK . 347
23.2.173MSK IPAR TIMING LEVEL . 347

CONTENTS xv

23.2.174MSK IPAR WARNING LEVEL . 347
23.2.175MSK IPAR WRITE BAS CONSTRAINTS . 348
23.2.176MSK IPAR WRITE BAS HEAD . 348
23.2.177MSK IPAR WRITE BAS VARIABLES . 348
23.2.178MSK IPAR WRITE DATA COMPRESSED . 349
23.2.179MSK IPAR WRITE DATA FORMAT . 349
23.2.180MSK IPAR WRITE DATA PARAM . 349
23.2.181MSK IPAR WRITE FREE CON . 350
23.2.182MSK IPAR WRITE GENERIC NAMES . 350
23.2.183MSK IPAR WRITE GENERIC NAMES IO . 351
23.2.184MSK IPAR WRITE IGNORE INCOMPATIBLE CONIC ITEMS 351
23.2.185MSK IPAR WRITE IGNORE INCOMPATIBLE ITEMS 351
23.2.186MSK IPAR WRITE IGNORE INCOMPATIBLE NL ITEMS 352
23.2.187MSK IPAR WRITE IGNORE INCOMPATIBLE PSD ITEMS 352
23.2.188MSK IPAR WRITE INT CONSTRAINTS . 352
23.2.189MSK IPAR WRITE INT HEAD . 353
23.2.190MSK IPAR WRITE INT VARIABLES . 353
23.2.191MSK IPAR WRITE LP LINE WIDTH . 353
23.2.192MSK IPAR WRITE LP QUOTED NAMES . 354
23.2.193MSK IPAR WRITE LP STRICT FORMAT . 354
23.2.194MSK IPAR WRITE LP TERMS PER LINE . 354
23.2.195MSK IPAR WRITE MPS INT . 355
23.2.196MSK IPAR WRITE PRECISION . 355
23.2.197MSK IPAR WRITE SOL BARVARIABLES . 355
23.2.198MSK IPAR WRITE SOL CONSTRAINTS . 356
23.2.199MSK IPAR WRITE SOL HEAD . 356
23.2.200MSK IPAR WRITE SOL IGNORE INVALID NAMES 356
23.2.201MSK IPAR WRITE SOL VARIABLES . 357
23.2.202MSK IPAR WRITE TASK INC SOL . 357
23.2.203MSK IPAR WRITE XML MODE . 357

23.3 MSKsparame: String parameter types . 358
23.3.1 MSK SPAR BAS SOL FILE NAME . 358
23.3.2 MSK SPAR DATA FILE NAME . 358
23.3.3 MSK SPAR DEBUG FILE NAME . 358
23.3.4 MSK SPAR FEASREPAIR NAME PREFIX . 359
23.3.5 MSK SPAR FEASREPAIR NAME SEPARATOR 359
23.3.6 MSK SPAR FEASREPAIR NAME WSUMVIOL 359
23.3.7 MSK SPAR INT SOL FILE NAME . 360
23.3.8 MSK SPAR ITR SOL FILE NAME . 360
23.3.9 MSK SPAR MIO DEBUG STRING . 360
23.3.10 MSK SPAR PARAM COMMENT SIGN . 361
23.3.11 MSK SPAR PARAM READ FILE NAME . 361
23.3.12 MSK SPAR PARAM WRITE FILE NAME . 361
23.3.13 MSK SPAR READ MPS BOU NAME . 362
23.3.14 MSK SPAR READ MPS OBJ NAME . 362
23.3.15 MSK SPAR READ MPS RAN NAME . 362

xvi CONTENTS

23.3.16 MSK SPAR READ MPS RHS NAME . 363
23.3.17 MSK SPAR SENSITIVITY FILE NAME . 363
23.3.18 MSK SPAR SENSITIVITY RES FILE NAME 363
23.3.19 MSK SPAR SOL FILTER XC LOW . 364
23.3.20 MSK SPAR SOL FILTER XC UPR . 364
23.3.21 MSK SPAR SOL FILTER XX LOW . 364
23.3.22 MSK SPAR SOL FILTER XX UPR . 365
23.3.23 MSK SPAR STAT FILE NAME . 365
23.3.24 MSK SPAR STAT KEY . 365
23.3.25 MSK SPAR STAT NAME . 366
23.3.26 MSK SPAR WRITE LP GEN VAR NAME . 366

24 Response codes 367

25 API constants 397
25.1 Constraint or variable access modes . 397
25.2 Basis identification . 397
25.3 Bound keys . 398
25.4 Specifies the branching direction. 398
25.5 Progress call-back codes . 398
25.6 Types of convexity checks. 407
25.7 Compression types . 407
25.8 Cone types . 407
25.9 Data format types . 407
25.10 Double information items . 408
25.11 Feasibility repair types . 413
25.12 License feature . 413
25.13 Integer information items. 413
25.14 Information item types . 420
25.15 Hot-start type employed by the interior-point optimizers. 420
25.16 Input/output modes . 420
25.17 Language selection constants . 421
25.18 Long integer information items. 421
25.19 Mark . 422
25.20 Continuous mixed-integer solution type . 422
25.21 Integer restrictions . 422
25.22 Mixed-integer node selection types . 423
25.23 MPS file format type . 423
25.24 Message keys . 423
25.25 Cone types . 424
25.26 Objective sense types . 424
25.27 On/off . 424
25.28 Optimizer types . 424
25.29 Ordering strategies . 425
25.30 Parameter type . 426
25.31 Presolve method. 426

CONTENTS xvii

25.32 Problem data items . 426
25.33 Problem types . 426
25.34 Problem status keys . 427
25.35 Response code type . 428
25.36 Scaling type . 428
25.37 Scaling type . 428
25.38 Sensitivity types . 429
25.39 Degeneracy strategies . 429
25.40 Exploit duplicate columns. 429
25.41 Hot-start type employed by the simplex optimizer . 430
25.42 Problem reformulation. 430
25.43 Simplex selection strategy . 430
25.44 Solution items . 431
25.45 Solution status keys . 431
25.46 Solution types . 433
25.47 Solve primal or dual form . 433
25.48 Status keys . 433
25.49 Starting point types . 434
25.50 Stream types . 434
25.51 Cone types . 434
25.52 Integer values . 435
25.53 Variable types . 435
25.54 XML writer output mode . 435

26 Problem analyzer examples 437
26.1 air04 . 437
26.2 arki001 . 438
26.3 Problem with both linear and quadratic constraints . 440
26.4 Problem with both linear and conic constraints . 441

xviii CONTENTS

Contact information

Phone +45 3917 9907
Fax +45 3917 9823
WEB http://www.mosek.com
Email sales@mosek.com Sales, pricing, and licensing.

support@mosek.com Technical support, questions and bug reports.
info@mosek.com Everything else.

Mail MOSEK ApS

C/O Symbion Science Park
Fruebjergvej 3, Box 16
2100 Copenhagen Ō
Denmark

1

http://www.mosek.com
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com

2 CONTENTS

License agreement

Before using the MOSEK software, please read the license agreement available in the distribution at

mosek\7\license.pdf

3

4 CONTENTS

Chapter 1

Changes and new features in
MOSEK

The section presents improvements and new features added to MOSEK in version 7.0.

1.1 Platform support

In Table 1.1 the supported platform and compiler used to build MOSEK shown. Although RedHat
is explicitly mentioned as the supported Linux distribution then MOSEK will work on most other
variants of Linux. However, the license manager tools requires Linux Standard Base 3 or newer is
installed.

1.2 General changes

• The interior-point optimizer has been extended to semi-definite optimization problems. Hence,
MOSEK can optimize over the positive semi-definite cone.

• The network detection has been completely redesigned. MOSEK no longer try detect partial
networks. The problem must be a pure primal network for the network optimizer to be used.

• The parameter iparam.objective sense has been removed.

• The parameter iparam.intpnt num threads has been removed. Use the parameter iparam.num threads
instead.

• MOSEK now automatically exploit multiple CPUs i.e. the parameter iparam.num threads is set
to 0 be default. Note the amount memory that MOSEK uses grows with the number of threads
employed.

5

6 CHAPTER 1. CHANGES AND NEW FEATURES IN MOSEK

Platform OS version C compiler
linux32x86 Redhat 5 or newer (LSB 3+) Intel C 13.1 (gcc 4.3, glibc 2.3.4)
linux64x86 RedHat 5 or newer (LSB 3+) Intel C 13.1 (gcc 4.3, glibc 2.3.4)
osx64x86 OSX 10.7 Lion or newer Intel C 13.0 (llvm-gcc-4.2)
win32x86 Windows XP, Server 2003 or newer Intel C 13.0 (VS 2008)
win64x86 Windows XP, Server 2003 or newer Intel C 13.1 (VS 2008)

Interface Supported versions
Java Sun Java 1.6+
Microsoft.NET 2.1+
Python 2 2.6+
Python 3 3.1+

Table 1.1: Supported platforms

• The MBT file format has been replaced by a new task format. The new format supports semi-
definite optimization.

• the HTML version of the documentation is no longer included in the downloads to save space.
It is still available online.

• MOSEK is more restrictive about the allowed names on variables etc. This is in particular the
case when writing LP files.

• MOSEK no longer tries to detect the cache sizes and is in general less sensitive to the hardware.

• The parameter is set iparam.auto update sol info is default off. In previous version it was by
default on.

• The function relaxprimal has been deprecated and replaced by the function primalrepair.

1.3 Optimizers

1.3.1 Interior point optimizer

• The factorization routines employd by the interior-point optimizer for linear and conic opti-
mization problems has been completely rewritten. In particular the dense column detection and
handling is improved. The factorization routine will also exploit vendor tuned BLAS routines.

1.3.2 The simplex optimizers

• No major changes.

1.4. API CHANGES 7

1.3.3 Mixed-integer optimizer

• A new mixed-integer for linear and conic problems has been introduced. It is from run-to-run
determinitic and is parallelized. It is particular suitable for conic problems.

1.4 API changes

• Added support for semidefinite optimization.

• Some clean up has been performed implying some functions have been renamed.

1.5 Optimization toolbox for MATLAB

• A MOSEK equivalent of bintprog has been introduced.

• The functionality of the MOSEK version of linprog has been improved. It is now possible to
employ the simplex optimizer in linprog.

• mosekopt now accepts a dense A matrix.

• An new method for specification of cones that is more efficient when the problem has many cones
has introduced. The old method is still allowed but is deprecated.

• Support for semidefinite optimization problems has been added to the toolbox.

1.6 License system

• Flexlm has been upgraded to version 11.11.

1.7 Other changes

• The documentation has been improved.

1.8 Interfaces

• Semi-definite optimization capabilities have been add to the optimizer APIs.

• A major clean up have occured in the optimizer APIs. This should have little effect for most
users.

• A new object orientated interface called Fusion has been added. Fusion is available Java, MAT-
LAB, .NET and Python.

• The AMPL command line tool has been updated to the latest version.

8 CHAPTER 1. CHANGES AND NEW FEATURES IN MOSEK

1.9 Platform changes

• 32 bit MAC OSX on Intel x86 (osx32x86) is no longer supported.

• 32 and 64 bit Solaris on Intel x86 (solaris32x86,solaris64x86) is no longer supported.

Chapter 2

Introduction

This manual describes the features of the MOSEK optimization toolbox for MATLAB. The toolbox
makes it possible to call the highly efficient MOSEK optimization engine from the MATLAB environ-
ment.

2.1 What is optimization?

Many decision problems facing individuals and companies can be cast as an optimization problem i.e.
making an optimal decision given some constraints specifying the possible decisions. As an example
consider the problem of determining an optimal production plan. This can be formulated as maximizing
a profit function given a set of constraints specifying the possible production plans.

2.2 Why you need the MOSEK optimization toolbox

Before solving an optimization problem data is gathered and prepared. Subsequently an optimization
problem is formulated based on this data and the problem is communicated to the optimization soft-
ware. Finally, when the results have been obtained, they are analyzed and interpreted. A popular
software tool for these tasks is MATLAB, made by MathWorks (see http://www.mathworks.com).
The MOSEK optimization solvers are well-established and succesfully deployed throughout the op-
timization industry, and the MOSEK toolbox provides access to the powerful MOSEK solvers from
inside the MATLAB environment.

2.2.1 Features of the MOSEK optimization toolbox

Below is a partial list of features in the MOSEK optimization toolbox.

• Solve linear optimization problems using either an interior-point or a simplex optimizer.

9

10 CHAPTER 2. INTRODUCTION

• Solve conic quadratic and semidefinite optimization problems.

• Solve convex quadratic optimization problems.

• Handle convex quadratic constraints.

• Solve mixed-integer optimization problems, including linear, convex quadratic and conic quadratic
problems.

• Solve linear least squares problems with linear constraints.

• Solve linear l1 and l∞ norm minimization problems.

• Solve linearly constrained entropy optimization problems.

• Solve geometric programming problems (posynomial programming).

• Solve separable convex optimization problems.

• Read and write industry standard MPS files.

Chapter 3

Supported MATLAB versions

Table 3.1 shows on which platforms and for which MATLAB versions the MOSEK optimization toolbox
is available.

Platform R2009b-R2011b R2012a R2012b R2013a+
linux32x86 Yes Yes
linux64x86 Yes Yes Yes Yes
osx64x86 Yes Yes Yes
win32x86 Yes Yes Yes Yes
win64x86 Yes Yes Yes Yes

Table 3.1: Supported MATLAB versions.

11

12 CHAPTER 3. SUPPORTED MATLAB VERSIONS

Chapter 4

Installation

In order to use the MOSEK optimization toolbox for MATLAB, you must install the MOSEK opti-
mization tools. Please see Chapter 1 in the MOSEK installation manual for details on how to install
MOSEK. An online version is available at

http://mosek.com/resources/doc/

4.1 Locating the toolbox functions

By default MATLAB cannot locate the MOSEK optimization toolbox functions. Therefore you must
execute the addpath command within MATLAB to change the so-called matlabpath appropriately.
Indeed matlabpath should include a path to the MOSEK optimization toolbox functions. The next
subsections show how to use addpath.

4.1.1 On Windows

If you are using Windows you should do

% For versions R2009b to R2011b

addpath ’c:\Program Files\mosek\7\toolbox\r2009b’

% For versions R2012a and R2012b

addpath ’c:\Program Files\mosek\7\toolbox\r2012a’

% For R2013a or newer

addpath ’c:\Program Files\mosek\7\toolbox\r2013a’

This assumes that you installed MOSEK at

c:\Program Files\

If this is not the case, you will have to change the path given to addpath.

13

http://mosek.com/resources/doc/

14 CHAPTER 4. INSTALLATION

4.1.2 On Linux/UNIX/MAC OS X

If you are using UNIX or a UNIX-like operating system you should do

% For versions R2009b to R2011b

% These versions are not supported on MAC OSX.

addpath ’/home/user/mosek/7/toolbox/r2009b’

% For versions R2012a and R2012b

addpath ’/home/user/mosek/7/toolbox/r2012a’

% For versions R2013a or newer

addpath ’/home/user/mosek/7/toolbox/r2013a’

This assumes that MOSEK is installed at

/home/user

If this is not the case, you will have to change the path given to addpath.

4.1.3 Permanently changing matlabpath

Normally, you will have to enter the addpath command every time MATLAB is started. This can be
avoided if the addpath command is added to

<matlab>toolbox\local\startup.m

where <matlab> is the MATLAB root directory. Alternatively the permanent modification of the
MATLAB path can be performed using the

\File\Set Path

menu item.

4.2 Verifying that MOSEK works

You can verify that MOSEK works by executing

mosekdiag

in MATLAB. You should get a message similar to this:

Matlab version: 7.13.0.564 (R2011b)

Architecture : GLNXA64

The mosek optimizer executed successfully from the command line:

MOSEK Version 7.0.0.78 (Build date: 2013-8-13 14:11:04)

Copyright (c) 1998-2013 MOSEK ApS, Denmark. WWW: http://mosek.com

Global optimizer version: 8.0.868.287. Global optimizer build date: Jan 21 2013 10:42:51

Barrier Solver Version 7.0.0.078,

Platform Linux 64x86 (D).

FlexLM

Version : 11.11

Hostname : gram

Host ID : "bc305bea244f bc305bea2450"

4.3. TROUBLESHOOTING 15

Search path : /home/someuser/mosek/7/mosek.lic

Operating system variables

MOSEKLM LICENSE FILE : /home/joachim/mosekprj/generic/license/1000.lic

LD LIBRARY PATH :

/remote/public/matlab/r2011b/sys/os/glnxa64

/remote/public/matlab/r2011b/bin/glnxa64

/remote/public/matlab/r2011b/extern/lib/glnxa64

/remote/public/matlab/r2011b/sys/java/jre/glnxa64/jre/lib/amd64/native threads

/remote/public/matlab/r2011b/sys/java/jre/glnxa64/jre/lib/amd64/server

/remote/public/matlab/r2011b/sys/java/jre/glnxa64/jre/lib/amd64

*** No input file specfied. No optimization is performed.

Return code - 0 [MSK RES OK]

mosekopt: /home/someuser/mosek/7/toolbox/r2009b/mosekopt.mexa64

mosekopt is working correctly.

MOSEK Fusion is working correctly.

If you do not get this message, please read Section 4.3.

4.3 Troubleshooting

4.3.1 Undefined function or variable ’mosekopt’

If you get the MATLAB error message

Undefined function or variable ’mosekopt’

you have not set up the matlabpath correctly as described in Section 4.1.

4.3.2 Invalid MEX-file

For certain versions of Microsoft Windows and MATLAB, the path to the MEX files cannot contain
spaces. If you installed MOSEK in

C:\Program Files\Mosek

and get a MATLAB error from mosekopt:

Invalid MEX-file ’C:\Program
Files\Mosek\7\toolbox\r2012a\mosekopt.mexw64’

Then try installing MOSEK in a different directory, for example

C:\Users\someuser\mosek

4.3.3 Output arguments not assigned

If you encounter an error like

Error in ==> mosekopt at 1

function [r,res] = mosekopt(cmd,prob,param,callback)

16 CHAPTER 4. INSTALLATION

Output argument "r" (and maybe others) not assigned during call to

"C:\Users\someuser\mosek\7\toolbox\r2009b\mosekopt.m>mosekopt".

then there is most like a mismatch between 32 and 64 versions of MOSEK and MATLAB.

From MATLAB type

>> which mosekopt

which (for a succesful installation) should point to a mex file,

C:\Users\someuser\mosek\7\toolbox\r2009b\mosekopt.mexw64

and not a MATLAB .m file,

C:\Users\someuser\mosek\7\toolbox\r2009b\mosekopt.m

Chapter 5

Getting support and help

5.1 MOSEK documentation

For an overview of the available MOSEK documentation please see

mosek/7/help/index.html

in the distribution.

5.2 Additional reading

In this manual it is assumed that the reader is familiar with mathematics and in particular math-
ematical optimization. Some introduction to linear programming is found in books such as ”Linear
programming” by Chvátal [1] or ”Computer Solution of Linear Programs” by Nazareth [2]. For more
theoretical aspects see e.g. ”Nonlinear programming: Theory and algorithms” by Bazaraa, Shetty,
and Sherali [3]. Finally, the book ”Model building in mathematical programming” by Williams [4]
provides an excellent introduction to modeling issues in optimization.

Another useful resource is ”Mathematical Programming Glossary” available at

http://glossary.computing.society.informs.org

17

http://glossary.computing.society.informs.org

18 CHAPTER 5. GETTING SUPPORT AND HELP

Chapter 6

MOSEK / MATLAB integration

In this chapter we provide some details concerning the integration of MOSEK in MATLAB. The
information in this chapter is not strictly necessary for basic use of the MOSEK optimization toolbox
for MATLAB. The novice user can safely ok to the next chapter.

6.1 MOSEK replacements for MATLAB functions

MOSEK provides replacements for the MATLAB functions:

• linprog

• quadprog

• lsqlin

• lsqnonneg

• bintprog

The corresponding MATLAB file for each function is located in the toolbox/solvers directory of the
MOSEK distribution. To use the MATLAB version of these functions instead of the MOSEK version,
delete the MATLAB files provided by MOSEK.

6.2 The license system

By default a license token remains checked out for the duration of the MATLAB session. This can
be changed such that the license is returned after each call to MOSEK by setting the parameter
MSK IPAR CACHE LICENSE.

param.MSK IPAR CACHE LICENSE = ’MSK OFF’; %set parameter.

[r,res] = mosekopt(’minimize’,prob,param); %call mosek.

19

20 CHAPTER 6. MOSEK / MATLAB INTEGRATION

implies that the license is released immediately after the optimizer has terminated.

It should however be noted that there is a small overhead associated with checking out a license token
from the license server.

6.2.1 Waiting for a free license

By default an error will be returned if no license token is available. By setting the parameter
MSK IPAR LICENSE WAITMOSEK can be instructed to wait until a license token is available.

param.MSK IPAR LICENSE WAIT = ’MSK ON’; %set parameter.

[r,res] = mosekopt(’minimize’,prob,param); %call mosek.

6.2.2 Using MOSEK with the Parallel Computing Toolbox

Running MOSEK with the Parallel Computing Toolbox requires multiple MOSEK licenses, since each
thread runs a separate instance of the MOSEK optimizer. Each thread thus requires a MOSEK license.

Chapter 7

A guided tour

7.1 Introduction

One of the big advantages of MATLAB is that it makes it very easy to do experiments and try out
things without doing a lot of programming. The MOSEK optimization toolbox has been designed with
this in mind. Hence, it should be very easy to solve optimization problems using MOSEK Moreover,
a guided tour to the optimization toolbox has been designed to introduce the toolbox by examples.
After having studyied these examples, the reader should be able to solve his or her own optimization
problems without much further effort. Nevertheless, for the user interested in exploiting the toolbox
to the limits, a detailed discussion and command reference are provided in the following chapters.

7.2 The tour starts

The MOSEK optimization toolbox consists of two layers of functions. The procedures in the top
layer are application specific functions which have an easy-to-use interface. Currently, there are five
procedures in the top layer:

msklpopt

Performs linear optimization.

mskqpopt

Performs quadratic optimization.

mskenopt

Performs entropy optimization.

mskgpopt

Performs geometric optimization (posynomial case).

21

22 CHAPTER 7. A GUIDED TOUR

mskscopt

Performs separable convex optimization.

The bottom layer of the MOSEK optimization toolbox consists of one procedure named mosekopt

This procedure provides a very flexible and powerful interface to the MOSEK optimization package.
However, the price for this flexibility is a more complicated calling procedure.

For compatibility with the MATLAB optimization toolbox MOSEK also provides an implementation
of linprog, quadprog and so forth. For details about these functions we refer the reader to Chapter
8.

In the following sections usage of the MOSEK optimization toolbox is demonstrated using examples.
Most of these examples are available in

mosek\7\toolbox\examp\

7.3 The MOSEK terminology

First, some MOSEK terminology is introduced which will make the following sections easy to under-
stand.

The MOSEK optimization toolbox can solve different classes of optimization problems such as linear,
quadratic, conic, and mixed-integer optimization problems. Each of these problems is solved by one
of the optimizers in MOSEK Indeed MOSEK includes the following optimizers:

• Interior-point optimizer.

• Conic interior-point optimizer.

• Primal simplex optimizer.

• Mixed-integer optimizer.

Depending on the optimizer different solution types may be produced, e.g. the interior-point optimizers
produce a general interior-point solution whereas the simplex optimizer produces a basic solution.

7.4 Linear optimization

The first example is the linear optimization problem

minimize x1 + 2x2

subject to 4 ≤ x1 + x3 ≤ 6,
1 ≤ x1 + x2,

0 ≤ x1, x2, x3.

(7.1)

7.4. LINEAR OPTIMIZATION 23

7.4.1 Using msklpopt

A linear optimization problem such as (7.1) can be solved using the msklpopt function which is designed
for solving the problem

minimize cTx
subject to lc ≤ Ax ≤ uc,

lx ≤ x ≤ ux.
(7.2)

lc and uc are called constraint bounds whereas lx and ux are variable bounds.

The first step in solving the example (7.1) is to setup the data for problem (7.2) i.e. the c, A, etc.
Afterwards the problem is solved using an appropriate call to msklpopt.

[lo1.m]
1 % lo1.m

2

3 c = [1 2 0]’;

4 a = [[1 0 1];[1 1 0]];

5 blc = [4 1]’;

6 buc = [6 inf]’;

7 blx = sparse(3,1);

8 bux = [];

9 [res] = msklpopt(c,a,blc,buc,blx,bux);

10 sol = res.sol;

11

12 % Interior-point solution.

13

14 sol.itr.xx’ % x solution.

15 sol.itr.sux’ % Dual variables corresponding to buc.

16 sol.itr.slx’ % Dual variables corresponding to blx.

17

18 % Basic solution.

19

20 sol.bas.xx’ % x solution in basic solution.

Please note that

• Infinite bounds are specified using -inf and inf. Moreover, the bux = [] means that all upper
bounds ux are plus infinite.

• The [res] = msklpopt(c,a,blc,buc) call implies that the lower and upper bounds on x are
minus and plus infinity respectively.

• The lines after the msklpopt call can be omitted, but the purpose of those lines is to display
different parts of the solutions. The res.sol field contains one or more solutions. In this case
both the interior-point solution (sol.itr) and the basic solution (sol.bas) are defined.

7.4.2 Using mosekopt

The msklpopt function is in fact just a wrapper around the real optimization routine mosekopt .
Therefore, an alternative to using the msklpopt is to call mosekopt directly. In general, the syntax

24 CHAPTER 7. A GUIDED TOUR

for a mosekopt call is

[rcode,res] = mosekopt(cmd,prob,param)

The arguments prob and param are optional. The purpose of the arguments are as follows:

cmd

string telling mosekopt what to do, e.g. ’minimize info’ tells mosekopt that the objective
should be minimized and information about the optimization should be returned.

prob

MATLAB structure specifying the problem that should be optimized.

param

MATLAB structure specifying parameters controlling the behavior of the MOSEK optimizer.
However, in general it should not be necessary to change the parameters.

The following MATLAB commands demonstrate how to set up the prob structure for the example
(7.1) and solve the problem using mosekopt

[lo2.m]
1 % lo2.m

2

3 clear prob;

4

5 % Specify the c vector.

6 prob.c = [1 2 0]’;

7

8 % Specify a in sparse format.

9 subi = [1 2 2 1];

10 subj = [1 1 2 3];

11 valij = [1.0 1.0 1.0 1.0];

12

13 prob.a = sparse(subi,subj,valij);

14

15 % Specify lower bounds of the constraints.

16 prob.blc = [4.0 1.0]’;

17

18 % Specify upper bounds of the constraints.

19 prob.buc = [6.0 inf]’;

20

21 % Specify lower bounds of the variables.

22 prob.blx = sparse(3,1);

23

24 % Specify upper bounds of the variables.

25 prob.bux = []; % There are no bounds.

26

27 % Perform the optimization.

28 [r,res] = mosekopt(’minimize’,prob);

29

30 % Show the optimal x solution.

31 res.sol.bas.xx

Please note that

7.5. CONVEX QUADRATIC OPTIMIZATION 25

• A MATLAB structure named prob containing all the relevant problem data is defined.

• All fields of this structure are optional except prob.a which is required to be a sparse matrix.

• Different parts of the solution can be viewed by inspecting the solution field res.sol.

7.4.3 Using linprog

MOSEK also provides a linprog function, which is compatible with the function provided by the
MATLAB toolbox.

The linprog functions solves a linear optimization problem:

minimize fTx
subject to Ax ≤ b,

Bx = c,
l ≤ x ≤ u,

using the syntax

[x,fval,exitflag,output,lambda] = linprog(f,A,b,B,c,l,u,x0,options)

Several control parameters can be set using the options structure, for example,

options.Write = ’test.opf’;

linprog(f,A,b,B,c,l,u,x0,options);

creates a human readable opf file of the problem, and

options.Write = ’test.task’;

linprog(f,A,b,B,c,l,u,x0,options);

creates a binary task file which can be send to MOSEK for debugging assistance or reporting errors.

Consult section (8.4) for details on using linprog and other compatibility functions.

Internally, the linprog function is just a wrapper for the mosekopt function, and is mainly intended
for compatibility reasons; advanced features are mainly available through the mosekopt function.

7.5 Convex quadratic optimization

A frequently occurring problem type is the quadratic optimization problem which consists of mini-
mizing a quadratic objective function subject to linear constraints. One example of such a problem
is:

minimize x2
1 + 0.1x2

2 + x2
3 − x1x3 − x2

subject to 1 ≤ x1 + x2 + x3

x ≥ 0.
(7.3)

In general, a quadratic optimization problem has the form

26 CHAPTER 7. A GUIDED TOUR

minimize
1

2
xTQx+ cTx

subject to lc ≤ Ax, ≤ uc,
lx ≤ x ≤ ux,

(7.4)

which for the example (7.3) implies that

Q =

 2 0 − 1
0 0.2 0
− 1 0 2

 , c =

 0
− 1
0

 , A =
[

1 1 1
]
,

and that

lc = 1, uc =∞, lx =

 0
0
0

 and ux =

 ∞∞
∞

Please note the explicit 1

2 in the objective function of (7.4) which implies that diagonal elements must
be doubled in Q, i.e. Q11 = 2, whereas the coefficient in (7.3) is 1 in front of x2

1.

7.5.1 Two important assumptions

MOSEK assumes that the Q matrix is symmetric, i.e.

Q = QT

and that Q is positive semidefinite.A matrix is positive semidefinite if the smallest eigenvalue of the
matrix is nonnegative. An alternative statement of the positive semidefinite requirement is

xTQx ≥ 0, ∀x.

If Q is not positive semidefinite, then MOSEK will not produce reliable results or work at all.

One way of checking whether Q is positive semidefinite is to check whether all the eigenvalues of Q
are nonnegative. The MATLAB command eig computes all eigenvalues of a matrix.

7.5.2 Using mskqpopt

The subsequent MATLAB statements solve the problem (7.3) using the mskqpoptMOSEK function

[qo1.m]
1 % qo1.m

2

3 % Set up Q.

4 q = [[2 0 -1];[0 0.2 0];[-1 0 2]];

5

6 % Set up the linear part of the problem.

7 c = [0 -1 0]’;

7.5. CONVEX QUADRATIC OPTIMIZATION 27

8 a = ones(1,3);

9 blc = [1.0];

10 buc = [inf];

11 blx = sparse(3,1);

12 bux = [];

13

14 % Optimize the problem.

15 [res] = mskqpopt(q,c,a,blc,buc,blx,bux);

16

17 % Show the primal solution.

18 res.sol.itr.xx

It should be clear that the format for calling mskqpopt is very similar to calling msklpopt except that
the Q matrix is included as the first argument of the call. Similarly, the solution can be inspected by
viewing the res.sol field.

7.5.3 Using mosekopt

The following sequence of MATLAB commands solves the quadratic optimization example by calling
mosekopt directly.

[qo2.m]
1 % qo2.m

2

3 clear prob;

4

5 % c vector.

6 prob.c = [0 -1 0]’;

7

8 % Define the data.

9

10 % First the lower triangular part of q in the objective

11 % is specified in a sparse format. The format is:

12 %

13 % Q(prob.qosubi(t),prob.qosubj(t)) = prob.qoval(t), t=1,...,4

14

15 prob.qosubi = [1 3 2 3]’;

16 prob.qosubj = [1 1 2 3]’;

17 prob.qoval = [2 -1 0.2 2]’;

18

19 % a, the constraint matrix

20 subi = ones(3,1);

21 subj = 1:3;

22 valij = ones(3,1);

23

24 prob.a = sparse(subi,subj,valij);

25

26 % Lower bounds of constraints.

27 prob.blc = [1.0]’;

28

29 % Upper bounds of constraints.

30 prob.buc = [inf]’;

31

32 % Lower bounds of variables.

33 prob.blx = sparse(3,1);

28 CHAPTER 7. A GUIDED TOUR

34

35 % Upper bounds of variables.

36 prob.bux = []; % There are no bounds.

37

38 [r,res] = mosekopt(’minimize’,prob);

39

40 % Display return code.

41 fprintf(’Return code: %d\n’,r);
42

43 % Display primal solution for the constraints.

44 res.sol.itr.xc’

45

46 % Display primal solution for the variables.

47 res.sol.itr.xx’

This sequence of commands looks much like the one that was used to solve the linear optimization
example using mosekopt except that the definition of the Q matrix in prob. mosekopt requires that
Q is specified in a sparse format. Indeed the vectors qosubi, qosubj, and qoval are used to specify
the coefficients of Q in the objective using the principle

Qqosubi(t),qosubj(t) = qoval(t), for t = 1, . . . , length(qosubi).

An important observation is that due to Q being symmetric, only the lower triangular part of Q should
be specified.

7.6 Conic optimization

One way of generalizing a linear optimization problem is to include a constraint of the form

x ∈ C
in the problem definition where C is required to be a convex cone. The resulting class of problems is
known as conic optimization. MOSEK can solve a subset of all conic problems and subsequently it is
demonstrated how to solve this subset using the mosekopt toolbox function.

7.6.1 The conic optimization problem

A conic optimization problem has the following form

minimize cTx+ cf

subject to lc ≤ Ax ≤ uc,
lx ≤ x ≤ ux,

x ∈ C,

(7.5)

where C must satisfy the following requirements. Let

xt ∈ Rn
t

, t = 1, . . . , k

7.6. CONIC OPTIMIZATION 29

be vectors comprised of parts of the decision variable vector x such that each decision variable is a
member of exactly one xt vector, e.g.:

x1 =

 x1

x4

x7

 and x2 =

x6

x5

x3

x2

 .
Next, define

C :=
{
x ∈ Rn : xt ∈ Ct, t = 1, 2, . . . , k

}
where Ct must have one of the following forms.

• R set:

Ct = {x ∈ Rn
t

}.

• Quadratic cone:

Ct =

x ∈ Rn
t

: x1 ≥

√√√√ nt∑
j=2

x2
j

 .

• Rotated quadratic cone:

Ct =

x ∈ Rn
t

: 2x1x2 ≥
nt∑
j=3

x2
j , x1, x2 ≥ 0

 .

A variable is by default members of the R set unless it explicitly belongs to a specific cone.

Although the cones MOSEK can handle give rise to a limi-ted class of conic pro-blems it includes linear,
quadratic, quadratically constrained optimization, and other classes of nonlinear convex optimization
problems. See Section 17.2 for a discussion.

7.6.2 Solving an example

The problem

minimize x4 + x5 + x6

subject to x1 + x2 + 2x3 = 1,
x1, x2, x3 ≥ 0,

x4 ≥
√
x2

1 + x2
2,

2x5x6 ≥ x2
3

(7.6)

30 CHAPTER 7. A GUIDED TOUR

is an example of a conic quadratic optimization problem. The problem involves some linear constraints,
a quadratic cone and a rotated quadratic cone. The linear constraints are specified as if the problem was
a linear problem whereas the cones are specified using two index lists cones.subptr and cones.sub

and list of cone-type identifiers cones.type. The elements of all the cones are listed in cones.sub,
and cones.subptr specifies the index of the first element in cones.sub for each cone.

The following MATLAB code demonstrates how to solve the example (7.6) using MOSEK.

[cqo1.m]
1 % cqo1.m

2

3 clear prob;

4

5 [r, res] = mosekopt(’symbcon’);

6 % Specify the non-conic part of the problem.

7

8 prob.c = [0 0 0 1 1 1];

9 prob.a = sparse([1 1 2 0 0 0]);

10 prob.blc = 1;

11 prob.buc = 1;

12 prob.blx = [0 0 0 -inf -inf -inf];

13 prob.bux = inf*ones(6,1);

14

15 % Specify the cones.

16

17 prob.cones.type = [res.symbcon.MSK CT QUAD, res.symbcon.MSK CT RQUAD];

18 prob.cones.sub = [4, 1, 2, 5, 6, 3];

19 prob.cones.subptr = [1, 4];

20 % The field ’type’ specifies the cone types, i.e., quadratic cone

21 % or rotated quadratic cone. The keys for the two cone types are MSK CT QUAD

22 % and MSK CT RQUAD, respectively.

23 %

24 % The fields ’sub’ and ’subptr’ specify the members of the cones,

25 % i.e., the above definitions imply that

26 % x(4) >= sqrt(x(1)^2+x(2)^2) and 2 * x(5) * x(6) >= x(3)^2.

27

28 % Optimize the problem.

29

30 [r,res]=mosekopt(’minimize’,prob);

31

32 % Display the primal solution.

33

34 res.sol.itr.xx’

Note in partiucular that:

• No variable can be member of more than one cone. This is not serious restriction — see the
following section.

• The R set is not specified explicitly.

7.6.3 Quadratic and conic optimization

The example

7.6. CONIC OPTIMIZATION 31

minimize x1 + x2 + x3

subject to x2
1 + x2

2 + x2
3 ≤ 1,

x1 + 0.5x2
2 + x3 ≤ 0.5

(7.7)

is not a conic quadratic optimization problem but can easily be reformulated as such.

Indeed the first constraint is equivalent to

x4 ≥
√
x2

1 + x2
2 + x2

3,

x4 = 1

where x4 is a new variable. This is a quadratic cone and a linear constraint. The second constraint in
(7.7) is equivalent to

x1 + x3 + x5 = 0.5,
x2 − x7 = 0,

x5 ≥ 0,
x6 = 1,
x2

7 ≤ 2x5x6,

because this implies that

x5 ≥ 0.5x2
7 = 0.5x2

2.

and that

x1 + 0.5x2
2 + x3 ≤ x1 + x3 + x5 = 0.5.

Please note that no variable can occur in more than one cone and therefore the additional constraint

x2 = x7

is introduced and x7 is included in the second conic constraint instead of x2. Using this ”trick” it is
always possible to obtain a formulation where no variable occurs in more than one cone.

Therefore, the example (7.7) is equivalent to the conic quadratic optimization problem

minimize x1 + x2 + x3

subject to x1 + x3 + x5 = 0.5,
x2 − x7 = 0,
x4 = 1,
x5 ≥ 0,
x6 = 1,

x4 ≥
√
x2

1 + x2
2 + x2

3,

2x5x6 ≥ x2
7.

This problem can be solved using MOSEK as follows:

32 CHAPTER 7. A GUIDED TOUR

[cqo2.m]
1 % cqo2.m

2

3 [r, res] = mosekopt(’symbcon’);

4

5 % Set up the non-conic part of the problem.

6 prob = [];

7 prob.c = [1 1 1 0 0 0 0]’;

8 prob.a = sparse([[1 0 1 0 1 0 0];...

9 [0 1 0 0 0 0 -1]]);

10 prob.blc = [0.5 0];

11 prob.buc = [0.5 0];

12 prob.blx = [-inf -inf -inf 1 -inf 1 -inf];

13 prob.bux = [inf inf inf 1 inf 1 inf];

14

15 % Set up the cone information.

16 prob.cones.type = [res.symbcon.MSK CT QUAD, ...

17 res.symbcon.MSK CT RQUAD];

18 prob.cones.sub = [4, 1, 2, 3, 5, 6, 7];

19 prob.cones.subptr = [1, 5];

20

21 [r,res] = mosekopt(’minimize’,prob);

22

23 % Display the solution.

24 res.sol.itr.xx’

7.6.4 Conic duality and the dual solution

The dual problem corresponding to the conic optimization problem (7.5) is given by

maximize (lc)T scl − (uc)T scu
+ (lx)T sxl − (ux)T sxu + cf

subject to − y + scl − scu = 0,

AT y + sxl − sxu + sxn = c,
scl , s

c
u, s

x
l , s

x
u ≥ 0,

sxn ∈ C∗

where the dual cone C∗ is defined as follows. Let (sxn) be partitioned similar to x, i.e. if xj is a member
of xt, then (sxn)j is a member of (sxn)t as well. Now, the dual cone is defined by

C∗ :=
{
sxn ∈ Rn

t

: (sxn)t ∈ C∗t , t = 1, . . . , k
}

where the type of C∗t is dependent on the type of Ct. For the cone types MOSEK can handle the
relation between the primal and dual cones is given as follows:

• R set:

Ct =
{
x ∈ Rn

t
}
⇔ C∗t :=

{
s ∈ Rn

t

: s = 0
}
.

7.6. CONIC OPTIMIZATION 33

• Quadratic cone:

Ct :=

x ∈ Rn
t

: x1 ≥

√√√√ nt∑
j=2

x2
j

 ⇔ C∗t = Ct.

• Rotated quadratic cone:

Ct :=

x ∈ Rn
t

: 2x1x2 ≥
nt∑
j=3

x2
j , x1, x2 ≥ 0

 ⇔ C∗t = Ct.

For a more detailed discussion about conic duality see Section 17.2.

7.6.4.1 How to obtain the dual solution

When solving a conic optimization problem using MOSEK, the dual solution is available. The following
MATLAB code fragment shows where the dual solution is stored.

[cqo3.m]
1 % cqo3.m

2

3 [r,res]=mosekopt(’minimize’,prob);

4

5 % Solution record.

6 res.sol

7

8 % Dual variables for lower

9 % bounds of constraints.

10 res.sol.itr.slc’

11

12 % Dual variables for upper

13 % bounds of constraints.

14 res.sol.itr.suc’

15

16 % Dual variables for lower

17 % bounds on variables.

18 res.sol.itr.slx’

19

20 % Dual variables for upper

21 % bounds on variables.

22 res.sol.itr.sux’

23

24 % Dual variables with respect

25 % to the conic constraints.

26 res.sol.itr.snx’

7.6.5 Setting accuracy parameters for the conic optimizer

Three parameters control the accuracy of the solution obtained by the conic interior-point optimizer.
The following example demonstrates which parameters should be reduced to obtain a more accurate

34 CHAPTER 7. A GUIDED TOUR

solution, if required.

% How to change the parameters that controls

% the accuracy of a solution computed by the conic

% optimizer.

param = [];

% Primal feasibility tolerance for the primal solution

param.MSK DPAR INTPNT CO TOL PFEAS = 1.0e-8;

% Dual feasibility tolerance for the dual solution

param.MSK DPAR INTPNT CO TOL DFEAS = 1.0e-8;

% Relative primal-dual gap tolerance.

param.MSK DPAR INTPNT CO TOL REL GAP = 1.0e-8;

[r,res]=mosekopt(’minimize’,prob,param);

7.7 Semidefinite optimization

A further generalization of conic quadratic optimization is semidefinite optimization, where we add
symmetric positive semidefinite variables Xj ∈ S+

rj of dimension rj . An n×n matrix A is said to be

symmetric positive semidefinite if A = AT and

zTAz ≥ 0,∀z ∈ Rn,

and we write it equivalently as A � 0 or A ∈ S+
n , where Sn (S+

n) is the cone of symmetric (positive
semidefinite) matrices. It is easy to verify that just as the quadratic cone

Qn = {x ∈ Rn | x1 ≥ ‖x2:n‖ }

specifies a cone, so does the cone of symmetric positive semidefinite matrices,

S+
n =

{
X ∈ Rn×n | X = XT , zTXz ≥ 0, ∀z ∈ Rn

}
which warrants the notion ”conic optimization”. Semidefinite cones are more general that both linear
and quadratic cones, however. Both linear and quadratic cones can be described using semidefinite
cones, although this should be avoided in practice for efficiency reasons.

7.7.1 The semidefinite optimization problem

A semidefinite optimization problem is specified in MOSEK as

7.7. SEMIDEFINITE OPTIMIZATION 35

minimize

n∑
j=1

cjxj +

p∑
j=1

〈
Cj , Xj

〉
+ cf

subject to lci ≤
n∑
j=1

aijxj +

p∑
j=1

〈
Aij , Xj

〉
≤ uci , i = 1, . . . ,m,

lxj ≤ xj ≤ uxj , j = 1, . . . , n,

x ∈ C, Xj ∈ S+
rj , j = 1, . . . , p

where the problem has p symmetric positive semidefinite variables Xj ∈ S+
rj of dimension rj with

symmetric coefficient matrices Cj ∈ Srj and Ai,j ∈ Srj . We use standard notation for the matrix inner
product, i.e., for A,B ∈ Rm×n we have

〈A,B〉 :=

m∑
i=1

n∑
j=1

AijBij .

The matrices Cj , Aij ∈ Srj are specified in triplet format in MOSEK, using three arrays specifying

the subscripts and numerical values of all nonzero elements. All matrices C1, . . . , Cp are then specified
using four arrays barc.subj, barc.subk, barc.subl and barc.val such that

[Cbarc.subj(t)]barc.subk(t),barc.subl(t) = barc.val(t), for t = 1, . . . , length(barc.subj).

where the dimensions rj are stored in a separate array bardim. Similarly all matrices Aij are specified
using five arrays bara.subi, bara.subj, bara.subk, bara.subl, and bara.val such that

[Abara.subi(t),bara.subj(t)]bara.subk(t),bara.subl(t) = bara.val(t), for t = 1, . . . , length(bara.subj).

Since all Cj , Aij are asummed to be symmetric, only their lower triangular parts are specified.

7.7.2 Solving an example

The problem

minimize

〈 2 1 0
1 2 1
0 1 2

 , X〉 + x1

subject to

〈 1 0 0
0 1 0
0 0 1

 , X〉 + x1 = 1,

〈 1 1 1
1 1 1
1 1 1

 , X〉 + x2 + x3 = 1/2,

x1 ≥
√
x2

2 + x2
3,

X � 0,

(7.8)

36 CHAPTER 7. A GUIDED TOUR

is a mixed semidefinite and conic quadratic programming problem with a 3-dimensional semidefinite
variable

X =

 x11 x11 x31

x21 x22 x32

x31 x32 x33

 ∈ S+
3 ,

and a conic quadratic variable (x1, x2, x3) ∈ Q3. The objective is to minimize

2(x11 + x21 + x22 + x32 + x33) + x1,

subject to the two linear constraints

x11 + x22 + x33 + x1 = 1,

and

x11 + x22 + x33 + 2(x21 + x31 + x32) + x2 + x3 = 1/2.

The following MATLAB code demonstrates how to solve this problem using MOSEK.

[sdo1.m]
1 function sdo1()

2 % sdo1.m

3 %

4 % Solves the mixed semidefinite and conic quadratic optimization problem

5 %

6 % minimize Tr [2, 1, 0; 1, 2, 1; 0, 1, 2]*X + x(1)

7 %

8 % subject to Tr [1, 0, 0; 0, 1, 0; 0, 0, 1]*X + x(1) = 1

9 % Tr [1, 1, 1; 1, 1, 1; 1, 1, 1]*X + x(2) + x(3) = 0.5

10 % X>=0, x(1) >= sqrt(x(2)^2 + x(3)^2)

11

12 [r, res] = mosekopt(’symbcon’);

13

14 prob.c = [1, 0, 0];

15

16 prob.bardim = [3];

17 prob.barc.subj = [1, 1, 1, 1, 1];

18 prob.barc.subk = [1, 2, 2, 3, 3];

19 prob.barc.subl = [1, 1, 2, 2, 3];

20 prob.barc.val = [2.0, 1.0, 2.0, 1.0, 2.0];

21

22 prob.blc = [1, 0.5];

23 prob.buc = [1, 0.5];

24

25 prob.a = sparse([1, 2, 2], [1, 2, 3], [1, 1, 1], 2, 3);

26 prob.bara.subi = [1, 1, 1, 2, 2, 2, 2, 2, 2];

27 prob.bara.subj = [1, 1, 1, 1, 1, 1, 1, 1, 1];

28 prob.bara.subk = [1, 2, 3, 1, 2, 3, 2, 3, 3];

29 prob.bara.subl = [1, 2, 3, 1, 1, 1, 2, 2, 3];

7.8. QUADRATICALLY CONSTRAINED OPTIMIZATION 37

30 prob.bara.val = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

31

32 prob.cones.type = [res.symbcon.MSK CT QUAD];

33 prob.cones.sub = [1, 2, 3];

34 prob.cones.subptr = [1];

35

36 [r,res] = mosekopt(’minimize info’,prob);

37

38 X = zeros(3);

39 X([1,2,3,5,6,9]) = res.sol.itr.barx;

40 X = X + tril(X,-1)’;

41

42 x = res.sol.itr.xx;

The solution x is returned in res.sol.itr.xx and the numerical values of Xj are returned in
res.sol.barx; the lower triangular part of each Xj is stacked column-by-column into an array, and
each array is then concatenated forming a single array res.sol.itr.barx representing X1, . . . , Xp.
Similarly, the dual semidefinite variables Sj are recovered through res.sol.itr.bars.

7.7.3 Linear matrix inequalities

Linear matrix inequalities are affine matrix-valued functions of z ∈ Rn,

F (z) = F0 + z1F1 + . . . + znFn � 0 (7.9)

where the coefficient Fi ∈ S+
m are symmetric matrices (of order m). It is convinient to think of linear

matrix inequalities as dual constraints; if a problem contains only linear matrix inequalities, then we
essentially have a problem specified in dual form. If we have a problem with both semidefinite affine
equalities and linear matrix inequalities, we can convert it one with only affine equality constraints.
For example, the linear matrix inequality

F (z) =

 1 0 0
0 1 0
0 0 1

 + z1

 0 1 0
1 0 0
0 0 0

 + z2

 0 0 1
0 0 0
1 0 0

 + z3

 0 0 0
0 0 1
0 1 0

 � 0

can be rewritten as

X =

 x11 x21 x31

x21 x22 x32

x31 x32 x33

 � 0, x11 = x22 = x33 = 1,

where z1 = x21, z2 = x31 and z3 = x32.

7.8 Quadratically constrained optimization

In section (7.6) a quadratically constrained optimization problem was solved using the conic optimizer.
It is also possible to solve such a problem directly. An example of such an optimization problem is

38 CHAPTER 7. A GUIDED TOUR

minimize x1 + x2 + x3

subject to x2
1 + x2

2 + x2
3 ≤ 1,

x1 + 0.1x2
2 + x3 ≤ 0.5.

Please note that there are quadratic terms in both constraints. This problem can be solved using
mosekopt as follows:

[qco1.m]
1 % qco1.m

2

3 clear prob;

4

5 % Specify the linear objective terms.

6 prob.c = ones(3,1);

7

8 % Specify the quadratic terms of the constraints.

9 prob.qcsubk = [1 1 1 2]’;

10 prob.qcsubi = [1 2 3 2]’;

11 prob.qcsubj = [1 2 3 2]’;

12 prob.qcval = [2.0 2.0 2.0 0.2]’;

13

14 % Specify the linear constraint matrix

15 prob.a = [sparse(1,3);sparse([1 0 1])];

16

17 prob.buc = [1 0.5]’;

18

19 [r,res] = mosekopt(’minimize’,prob);

20

21 % Display the solution.

22 fprintf(’\nx:’);
23 fprintf(’ %-.4e’,res.sol.itr.xx’);

24 fprintf(’\n||x||: %-.4e’,norm(res.sol.itr.xx));

Note that the quadratic terms in the constraints are specified using the fields prob.qcsubk, prob.qcsubi,
prob.qcsubj, and prob.qcval as follows

Q
qcsubk(t)
qcsubi(t),qcsubj(t)

= qcval(t), fort = 1, . . . , length(qcsubk)

where 1
2x

TQkx is the quadratic term in the kth constraint. Also note that only the lower triangular
part of the Qks should be specified.

7.9 Linear least squares and related norm minimization prob-
lems

A frequently occurring problem in statistics and in many other areas of science is the problem

minimize ‖Fx− b‖ (7.10)

where F and b are a matrix and vector of appropriate dimensions. x is the vector decision variables.

7.9. LINEAR LEAST SQUARES AND RELATED NORM MINIMIZATION PROBLEMS 39

Typically, the norm used is the 1-norm, the 2-norm, or the infinity norm.

7.9.1 The case of the 2 norm

Initially let us focus on the 2 norm. In this case (7.10) is identical to the quadratic optimization
problem

minimize (1/2)xTFTFx+ (1/2)bT b− bTFx (7.11)

in the sense that the set of optimal solutions for the two problems coincides. This fact follows from

‖Fx− b‖ 2 = (Fx− b)T (Fx− b)
xTFTFx+ bT b+ 2bTFx.

Subsequently, it is demonstrated how the quadratic optimization problem (7.11) is solved using mosekopt
In the example the problem data is read from a file, then data for the problem (7.11) is constructed
and finally the problem is solved.

[nrm1.m]
1 % nrm1.m

2

3 % Read data from ’afiro.mps’.

4 [r,res] = mosekopt(’read(afiro.mps)’);

5

6 % Get data for the problem

7 % minimize ||f x - b|| 2

8 f = res.prob.a’;

9 b = res.prob.c;

10

11 % Solve the problem

12 % minimize 0.5 xf’fx+0.5*b’*b-(f’*b)’*x

13

14 % Clear prob

15 clear prob;

16

17 % Compute the fixed term in the objective.

18 prob.cfix = 0.5*b’*b

19

20 % Create the linear objective terms

21 prob.c = -f’*b;

22

23 % Create the quadratic terms. Please note that only the lower triangular

24 % part of f’*f is used.

25 [prob.qosubi,prob.qosubj,prob.qoval] = find(sparse(tril(f’*f)))

26

27 % Obtain the matrix dimensions.

28 [m,n] = size(f);

29

30 % Specify a.

31 prob.a = sparse(0,n);

32

33 [r,res] = mosekopt(’minimize’,prob);

34

35 % The optimality conditions are f’*(f x - b) = 0.

40 CHAPTER 7. A GUIDED TOUR

36 % Check if they are satisfied:

37

38 fprintf(’\nnorm(f^T(fx-b)): %e’,norm(f’*(f*res.sol.itr.xx-b)));

Often the x variables must be within some bounds or satisfy some additional linear constraints. These
requirements can easily be incorporated into the problem (7.11). E.g. the constraint ‖x‖∞ ≤ 1 can
be modeled as follows:

[nrm2.m]
1 % nrm2.m. Continuation of nrm1.m.

2

3 % Assume that the same objective should be

4 % minimized subject to -1 <= x <= 1

5

6 prob.blx = -ones(n,1);

7 prob.bux = ones(n,1);

8

9 [r,res] = mosekopt(’minimize’,prob);

10

11 % Check if the solution is feasible.

12 norm(res.sol.itr.xx,inf)

7.9.2 The case of the infinity norm

In some applications of the norm minimization problem (7.10) it is better to use the infinity norm
than the 2 norm. However, the problem (7.10) stated as an infinity norm problem is equivalent to the
linear optimization problem

minimize τ
subject to Fx+ τe− b ≥ 0,

Fx− τe− b ≤ 0,
(7.12)

where e is the vector of ones of appropriate dimension. This implies that

τe ≥ Fx− b
τe ≥ − (Fx− b)

and hence at optimum

τ∗ = ‖Fx∗ − b‖∞
holds.

The problem (7.12) is straightforward to solve.

[nrm3.m]
1 % nrm3.m. Continuation of nrm1.m.

2

3 % Let x(n+1) play the role as tau, then the problem is

4 % solved as follows.

5

7.9. LINEAR LEAST SQUARES AND RELATED NORM MINIMIZATION PROBLEMS 41

6 clear prob;

7

8 prob.c = sparse(n+1,1,1.0,n+1,1);

9 prob.a = [[f,ones(m,1)];[f,-ones(m,1)]];

10 prob.blc = [b ; -inf*ones(m,1)];

11 prob.buc = [inf*ones(m,1); b];

12

13 [r,res] = mosekopt(’minimize’,prob);

14

15 % The optimal objective value is given by:

16 norm(f*res.sol.itr.xx(1:n)-b,inf)

7.9.3 The case of the 1-norm

By definition, for the 1-norm we have that

‖Fx− b‖ 1 =

m∑
i=1

|fi:x− bi|.

Therefore, the norm minimization problem can be formulated as follows

minimize

m∑
i=1

ti

subject to |fi:x− bi| = ti, i = 1, . . . ,m,

which in turn is equivalent to

minimize

m∑
i=1

ti

subject to fi:x− bi ≤ ti, i = 1, . . . ,m,
− (fi:x− bi) ≤ ti, i = 1, . . . ,m.

(7.13)

The reader should verify that this is really the case.

In matrix notation this problem can be expressed as follows

minimize eT t
subject to Fx− te ≤ b,

Fx+ te ≥ b,
(7.14)

where e = (1, . . . , 1)T . Next, this problem is solved.

[nrm4.m]
1 % nrm4.m. Continuation of nrm1.m.

2

3 % Let x(n:(m+n)) play the role as t. Now,

4 % the problem can be solved as follows

5

6 clear prob;

42 CHAPTER 7. A GUIDED TOUR

7

8 prob.c = [sparse(n,1) ; ones(m,1)];

9 prob.a = [[f,-speye(m)] ; [f,speye(m)]];

10 prob.blc = [-inf*ones(m,1); b];

11 prob.buc = [b ; inf*ones(m,1)];

12

13 [r,res] = mosekopt(’minimize’,prob);

14

15 % The optimal objective value is given by:

16 norm(f*res.sol.itr.xx(1:n)-b,1)

7.9.3.1 A better formulation

It is possible to improve upon the formulation of the problem (7.13). Indeed problem (7.13) is equivalent
to

minimize

m∑
i=1

ti

subject to fi:x− bi − ti + vi = 0, i = 1, . . . ,m,
− (fi:x− bi)− ti ≤ 0, i = 1, . . . ,m,

vi ≥ 0, i = 1, . . . ,m.

(7.15)

After eliminating the t variables then this problem is equivalent to

minimize

m∑
i=1

(fi:x− bi + vi)

subject to − 2(fi:x− bi)− vi ≤ 0, i = 1, . . . ,m,
vi ≥ 0, i = 1, . . . ,m.

(7.16)

Please note that this problem has only half the number of general constraints than problem (7.13)
since we have replaced constraints of the general form

fi:x ≤ bi
with simpler constraints

vi ≥ 0

which MOSEK treats in a special and highly efficient way. Furthermore MOSEK stores only the
non-zeros in the coefficient matrix of the constraints. This implies that the problem (7.16) is likely to
require much less space than the problem (7.15).

It is left as an exercise for the reader to implement this formulation in MATLAB.

7.10 Compatibility with MATLAB Optimization Toolbox

For compatibility with the MATLAB Optimization Toolbox, MOSEK provides the following functions:

7.11. MORE ABOUT SOLVING LINEAR LEAST SQUARES PROBLEMS 43

linprog

Solves linear optimization problems.

quadprog

Solves quadratic optimization problems.

lsqlin

Minimizes a least-squares objective with linear constraints.

lsqnnonneg

Minimizes a least-squares objective with nonnegativity constraints.

bintprog

Solves a linear optimization problem with binary variables.

mskoptimget

Getting an options structure for MATLAB compatible functions.

mskoptimset

Setting up an options structure for MATLAB compatible functions.

These functions are described in detail in Chapter 8. Their implementations all use mosekopt, so
unless compatibility with the MATLAB Optimization Toolbox is a neccessity, using mosekopt directly
is recommended.

The functions mskoptimget and mskoptimset are only largely compatible with the MATLAB coun-
terparts, optimget and optimset, so the MOSEK versions should only be used in conjuctions with
the MOSEK implementations of linprog, etc., and similarly optimget should be used in conjunction
with the MATLAB implementations.

7.11 More about solving linear least squares problems

Linear least squares problems with and without linear side constraints appear very frequently in
practice and it is therefore important to know how such problems are solved efficiently using MOSEK
Now, assume that the problem of interest is the linear least squares problem

minimize
1

2
‖Fx− f‖ 2

2

subject to Ax = b,
lx ≤ x ≤ ux,

(7.17)

where F and A are matrices and the remaining quantities are vectors. x is the vector of decision
variables. The problem (7.17) as stated is a convex quadratic optimization problem and can be solved
as such.

However, if F has much fewer rows than columns then it will usually be more efficient to solve the
equivalent problem

44 CHAPTER 7. A GUIDED TOUR

minimize
1

2
‖z‖ 2

2

subject to Ax = b,
Fx− z = f,

lx ≤ x ≤ ux.

(7.18)

Please note that a number of new constraints and variables has been introduced which of course seems
to be disadvantageous but on the other hand the Hessian of the objective in problem (7.18) is much
sparser than in problem (7.17). Frequently this turns out to be more important for the computational
efficiency and therefore the latter formulation is usually the better one.

If F has many more rows than columns, then formulation (7.18) is not attractive whereas the cor-
responding dual problem is. Using the duality theory outlined in Section 17.5.1 we obtain the dual
problem

maximize bT y + fT ȳ

+ (lx)T sxl + (ux)T sxu

− 1

2
‖z‖ 2

2

subject to AT y + FT ȳ + sxl − sxu = 0,
z − ȳ = 0,

sxl , s
x
u ≥ 0

which can be simplified to

maximize bT y + fT z

+ (lx)T sxl + (ux)T sxu

− 1

2
‖z‖ 2

2

subject to AT y + FT z + sxl − sxu = 0,
sxl , s

x
u ≥ 0

(7.19)

after eliminating the ȳ variables. Here we use the convention that

lxj = −∞ ⇒ (sxl)j = 0anduxj =∞⇒ (sxu)j = 0.

In practice such fixed variables in sxl and sxu should be removed from the problem.

Given our assumptions the dual problem (7.19) will have much fewer constraints than the primal
problem (7.18); in general, the fewer constraints a problem contains, the more efficient MOSEK tends
to be. A question is: If the dual problem (7.19) is solved instead of the primal problem (7.18), how is
the optimal x solution obtained? It turns out that the dual variables corresponding to the constraint

AT y + FT z + sxl − sxu = 0

are the optimal x solution. Therefore, due to the fact that MOSEK always reports this information
as the

res.sol.itr.y

7.11. MORE ABOUT SOLVING LINEAR LEAST SQUARES PROBLEMS 45

vector, the optimal x solution can easily be obtained.

In the following code fragment it is investigated whether it is attractive to solve the dual rather than
the primal problem for a concrete numerical example. This example has no linear equalities and F is
a 2000 by 400 matrix.

[nrm5.m]
1 % nrm5.m

2

3 % Read data from a file.

4 [rcode,res] = mosekopt(’read(lsqpd.mps) echo(0)’);

5

6 % Define the problem data.

7 F = res.prob.a;

8 f = res.prob.blc;

9 blx = res.prob.blx;

10 bux = [];

11

12 % In this case there are no linear constraints

13 % First we solve the primal problem:

14 %

15 % minimize 0.5|| z ||^2

16 % subject to F x - z = f

17 % l <= x <= u

18

19 % Note that m>>n

20 [m,n] = size(F);

21

22 prob = [];

23

24 prob.qosubi = n+(1:m);

25 prob.qosubj = n+(1:m);

26 prob.qoval = ones(m,1);

27 prob.a = [F,-speye(m,m)];

28 prob.blc = f;

29 prob.buc = f;

30 prob.blx = [blx;-inf*ones(m,1)];

31 prob.bux = bux;

32

33

34 fprintf(’m=%d n=%d\n’,m,n);
35

36 fprintf(’First try\n’);
37

38 tic

39 [rcode,res] = mosekopt(’minimize echo(0)’,prob);

40

41 % Display the solution time.

42 fprintf(’Time : %-.2f\n’,toc);
43

44 try

45 % x solution:

46 x = res.sol.itr.xx;

47

48 % objective value:

49 fprintf(’Objective value: %-6e\n’,norm(F*x(1:n)-f)^2);
50

51 % Check feasibility.

46 CHAPTER 7. A GUIDED TOUR

52 fprintf(’Feasibility : %-6e\n’,min(x(1:n)-blx(1:n)));
53 catch

54 fprintf(’MSKERROR: Could not get solution’)

55 end

56

57 % Clear prob.

58 prob=[];

59

60 %

61 % Next, we solve the dual problem.

62

63 % Index of lower bounds that are finite:

64 lfin = find(blx>-inf);

65

66 % Index of upper bounds that are finite:

67 ufin = find(bux<inf);

68

69 prob.qosubi = 1:m;

70 prob.qosubj = 1:m;

71 prob.qoval = -ones(m,1);

72 prob.c = [f;blx(lfin);-bux(ufin)];

73 prob.a = [F’,...

74 sparse(lfin,(1:length(lfin))’,...

75 ones(length(lfin),1),...

76 n,length(lfin)),...

77 sparse(ufin,(1:length(ufin))’,...

78 -ones(length(ufin),1),...

79 n,length(ufin))];

80 prob.blc = sparse(n,1);

81 prob.buc = sparse(n,1);

82 prob.blx = [-inf*ones(m,1);...

83 sparse(length(lfin)+length(ufin),1)];

84 prob.bux = [];

85

86 fprintf(’\n\nSecond try\n’);
87 tic

88 [rcode,res] = mosekopt(’maximize echo(0)’,prob);

89

90 % Display the solution time.

91 fprintf(’Time : %-.2f\n’,toc);
92

93 try

94 % x solution:

95 x = res.sol.itr.y;

96

97 % objective value:

98 fprintf(’Objective value: %-6e\n’,...
99 norm(F*x(1:n)-f)^2);

100

101 % Check feasibility.

102 fprintf(’Feasibility : %-6e\n’,...
103 min(x(1:n)-blx(1:n)));

104 catch

105 fprintf(’MSKERROR: Could not get solution’)

106 end

Here is the output produced:

7.11. MORE ABOUT SOLVING LINEAR LEAST SQUARES PROBLEMS 47

m=2000 n=400

First try

Time : 2.07

Objective value: 2.257945e+001

Feasibility : 1.466434e-009

Second try

Time : 0.47

Objective value: 2.257945e+001

Feasibility : 2.379134e-009

Both formulations produced a strictly feasible solution having the same objective value. Moreover,
using the dual formulation leads to a reduction in the solution time by about a factor 5: In this case
we can conclude that the dual formulation is far superior to the primal formulation of the problem.

7.11.1 Using conic optimization on linear least squares problems

Linear least squares problems can also be solved using conic optimization because the linear least
squares problem

minimize ‖Fx− f‖ 2

subject to Ax = b,
lx ≤ x ≤ ux

is equivalent to

minimize t
subject to Ax = b,

Fx− z = f,
lx ≤ x ≤ ux,

‖z‖ 2 ≤ t.

This problem is a conic quadratic optimization problem having one quadratic cone and the correspond-
ing dual problem is

maximize bT y + fT ȳ + (lx)T sxl − (ux)T sxu
subject to AT y + FT ȳ + sxl − sxu = 0,

− ȳ + sz = 0,
st = 1,

‖sz‖ ≤ st,
sxl , s

x
u ≥ 0

which can be reduced to

maximize bT y + fT sz + (lx)T sxl − (ux)T sxu
subject to AT y − FT s̄z + sxl − sxu = 0,

st = 1,
‖sz‖ ≤ st,
sxl , s

x
u ≥ 0.

48 CHAPTER 7. A GUIDED TOUR

Often the dual problem has much fewer constraints than the primal problem. In such cases it will be
more efficient to solve the dual problem and obtain the primal solution x as the dual solution of the
dual problem.

7.12 Entropy optimization

7.12.1 Using mskenopt

An entropy optimization problem has the following form

minimize

n∑
j=1

djxjln(xj) + cTx

subject to lc ≤ Ax ≤ uc,
0 ≤ x,

where all the components of d must be nonnegative, i.e. dj ≥ 0. An example of an entropy optimization
problem is

minimize x1ln(x1)− x1 + x2ln(x2)
subject to 1 ≤ x1 + x2 ≤ 1,

0 ≤ x1, x2.

This problem can be solved using the mskenopt command as follows

d = [1 1]’;

c = [-1 0]’;

a = [1 1];

blc = 1;

buc = 1;

[res] = mskenopt(d,c,a,blc,buc);

res.sol.itr.xx;

7.13 Geometric optimization

A so-called geometric optimization problem can be stated as follows

minimize
∑
k∈J0

ck
∏
j=1

t
akj
j

subject to
∑
k∈Ji

ck
∏
j=1

t
akj
j ≤ 1, i = 1, . . . ,m,

t > 0,

(7.20)

where it is assumed that

7.13. GEOMETRIC OPTIMIZATION 49

∪mk=0Jk = {1, . . . , T}

and if i 6= j, then

Ji ∩ Jj = ∅.

Hence, A is a T×n matrix and c is a vector of length t. In general, the problem (7.20) is very hard to
solve, but the posynomial case where

c > 0

is relatively easy. Using the variable transformation

tj = exj (7.21)

we obtain the problem

minimize
∑
k∈J0

cke
ak:x

subject to
∑
k∈Ji

cke
ak:x ≤ 1, i = 1, . . . ,m,

(7.22)

which is convex in x for c > 0. We apply the log function to obtain the equivalent problem

minimize log(
∑
k∈J0

cke
ak:x)

subject to log(
∑
k∈Ji

cke
ak:x) ≤ log(1), i = 1, . . . ,m,

(7.23)

which is also a convex optimization problem since log is strictly increasing. Hence, the problem (7.23)
can be solved by MOSEK For further details about geometric optimization we refer the reader to [3].

7.13.1 Using mskgpopt

MOSEK cannot handle a geometric optimization problem directly, but the transformation (7.23) can
be solved using the MOSEK optimization toolbox function mskgpopt Please note that the solution to
the transformed problem can easily be converted into a solution to the original geometric optimization
problem using relation (7.21).

Subsequently, we will use the example

minimize 40t−1
1 t
−1/2
2 t−1

3 + 20t1t3 + 40t1t2t3

subject to
1

3
t−2
1 t−2

2 +
4

3
t
1/2
2 t−1

3 ≤ 1,

0 < t1, t2, t3

50 CHAPTER 7. A GUIDED TOUR

to demonstrate how a geometric optimization problem is solved using mskgpopt Please note that both
the objective and the constraint functions consist of a sum of simple terms. These terms can be
specified completely using the matrix

A =

− 1 − 0.5 − 1
1 0 1
1 1 1
− 2 − 2 0
0 0.5 − 1

 ,
and the vectors

c =

40
20
40
1

3
4

3

 and map =

0
0
0
1
1

 .

The interpretation is this: Each row of A, c describes one term, e.g. the first row of A and the first
element of c describe the first term in the objective function. The vector map indicated whether a
term belongs to the objective or to a constraint. If mapk equals zero, the kth term belongs to the
objective function, otherwise it belongs to the mapkth constraint.

The following MATLAB code demonstrates how the example is solved using mskgpopt .

[go1.m]
1 % go1.m

2

3 c = [40 20 40 1/3 4/3]’;

4 a = sparse([[-1 -0.5 -1];[1 0 1];...

5 [1 1 1];[-2 -2 0];[0 0.5 -1]]);

6 map = [0 0 0 1 1]’;

7 [res] = mskgpopt(c,a,map);

8

9 fprintf(’\nPrimal optimal solution to original gp:’);

10 fprintf(’ %e’,exp(res.sol.itr.xx));

11 fprintf(’\n\n’);
12

13 % Compute the optimal objective value and

14 % the constraint activities.

15 v = c.*exp(a*res.sol.itr.xx);

16

17 % Add appropriate terms together.

18 f = sparse(map+1,1:5,ones(size(map)))*v;

19

20 % First objective value. Then constraint values.

21 fprintf(’Objective value: %e\n’,log(f(1)));
22 fprintf(’Constraint values:’);

23 fprintf(’ %e’,log(f(2:end)));

24 fprintf(’\n\n’);
25

26 % Dual multipliers (should be negative)

7.13. GEOMETRIC OPTIMIZATION 51

27 fprintf(’Dual variables (should be negative):’);

28 fprintf(’ %e’,res.sol.itr.y);

29 fprintf(’\n\n’);

The code also computes the objective value and the constraint values at the optimal solution. Moreover,
the optimal dual Lagrange multipliers for the constraints are shown and the gradient of the Lagrange
function at the optimal point is computed. Feasibility of the computed solution can be checked as

max(res.sol.itr.xc) < = 0.0

or equivalently

exp(max(res.sol.itr.xc)) <= 1.0

7.13.2 Comments

7.13.2.1 Solving large scale problems

If you want to solve a large problem, i.e. a problem where A has large dimensions, then A must be
sparse or you will run out of space. Recall that a sparse matrix contains few non-zero elements, so if
A is a sparse matrix, you should construct it using MATLAB’s sparse sparse as follows

A = sparse(subi,subj,valij);

where

asubi[k],subj[k] = valij[k].

For further details on the sparse function, please enter

help sparse

in MATLAB.

7.13.2.2 Preprocessing tip

Before solving a geometric optimization problem it is worthwhile to check if a column of the A matrix
inputted to mskgpopt contains only positive elements. If this is the case, the corresponding variable ti
can take the value zero in the optimal solution: This may cause problems for MOSEK so it is better
to remove such variables from the problem — doing so will have no influence on the optimal solution.

7.13.2.3 Reading and writing problems to a file

The functions mskgpread and mskgpwri can used to read and write geometric programming problems
to file, see the Command Reference Chap. 8.

52 CHAPTER 7. A GUIDED TOUR

7.14 Separable convex optimization

This section discusses separable convex nonlinear optimization problems. A general separable nonlinear
optimization problem can be specified as follows:

minimize f(x) + cTx
subject to g(x) +Ax− xc = 0,

lc ≤ xc ≤ uc,
lx ≤ x ≤ ux,

(7.24)

where

• m is the number of constraints.

• n is the number of decision variables.

• x ∈ Rn is a vector of decision variables.

• xc ∈ Rm is a vector of slack variables.

• c ∈ Rn is the linear part of the objective function.

• A ∈ Rm×n is the constraint matrix.

• lc ∈ Rm is the lower limit on the activity for the constraints.

• uc ∈ Rm is the upper limit on the activity for the constraints.

• lx ∈ Rn is the lower limit on the activity for the variables.

• ux ∈ Rn is the upper limit on the activity for the variables.

• f : Rn → R is a nonlinear function.

• g : Rn → Rm is a nonlinear vector function.

This implies that the ith constraint essentially has the form

lci ≤ gi(x) +

n∑
j=1

aijxj ≤ uci

when the xci variable has been eliminated.

The problem (7.24) must satisfy the three important requirements:

• Separability: This requirement implies that all nonlinear functions can be written on the form

f(x) =

n∑
j=1

f j(xj)

7.14. SEPARABLE CONVEX OPTIMIZATION 53

and

gi(x) =

n∑
j=1

gji (xj).

Hence, the nonlinear functions can be written as a sum of functions which depends on only one
variable.

• Differentiability: All functions should be twice differentiable for all xj satisfying

lxj < x < uxj

if xj occurs in at least one nonlinear function. Hence, if
√
x2 appears in the problem, then the

lower bound on x2 should be 0.

• Convexity: The problem should be a convex optimization problem. See Section 17.5 for a
discussion of this requirement.

7.14.1 Using mskscopt

Subsequently, we will use the following example

minimize x1 − ln(x1 + 2x2)
subject to x2

1 + x2
2 ≤ 1

(7.25)

to demonstrate solving a convex separable optimization problem using the MOSEK optimization tool-
box function mskscopt First, note that the problem (7.25) is not a separable optimization problem
due to the fact that the logarithmic term in objective is not a function of a single variable. However,
by introducing one additional constraint and variable the problem can be made separable as follows

minimize x1 − ln(x3)
subject to x2

1 + x2
2 ≤ 1,

x1 + 2x2 − x3 = 0,
x3 ≥ 0.

(7.26)

This problem is separable and equivalent to the previous problem. Moreover, note that all nonlinear
functions are well defined for values of x satisfying the variable bounds strictly, i.e.

x3 > 0.

This (almost) makes sure that function evaluation errors will not occur during the optimization process
since MOSEK will only evaluate ln(x3) for x3 > 0.

When using the mskscopt function to solve problem (7.26), the linear part of the problem, such as a
c and A, is specified as usual using MATLAB vectors and matrices. However, the nonlinear functions
must be specified using five arrays which in the case of problem (7.26) can have the form

opr = [’log’; ’pow’; ’pow’];

opri = [0; 1; 1];

54 CHAPTER 7. A GUIDED TOUR

oprj = [3; 1; 2];

oprf = [-1; 1; 1];

oprg = [0; 2; 2;];

Hence, opr(k,:) specifies the type of a nonlinear function, opri(k) specifies in which constraint the
nonlinear function should be added (zero means objective), and oprj(k) means that the nonlinear
function should be applied to xj . Finally, oprf(k) and oprg(k) are parameters used by the mskscopt

function according to the table:

opr(k) opri(k) oprj(k) oprf(k) oprg(k) function
ent i j f (not used) fxjln(xj)
exp i j f g fegxj

log i j f (not used) fln(xj)
pow i j f g fxgj

The i value indicates which constraint the nonlinear function belongs to. However, if i is identical to
zero, then the function belongs to the objective. Using this notation a separable convex optimization
problem can be solved with the function:

mskscopt(opr,

opri, oprj, oprf, oprg,

c, a, blc, buc, blx, bux)

All the elements for solving a separable convex nonlinear optimization problem have now been discussed
and therefore we will conclude this section by showing the MATLAB code that will solve the example
problem (7.26).

[sco1.m]
1 % sco1.m

2

3 % Specify the linear part of the problem.

4

5 c = [1;0;0];

6 a = sparse([[0 0 0];[1 2 -1]]);

7 blc = [-inf; 0];

8 buc = [1;0];

9 blx = [-inf;-inf;0];

10

11 % Specify the nonlinear part.

12

13 opr = [’log’; ’pow’; ’pow’];

14 opri = [0; 1; 1];

15 oprj = [3; 1; 2];

16 oprf = [-1; 1; 1];

17 oprg = [0; 2; 2];

18

19 % Call the optimizer.

20 % Note that bux is an optional parameter which should be added if the variables

21 % have an upper bound.

22

23 [res] = mskscopt(opr,opri,oprj,oprf,oprg,c,a,blc,buc,blx);

24

25

26 % Print the solution.

27 res.sol.itr.xx

7.15. MIXED-INTEGER OPTIMIZATION 55

7.15 Mixed-integer optimization

Up until now it has been assumed that the variables in an optimization problem are continuous. Hence,
it has been assumed that any value between the bounds on a variable is feasible. In many cases this
is not a valid assumption because some variables are integer-constrained. E.g. a variable may denote
the number of persons assigned to a given job and it may not be possible to assign a fractional person.

Using a mixed-integer optimizer MOSEK is capable of solving linear and quadratic optimization prob-
lems where one or more of the variables are integer-constrained.

7.15.1 A linear mixed-integer example

Using the example

minimize − 2x1 − 3x2

subject to 195x1 + 273x2 ≤ 1365,
4x1 + 40x2 ≤ 140,
x1 ≤ 4,

x1, x2 ≥ 0, and integer

(7.27)

we will demonstrate how to solve an integer optimization problem using MOSEK

[milo1.m]
1 % milo1.m

2

3 % Specify the linear problem data as if

4 % the problem is a linear optimization

5 % problem.

6

7 clear prob

8 prob.c = [-2 -3];

9 prob.a = sparse([[195 273];[4 40]]);

10 prob.blc = -[inf inf];

11 prob.buc = [1365 140];

12 prob.blx = [0 0];

13 prob.bux = [4 inf];

14

15 % Specify indexes of variables that are integer

16 % constrained.

17

18 prob.ints.sub = [1 2];

19

20 % Optimize the problem.

21 [r,res] = mosekopt(’minimize’,prob);

22

23 try

24 % Display the optimal solution.

25 res.sol.int

26 res.sol.int.xx’

27 catch

28 fprintf(’MSKERROR: Could not get solution’)

29 end

56 CHAPTER 7. A GUIDED TOUR

Please note that compared to a linear optimization problem with no integer-constrained variables:

• The prob.ints.sub field is used to specify the indexes of the variables that are integer-constrained.

• The optimal integer solution is returned in the res.sol.int MATLAB structure.

MOSEK also provides a wrapper for the bintprog function found in the MATLAB optimization
toolbox. This function solves linear problems with binary variables only (i.e., without linear variables);
see the reference section for details.

7.15.2 A conic quadratic mixed-integer example

The problem

minimize x5 + x6

subject to x1 + x2 + x3 + x4 = 1,
x1, x2, x3, x4 ≥ 0,

x5 ≥
√
x2

1 + x2
3,

x6 ≥
√
x2

2 + x2
4

x5, x6 integer

(7.28)

is an example of a mixed-integer conic quadratic optimization problem. It is similar to example (7.6),
with the exception that x5 and x6 are restricted to integers.

The following MATLAB code demonstrates how to solve the example (7.6) using MOSEK

[micqo1.m]
1 % micqo1.m

2

3 clear prob;

4

5 [r, res] = mosekopt(’symbcon’);

6

7 % Specify the non-confic part of the problem.

8

9 prob.c = [0 0 0 0 1 1];

10 prob.a = sparse([1 1 1 1 0 0]);

11 prob.blc = 1;

12 prob.buc = 1;

13 prob.blx = [0 0 0 0 -inf -inf];

14 prob.bux = inf*ones(6,1);

15

16 % Specify the cones.%

17 prob.cones.type = [res.symbcon.MSK CT QUAD, res.symbcon.MSK CT QUAD];

18 prob.cones.sub = [5, 3, 1, 6, 2, 4];

19 prob.cones.subptr = [1, 4];

20

21 % indices of integer variables

22 prob.ints.sub = [5 6];

23

24 % Optimize the problem.

7.15. MIXED-INTEGER OPTIMIZATION 57

25

26 [r,res]=mosekopt(’minimize’,prob);

27

28 % Display the primal solution.

29

30 res.sol.int.xx’

7.15.3 Speeding up the solution of a mixed-integer problem

In general, a mixed-integer optimization problem can be very difficult to solve. Therefore, in some
cases it may be necessary to improve upon the problem formulation and ”assist” the mixed-integer
optimizer.

How to obtain a good problem formulation is beyond the scope of this section and the reader is referred
to [5]. However, two methods for assisting the mixed-integer optimizer are discussed subsequently.

7.15.3.1 Specifying an initial feasible solution

In many cases a good feasible integer solution to the optimization problem may be known. If this
is the case, it is worthwhile to inform the mixed-integer optimizer since this will reduce the solution
space searched by the optimizer.

Consider the problem:

maximize 7x0 + 10x1 + x2 + 5x3

subject to x0 + x1 + x2 + x3 ≤ 2.5
x3 ≥ 0

x0, x1, x2 ≥ 0 and integer,

(7.29)

where only some of the variables are integer and the remaining are continuous. A feasible solution to
this problem is:

x0 = 0, x1 = 2, x2 = 0, x3 = 0.5

The following example demonstrates how to input this initial solution to MOSEK

[milo2.m]
1 % milo2.m

2

3 clear prob

4 clear param

5 [r,res] = mosekopt(’symbcon’);

6 sc = res.symbcon;

7

8

9 prob.c = [7 10 1 5];

10 prob.a = sparse([1 1 1 1]);

11 prob.blc = -[inf];

12 prob.buc = [2.5];

13 prob.blx = [0 0 0 0];

58 CHAPTER 7. A GUIDED TOUR

14 prob.bux = [inf inf inf inf];

15 prob.ints.sub = [1 2 3];

16

17 prob.sol.int.xx = [0 2 0 0.5]’;

18

19 % Optionally set status keys too.

20 % prob.sol.int.skx = [sc.MSK SK SUPBAS;sc.MSK SK SUPBAS;...

21 % sc.MSK SK SUPBAS;sc.MSK SK BAS]

22 % prob.sol.int.skc = [sc.MSK SK UPR]

23

24 [r,res] = mosekopt(’maximize’,prob);

25

26 try

27 % Display the optimal solution.

28 res.sol.int.xx’

29 catch

30 fprintf(’MSKERROR: Could not get solution’)

31 end

It is also possible to specify only the values of the integer variables and then let MOSEK com-
pute values for the remaining continuous variables in order to obtain a feasible solution. If the
MSK IPAR MIO CONSTRUCT SOL parameter is set to MSK ON then MOSEK triesl to compute a feasi-
ble solution from the specified values of the integer variables. MOSEK generates the feasible solution
by temporarily fixing all integer variables to the specified values and then optimizing the resulting
continuous linear optimization problem. Hence, using this feature it is necessary to specify only the
values of prob.sol.int.xx corresponding to the integer-constrained variables.

Suppose it is known that x0 = 0, x1 = 2, x2 = 0 are candidates for good integer values to our problem,
then the following example demonstrates how to optimize the problem (7.28) using a feasible starting
solution generated from the integer values as x0 = 0, x1 = 2, x2 = 0.

[milo3.m]
1 % milo3.m

2

3 [r,res] = mosekopt(’symbcon’);

4 sc = res.symbcon;

5

6 clear prob

7

8 prob.c = [7 10 1 5];

9 prob.a = sparse([1 1 1 1]);

10 prob.blc = -[inf];

11 prob.buc = [2.5];

12 prob.blx = [0 0 0 0];

13 prob.bux = [inf inf inf inf];

14 prob.ints.sub = [1 2 3];

15

16 % Values for the integer variables are specified.

17 prob.sol.int.xx = [0 2 0 0]’;

18

19 % Tell Mosek to construct a feasible solution from a given integer

20 % value.

21 param.MSK IPAR MIO CONSTRUCT SOL = sc.MSK ON;

22

23 [r,res] = mosekopt(’maximize’,prob,param);

7.16. SENSITIVITY ANALYSIS 59

24

25 try

26 % Display the optimal solution.

27 res.sol.int.xx’

28 catch

29 fprintf(’MSKERROR: Could not get solution’)

30 end

7.16 Sensitivity analysis

Given an optimization problem it is often useful to obtain information about how the optimal objective
value changes when a problem parameter is perturbed. E.g. the objective function may reflect the
price of a raw material such as oil which may not be known with certainty. Therefore, it is interesting
to know how the optimal objective value changes as the oil price changes.

Analyzing how the optimal objective value changes when the problem data is changed is called sensi-
tivity analysis.

Consider the problem:

Minimize

1x11 + 2x12 + 5x23 + 2x24 + 1x31 + 2x33 + 1x34

subject to

x11 + x12 ≤ 400,
x23 + x24 ≤ 1200,

x31 + x33 + x34 ≤ 1000,
x11 + x31 = 800,

x12 = 100,
x23 + x33 = 500,

x24 + x34 = 500,
x11, x12, x23, x24, x31, x33, x34 ≥ 0.

The example below demonstrate how sensitivity analysis can answer questions of the type: What
happens to the optimal solution if we decrease the upper bound of the first constraint with 1? For
more information on sensitivity analysis see Chapter 16.

[sensitivity2.m]
1 % sensitivity2.m

2

3 % Setup problem data.

4 clear prob

5 prob.a = sparse([1, 1, 0, 0, 0, 0, 0;

6 0, 0, 1, 1, 0, 0, 0;

7 0, 0, 0, 0, 1, 1, 1;

8 1, 0, 0, 0, 1, 0, 0;

9 0, 1, 0, 0, 0, 0, 0;

10 0, 0, 1, 0, 0, 1, 0;

60 CHAPTER 7. A GUIDED TOUR

11 0, 0, 0, 1, 0, 0, 1]);

12

13 prob.c = [1,2,5,2,1,2,1];

14 prob.blc = [-Inf,-Inf,-Inf,800,100,500, 500];

15 prob.buc =[400,1200,1000,800,100,500,500];

16 prob.bux(1:7) = Inf;

17 prob.blx(1:7) = 0;

18

19 % Analyze upper bound of constraint 1.

20 prob.prisen.cons.subu = [1];

21

22 [r,res] = mosekopt(’minimize echo(0)’,prob);

23 fprintf (’Optimal objective value: %e\n’,prob.c * res.sol.bas.xx);

24 fprintf(’Sensitivity results for constraint 1:’);

25 res.prisen.cons

26

27 % If we change the upper bound of constraint 1 with a

28 % value v in [res.prisen.cons.lr bu(1),res.prisen.cons.rr bu(1)]

29 % then the optimal objective changes with - v * ls bu(0)

30 % e.g. changing prob.buc(1) with -1

31 prob.buc(1) = prob.buc(1) - 1;

32 new sol predicted = prob.c * res.sol.bas.xx + 1 * res.prisen.cons.ls bu(1);

33 fprintf (’New optimal objective after changing bound predicted to:%e\n’, ...

34 new sol predicted);

35 [r,res] = mosekopt(’minimize echo(0)’,prob);

36 fprintf (’New optimal objective value: %e\n’,prob.c * res.sol.bas.xx);

The output from running the example is given below:

Optimal objective value: 3.000000e+03

Sensitivity results for constraint 1:

ans =

lr bl: []

rr bl: []

ls bl: []

rs bl: []

lr bu: -300

rr bu: 0

ls bu: 3

rs bu: 3

New optimal objective after changing bound predicted to:3.003000e+03

New optimal objective value: 3.003000e+03

7.17 Inspecting a problem

The problem analyzer (discussed in detail in Sec. 14.1) provides useful diagnostics about an optimiza-
tion problem, and is a quick way to verify that a model has been specified correctly. For example,
executing the command

mosekopt(’anapro’,prob)

will generate a report looking like

7.17. INSPECTING A PROBLEM 61

Constraints Bounds Variables

upper bd: 19 lower bd: all cont: all

fixed : 8

Objective, cx

range: min |c|: 0.00000 min |c|>0: 0.320000 max |c|: 10.0000

distrib: |c| vars

0 27

[0.32, 1) 4

[1, 10] 1

Constraint matrix A has

27 rows (constraints)

32 columns (variables)

83 (9.60648%) nonzero entries (coefficients)

Row nonzeros, A i

range: min A i: 1 (3.125%) max A i: 9 (28.125%)

distrib: A i rows rows% acc%

1 2 7.41 7.41

2 16 59.26 66.67

[3, 7] 8 29.63 96.30

[8, 9] 1 3.70 100.00

Column nonzeros, A|j

range: min A|j: 1 (3.7037%) max A|j: 4 (14.8148%)

distrib: A|j cols cols% acc%

1 1 3.12 3.12

2 21 65.62 68.75

[3, 4] 10 31.25 100.00

A nonzeros, A(ij)

range: min |A(ij)|: 0.107000 max |A(ij)|: 2.42900

distrib: A(ij) coeffs

[0.107, 1) 17

[1, 2.43] 66

Constraint bounds, lb <= Ax <= ub

distrib: |b| lbs ubs

0 7 20

[10, 100) 1 3

[100, 1000] 4

Variable bounds, lb <= x <= ub

distrib: |b| lbs ubs

0 32

The report provides an overview of the objective function and the number of constraints and bounds
as well as sparsity information and distributions of nonzero elements.

62 CHAPTER 7. A GUIDED TOUR

7.18 The solutions

Whenever an optimization problem is solved using MOSEK one or more optimal solutions are reported
depending on which optimizer is used. These solutions are available in the

res.sol

structure, which has one or more of the subfields

res.sol.itr % Interior solution.

res.sol.bas % Basic solution.

res.sol.int % Integer solution.

The interior (point) solution is an arbitrary optimal solution which is computed using the interior-
point optimizer. The basic solution is available only for linear problems and is produced by the
simplex optimizer or the basis identification process which is an add-on to the interior-point optimizer.
Finally, the integer solution is available only for problems having integer-constrained variables and is
computed using the integer optimizer. Each of the three solutions may contain one or more of the
following subfields:

.prosta

Problem status. See Appendix MSKprostae.

.solsta

Solution status. See Appendix MSKsolstae.

.skc

Constraint status keys. See Tablen 7.1 below.

.skx

Variable status keys. See Table 7.1 below.

.xc

Constraint activities.

.xx

Variable activities.

.y

Identical to -.slc+.suc.

.slc

Dual variables corresponding to lower constraint bounds.

.suc

Dual variables corresponding to upper constraint bounds.

.slx

Dual variables corresponding to lower variable bounds.

7.19. VIEWING THE TASK INFORMATION 63

Numeric String Interpretation
constant constant code

0 UN Unknown status
MSK SK BAS 1 BS Is basic
MSK SK SUPBAS 2 SB Is superbasic
MSK SK LOW 3 LL Is at the lower limit (bound)
MSK SK UPR 4 UL Is at the upper limit (bound)
MSK SK FIX 5 EQ Lower limit is identical to upper limit
MSK SK INF 6 ** Is infeasible i.e. the lower limit is

greater than the upper limit.

Table 7.1: Constraint and variable status keys.

.sux

Dual variables corresponding to upper variable bounds.

.snx

Dual variables corresponding to the conic constraints.

7.18.1 The constraint and variable status keys

In a solution both constraints and variables are assigned a status key which indicates whether the
constraint or variable is at its lower limit, its upper limit, is super basic and so forth in the optimal
solution. For interior-point solutions these status keys are only indicators which the optimizer produces.

In Table 7.1 the possible values for the status keys are shown accompanied with an interpretation of
the key. By default the constraint and variable status keys are reported using string codes but it is
easy to have MOSEK report the numeric codes instead. Indeed in the example

% Status keys in string format.

[rcode,res]=mosekopt(’minimize statuskeys(0)’,prob);

res.sol.skc(1)

res.sol.prosta

the status keys are represented using string codes whereas in the example

% Status keys in string format.

[rcode,res]=mosekopt(’minimize statuskeys(1)’,prob);

res.sol.skc(1)

res.sol.prosta

the status keys are represented using numeric codes.

7.19 Viewing the task information

In MOSEK the optimization problem and the related instructions with respect to the optimization
process are called an optimization task or for short a task. Whenever MOSEK performs operations on

64 CHAPTER 7. A GUIDED TOUR

a task it stores information in the task information database. Examples of information that is stored
are the number of interior-point iterations performed to solve the problem and time spent doing the
optimization.

All the items stored in the task information database are listed in Appendixes MSKdinfiteme and
MSKiinfiteme. It is possible to see the whole or part of the task information database from within
MATLAB.

% Solve a problem and obtain

% the task information database.

[r,res]=mosekopt(’minimize info’,prob);

% View one item

res.info.MSK IINF INTPNT ITER

% View the whole database

res.info

7.20 Inspecting and setting parameters

A large number of parameters controls the behavior of MOSEK, e.g. there is a parameter controlling
which optimizer is used, one that limits the maximum number of iterations allowed, and several pa-
rameters specifying the termination tolerance. All these parameters are stored in a database internally
in MOSEK The complete parameter database can be obtained and viewed using the commands:

[r,res]=mosekopt(’param’);

res.param

We will not describe the purpose of each parameter here but instead refer the reader to Appendix 23
where all the parameters are presented in detail.

In general, it should not be necessary to change any of the parameters but if required, it is easily done.
In the following example code it is demonstrated how to modify a few parameters and afterwards
performing the optimization using these parameters.

% Obtain all symbolic constants

% defined by MOSEK.

[r,res] = mosekopt(’symbcon’);

sc = res.symbcon;

param = [];

% Basis identification is unnecessary.

param.MSK IPAR INTPNT BASIS = sc.MSK OFF;

% Alternatively you can use

%

% param.MSK IPAR INTPNT BASIS = ’MSK OFF’;

%

7.21. ADVANCED START (HOT-START) 65

% Use another termination tolerance.

param.MSK DPAR INTPNT TOLRGAP = 1.0e-9;

% Perform optimization using the

% modified parameters.

[r,res] = mosekopt(’minimize’,prob,param);

7.21 Advanced start (hot-start)

In practice it frequently occurs that when an optimization problem has been solved, then the same
problem slightly modified should be reoptimized. Moreover, if it is just a small the modification, it can
be expected that the optimal solution to the original problem is a good approximation to the modified
problem. Therefore, it should be efficient to start the optimization of the modified problem from the
previous optimal solution.

Currently, the interior-point optimizer in MOSEKcannot take advantage of a previous optimal solu-
tion, however, the simplex optimizer can exploit any basic solution.

7.21.1 Some examples using hot-start

Using the example

minimize x1 + 2x2

subject to 4 ≤ x1 + x3 ≤ 6,
1 ≤ x1 + x2,

0 ≤ x1, x2, x3

(7.30)

the hot-start facility using the simplex optimizer will be demonstrated. A quick inspection of the
problem indicates that (x1, x3) = (1, 3) is an optimal solution. Hence, it seems to be a good idea to
let the initial basis consist of x1 and x3 and all the other variables be at their lower bounds. This idea
is used in the example code:

[advs1.m]
1 % advs1.m

2

3 clear prob param bas

4

5 % Specify an initial basic solution.

6 bas.skc = [’LL’;’LL’];

7 bas.skx = [’BS’;’LL’;’BS’];

8 bas.xc = [4 1]’;

9 bas.xx = [1 3 0]’;

10

11 prob.sol.bas = bas;

12

13 % Specify the problem data.

14 prob.c = [1 2 0]’;

15 subi = [1 2 2 1];

66 CHAPTER 7. A GUIDED TOUR

16 subj = [1 1 2 3];

17 valij = [1.0 1.0 1.0 1.0];

18 prob.a = sparse(subi,subj,valij);

19 prob.blc = [4.0 1.0]’;

20 prob.buc = [6.0 inf]’;

21 prob.blx = sparse(3,1);

22 prob.bux = [];

23

24 % Use the primal simplex optimizer.

25 param.MSK IPAR OPTIMIZER = ’MSK OPTIMIZER PRIMAL SIMPLEX’;

26 [r,res] = mosekopt(’minimize’,prob,param)

Some comments:

• In the example the dual solution is defined. This is acceptable because the primal simplex
optimizer is used for the reoptimization and it does not exploit a dual solution. In the future
MOSEK will also contain a dual simplex optimizer and if that optimizer is used, it will be
important that a ”good” dual solution is specified.

• The status keys bas.skc and bas.skx must contain only the entries BS, EQ, LL, UL, and SB.
Moreover, e.g. EQ must be specified only for a fixed constraint or variable. LL and UL can be
used only for a variable that has a finite lower or upper bound respectively.

• The number of constraints and variables defined to be basic must correspond exactly to the
number of constraints, i.e. the row dimension of A.

7.21.2 Adding a new variable

Next, assume that the problem

minimize x1 + 2x2 − x4

subject to 4 ≤ x1 + x3 + x4 ≤ 6,
1 ≤ x1 + x2,

0 ≤ x1, x2, x3, x4.

(7.31)

should be solved. It is identical to the problem (7.30) except that a new variable x4 has been added.
In continuation of the previous example this problem can be solved as follows (using hot-start):

[advs2.m]
1 % advs2.m. Continuation of advs1.m.

2

3 prob.c = [prob.c;-1.0];

4 prob.a = [prob.a,sparse([1.0 0.0]’)];

5 prob.blx = sparse(4,1);

6

7 % Reuse the old optimal basic solution.

8 bas = res.sol.bas;

9

10 % Add to the status key.

11 bas.skx = [res.sol.bas.skx;’LL’];

12

7.21. ADVANCED START (HOT-START) 67

13 % The new variable is at it lower bound.

14 bas.xx = [res.sol.bas.xx;0.0];

15 bas.slx = [res.sol.bas.slx;0.0];

16 bas.sux = [res.sol.bas.sux;0.0];

17

18 prob.sol.bas = bas;

19

20 [rcode,res] = mosekopt(’minimize’,prob,param);

21

22 % The new primal optimal solution

23 res.sol.bas.xx’

7.21.3 Fixing a variable

In e.g. branch-and-bound methods for integer programming problems it is necessary to reoptimize the
problem after a variable has been fixed to a value. This can easily be achieved as follows:

[advs3.m]
1 % advs3.m. Continuation of advs2.m.

2

3 prob.blx(4) = 1;

4 prob.bux = [inf inf inf 1]’;

5

6 % Reuse the basis.

7 prob.sol.bas = res.sol.bas;

8

9 [rcode,res] = mosekopt(’minimize’,prob,param);

10

11 % Display the optimal solution.

12 res.sol.bas.xx’

The x4 variable is simply fixed at the value 1 and the problem is reoptimized. Please note that the
basis from the previous optimization can immediately be reused.

7.21.4 Adding a new constraint

Now, assume that the constraint

x1 + x2 ≥ 2

should be added to the problem and the problem should be reoptimized. The following example
demonstrates how to do this.

[advs4.m]
1 % advs4.m. A continuation of advs3.m.

2

3 % Modify the problem.

4 prob.a = [prob.a;sparse([1.0 1.0 0.0 0.0])];

5 prob.blc = [prob.blc;2.0];

6 prob.buc = [prob.buc;inf];

7

68 CHAPTER 7. A GUIDED TOUR

8 % Obtain the previous optimal basis.

9 bas = res.sol.bas;

10

11 % Set the solution to the modified problem.

12 bas.skc = [bas.skc;’BS’];

13 bas.xc = [bas.xc;bas.xx(1)+bas.xx(2)];

14 bas.y = [bas.y;0.0];

15 bas.slc = [bas.slc;0.0];

16 bas.suc = [bas.suc;0.0];

17

18 % Reuse the basis.

19 prob.sol.bas = bas;

20

21 % Reoptimize.

22 [rcode,res] = mosekopt(’minimize’,prob,param);

23

24 res.sol.bas.xx’

Please note that the slack variable corresponding to the new constraint are declared basic. This implies
that the new basis is nonsingular and can be reused.

7.21.5 Removing a constraint

We can remove a constraint in two ways:

• Set the bounds for the constraint to +∞ or −∞, as appropriate.

• Remove the corresponding row from prob.a, prob.c, prob.blc and prob.buc and update the
basis.

In the following example we use the latter approach to again remove the constraint x1 + x2 ≥ 2.

[advs5.m]
1 % advs5.m. A continuation of advs4.m.

2

3 % Modify the problem.

4 prob.a = prob.a(1:end-1,:);

5 prob.blc = prob.blc(1:end-1);

6 prob.buc = prob.buc(1:end-1);

7

8 % Obtain the previous optimal basis.

9 bas = res.sol.bas;

10

11 % Set the solution to the modified problem.

12 bas.skc = bas.skc(1:end-1,:);

13 bas.xc = bas.xc(1:end-1);

14 bas.y = bas.y(1:end-1);

15 bas.slc = bas.slc(1:end-1);

16 bas.suc = bas.suc(1:end-1);

17

18 % Reuse the basis.

19 prob.sol.bas = bas;

20

21 % Reoptimize.

7.21. ADVANCED START (HOT-START) 69

22 [rcode,res] = mosekopt(’minimize’,prob,param);

23

24 res.sol.bas.xx’

7.21.6 Removing a variable

Similarly we can remove a variable in two ways:

• Fixing the variable to zero.

• Remove the corresponding row from prob.a, prob.blx and prob.bux and update the basis.

The following example uses the latter approach to remove x4.

[advs6.m]
1 % advs6.m. A continuation of advs5.m.

2

3 % Modify the problem.

4 prob.c = prob.c(1:end-1);

5 prob.a = prob.a(:,1:end-1);

6 prob.blx = prob.blx(1:end-1);

7 prob.bux = prob.bux(1:end-1);

8

9 % Obtain the previous optimal basis.

10 bas = res.sol.bas;

11

12 % Set the solution to the modified problem.

13 bas.xx = bas.xx(1:end-1);

14 bas.skx = bas.skx(1:end-1,:);

15 bas.slx = bas.slx(1:end-1);

16 bas.sux = bas.sux(1:end-1);

17

18 % Reuse the basis.

19 prob.sol.bas = bas;

20

21 % Reoptimize.

22 [rcode,res] = mosekopt(’minimize’,prob,param);

23

24 res.sol.bas.xx’

7.21.7 Using numeric values to represent status key codes

In the previous examples the constraint and variable status keys are represented using string codes.
Although the status keys are easy to read they are sometimes difficult to work with in a program.
Therefore, the status keys can also be represented using numeric values as demonstrated in the example:

[sk1.m]
1 % sk1.m

2

3 % Obtain all symbolic constants

4 % defined in MOSEK.

70 CHAPTER 7. A GUIDED TOUR

5

6 clear prob bas;

7

8 [r,res] = mosekopt(’symbcon’);

9 sc = res.symbcon;

10

11 % Specify an initial basic solution.

12 % Please note that symbolic constants are used.

13 % I.e. sc.MSK SK LOW instead of 4.

14 bas.skc = [sc.MSK SK LOW;sc.MSK SK LOW];

15 bas.skx = [sc.MSK SK BAS;sc.MSK SK LOW;sc.MSK SK BAS];

16 bas.xc = [4 1]’;

17 bas.xx = [1 3 0]’;

18 prob.sol.bas = bas;

19

20 % Specify the problem data.

21 prob.c = [1 2 0]’;

22 subi = [1 2 2 1];

23 subj = [1 1 2 3];

24 valij = [1.0 1.0 1.0 1.0];

25 prob.a = sparse(subi,subj,valij);

26 prob.blc = [4.0 1.0]’;

27 prob.buc = [6.0 inf]’;

28 prob.blx = sparse(3,1);

29 prob.bux = [];

30

31 % Use the primal simplex optimizer.

32 clear param;

33 param.MSK IPAR OPTIMIZER = sc.MSK OPTIMIZER PRIMAL SIMPLEX;

34

35 [r,res] = mosekopt(’minimize statuskeys(1)’,prob,param)

36

37 % Status keys will be numeric now i.e.

38

39 res.sol.bas.skc’

40

41 % is a vector of numeric values.

Please note that using the commands

[r,res] = mosekopt(’symbcon’);

sc = res.symbcon;

all the symbolic constants defined within MOSEK are obtained and used in the lines

bas.skc = [sc.MSK SK LOW;sc.MSK SK LOW];

bas.skx = [sc.MSK SK BAS;sc.MSK SK LOW;sc.MSK SK BAS];

These two lines are in fact equivalent to

bas.skc = [1;1];

bas.skx = [3;1;3];

However, it is not recommended to specify the constraint and variable status keys this way because it
is less readable and portable. Indeed if e.g. MOSEK later changes the definition that 1 is equivalent
to ‘LL’, all programs using numerical keys will be incorrect whereas using the symbolic constants the
programs remain correct.

7.22. USING NAMES 71

7.22 Using names

In MOSEK it is possible to give the objective, each constraint, each variable, and each cone a name.
In general such names are not really needed except in connection with reading and writing MPS files.
See Section 7.23 for details.

All the names are specified in the prob.names structure.

% The problem is named.

prob.names.name = ’CQO example’;

% Objective name.

prob.names.obj = ’cost’;

% The two constraints are named.

prob.names.con{1} = ’constraint 1’;

prob.names.con{2} = ’constraint 2’;

% The six variables are named.

prob.names.var = cell(6,1);

for j=1:6

prob.names.var{j} = sprintf(’x%d’,j);

end

% Finally the two cones are named.

prob.names.cone{1} = ’cone a’;

prob.names.cone{2} = ’cone b’;

7.22.1 Blanks in names

Although it is allowed to use blanks (spaces) in names it is not recommended to do so except for the
problem name. In general, avoid names like ”x 1” or ”con 1”.

7.23 MPS and other file formats

An industry standard format for storing linear optimization problems in an ASCII file is the so-
called MPS format. For readers not familiar with the MPS format a specification of the MPS format
supported by MOSEK can be seen in Appendix 18.

The advantage of the MPS format is that problems stored in this format can be read by any commercial
optimization software, so it facilitates communication of optimization problems.

7.23.1 Reading an MPS file

It is possible to use mosekopt to read an MPS file containing the problem data. In this case mosekopt

reads data from an MPS file and returns both the problem data and the optimal solution, if required.

72 CHAPTER 7. A GUIDED TOUR

Assume that afiro.mps is the MPS file from which mosekopt should read the problem data, then this
task is performed using the command

[r,res] = mosekopt(’read(afiro.mps’));

In this case res.prob will contain several fields with the problem data. E.g.

res.prob.c’

will display the c-vector.

The names used in the MPS file is also available in the prob.names structure.

% All names.

prob.names

% Constraint names.

prob.names.con

The quadratic terms of a problem can be accessed and displayed in a similar manner:

[mpsrd.m]
1 % mpsrd.m

2

3 % Read data from the file wp12-20.mps.

4

5 [r,res] = mosekopt(’read(wp12-20.mps)’);

6

7 % Looking at the problem data

8 prob = res.prob;

9 clear res;

10

11 % Form the quadratic term in the objective.

12 q = sparse(prob.qosubi,prob.qosubj,prob.qoval);

13

14 % Get a graphical picture.

15 spy(q) % Notice that only the lower triangular part is defined.

7.23.2 Writing a MPS files

It is possible to write an MPS file using MOSEK. To write a problem contained in a MATLAB structure
prob to the file ”datafile.mps”, use the command:

% Write the data defined by prob to an MPS file

% named datafile.mps

mosekopt(’write(datafile.mps)’,prob);

If the prob.names field is defined, MOSEK will use those names when writing the MPS file, otherwise
MOSEK will use generic (automatically generated) names.

7.23.3 Other file formats

In addition to MPS files, MOSEK supports the following file formats.

LP file format

7.24. USER CALL-BACK FUNCTIONS 73

Uses an .lp extension. See Chapter 19 for details.

OPF format

Uses an .opf extension. See Chapter 20 for details.

TASK file format

Uses a .task extension. See Chapter 21 for details.

XML (OSiL) file format

Uses an .xml extension. See Chapter 22 for details.

The format is determined by the file extension, for example, an .opf file can be written as

mosekopt(’write(problem.opf)’);

7.24 User call-back functions

A call-back function is a user-defined MATLAB function to be called by MOSEK on a given event.
The optimization toolbox supports two types of call-back functions which are presented below.

7.24.1 Log printing via call-back function

When using mosekopt it is possible to control the amount of information that mosekopt prints to the
screen, e.g.

[r,res] = mosekopt(’minimize echo(0)’,prob)

forces mosekopt to not print log information — the string echo(0) indicates that no output should
be printed during optimization. A high value in the echo(n) command, e.g. echo(3), forces MOSEK
to display more log information. It is possible to redirect the MOSEK log printing almost anywhere
using a user-defined log call-back function. It works as follows. Create an m-file to handle the log
output, similar to:

[myprint.m]
1 function myprint(handle,str)

2 % handle: Is user defined data structure

3 % str : Is a log string.

4 %

5

6 fprintf(handle,’%s’,str);

The name and actions of the function are not important, but its argument list must be identical to
the example: It must accept two arguments. The first argument, handle, is a user-defined MATLAB
structure and the second argument, str, is a text string. In the example above myprint prints the
string to a file defined by handle.

The following code fragment shows how to tell MOSEK to send log output to the myprint function.

%

74 CHAPTER 7. A GUIDED TOUR

% In this example the MOSEK log info

% should be printed to the screen and to a file named

% mosek.log.

%

fid = fopen(’mosek.log’,’wt’);

callback.log = ’myprint’;

callback.loghandle = fid;

%

% The ’handle’ argument in myprint() will be identical to

% callback.loghandle when called.

%

mosekopt(’minimize’,prob,[],callback);

7.24.2 The iteration call-back function

It is possible to specify a function to be called frequently during the optimization. Typically this
call-back function is used to display information about the optimization process or to terminate it.

The iteration call-back function has the following form:

[myiter.m]
1 function [r] = myiter(handle,where,info)

2 % handle: Is a user-defined data structure.

3 % where : Is an integer indicating from where in the optimization

4 % process the callback was invoked.

5 % info : A MATLAB structure containing information about the state of the

6 % optimization.

7

8 r = 0; % r should always be assigned a value.

9

10 if handle.symbcon.MSK CALLBACK BEGIN INTPNT==where

11 fprintf(’Interior point optimizer started\n’);
12 end

13

14

15 % Print primal objective

16 fprintf(’Interior-point primal obj.: %e\n’,info.MSK DINF INTPNT PRIMAL OBJ);

17

18 % Terminate when cputime > handle.maxtime

19 if info.MSK DINF INTPNT TIME > handle.maxtime

20 r = 1;

21 else

22 r = 0;

23 end

24

25

26 if handle.symbcon. MSK CALLBACK END INTPNT==where

27 fprintf(’Interior-point optimizer terminated\n’);
28 end

The function accepts three arguments: The first argument, handle, is a user-defined MATLAB struc-

7.25. THE LICENSE SYSTEM 75

ture, the second argument, where, indicates from where in the optimization process the call-back was
invoked and the third argument, info, is a structure containing information about the process. For
details about info see Section 8.1.9g If the function returns a non-zero value, MOSEK will terminate
the optimization process immediately.

In order to inform MOSEK about the iteration call-back function the fields iter and iterhandle are
initialized as shown in the following example.

[r,res] = mosekopt(’symbcon’);

data.maxtime = 100.0;

data.symbcon = res.symbcon;

callback.iter = ’myiter’;

callback.iterhandle = data;

mosekopt(’minimize’,prob,[],callback);

7.25 The license system

By default a license token remains checked out for the duration of the matlab session. This can
be changed such that the license is returned after each call to mosek by setting the parameter
MSK IPAR CACHE LICENSE.

param.MSK IPAR CACHE LICENSE = ’MSK OFF’; %set parameter.

[r,res] = mosekopt(’minimize’,prob,param); %call mosek.

By default an error will be returned if no license token is available. By setting the parameter
MSK IPAR LICENSE WAIT mosek can be instructed to wait until a license token is available.

param.MSK IPAR LICENSE WAIT = ’MSK ON’; %set parameter.

[r,res] = mosekopt(’minimize’,prob,param); %call mosek.

7.26 Caveats using the MATLAB compiler

When using MOSEK with the MATLAB compiler it is necessary to manually

• remove mosekopt.m before compilation

• copy the mosek .mex file to the directory with MATLAB binary files

• copy the mosekopt.m file back after compilation

76 CHAPTER 7. A GUIDED TOUR

Chapter 8

Command reference

After studying the examples presented in the previous chapter, it should be possible to use most of the
facilities in the MOSEK optimization toolbox. A more formal specification of the main data structures
employed by MOSEK and a command reference are provided in this chapter.

8.1 Data structures

In each of the subsequent sections the most important data structures employed by MOSEK are
discussed.

8.1.1 prob

Description:

The prob data structure is used to communicate an optimization problem to MOSEK or for
MOSEK to return an optimization problem to the user. It defines an optimization problem
using a number of subfields.

Subfields:

.names

A MATLAB structure which contains the problem name, the name of the objective, and so
forth. See Section 8.1.2.

.qosubi

i subscript for element qoij in Qo. See (8.3).

.qosubj

j subscript for element qoij in Qo. See (8.3).

.qoval

Numerical value for element qoij in Qo. See (8.3).

77

78 CHAPTER 8. COMMAND REFERENCE

.qcsubk

k subscript for element qpij in Qp. See (8.4).

.qcsubi

i subscript for element qpij in Qp. See (8.4).

.qcsubj

j subscript for element qpij in Qp. See (8.4).

.qcval

Numerical value for element qpij in Qp. See (8.4).

.c

Linear term in the objective.

.a

The constraint matrix. It must be a sparse matrix having the number of rows and
columns equivalent to the number of constraints and variables in the problem. This field
should always be defined, even if the problem does not have any constraints. In that case
a sparse matrix having zero rows and the correct number of columns is the appropriate
definition of the field.

.blc

Lower bounds of the constraints. −∞ denotes an infinite lower bound. If the field is not
defined or blc==[], then all the lower bounds are assumed to be equal to −∞.

.bardim

A list with the dimensions of the semidefinite variables.

.barc

A MATLAB structure for specifying Cj . The structure has the following subfields:

.subj

.subk

.subl

.val

See Section 8.1.4 for details on this structure.

.bara

A MATLAB structure for specifying Aij . The structure has the following subfields:

.subi

.subj

.subk

.subl

.val

See Section 8.1.5 for details on this structure.

.buc

Upper bounds of the constraints. ∞ denotes an infinite upper bound. If the field is not
defined or buc==[], then all the upper bounds are assumed to be equal to ∞.

8.1. DATA STRUCTURES 79

.blx

Lower bounds on the variables. −∞ denotes an infinite lower bound. If the field is not
defined or blx==[], then all the lower bounds are assumed to be equal to −∞.

.bux

Upper bounds on the variables. ∞ denotes an infinite upper bound. If the field is not
defined or bux==[], then all the upper bounds are assumed to be equal to ∞.

.ints

A MATLAB structure which has the subfields
.sub; % Required.

.pri; % Subfields.

ints.sub is a one-dimensional array containing the indexes of the integer-constrained vari-
ables. Hence, ints.sub is identical to the set J in (8.2). ints.pri is also a one dimensional
array of the same length as ints.sub. The ints.pri(k) is the branching priority assigned
to variable index ints.sub(k).

.cones

A MATLAB structure defining the conic constraints (8.1). See Section 8.1.3 for details.

.sol

A MATLAB structure containing a guess on the optimal solution which some of the opti-
mizers in MOSEK may exploit. See Section 8.1.6 for details on this structure.

.primalrepair

A MATLAB structure used for primal feasibility repair which can optimally contain either
of the subfields:

.wlc

Weights for lower bounds on constraints.

.wuc

Weights for upper bounds on constraints.

.wlx

Weights for lower bounds on variables.

.wlc

Weights for upper bounds on variables.

If either of the subfields is missing, it assumed to be a vector with value 1 of appropriate
dimension.

.prisen

A MATLAB structure which has the subfields:

.cons.subu

Indeces of constraints, where upper bounds are analyzed for sensitivity.

.cons.subl

Indeces of constraints, where lower bounds are analyzed for sensitivity.

.vars.subu

Indeces of variables, where upper bounds are analyzed for sensitivity.

.vars.subl

Indeces of variables, where lower bounds are analyzed for sensitivity.

80 CHAPTER 8. COMMAND REFERENCE

.sub

Index of variables where coefficients are analysed for sensitivity.

Comments:

MOSEK solves linear, quadratic, quadratically constrained, and conic optimization problems.
The simplest of those is a linear problem, which is posed in MOSEK as

minimize

n∑
j=1

cjxj + cf

subject to lci ≤
n∑
j=1

aijxj ≤ uci , i = 1, . . . ,m,

lxj ≤ xj ≤ uxj , j = 1, . . . , n.

An extension is a linear conic problem where the variables can belong to quadratic or semidefinite
cones. A conic problem in MOSEK has the form

minimize

n∑
j=1

cjxj +

p∑
j=1

〈
Cj , Xj

〉
+ cf

subject to lci ≤
n∑
j=1

aijxj +

p∑
j=1

〈
Aij , Xj

〉
≤ uci , i = 1, . . . ,m,

lxj ≤ xj ≤ uxj , j = 1, . . . , n,

x ∈ C, Xj ∈ S+
rj , j = 1, . . . , p

where the conic constraint

x ∈ C (8.1)

means that a partitioning of x belongs to a set of quadratic cones (elaborated below). Further,
the problem has p symmetric positive semidefinite variables Xj ∈ S+

rj of dimension rj with

symmetric coefficient matrices Cj ∈ Srj and Ai,j ∈ Srj .
Alternatively, MOSEK can solve convex quadratically constrained quadratic problems

minimize
1

2

n∑
i=1

n∑
j=1

qoijxixj +

n∑
j=1

cjxj + cf

subject to lci ≤ 1

2

n∑
j=1

n∑
k=1

qijkxjxk +

n∑
j=1

aijxj ≤ uci , i = 1, . . . ,m,

lxj ≤ x ≤ uxj , j = 1, . . . , n.

The matrix

Qo =

 qo11 · · · qo1n
· · ·

q0
n1 · · · qonn

8.1. DATA STRUCTURES 81

must be symmetric positive semidefinite and the matrix

Qi =

 qi11 · · · qi1n
· · ·

qin1 · · · qinn

must be either symmetric negative semidefinite with the ith constraint

lci ≤
1

2

n∑
j=1

n∑
k=1

qij,kxjxk +

n∑
j=1

ai,jxj ,

or Qi must be symmetric positive semidefinite with the ith constraint

1

2

n∑
j=1

n∑
k=1

qij,kxjxk +

n∑
j=1

ai,jxj ≤ uci .

Note that the if the quadratic terms Qi are absent, the problem reduces to a standard quadratic
optimization problem.

Finally, some variables may be integer-constrained, i.e.,

xj integer-constrained for all j ∈ J (8.2)

where xj (and possibly Xj) are the decision variables and all the other quantities are the param-
eters of the problem and they are presented below:

• Since Qo and Qi are symmetric, only the lower triangular part should be specified.

• The coefficients cj are coefficients for the linear term cjxj in the objective.

• cf is a constant term in the objective, i.e., independent of all variables.

• The constraint matrix A is given by

A =

 a11 · · · a1n

· · ·
am1 · · · amn

 .
In MOSEK it is assumed that A is a sparse matrix, i.e. most of the coefficients in A are
zero. Therefore, only non-zeros elements in A are stored and worked with. This usually
saves a lot of storage and speeds up the computations.

• The symmetric matrices Cj are coefficient matrices for the linear term tr(CjXj) in the
objective for semidefinite problems. The matrices are specified in triplet format discarding
zero elements, and since they are symmetric, only the lower triangular parts should be
specified.

• The constraint matrices Aij are symmetric matrices used in the constraints

lci ≤
n∑
j=1

aijxj +

p∑
j=1

〈
Aij , Xj

〉
≤ uci , i = 1, . . . ,m,

82 CHAPTER 8. COMMAND REFERENCE

for semidefinite problems. The matrices are specifed in triplet format discard zero elements,
and since they are symmetric only the lower triangulars should be specified.

• lc specifies the lower bounds of the constraints.

• uc specifies the upper bounds of the constraints.

• lx specifies the lower bounds on the variables x.

• ux specifies the upper bounds on the variables x.

• In conic problems, a partitioning of x belongs to a set of free variables and quadratic cones.
Let

xt ∈ Rn
t

, t = 1, . . . , k

be vectors comprised of disjoint subsets of the decision variables x (each decision variable
is a member of exactly one xt), e.g.,

x1 =

 x1

x4

x7

 and x2 =

x6

x5

x3

x2

 .
Next, define

C :=
{
x ∈ Rn : xt ∈ Ct, t = 1, . . . , k

}
where Ct must have one of the following forms

– Free variables:

Ct = {x ∈ Rn
t

}.

– Quadratic cones:

Ct =

x ∈ Rn
t

: x1 ≥

√√√√ nt∑
j=2

x2
j

 .

– Rotated quadratic cones:

Ct =

x ∈ Rn
t

: 2x1x2 ≥
nt∑
j=3

x2
j , x1, x2 ≥ 0

 .

All the parameters of the optimization problem are stored using one or more subfields of the prob
structure using the naming convention in Table 8.1. In Table 8.1 all the parameters are listed
with their corresponding type. The int type indicates that the field must contain an integer
value, double indicates a real number. The relationship between Qo and Qp and the subfields
of the prob structure is as follows:

8.1. DATA STRUCTURES 83

Field name Type Dimension Optional Problem
parameter

qosubi int length(qoval) Yes qoij
qosubj int length(qoval) Yes qoij
qoval double length(qoval) Yes qoij
c double n Yes cj
qcsubk int length(qcval) Yes qpij
qcsubi int length(qcval) Yes qpij
qcsubj int length(qcval) Yes qpij
qcval double length(qcval) Yes qpij
a Sparse matrix m×n No aij
bardim int p Yes rj
barc MATLAB structure Yes Cj
bara MATLAB structure Yes Aij
blc double m Yes lck
buc double m Yes uck
blx double n Yes lxk
bux double n Yes uxk
ints MATLAB structure |J | Yes J
cones MATLAB cell array k Yes C

Table 8.1: The relation between fields and problem parameters.

• The quadratic terms in the objective:

qoqosubi(t),qoval(t) = qoval(t), t = 1, 2, . . . , length(qoval). (8.3)

Since Qo by assumption is symmetric, all elements are assumed to belong to the lower
triangular part. If an element is specified multiple times, the different elements are added
together.

• The quadratic terms in the constraints:

q
qcsubk(t)
qcsubi(t),qcsubj(t) = qcval(t), t = 1, 2, . . . , length(qcval). (8.4)

Since Qp by assumption is symmetric, all elements are assumed to belong to the lower
triangular part. If an element is specified multiple times, the different elements are added
together.

8.1.2 names

This structure is used to store all the names of individual items in the optimization problem such as
the constraints and the variables. The structure contains the subfields:

.name

Contains the problem name.

84 CHAPTER 8. COMMAND REFERENCE

.obj

Contains the name of the objective.

.con

Is a MATLAB cell array where names.con{i} contains the name of the ith constraint.

.var

Is a MATLAB cell array where names.var{j} contains the name of the jth variable.

.barvar

Is a MATLAB cell array where names.barvar{j} contains the name of the jth semidefinite
variable.

.cone

Is a MATLAB cell array where names.cone{t} contains the name of the tth conic constraint.

8.1.3 cones

cones is a MATLAB structure with the following subfields:

.type

cones.type is an array with the cone types for each cone; ’MSK CT QUAD’ or MSK CT RQUAD,
indicating if the cone is a quadratic cone or a rotated quadratic cone.

.sub

cones.sub is an array of variable indexes specifying which variables are members of the cones.
The array is a concatenation of index lists of all the cones.

.subptr

cones.sub is an array of pointers into cones.sub indicating the beginning of the different cone
index-sets.

For example the quadratic cone

x5 ≥
√
x2

3 + x2
1

and rotated quadratic cone

2x6x4 ≥ x2
2 + x2

7

would be specified using the two arrays

cones.type = [0, 1];

cones.sub = [5, 3, 1, 6, 4, 2, 7];

cones.subptr = [1, 4];

Alternatively, cones can be specified as a cell array with the sub-fields

8.1. DATA STRUCTURES 85

.type

cones{i}.type contains the cone type for the ith cone; ’MSK CT QUAD’ or MSK CT RQUAD, indicat-
ing if cone is a quadratic cone or a rotated quadratic cone.

.sub

cones{i}.sub is a list of variable indexes specifying which variables are members of the cone.

This specification is deprecated and might be removed in future versions of MOSEK.

8.1.4 barc

Together with .bardim this structure specifies the symmetric matrices Cj in the objective for semidef-
inite problems.

The structure has the following fields, which must be arrays of the same length:

.subj

Semidefinite variable indices j.

.subk

Subscripts of nonzeros elements.

.subl

Subscripts of nonzeros elements.

.val

Numerical values.

The symmetric matrices are specified in block-triplet format as

[Cbarc.subj(t)]barc.subk(t),barc.subl(t) = barc.val(t), t = 1, 2, . . . , length(barc.subj).

Only the lower triangular parts of Cj are specified, i.e., it is required that

barc.subk(t) ≥ barc.subl(t), t = 1, 2, . . . , length(barc.subk),

and that

1 ≤ barc.subk(t) ≤ bardim(barc.subj(t)), t = 1, 2, . . . , length(barc.subj),

1 ≤ barc.subl(t) ≤ bardim(barc.subj(t)), t = 1, 2, . . . , length(barc.subj).

86 CHAPTER 8. COMMAND REFERENCE

8.1.5 bara

Together with .bardim this structure specifies the symmetric matrices Aij in the constraints of semidef-
inite problems.

The structure has the following fields, which must be arrays of the same length:

.subi

Constraint indices i.

.subj

Semidefinite variable indices j.

.subk

Subscripts of nonzeros elements.

.subl

Subscripts of nonzeros elements.

.val

Numerical values.

The symmetric matrices are specified in block-triplet format as

[Abara.subi(t),bara.subj(t)]bara.subk(t),bara.subl(t) = bara.val(t), t = 1, 2, . . . , length(bara.subi).

Only the lower triangular parts of Aij are specified, i.e., it is required that

bara.subk(t) ≥ bara.subl(t), t = 1, 2, . . . , length(bara.subk),

and that

1 ≤ bara.subk(t) ≤ bardim(bara.subj(t)), t = 1, 2, . . . , length(bara.subj),

1 ≤ bara.subl(t) ≤ bardim(bara.subj(t)), t = 1, 2, . . . , length(bara.subj).

8.1.6 sol

Description:

A MATLAB structure used to store one or more solutions to an optimization problem. The
structure has one subfield for each possible solution type.

Subfields:

8.1. DATA STRUCTURES 87

.itr

Interior (point) solution computed by the interior-point optimizer.

.bas

Basic solution computed by the simplex optimizers and basis identification procedure.

.int

Integer solution computed by the mixed-integer optimizer.

Comments:

Each of the solutions sol.itr, sol.bas, and sol.int may contain one or more of the fields:

.prosta

Problem status. See Appendix MSKprostae.

.solsta

Solution status. See Appendix MSKsolstae.

.skc

Constraint status keys. See Table 7.1.

.skx

Variable status keys. See Table 7.1.

.skn

Conic status keys. See Section 7.1.

.xc

Constraint activities, i.e., xc = Ax where x is the optimal solution.

.xx

The optimal x solution.

.barx

The optimal solution of Xj , j = 1, 2, . . . , length(bardim).

.bars

The optimal solution of Sj , j = 1, 2, . . . , length(bardim).

.y

Identical to sol.slc-sol.suc.

.slc

Dual solution corresponding to the lower constraint bo-unds.

.suc

Dual solution corresponding to the upper constraint bo-unds.

.slx

Dual solution corresponding to the lower variable bou-nds.

.sux

Dual solution corresponding to the upper variable bou-nds.

88 CHAPTER 8. COMMAND REFERENCE

.snx

Dual solution corresponding to the conic constraint.

.pobjval

The primal objective value.

The fields .skn and .snx cannot occur in the .bas and .int solutions. In addition the fields .y,
.slc, .suc, .slx, and .sux cannot occur in the .int solution since integer problems does not
have a well-defined dual problem, and hence no dual solution.

8.1.7 prisen

Description:

Results of the primal sensitivity analysis.

Subfields:

.cons

MATLAB structure with the subfields:

.lr bl

Left value β1 in the linearity interval for a lower bound.

.rr bl

Right value β2 in the linearity interval for a lower bound.

.ls bl

Left shadow price sl for a lower bound.

.rs bl

Right shadow price sr for a lower bound.

.lr bu

Left value β1 in the linearity interval for an upper bound.

.rr bu

Right value β2 in the linearity interval for an upper bound.

.ls bu

Left shadow price sl for an upper bound.

.rs bu

Right shadow price sr for an upper bound.

.var

MATLAB structure with the subfields:

.lr bl

Left value β1 in the linearity interval for a lower bound on a variable.

.rr bl

Right value β2 in the linearity interval for a lower bound on a variable.

.ls bl

Left shadow price sl for a lower bound on a variable.

8.1. DATA STRUCTURES 89

.rs bl

Right shadow price sr for a lower bound on a variable.

.lr bu

Left value β1 in the linearity interval for an upper bound on a variable.

.rr bu

Right value β2 in the linearity interval for an upper bound on a variable.

.ls bu

Left shadow price sl for an upper bound on a variable.

.rs bu

Right shadow price sr for an upper bound on a variable.

8.1.8 duasen

Description:

Results of dual the sensitivity analysis.

Subfields:

.lr c

Left value β1 in linearity interval for an objective coefficient.

.rr c

Right value β2 in linearity interval for an objective coefficient.

.ls c

Left shadow price sl for an objective coefficient.

.rs c

Right shadow price sr for an objective coefficient.

8.1.9 info

info is a MATLAB structure containing a subfield for each item in the MOSEK optimization task
database, e.g., the info.MSK DINF BI TIME field specifies the amount of time spent in the basis iden-
tification in the last optimization. In Sections MSKdinfiteme and MSKiinfiteme all the items in the
task information database are listed.

8.1.10 symbcon

symbcon is a MATLAB structure containing a subfield for each MOSEK symbolic constant, e.g., the
field symbcon.MSK DINF BI TIME specifies the value of the symbolic constant ”MSK DINF BI TIME”. In
Appendix 25 allthe symbolic constants are listed.

90 CHAPTER 8. COMMAND REFERENCE

8.1.11 callback

callback A MATLAB structure containing the subfields (all of them are optional):

.loghandle

A MATLAB data structure or just [].

.log

The name of a user-defined function which must accept two input arguments, e.g.,

function myfunc(handle,str)

where handle will be identical to callback.handle when myfunc is called, and str is a string
of text from the log file.

.iterhandle

A MATLAB data structure or just [].

.iter

The name of a user-defined function which must accept three input arguments,

function myfunc(handle,where,info)

where handle will be identical to callback.iterhandle when myfunc is called, where indicates
the current progress of the colver and info is the current information database. See 8.1.9 for
further details about the info data structure.

8.2 An example of a command reference

All functions are documented using the format:

somefunction

Description:

The purpose of the function.

Syntax:

[ret1,ret2] = somefunction(arg1,arg2)

Arguments:

arg1

A description of this argument.

arg2

(Optional) A description of this argument which is optional. However, if argument 3 is
specified, this argument must be specified too.

arg3

Another useful argument.

Returns:

8.3. FUNCTIONS PROVIDED BY THE MOSEK OPTIMIZATION TOOLBOX 91

ret1

A description of the first return ret1.

ret2

(Optional) A description of the second return ret2.

Comments:

Potentially some comments about the function.

Examples:

Some examples of the use of the function.

8.3 Functions provided by the MOSEK optimization toolbox

mosekopt

Description

Solves an optimization problem. Data specifying the optimization problem can either be
read from a file or be inputted directly from MATLAB. It is also possible to write a file
using mosekopt

Syntax:

[rcode,res] = mosekopt(cmd,prob,param,callback)

Arguments:

cmd

cmd is a string containing commands to MOSEK on what to do. E.g., the string
‘minimize info’ means that the ob-jec-tive should be minimized, and information
about the optimization process should be returned in res.info. The following com-
mands are recognized by mosekopt

anapro

Runs the problem analyzer.

echo(n)

Controls how much information is echoed to the scre-en. Here, n must be a non-
negative integer, where 0 means that no information is displayed and 3 means that
all information is displayed.

info

Return the complete task information database in res.info. This database con-
tains various task specific information. See Section 8.1.9 for details the info data
structure.

param

Return the complete parameter database in res.param.

primalrepair

Performs a primal feasibility repair. See Chapter 15 for details.

maximize

Maximize the objective.

92 CHAPTER 8. COMMAND REFERENCE

max

Sets the objective sense (similar to .maximize), without performing an optimiza-
tion.

minimize

Minimize the objective.

min

Sets the objective sense (similar to .minimize), without performing an optimiza-
tion.

nokeepenv

Delete the MOSEK environment after each run. This can increase the license
checkout overhead significantly and is therefore only intended as a debug feature.

read(name)

Request that data is read from a file ”name”.

statuskeys(n)

Controls the format of status keys (problem status, solution status etc.) in the
returned problem, where statuskeys(0) means that all the status keys are re-
turned as strings, and statuskeys(1) means that all the status keys are returned
as numeric codes.

symbcon

Return the symbcon data structure in res.symbcon. See Section 8.1.10 for details
on the symbcon data structure.

write(name)

Write problem to the file ”name”.

version

Return the MOSEK version numbers in res.version.

prob

(Optional) A MATLAB structure containing the problem data. See Table 8.1 for details.

param

(Optional) A MATLAB structure which is used to specify algorithmic parameters to
MOSEK. The fields of param must be valid MOSEK parameter names. Moreover, the
values corresponding to the fields must be of a valid type, i.e. the value of a string
parameter must be a string, the value of an integer paramter must be an integer etc.

callback

(Optional) A MATLAB structure defining call-back data and functions. See Sections
7.24 and 8.1.11 for details.

Returns:

rcode

Return code. The interpretation of the value of the return code is listed in Appendix
25.

res

(Optional) Solution obtained by the interior-point algorithm.

.sol

The data structure of the type sol is discussed in Section 8.1.

8.3. FUNCTIONS PROVIDED BY THE MOSEK OPTIMIZATION TOOLBOX 93

.info

A MATLAB structure containing the task information database which contains
various task related information such as the number of iterations used to solve the
problem. However, this field is only defined if info appeared in the cmd command
when mosekopt is invoked.

.param

A MATLAB structure which contain the complete MOSEK parameter database.
However, this field is defined only if the param command is present in cmd when
mosekopt is invoked.

.prob

Contains the problem data if the problem data was read from a file.

Examples:

The following example demonstrates how to display the MOSEK parameter database and
how to use the primal simplex optimizer instead of the default optimizer.

msklpopt

mskqpopt

mskenopt

mskgpopt

mskscopt

Description

These functions provide an easy-to-use but less flexible interface than the mosekopt function.
In fact these procedures is just wrappers around the mosekopt interface and they are defined
in MATLAB m-files.

Syntax:

res = msklpopt(c,a,blc,buc,blx,bux,param,cmd);

res = mskqpopt(q,c,a,blc,buc,blx,bux,param,cmd);

res = mskenopt(d,c,a,blc,buc,blx,bux,param,cmd);

res = mskgpopt(d,a,map,param,cmd);

res = mskscopt(opr,opri,oprj,oprf,oprg,...

c,a,blc,buc,blx,bux,param,cmd)

Arguments:

For a description of the arguments we refer the reader to the actual m files stored in
<root>\mosek\7\toolbox\matlab\solvers

Please note that the MATLAB command help,
help msklpopt

will produce some usage information for the functions.

Returns:

Identical to the res structure returned by mosekopt

mskgpwri

94 CHAPTER 8. COMMAND REFERENCE

Description

This function writes a Geometric Programming (gp) problem to a file in a format compatible
with the mskexpopt command line tool.

Syntax:

res = mskgpwri(c,a,map,filename)

Arguments:

c,a,map

Data in the same format accepted by mskgpopt.

filename

The output file name.

Returns:

Nothing.

mskgpread

Description

This function reads a Geometric Programming (gp) problem from a file compatible with
the mskexpopt command line tool.

Syntax:

[c,a,map] = mskgpread (filename)

Arguments:

filename

The name of the file to read.

Returns:

c,a,map

Data in the same format accepted by mskgpopt.

8.4 MATLAB optimization toolbox compatible functions

The functions presented in this section intents to provide compatibility with the corresponding MAT-
LAB optimization toolbox functions. Although they are not perfectly compatible, the differences
usually do not cause any problems.

8.4.1 Linear and quadratic optimization

linprog

Description

Solves the linear optimization problem:

8.4. MATLAB OPTIMIZATION TOOLBOX COMPATIBLE FUNCTIONS 95

minimize fTx
subject to Ax ≤ b,

Bx = c,
l ≤ x ≤ u.

Syntax:

[x,fval,exitflag,output,lambda]

= linprog(f,A,b,B,c,l,u,x0,options)

Syntax:

[x,fval,exitflag,output,lambda]

= linprog(problem)

Arguments:

f

The objective function.

A

Constraint matrix for the less-than equal inequalities. Use A = [] if there are no
inequalities.

b

Right-hand side for the less-than equal inequalities. Use b = [] if there are no inequali-
ties.

B

(Optional) Constraint matrix for the equalities. Use B = [] if there are no equalities.

c

(Optional) Right-hand side for the equalities. Use c = [] if there are no equalities.

l

(Optional) Lower bounds on the variables. Please use −∞ to represent infinite lower
bounds.

u

(Optional) Upper bounds on the variables. Please use ∞ to represent infinite upper
bounds.

x0

(Optional) An initial guess for the starting point. This is only used for the primal sim-
plex algorithm; For more advanced hot-starting (e.g., using dual simplex), use mosekopt
directly.

options
(Optional) An optimization options structure. See the mskoptimset function for the
definition of the optimization options structure. linprog uses the options

.Diagnostics

.Display

.MaxIter

.Simplex

Valid values are ’on’, ’primal’ or ’dual’. If Simplex is ’on’ then MOSEK will
use either a primal or dual simplex solver (similar as specifying ’MSK OPTIMIZER FREE SIMPLEX’

96 CHAPTER 8. COMMAND REFERENCE

in mosekopt; otherwise either a primal or dual simplex algorithm is used. Note,
that the ’primal’ and ’dual’ values are specific for the MOSEK interface, and
not present in the standard MATLAB version.

.Write

Filename of problem file (e.g., ’prob.opf’) to be saved. This is useful for reporting
bugs or problems.

problem
A structure containing the fields f , A, b, B, c, l, u, x0 and options.

Returns:

x

The optimal x solution.

fval

The optimal objective value, i.e. fTx.

exitflag

A number which has the interpretation:

< 0
The problem is likely to be either primal or dual infeasible.

= 0
The maximum number of iterations was reached.

> 0
x is an optimal solution.

output

.iterations

Number of iterations spent to reach the optimum.

.algorithm

Always defined as ’large-scale: interior-point’.

lambda

.lower

Lagrange multipliers for lower bounds l.

.upper

Lagrange multipliers for upper bounds u.

.ineqlin

Lagrange multipliers for the inequalities.

.eqlin

Lagrange multipliers for the equalities.

quadprog

Description

Solves the quadratic optimization problem:

minimize
1

2
xTHx+ fTx

subject to Ax ≤ b,
Bx = c,

l ≤ x ≤ u.

(8.5)

8.4. MATLAB OPTIMIZATION TOOLBOX COMPATIBLE FUNCTIONS 97

Syntax:

[x,fval,exitflag,output,lambda]

= quadprog(H,f,A,b,B,c,l,u,x0,options)

Arguments:

H

Hessian of the objective function. H must be a symmetric matrix. Contrary to the
MATLAB optimization toolbox, MOSEK handles only the cases where H is positive
semidefinite. On the other hand MOSEK always computes a global optimum, i.e. the
objective function has to be strictly convex.

f

See (8.5) for the definition.

A

Constraint matrix for the less-than equal inequalities. Use A = [] if there are no
inequalities.

b

Right-hand side for the less-than equal inequalities. Use b = [] if there are no inequali-
ties.

B

(Optional) Constraint matrix for the equalities. Use B = [] if there are no equalities.

c

(Optional) Right-hand side for the equalities. Use c = [] if there are no equalities.

l

(Optional) Lower bounds on the variables. Please use −∞ to represent infinite lower
bounds.

u

(Optional) Upper bounds on the variables. Please use ∞ to represent infinite upper
bounds.

x0

(Optional) An initial guess for the starting point. This information is ignored by
MOSEK

options
(Optional) An optimization options structure. See the mskoptimset function for the
definition of the optimizations options structure. qu-ad-prog uses the options

.Diagnostics

.Display

.MaxIter

.Write

Returns:

x

The x solution.

fval

The optimal objective value i.e. 1
2x

THx+ fTx.

98 CHAPTER 8. COMMAND REFERENCE

exitflag

A scalar which has the interpretation:

< 0
The problem is likely to be either primal or dual infeasible.

= 0
The maximum number of iterations was reached.

> 0
x is an optimal solution.

output

.iterations

Number of iterations spent to reach the optimum.

.algorithm

Always defined as ’large-scale: interior-point’.

lambda

.lower

Lagrange multipliers for lower bounds l.

.upper

Lagrange multipliers for upper bounds u.

.ineqlin

Lagrange multipliers for inequalities.

.eqlin

Lagrange multipliers for equalities.

Examples:

8.4.2 Linear optimization with binary variables

bintprog

Description

Solves the binary linear optimization problem:

minimize fTx
subject to Ax ≤ b,

Bx = c,
x ∈ {0, 1}n

Syntax:

[x,fval,exitflag,output] = bintprog(f,A,b,B,c,x0,options)

Syntax:

[x,fval,exitflag,output] = bintprog(problem)

Arguments:

f

The objective function.

8.4. MATLAB OPTIMIZATION TOOLBOX COMPATIBLE FUNCTIONS 99

A

Constraint matrix for the less-than equal inequalities. Use A = [] if there are no
inequalities.

b

Right-hand side for the less-than equal inequalities. Use b = [] if there are no inequali-
ties.

B

(Optional) Constraint matrix for the equalities. Use B = [] if there are no equalities.

c

(Optional) Right-hand side for the equalities. Use c = [] if there are no equalities.

x0

(Optional) A feasible starting point.

options
(Optional) An optimization options structure. See the mskoptimset function for the
definition of the optimization options structure. bintprog uses the options

.Diagnostics

.Display

.MaxTime

The maximum number of seconds in the solution-time

.MaxNodes

The maximum number of branch-and-bounds allowed

.Write

Filename of problem file to save.

problem
A structure containing the fields f , A, b, B, c, x0 and options.

Returns:

x

The solution x.

fval

The objective fTx.

exitflag

A number which has the interpretation:

1
The function returned an integer feasible solution.

−2
The problem is infeasible.

−4
maxNodes reached without converging.

−5
maxTime reached without converging.

8.4.3 For linear least squares problems

lsqlin

100 CHAPTER 8. COMMAND REFERENCE

Description

Solves the linear least squares problem:

minimize
1

2
‖Cx− d‖ 2

2

subject to Ax ≤ b,
Bx = c,

l ≤ x ≤ u.

(8.6)

Syntax:

[x,resnorm,residual,exitflag,output,lambda]

= lsqlin(C,d,A,b,B,c,l,u,x0,options)

Arguments:

C

A matrix. See problem (8.6) for the purpose of the argument.

d

A vector. See problem (8.6) for the purpose of the argument.

A

Constraint matrix for the less-than equal inequalities. Use A = [] if there are no
inequalities.

b

Right-hand side for the less-than equal inequalities. Use b = [] if there are no inequali-
ties.

B

(Optional) Constraint matrix for the equalities. Use B = [] if there are no equalities.

c

(Optional) Right-hand side for the equalities. Use c = [] if there are no equalities.

l

(Optional) Lower bounds on the variables. Please use −∞ to represent infinite lower
bounds.

u

(Optional) Upper bounds on the variables. Please use ∞ to represent infinite lower
bounds.

x0

(Optional) An initial guess for the starting point. This information is ignored by
MOSEK

options
(Optional) An optimization options structure. See the function mskoptimset function
for the definition of the optimization options structure. lsqprog uses the options

.Diagnostics

.Display

.MaxIter

.Write

Returns:

8.4. MATLAB OPTIMIZATION TOOLBOX COMPATIBLE FUNCTIONS 101

x

The optimal x solution.

resnorm

The squared norm of the optimal residuals, i.e. ‖Cx− d‖ 2 evaluated at the optimal
solution.

residual

The residual Cx− d.

exitflag

A scalar which has the interpretation:

< 0
The problem is likely to be either primal or dual infeasible.

= 0
The maximum number of iterations was reached.

> 0
x is the optimal solution.

output

.iterations

Number of iterations spent to reach the optimum.

.algorithm

Always defined as ’large-scale: interior-point’.

lambda

.lower

Lagrange multipliers for lower bounds l.

.upper

Lagrange multipliers for upper bounds u.

.ineqlin

Lagrange multipliers for inequalities.

.eqlin

Lagrange multipliers for equalities.

Examples:

lsqnonneg

Description

Solves the linear least squares problem:

minimize
1

2
‖Cx− d‖ 2

2

subject to x ≥ 0.
(8.7)

Syntax:

[x,resnorm,residual,exitflag,output,lambda]

= lsqnonneg(C,d,x0,options)

Arguments:

102 CHAPTER 8. COMMAND REFERENCE

C

See problem (8.7).

d

See problem (8.7).

x0

(Optional) An initial guess for the starting point. This information is ignored by
MOSEK

options
(Optional) An optimizations options structure. See the mskoptimset function for the
definition of the optimization options structure. lsqlin uses the options

.Diagnostics

.Display

.MaxIter

.Write

Returns:

x

The x solution.

resnorm

The squared norm of the optimal residuals, i.e.

‖Cx− d‖ 2

evaluated at the optimal solution.

residual

The residual Cx− d.

exitflag

A number which has the interpretation:

< 0
The problem is likely to be either primal or dual infeasible.

= 0
The maximum number of iterations was reached.

> 0
x is optimal solution.

output

.iterations

Number of iterations spend to reach the optimum.

.algorithm

Always defined to be ’large-scale: interior-point’.

lambda

.lower

Lagrange multipliers for lower bounds l.

.upper

Lagrange multipliers for upper bounds u.

8.4. MATLAB OPTIMIZATION TOOLBOX COMPATIBLE FUNCTIONS 103

.ineqlin

Lagrange multipliers for inequalities.

.eqlin

Lagrange multipliers for equalities.

Comments:

This procedure just provides an easy interface to lsqlin. Indeed all the procedure does is
to call lsqlin with the appropriate arguments.

Examples:

8.4.4 The optimization options

The procedures in the optimization toolbox accepts some options controlling, e.g., the amount of
information displayed or the stopping criterion.

In general, due to the fact that MOSEK and MATLAB optimization toolboxes employ different algo-
rithms the toolboxes use different options. Therefore, the MOSEK optimization toolbox ignores most
of the options recognized by the MATLAB toolbox. The description of the mskoptimset function lists
which MATLAB options MOSEK recoginizes.

8.4.4.1 Viewing and modifying the optimization options

mskoptimget

Description

Obtains a value of an optimization parameter.

Syntax:

val = mskoptimget(options,param,default)

Arguments:

options

The optimization options structure.

param

Name of the optimization parameter for which the value should be obtained.

default

(Optional) If param is not defined, the value of default is returned instead.

Returns:

val

Value of the required option. If the option does not exist, then [] is returned unless
the value ’default’ is defined in which case the default value is returned.

Comments:

See the mskoptimset function for which parameters that can be set.

Examples:

104 CHAPTER 8. COMMAND REFERENCE

mskoptimset

Description

Obtains and modifies the optimization options structure. Only a subset of the fields in
the optimization structure recognized by the MATLAB optimization toolbox is recognized
by MOSEK In addition the optimization options structure can be used to modify all the
MOSEK specific parameters defined in Appendix 23.

.Diagnostics

Used to control how much diagnostic information is printed. Following values are
accepted:

off

No diagnostic information is printed.

on

Diagnostic information is printed.

.Display

Defines what information is displayed. The following values are accepted:

off

No output is displayed.

iter

Some output is displayed for each iteration.

final

Only the final output is displayed.

.MaxIter

Maximum number of iterations allowed.

.Write

A filename to write the problem to. If equal to the empty string no file is written. E.g
the option
Write(myfile.opf)

writes the file myfile.opf in the opf format.

Syntax:

options = mskoptimset(arg1,arg2,

param1,value1,

param2,value2,...)

Arguments:

arg1

(Optional) Is allowed to be any of the following two things:

Any string
The same as using no argument.

A structure
The argument is assumed to be a structure containing options, which are copied to
the return options.

param1

(Optional) A string containing the name of a parameter that should be modified.

8.4. MATLAB OPTIMIZATION TOOLBOX COMPATIBLE FUNCTIONS 105

value1

(Optional) The new value assigned to the parameter with the name param1.

param2

(Optional) Has the same interpretation as param1.

value2

(Optional) Has the same interpretation as value1.

Returns:

options

The updated optimization options structure.

Examples:

106 CHAPTER 8. COMMAND REFERENCE

Chapter 9

Case studies

9.1 Robust linear optimization

In most linear optimization examples discussed in this manual it is implicitly assumed that the problem
data, such as c and A, is known with certainty. However, in practice this is seldom the case, e.g. the
data may just be roughly estimated, affected by measurement errors or be affected by random events.

In this section a robust linear optimization methodology is presented which removes the assumption
that the problem data is known exactly. Rather it is assumed that the data belongs to some set, i.e.
a box or an ellipsoid.

The computations are performed using the MOSEK optimization toolbox for MATLAB but could
equally well have been implemented using the MOSEK API.

This section is co-authored with A. Ben-Tal and A. Nemirovski.

9.1.1 Introductory example

Consider the following toy-sized linear optimization problem: A company produces two kinds of drugs,
DrugI and DrugII, containing a specific active agent A, which is extracted from a raw materials that
should be purchased on the market. The drug production data are as follows:

DrugI DrugII
Selling price
$ per 1000 packs 6200 6900
Contentof agent A
gm per 100 packs 0.500 0.600
Production expenses per 1000 packs
Manpower, hours 90.0 100.0
Equipment, hours 40.0 50.0
Operational cost, $ 700 800

107

108 CHAPTER 9. CASE STUDIES

There are two kinds of raw materials, RawI and RawII, which can be used as sources of the active
agent. The related data is as follows:

Raw material Purchasing price, Content of agent A,
$ per kg gm per kg

RawI 100.00 0.01
RawII 199.90 0.02

Finally, the monthly resources dedicated to producing the drugs are as follows:

Budget, $ Manpower Equipment Capacity of raw materials
hours hours storage, kg

100000 2000 800 1000

The problem is to find the production plan which maximizes the profit of the company, i.e. minimize
the purchasing and operational costs

100 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII

and maximize the income

6200 · DrugI + 6900 · DrugII

The problem can be stated as the following linear programming program:

Minimize

− (100 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII) + (6200 · DrugI + 6900 · DrugII) (9.1)

subject to

0.01 · RawI + 0.02 · RawII− 0.500 · DrugI− 0.600 · DrugII ≥ 0 (a)
RawI + RawII ≤ 1000 (b)

90.0 · DrugI + 100.0 · DrugII ≤ 2000 (c)
40.0 · DrugI + 50.0 · DrugII ≤ 800 (d)

100.0 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII ≤ 100000 (d)
RawI, RawII, DrugI, DrugII ≥ 0 (e)

where the variables are the amounts RawI, RawII (in kg) of raw materials to be purchased and the
amounts DrugI, DrugII (in 1000 of packs) of drugs to be produced. The objective (9.1) denotes the
profit to be maximized, and the inequalities can be interpreted as follows:

• Balance of the active agent.

• Storage restriction.

• Manpower restriction.

9.1. ROBUST LINEAR OPTIMIZATION 109

• Equipment restriction.

• Ducget restriction.

Here is the MATLAB script which specifies the problem and solves it using the MOSEK optimization
toolbox:

[rlo1.m]
1 % rlo1.m

2

3 clear prob;

4

5 prob.c = [-100;-199.9;6200-700;6900-800];

6 prob.a = sparse([0.01,0.02,-0.500,-0.600;1,1,0,0;

7 0,0,90.0,100.0;0,0,40.0,50.0;100.0,199.9,700,800]);

8 prob.blc = [0;-inf;-inf;-inf;-inf];

9 prob.buc = [inf;1000;2000;800;100000];

10 prob.blx = [0;0;0;0];

11 prob.bux = [inf;inf;inf;inf];

12 [r,res] = mosekopt(’maximize’,prob);

13 xx = res.sol.itr.xx;

14 RawI = xx(1);

15 RawII = xx(2);

16 DrugI = xx(3);

17 DrugII = xx(4);

18

19 disp(sprintf(’*** Optimal value: %8.3f’,prob.c’*xx));

20 disp(’*** Optimal solution:’);

21 disp(sprintf(’RawI: %8.3f’,RawI));

22 disp(sprintf(’RawII: %8.3f’,RawII));

23 disp(sprintf(’DrugI: %8.3f’,DrugI));

24 disp(sprintf(’DrugII: %8.3f’,DrugII));

When executing this script, the following is displayed:

*** Optimal value: 8819.658

*** Optimal solution:

RawI: 0.000

RawII: 438.789

DrugI: 17.552

DrugII: 0.000

We see that the optimal solution promises the company a modest but quite respectful profit of 8.8%.
Please note that at the optimal solution the balance constraint is active: the production process utilizes
the full amount of the active agent contained in the raw materials.

9.1.2 Data uncertainty and its consequences.

Please note that not all problem data can be regarded as ”absolutely reliable”; e.g. one can hardly
believe that the contents of the active agent in the raw materials are exactly the ”nominal data”
0.01 gm/kg for RawI and 0.02 gm/kg for RawII. In reality, these contents definitely vary around the
indicated values. A natural assumption here is that the actual contents of the active agent aI in
RawI and aII in RawII are realizations of random variables somehow distributed around the ”nominal
contents” an

I = 0.01 and an
II = 0.02. To be more specific, assume that aI drifts in the 0.5% margin of

110 CHAPTER 9. CASE STUDIES

an
I , i.e. it takes with probability 0.5 the values from the interval an

I (1±0.005) = an
I {0.00995; 0.01005}.

Similarly, assume that aII drifts in the 2% margin of an
II , taking with probabilities 0.5 the values

an
II(1±0.02) = an

I {0.0196; 0.0204}. How do the perturbations of the contents of the active agent affect
the production process?

The optimal solution prescribes to purchase 438.8 kg of RawII and to produce 17552 packs of DrugI.
With the above random fluctuations in the content of the active agent in RawII, this production plan,
with probability 0.5, will be infeasible – with this probability, the actual content of the active agent in
the raw materials will be less than required to produce the planned amount of DrugI. For the sake of
simplicity, assume that this difficulty is resolved in the simplest way: when the actual content of the
active agent in the raw materials is insufficient, the output of the drug is reduced accordingly. With
this policy, the actual production of DrugI becomes a random variable which takes, with probabilities
0.5, the nominal value of 17552 packs and the 2% less value of 17201 packs. These 2% fluctuations in
the production affect the profit as well; the latter becomes a random variable taking, with probabilities
0.5, the nominal value 8,820 and the 21% less value 6,929. The expected profit is 7,843,which is by
11% less than the nominal profit 8,820 promised by the optimal solution of the problem.

We see that in our toy example that small (and in reality unavoidable) perturbations of the data may
make the optimal solution infeasible, and a straightforward adjustment to the actual solution values
may heavily affect the solution quality.

It turns out that the outlined phenomenon is found in many linear programs of practical origin. Usually,
in these programs at least part of the data is not known exactly and can vary around its nominal
values, and these data perturbations can make the nominal optimal solution – the one corresponding
to the nominal data – infeasible. It turns out that the consequences of data uncertainty can be much
more severe than in our toy example. The analysis of linear optimization problems from the NETLIB
collection reported in [6] demonstrates that for 13 of 94 NETLIB problems, already 0.01% perturbations
of ”clearly uncertain” data can make the nominal optimal solution severely infeasible: with these
perturbations, the solution, with a non-negligible probability, violates some of the constraints by 50%
and more. It should be added that in the general case, in contrast to the toy example we have
considered, there is no evident way to adjust the optimal solution by a small modification to the actual
values of the data. Moreover there are cases when such an adjustment is impossible — in order to
become feasible for the perturbed data, the nominal optimal solution should be ”completely reshaped”.

9.1.3 Robust linear optimization methodology

A natural approach to handling data uncertainty in optimization is offered by the Robust Optimization
Methodology which, as applied to linear optimization, is as follows.

9.1.3.1 Uncertain linear programs and their robust counterparts.

Consider a linear optimization problem

minimize cTx
subject to lc ≤ Ax ≤ uc,

lx ≤ x ≤ ux,
(9.2)

9.1. ROBUST LINEAR OPTIMIZATION 111

with the data (c, A, lc, uc, lx, ux), and assume that this data is not known exactly; all we know is that
the data varies in a given uncertainty set U . The simplest example is the one of interval uncertainty,
where every data entry can run through a given interval:

U = {(c, A, lc, uc, lx, ux) :
(cn − dc,An − dA, lnc − dlc, un

c − duc, lnx − dlx, un
x − dux) ≤ (c, A, lc, uc, lx, ux)

≤ (cn + dc,An + dA, lnc + dlc, u
n
c + duc, l

n
x + dlx, u

n
x + dux)}.

(9.3)

Here

(cn, An, lnc , u
n
c , l

n
x , u

n
x)

is the nominal data,

dc, dA, dlc, duc, dlx, dux ≥ 0

is the data perturbation bounds. Please note that some of the entries in the data perturbation bounds
can be zero, meaning that the corresponding data entries are certain (the expected values equals the
actual values).

• The family of instances (9.2) with data running through a given uncertainty set U is called an
uncertain linear optimization problem.

• Vector x is called a robust feasible solution to an uncertain linear optimization problem, if it
remains feasible for all realizations of the data from the uncertainty set, i.e. if

lc ≤ Ax ≤ uc, lx ≤ x ≤ uxforall(c, A, lc, uc, lx, ux) ∈ U .

• If for some value t we have cTx ≤ t for all realizations of the objective from the uncertainty set,
we say that robust value of the objective at x does not exceed t.

The Robust Optimization methodology proposes to associate with an uncertain linear program its
robust counterpart (RC) which is the problem of minimizing the robust optimal value over the set of
all robust feasible solutions, i.e. the problem

mint,x
{
t : cTx ≤ t, lc ≤ Ax ≤ uc, lx ≤ x ≤ uxforall(c, A, lc, uc, lx, ux) ∈ U

}
. (9.4)

The optimal solution to (9.4) is treated as the ”uncertainty-immuned” solution to the original uncertain
linear programming program.

9.1.3.2 Robust counterpart of an uncertain linear optimization problem with interval
uncertainty

In general, the RC (9.4) of an uncertain linear optimization problem is not a linear optimization
problem since(9.4) has infinitely many linear constraints. There are, however, cases when (9.4) can

112 CHAPTER 9. CASE STUDIES

be rewritten equivalently as a linear programming program; in particular, this is the case for interval
uncertainty (9.3). Specifically, in the case of (9.3), the robust counterpart of uncertain linear program
is equivalent to the following linear program in variables x, y, t:

minimize t

subject to (cn)Tx+ (dc)T y − t ≤ 0, (a)
lnc + dlc ≤ (An)x− (dA)y, (b)

(An)x+ (dA)y ≤ un
c − duc, (c)

0 ≤ x+ y, (d)
0 ≤ − x+ y, (e)

lnx + dlx ≤ x ≤ un
x − dux, (f)

(9.5)

The origin of (9.5) is quite transparent: The constraints (9.5.d − e) linking x and y merely say that
yi ≥ |xi| for all i. With this in mind, it is evident that at every feasible solution to (9.5) the entries in
the vector

(An)x− (dA)y

are lower bounds on the entries of Ax with A from the uncertainty set (9.3), so that (9.5.b) ensures
that lc ≤ Ax for all data from the uncertainty set. Similarly, (9.5.c) and (9.5.a), (9.5.f) ensure, for all
data from the uncertainty set, that Ax ≤ uc, c

Tx ≤ t, and that the entries in x satisfy the required
lower and upper bounds, respectively.

Please note that at the optimal solution to (9.5), one clearly has yj = |xj |. It follows that when the
bounds on the entries of x impose nonnegativity (nonpositivity) of an entry xj , then there is no need
to introduce the corresponding additional variable yi — from the very beginning it can be replaced
with xj , if xj is nonnegative, or with −xj , if xj is nonpositive.

Another possible formulation of problem (9.5) is the following. Let

lnc + dlc = (An)x− (dA)y − f, f ≥ 0

then this equation is equivalent to (a) in (9.5.b). If (lc)i = −∞, then equation i should be dropped
from the computations. Similarly,

−x+ y = g ≥ 0

is equivalent to (9.5.d). This implies that

lnc + dlc − (An)x+ f = −(dA)y

and that

y = g + x

Substituting these values into (9.5) gives

9.1. ROBUST LINEAR OPTIMIZATION 113

minimize t

subject to (cn)Tx+ (dc)T (g + x)− t ≤ 0,
0 ≤ f,

2(An)x+ (dA)(g + x) + f + lnc + dlc ≤ un
c − duc,

0 ≤ g,
0 ≤ 2x+ g,

lnx + dlx ≤ x ≤ un
x − dux,

which after some simplifications leads to

minimize t

subject to (cn + dc)Tx+ (dc)T g − t ≤ 0, (a)
0 ≤ f, (b)

2(An + dA)x+ (dA)g + f − (lnc + dlc) ≤ un
c − duc, (c)

0 ≤ g, (d)
0 ≤ 2x+ g, (e)

lnx + dlx ≤ x ≤ un
x − dux, (f)

and

minimize t

subject to (cn + dc)Tx+ (dc)T g − t ≤ 0, (a)
2(An + dA)x+ (dA)g + f ≤ un

c − duc + lnc + dlc, (b)
0 ≤ 2x+ g, (c)
0 ≤ f, (d)
0 ≤ g, (e)

lnx + dlx ≤ x ≤ un
x − dux. (f)

(9.6)

Please note that this problem has more variables but much fewer constraints than (9.5). Therefore,
(9.6) is likely to be solved faster than (9.5). Note too that (9.6.b) is trivially redundant if lnx +dlx ≥ 0.

9.1.3.3 Introductory example (continued)

Let us apply the Robust Optimization methodology to our drug production example presented in
Section 9.1.1, assuming that the only uncertain data is the contents of the active agent in the raw
materials, and that these contents vary in 0.5% and 2% neighborhoods of the respective nominal
values 0.01 and 0.02. With this assumption, the problem becomes an uncertain LP affected by interval
uncertainty; the robust counterpart (9.5) of this uncertain LP is the linear program

114 CHAPTER 9. CASE STUDIES

(Drug RC) :
maximize

t
subject to

t ≤ − 100 · RawI− 199.9 · RawII + 5500 · DrugI + 6100 · DrugII
0.01 · 0.995 · RawI + 0.02 · 0.98 · RawII− 0.500 · DrugI− 0.600 · DrugII ≥ 0

RawI + RawII ≤ 1000
90.0 · DrugI + 100.0 · DrugII ≤ 2000
40.0 · DrugI + 50.0 · DrugII ≤ 800

100.0 · RawI + 199.90 · RawII + 700 · DrugI + 800 · DrugII ≤ 100000
RawI, RawII, DrugI, DrugII ≥ 0

Solving this problem with MOSEK we get the following output:

*** Optimal value: 8294.567

*** Optimal solution:

RawI: 877.732

RawII: 0.000

DrugI: 17.467

DrugII: 0.000

We see that the robust optimal solution we have built ”costs money” – it promises a profit of just $
8,295 (cf. with the profit of $ 8,820 promised by the nominal optimal solution). Please note, however,
that the robust optimal solution remains feasible whatever are the realizations of the uncertain data
from the uncertainty set in question, while the nominal optimal solution requires adjustment to this
data and, with this adjustment, results in the average profit of $ 7,843, which is by 5.4% less than the
profit of $ 8,295 guaranteed by the robust optimal solution. Note too that the robust optimal solution
is significantly different from the nominal one: both solutions prescribe to produce the same drug
DrugI (in the amounts 17,467 and 17,552 packs, respectively) but from different raw materials, RawI
in the case of the robust solution and RawII in the case of the nominal solution. The reason is that
although the price per unit of the active agent for RawII is sligthly less than for RawI, the content of
the agent in RawI is more stable, so when possible fluctuations of the contents are taken into account,
RawI turns out to be more profitable than RawII.

9.1.4 Random uncertainty and ellipsoidal robust counterpart

In some cases, it is natural to assume that the perturbations affecting different uncertain data entries
are random and independent of each other. In these cases, the robust counterpart based on the interval
model of uncertainty seems to be too conservative: Why should we expect that all the data will be
simultaneously driven to its most unfavorable values and immune the solution against this highly
unlikely situation? A less conservative approach is offered by the ellipsoidal model of uncertainty. To
motivate this model, let us seseee what happens with a particular linear constraint

aTx ≤ b (9.7)

at a given candidate solution x in the case when the vector a of coefficients of the constraint is affected
by random perturbations:

9.1. ROBUST LINEAR OPTIMIZATION 115

a = an + ζ, (9.8)

where an is the vector of nominal coefficients and ζ is a random perturbation vector with zero mean
and covariance matrix Va. In this case the value of the left-hand side of (9.7), evaluated at a given x,

becomes a random variable with the expected value (an)Tx and the standard deviation
√
xTVax. Now

let us act as an engineer who believes that the value of a random variable never exceeds its mean plus
3 times the standard deviation; we do not intend to be that specific and replace ”3” in the above rule
by a safety parameter Ω which will be in our control. Believing that the value of a random variable
”never” exceeds its mean plus Ω times the standard deviation, we conclude that a ”safe” version of
(9.7) is the inequality

(an)Tx+ Ω
√
xTVax ≤ b. (9.9)

The word ”safe” above admits a quantitative interpretation: If x satisfies (9.9), one can bound from
above the probability of the event that random perturbations (9.8) result in violating the constraint
(9.7) evaluated at x. The bound in question depends on what we know about the distribution of ζ,
e.g.

• We always have the bound given by the Tschebyshev inequality: x satisfies (9.9)⇒

Prob
{
aTx > b

}
≤ 1

Ω2
. (9.10)

• When ζ is Gaussian, then the Tschebyshev bound can be improved to: x satisfies (9.9)⇒

Prob
{
aTx > b

}
≤ 1√

2π

∫ ∞
Ω

exp{−t2/2}dt ≤ 0.5exp{−Ω2/2}. (9.11)

• Assume that ζ = Dξ, where ∆ is certain n×m matrix, and ξ = (ξ1, ..., ξm)T is a random vector
with independent coordinates ξ1, ..., ξm symmetrically distributed in the segment [−1, 1]. Setting
V = DDT (V is a natural ”upper bound” on the covariance matrix of ζ), one has: x satisfies
(9.9)⇒

Prob
{
aTx > b

}
≤ 0.5exp{−Ω2/2}. (9.12)

Please note that in order to ensure the bounds in (9.11) and (9.12) to be ≤ 10−6, it suffices to set
Ω = 5.13.

Now, assume that we are given a linear program affected by random perturbations:

minimize [cn + dc]Tx

subject to (lc)i ≤ [an
i + dai]

Tx ≤ (uc)i, i = 1, ...,m,
lx ≤ x ≤ ux,

(9.13)

where (cn, {an
i }mi=1, lc, uc, lx, ux) are the nominal data, and dc, dai are random perturbations with zero

means. Assume, for the sake of definiteness, that every one of the random perturbations dc, da1, ..., dam
satisfies either the assumption of item 2 or the assumption of item 3, and let Vc, V1, ..., Vm be the

116 CHAPTER 9. CASE STUDIES

corresponding (upper bounds on the) covariance matrices of the perturbations. Choosing a safety
parameter Ω and replacing the objective and the bodies of all the constraints by their safe bounds as
explained above, we arrive at the following optimization problem:

minimize t

subject to [cn]Tx+ Ω
√
xTVcx ≤ t,

(lc)i ≤ [an
i]Tx− Ω

√
xTVaix,

[an
i]Tx+ Ω

√
xTVaix ≤ (uc)i, i = 1, ...,m,

lx ≤ x ≤ ux.

(9.14)

The relation between problems (9.14) and (9.13) is as follows:

• If (x, t) is a feasible solution of (9.14), then with probability at least

p = 1− (m+ 1)exp{−Ω2/2}
x is feasible for randomly perturbed problem (9.13), and t is an upper bound on the objective
of (9.13) evaluated at x.

• We see that if Ω is not too small (9.14) can be treated as a ”safe version” of (9.13).

On the other hand, it is easily seen that (9.14) is nothing but the robust counterpart of the uncer-
tain linear optimization problem with the nominal data (cn, {an

i }mi=1, lc, uc, lx, ux) and the row-wise
ellipsoidal uncertainty given by the matrices Vc, Va1 , ..., Vam . In the corresponding uncertainty set,
the uncertainty affects the coefficients of the objective and the constraint matrix only, and the per-
turbation vectors affecting the objective and the vectors of coefficients of the linear constraints run,
independently of each other, through the respective ellipsoids

Ec =
{
dc = ΩV 1/2

c u : uTu ≤ 1
}
,

Eai =
{
dai = ΩV 1/2

ai u : uTu ≤ 1
}
, i = 1, ...,m.

It turns out that in many cases the ellipsoidal model of uncertainty is significantly less conservative
and thus better suited for practice, than the interval model of uncertainty.

Last but not least, it should be mentioned that problem (9.14) is equivalent to a conic quadratic
program, specifically to the program

minimize t

subject to [cn]Tx+ Ωz ≤ t,

(lc)i ≤ [an
i]Tx− Ωzi,

[an
i]Tx+ Ωzi ≤ (uc)i, i = 1, ...,m,

0 = w −Dcx
0 = wi −Daix, i = 1, ...,m,

0 ≤ z −
√
wTw,

0 ≤ zi −
√

(wi)Twi, i = 1, ...,m,

lx ≤ x ≤ ux.

9.1. ROBUST LINEAR OPTIMIZATION 117

where Dc and Dai are matrices satisfying the relations

Vc = DT
c Dc, Vai = DT

aiDai , i = 1, ...,m.

9.1.4.1 Example: Interval and Ellipsoidal robust counterparts of uncertain linear con-
straint with independent random perturbations of coefficients

Consider a linear constraint

l ≤
n∑
j=1

ajxj ≤ u (9.15)

and assume that the aj coefficients of the body of the constraint are uncertain and vary in intervals
an
j ±σj . The worst-case-oriented model of uncertainty here is the interval one, and the corresponding

robust counterpart of the constraint is given by the system of linear inequalities

l ≤
n∑
j=1

an
j xj −

∑
j=1

σjyj ,

n∑
j=1

an
j xj +

n∑
j=1

σjyj ≤ u,

0 ≤ xj + yj ,
0 ≤ − xj + yj , j = 1, ..., n.

(9.16)

Now, assume that we have reasons to believe that the true values of the coefficients aj are obtained
from their nominal values an

j by random perturbations, independent for different j and symmetrically
distributed in the segments [−σj , σj]. With this assumption, we are in the situation of item 3 and can
replace the uncertain constraint (9.15) with its ellipsoidal robust counterpart

l ≤
n∑
j=1

an
j xj − Ωz,

n∑
j=1

an
j xj + Ωz ≤ u,

0 ≤ z −

√√√√ n∑
j=1

σ2
jx

2
j .

(9.17)

Please note that with the model of random perturbations, a vector x satisfying (9.17) satisfies a
realization of (9.15) with probability at least 1− exp{Ω2/2}; for Ω = 6. This probability is ≥ 1− 1.5 ·
10−8, which for all practical purposes is the same as sayiong that x satisfies all realizations of (9.15).
On the other hand, the uncertainty set associated with (9.16) is the box

B =
{
a = (a1, ..., an)T : an

j − σj ≤ aj ≤ an
j + σj , j = 1, ..., n

}
,

while the uncertainty set associated with (9.17) is the ellipsoid

118 CHAPTER 9. CASE STUDIES

E(Ω) =

a = (a1, ..., an)T :

n∑
j=1

(aj − an
j)

2

σ2
j ≤ Ω2

 .

For a moderate value of Ω, say Ω = 6, and n ≥ 40, the ellipsoid E(Ω) in its diameter, typical linear
sizes, volume, etc. is incomparably less than the box B, the difference becoming more dramatic the
larger the dimension n of the box and the ellipsoid. It follows that the ellipsoidal robust counterpart
(9.17) of the randomly perturbed uncertain constraint (9.15) is much less conservative than the interval
robust counterpart (9.16), while ensuring basically the same ”robustness guarantees”. To illustrate
this important point, consider the following numerical examples:

There are n different assets on the market. The return on $ 1 invested in asset j is a random variable
distributed symmetrically in the segment [δj − σj , δj + σj], and the returns on different assets are
independent of each other. The problem is to distribute $ 1 among the assets in order to get the
largest possible total return on the resulting portfolio.

A natural model of the problem is an uncertain linear optimization problem

maximize

n∑
j=1

ajxj

subject to

n∑
j=1

xj = 1,

0 ≤ xj , j = 1, ..., n.

(9.18)

where aj are the uncertain returns of the assets. Both the nominal optimal solution (set all returns aj
equal to their nominal values δj) and the risk-neutral Stochastic Programming approach (maximize the
expected total return) result in the same solution: Our $ 1 should be invested in the most promising
asset(s) – the one(s) with the maximal nominal return. This solution, however, can be very unreliable
if, as is typically the case in reality, the most promising asset has the largest volatility σ and is in this
sense the most risky. To reduce the risk, one can use the Robust Counterpart approach which results
in the following optimization problems.

The Interval Model of Uncertainty:
maximize t

subject to 0 ≤ − t+

n∑
j=1

(δj − σj)xj ,

n∑
j=1

xj = 1,

0 ≤ xj , j = 1, ..., n

(9.19)

and

9.1. ROBUST LINEAR OPTIMIZATION 119

The ellipsoidal Model of Uncertainty:maximize t

subject to 0 ≤ − t+

n∑
j=1

(δj)xj − Ωz,

0 ≤ z −

√√√√ n∑
j=1

σ2
jx

2
j ,

n∑
j=1

xj = 1,

0 ≤ xj , j = 1, ..., n.
(9.20)

Note that the problem (9.20) is essentially the risk-averted portfolio model proposed in mid-50’s by
Markowitz.

The solution of (9.19) is evident — our $ 1 should be invested in the asset(s) with the largest possible
guaranteed return δj − σj . In contrast to this very conservative policy (which in reality prescribes to
keep the initial capital in a bank or in the most reliable, and thus low profit, assets), the optimal
solution to (9.20) prescribes a quite reasonable diversification of investments which allows to get much
better total return than (9.19) with basically zero risk. To illustrate this, assume that there are n = 300
assets with the nominal returns (per year) varying from 1.04 (bank savings) to 2.00:

δj = 1.04 + 0.96
j − 1

n− 1
, j = 1, 2, ..., n = 300

and volatilities varying from 0 for the bank savings to 1.2 for the most promising asset:

σj = 1.152
j − 1

n− 1
, j = 1, ..., n = 300.

Here is a MATLAB script which builds the associated problem (9.20), solves it via the MOSEK
optimization toolbox, displays the resulting robust optimal value of the total return and the distribution
of investments, and finally runs 10,000 simulations to get the distribution of the total return on the
resulting portfolio (in these simulations, the returns on all assets are uniformly distributed in the
corresponding intervals):

[rlo2.m]
1 % File: rlo2.m

2

3 % Problem:

4 %

5 % Maximize t subject to

6 % t <= sum(delta(j)*x(j)) -Omega*z,

7 % y(j) = sigma(j)*x(j), j=1,...,n,

8 % sum(x(j)) = 1,

9 % norm(y) <= z,

10 % 0 <= x.

11

12 clear prob;

13 n = 300;

14 Omega = 6;

120 CHAPTER 9. CASE STUDIES

15

16 % Set nominal returns and volatilities

17 delta = (0.96/(n-1))*[0:1:n-1]+1.04;

18 sigma = (1.152/(n-1))*[0:1:n-1];

19

20 % Set mosekopt description of the problem

21 prob.c = -[1;zeros(2*n+1,1)];

22 A = [-1,ones(1,n)+delta,-Omega,zeros(1,n);zeros(n+1,2*n+2)];

23 for j=1:n,

24 % Body of the constraint y(j) - sigma(j)*x(j) = 0:

25 A(j+1,j+1) = -sigma(j);

26 A(j+1,2+n+j) = 1;

27 end;

28 A(n+2,2:n+1) = ones(1,n);

29 prob.a = sparse(A);

30 prob.blc = [zeros(n+1,1);1];

31 prob.buc = [inf;zeros(n,1);1];

32 prob.blx = [-inf;zeros(n,1);0;zeros(n,1)];

33 prob.bux = inf*ones(2*n+2,1);

34 prob.cones = cell(1,1);

35 prob.cones{1}.type = ’MSK CT QUAD’;

36 prob.cones{1}.sub = [n+2;[n+3:1:2*n+2]’];

37

38 % Run mosekopt

39 [r,res]=mosekopt(’minimize echo(1)’,prob);

40

41 % Display the solution

42 xx = res.sol.itr.xx;

43 t = xx(1);

44

45 disp(sprintf(’Robust optimal value: %5.4f’,t));

46 x = max(xx(2:1+n),zeros(n,1));

47 plot([1:1:n],x,’-m’);

48 grid on;

49

50 disp(’Press <Enter> to run simulations’);

51 pause

52

53 % Run simulations

54

55 Nsim = 10000;

56 out = zeros(Nsim,1);

57 for i=1:Nsim,

58 returns = delta+(2*rand(1,n)-1).*sigma;

59 out(i) = returns*x;

60 end;

61 disp(sprintf(’Actual returns over %d simulations:’,Nsim));

62 disp(sprintf(’Min=%5.4f Mean=%5.4f Max=%5.4f StD=%5.2f’,...

63 min(out),mean(out),max(out),std(out)));

64 hist(out);

Here are the results displayed by the script:

Robust optimal value: 1.3428

Actual returns over 10000 simulations:

Min=1.5724 Mean=1.6965 Max=1.8245 StD= 0.03

Please note that with our set-up there is exactly one asset with guaranteed return greater than 1 –

9.1. ROBUST LINEAR OPTIMIZATION 121

Figure 9.1: Distribution of investments among the assets in the optimal solution of.

asset # 1 (bank savings, return 1.04, zero volatility). Consequently, the interval robust counterpart
(9.19) prescribes to put our $ 1 in the bank, thus getting a 4% profit. In contrast to this, the diversified
portfolio given by the optimal solution of (9.20) never yields profit less than 57.2%, and yields at average
a 69.67% profit with pretty low (0.03) standard deviation. We see that in favorable circumstances the
ellipsoidal robust counterpart of an uncertain linear program indeed is less conservative than, although
basically as reliable as, the interval robust counterpart.

Finally, let us compare our results with those given by the nominal optimal solution. The latter
prescribes to invest everything we have in the most promising asset (in our example this is the asset #
300 with a nominal return of 2.00 and volatility of1.152). Assuming that the actual return is uniformly
distributed in the corresponding interval and running 10,000 simulations, we get the following results:

Nominal optimal value: 2.0000

Actual returns over 10000 simulations:

Min=0.8483 Mean=1.9918 Max=3.1519 StD= 0.66

We see that the nominal solution results in a portfolio which is much more risky, although better at
average, than the portfolio given by the robust solution.

9.1.4.2 Combined Interval-Ellipsoidal Robust Counterpart

We have considered the case when the coefficients aj of uncertain linear constraint (9.15) are affected
by uncorrelated random perturbations symmetrically distributed in given intervals [−σj , σj], and we
have discussed two ways to model the uncertainty:

• The interval uncertainty model (the uncertainty set U is the box B), where we ignore the stochas-
tic nature of the perturbations and their independence. This model yields the Interval Robust
Counterpart (9.16);

122 CHAPTER 9. CASE STUDIES

• The ellipsoidal uncertainty model (U is the ellipsoid E(Ω)), which takes into account the stochas-
tic nature of data perturbations and yields the Ellipsoidal Robust Counterpart (9.17).

Please note that although for large n the ellipsoid E(Ω) in its diameter, volume and average linear sizes
is incomparably smaller than the box B, in the case of Ω > 1 the ellipsoid E(Ω) in certain directions
goes beyond the box. E.g. the ellipsoid E(6), although much more narrow than B in most of the
directions, is 6 times wider than B in the directions of the coordinate axes. Intuition says that it
hardly makes sense to keep in the uncertainty set realizations of the data which are outside of B and
thus forbidden by our model of perturbations, so in the situation under consideration the intersection of
E(Ω) and B is a better model of the uncertainty set than the ellipsoid E(Ω) itself. What happens when
the model of the uncertainty set is the ”combined interval-ellipsoidal” uncertainty U(Ω) = E(Ω)∩B ?

First, it turns out that the RC of (9.15) corresponding to the uncertainty set U(Ω) is still given by a
system of linear and conic quadratic inequalities, specifically the system

l ≤
n∑
j=1

an
j xj −

n∑
j=1

σjyj − Ω

√√√√ n∑
j=1

σ2
ju

2
j ,

n∑
j=1

an
j xj +

n∑
j=1

σjzj + Ω

√√√√ n∑
j=1

σ2
j v

2
j ≤ u,

− yj ≤ xj − uj ≤ yj , j = 1, ..., n,
− zj ≤ xj − vj ≤ zj , j = 1, ..., n.

(9.21)

Second, it turns out that our intuition is correct: As a model of uncertainty, U(Ω) is as reliable as the
ellipsoid E(Ω). Specifically, if x can be extended to a feasible solution of (9.21), then the probability
for x to satisfy a realization of (9.15) is ≥ 1− exp{−Ω2/2}.
The conclusion is that if we have reasons to assume that the perturbations of uncertain coefficients
in a constraint of an uncertain linear optimization problem are (a) random, (b) independent of each
other, and (c) symmetrically distributed in given intervals, then it makes sense to associate with this
constraint an interval-ellipsoidal model of uncertainty and use a system of linear and conic quadratic
inequalities (9.21). Please note that when building the robust counterpart of an uncertain linear opti-
mization problem, one can use different models of the uncertainty (e.g., interval, ellipsoidal, combined
interval-ellipsoidal) for different uncertain constraints within the same problem.

9.1.5 Further references

For further information about robust linear optimization consult [6], [7].

9.2 Geometric (posynomial) optimization

9.2.1 The problem

A geometric optimization problem can be stated as follows

9.2. GEOMETRIC (POSYNOMIAL) OPTIMIZATION 123

minimize
∑
k∈J0

ck

n−1∏
j=0

t
akj
j

subject to
∑
k∈Ji

ck

n−1∏
j=0

t
akj
j ≤ 1, i = 1, . . . ,m,

t > 0,

(9.22)

where it is assumed that

∪mk=0Jk = {1, . . . , T}

and if i 6= j, then

Ji ∩ Jj = ∅.

Hence, A is a T×n matrix and c is a vector of length T . Given ck > 0 then

ck

n−1∏
j=0

t
akj
j

is called a monomial. A sum of monomials i.e.

∑
k∈Ji

ck

n−1∏
j=0

t
akj
j

is called a posynomial.In general, the problem (9.22) is very hard to solve. However, the posynomial
case where it is required that

c > 0

is relatively easy. The reason is that using a simple variable transformation a convex optimization
problem can be obtained. Indeed using the variable transformation

tj = exj (9.23)

we obtain the problem

minimize
∑
k∈J0

cke
∑n−1
j=0 akjxj

subject to
∑
k∈Ji

cke
∑n−1
j=0 akjxj ≤ 1, i = 1, . . . ,m,

(9.24)

which is a convex optimization problem that can be solved using MOSEK. We will call

cte
(
∑n−1
j=0 atjxj) = e(log(ct)+

∑n−1
j=0 atjxj)

124 CHAPTER 9. CASE STUDIES

a term and hence the number of terms is T .

As stated, the problem (9.24) is non-separable. However, using

vt = log(ct) +

n−1∑
j=0

atjxj

we obtain the separable problem

minimize
∑
t∈J0

evt

subject to
∑
t∈Ji

evt ≤ 1, i = 1, . . . ,m,

n−1∑
j=0

atjxj − vt = − log(ct), t = 0, . . . , T,

(9.25)

which is a separable convex optimization problem.

A warning about this approach is that the exponential function ex is only numerically well-defined for
values of x in a small interval around 0 since ex grows very rapidly as x becomes larger. Therefore
numerical problems may arise when solving the problem on this form.

9.2.2 Applications

A large number of practical applications, particularly in electrical circuit design, can be cast as a
geometric optimization problem. We will not review these applications here but rather refer the reader
to [8] and the references therein.

9.2.3 Modeling tricks

A lot of tricks that can be used for modeling posynomial optimization problems are described in [8].
Therefore, in this section we cover only one important case.

9.2.3.1 Equalities

In general, equalities are not allowed in (9.22), i.e.

∑
k∈Ji

ck

n−1∏
j=0

t
akj
j = 1

is not allowed. However, a monomial equality is not a problem. Indeed consider the example

xyz−1 = 1

9.2. GEOMETRIC (POSYNOMIAL) OPTIMIZATION 125

of a monomial equality. The equality is identical to

1 ≤ xyz−1 ≤ 1

which in turn is identical to the two inequalities

xyz−1 ≤ 1,
1

xyz−1
= x−1y−1z ≤ 1.

Hence, it is possible to model a monomial equality using two inequalities.

9.2.4 Problematic formulations

Certain formulations of geometric optimization problems may cause problems for the algorithms im-
plemented in MOSEK. Basically there are two kinds of problems that may occur:

• The solution vector is finite, but an optimal objective value can only be a approximated.

• The optimal objective value is finite but implies that a variable in the solution is infinite.

9.2.4.1 Finite unattainable solution

The following problem illustrates an unattainable solution:

minimize x2y
subject to xy ≤ 1,

x, y > 0.

Clearly, the optimal objective value is 0 but because of the constraint the x, y > 0 constraint this value
can never be attained: To see why this is a problem, remember that MOSEK substitutes x = etx and
y = ety and solves the problem as

minimize e2txety

subject to etxety ≤ 1,
tx, ty ∈ R.

The optimal solution implies that tx = −∞ or ty = −∞, and thus it is unattainable.

Now, the issue should be clear: If a variable x appears only with nonnegative exponents, then fixing
x = 0 will minimize all terms in which it appears — but such a solution cannot be attained.

9.2.4.2 Infinite solution

A similar problem will occur if a finite optimal objective value requires a variable to be infinite. This
can be illustrated by the following example:

126 CHAPTER 9. CASE STUDIES

minimize x−2

subject to x−1 ≤ 1,
x > 0,

which is a valid geometric programming problem. In this case the optimal objective is 0, but this
requires x =∞, which is unattainable.

Again, this specific case will appear if a variable x appears only with negative exponents in the problem,
implying that each term in which it appears can be minimized for x→∞.

9.2.5 An example

Consider the example

minimize x−1y

subject to x2y−
1
2 + 3y

1
2 z−1 ≤ 1,

xy−1 = z2,

− x ≤ − 1

10
,

x ≤ 3,
x, y, z > 0,

which is not a geometric optimization problem. However, using the obvious transformations we obtain
the problem

minimize x−1y

subject to x2y−
1
2 + 3y

1
2 z−1 ≤ 1,

xy−1z−2 ≤ 1,
x−1yz2 ≤ 1,
1

10
x−1 ≤ 1,

1

3
x ≤ 1,

x, y, z > 0,

(9.26)

which is a geometric optimization problem.

9.2.6 Solving the example

The problem (9.26) can be defined and solved in the MOSEK toolbox as shown below.

[go2.m]
1 % go2.m

2

3 c = [1 1 3 1 1 0.1 1/3]’;

4 a = sparse([[-1 1 0];

5 [2 -0.5 0];

6 [0 0.5 -1];

9.2. GEOMETRIC (POSYNOMIAL) OPTIMIZATION 127

7 [1 -1 -2];

8 [-1 1 2];

9 [-1 0 0];

10 [1 0 0]]);

11

12 map = [0 1 1 2 3 4 5]’;

13 [res] = mskgpopt(c,a,map);

14

15 fprintf(’\nPrimal optimal solution to original gp:’);

16 fprintf(’ %e’,exp(res.sol.itr.xx));

17 fprintf(’\n\n’);
18

19 % Compute the optimal objective value and

20 % the constraint activities.

21 v = c.*exp(a*res.sol.itr.xx);

22

23 % Add appropriate terms together.

24 f = sparse(map+1,1:7,ones(size(map)))*v;

25

26 % First objective value. Then constraint values.

27 fprintf(’Objective value: %e\n’,log(f(1)));
28 fprintf(’Constraint values:’);

29 fprintf(’ %e’,log(f(2:end)));

30 fprintf(’\n\n’);
31

32 % Dual multipliers (should be negative)

33 fprintf(’Dual variables (should be negative):’);

34 fprintf(’ %e’,res.sol.itr.y);

35 fprintf(’\n\n’);

9.2.7 Exporting to a file

It’s possible to write a geometric optimization problem to a file with the command:

mskgpwri(c,a,map,filename)

This file format is compatible with the mskexpopt command line tool. See the MOSEK Tools User’s
manual for details on mskexpopt. This file format can be useful for sending debug information to
MOSEK or for testing. It’s also possible to read the above format with the command:

[c,a,map] = mskgpread(filename)

9.2.8 Further information

More information about geometric optimization problems is located in [3], [9], [8].

128 CHAPTER 9. CASE STUDIES

Chapter 10

The optimizers for continuous
problems

The most essential part of MOSEK is the optimizers. Each optimizer is designed to solve a particular
class of problems i.e. linear, conic, or general nonlinear problems. The purpose of the present chapter
is to discuss which optimizers are available for the continuous problem classes and how the performance
of an optimizer can be tuned, if needed.

This chapter deals with the optimizers for continuous problems with no integer variables.

10.1 How an optimizer works

When the optimizer is called, it roughly performs the following steps:

Presolve:

Preprocessing to reduce the size of the problem.

Dualizer:

Choosing whether to solve the primal or the dual form of the problem.

Scaling:

Scaling the problem for better numerical stability.

Optimize:

Solve the problem using selected method.

The first three preprocessing steps are transparent to the user, but useful to know about for tuning
purposes. In general, the purpose of the preprocessing steps is to make the actual optimization more
efficient and robust.

129

130 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

10.1.1 Presolve

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called
presolve. The purpose of the presolve is to

• remove redundant constraints,

• eliminate fixed variables,

• remove linear dependencies,

• substitute out (implied) free variables, and

• reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so that the
returned solution is valid for the original problem. Hence, the presolve is completely transparent. For
further details about the presolve phase, please see [10], [11].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes
too much time or memory compared to the reduction in problem size gained it may be disabled. This
is done by setting the parameter MSK IPAR PRESOLVE USE to MSK PRESOLVE MODE OFF.

The two most time-consuming steps of the presolve are

• the eliminator, and

• the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

10.1.1.1 Numerical issues in the presolve

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare
cases the presolved problem may be harder to solve then the original problem. The presolve may also
be infeasible although the orinal problem is not.

If it is suspected that presolved problem is much harder to solve than the original then it is suggested
to first turn the eliminator off by setting the parameter MSK IPAR PRESOLVE ELIMINATOR USE. If that
does not help, then trying to turn presolve off may help.

Since all computations are done in finite prescision then the presolve employs some tolerances when
concluding a variable is fixed or constraint is redundant. If it happens that MOSEK incorrectly
concludes a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parame-
ters MSK DPAR PRESOLVE TOL X and MSK DPAR PRESOLVE TOL S. However, if actually help reducing the
parameters then this should be taken as an indication of the problem is badly formulated.

10.1. HOW AN OPTIMIZER WORKS 131

10.1.1.2 Eliminator

The purpose of the eliminator is to eliminate free and implied free variables from the problem using
substitution. For instance, given the constraints

y =
∑

xj ,

y, x ≥ 0,

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile.

If the eliminator consumes too much time or memory compared to the reduction in problem size
gained it may be disabled. This can be done with the parameter MSK IPAR PRESOLVE ELIMINATOR USE

to MSK OFF.

In rare cases the eliminator may cause that the problem becomes much hard to solve.

10.1.1.3 Linear dependency checker

The purpose of the linear dependency check is to remove linear dependencies among the linear equal-
ities. For instance, the three linear equalities

x1 + x2 + x3 = 1,
x1 + 0.5x2 = 0.5,
0.5x2 + x3 = 0.5

contain exactly one linear dependency. This implies that one of the constraints can be dropped without
changing the set of feasible solutions. Removing linear dependencies is in general a good idea since it
reduces the size of the problem. Moreover, the linear dependencies are likely to introduce numerical
problems in the optimization phase.

It is best practise to build models without linear dependencies. If the linear dependencies are removed
at the modeling stage, the linear dependency check can safely be disabled by setting the parameter
MSK IPAR PRESOLVE LINDEP USE to MSK OFF.

10.1.2 Dualizer

All linear, conic, and convex optimization problems have an equivalent dual problem associated with
them. MOSEK has built-in heuristics to determine if it is most efficient to solve the primal or dual
problem. The form (primal or dual) solved is displayed in the MOSEK log. Should the internal
heuristics not choose the most efficient form of the problem it may be worthwhile to set the dualizer
manually by setting the parameters:

• MSK IPAR INTPNT SOLVE FORM: In case of the interior-point optimizer.

• MSK IPAR SIM SOLVE FORM: In case of the simplex optimizer.

Note that currently only linear problems may be dualized.

132 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

10.1.3 Scaling

Problems containing data with large and/or small coefficients, say 1.0e+ 9 or 1.0e− 7 , are often hard
to solve. Significant digits may be truncated in calculations with finite precision, which can result in
the optimizer relying on inaccurate calculations. Since computers work in finite precision, extreme
coefficients should be avoided. In general, data around the same ”order of magnitude” is preferred,
and we will refer to a problem, satisfying this loose property, as being well-scaled. If the problem is
not well scaled, MOSEK will try to scale (multiply) constraints and variables by suitable constants.
MOSEK solves the scaled problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important
to be aware that the optimizer terminates when the termination criterion is met on the scaled problem,
therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems.
The best solution to this problem is to reformulate it, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point and simplex
optimizers can be controlled with the parameters MSK IPAR INTPNT SCALING and MSK IPAR SIM SCALING

respectively.

10.1.4 Using multiple threads

The interior-point optimizers in MOSEK have been parallelized. This means that if you solve linear,
quadratic, conic, or general convex optimization problem using the interior-point optimizer, you can
take advantage of multiple CPU’s.

By default MOSEK will automatically select the number of threads to be employed when solving
the problem. However, the number of threads employed can be changed by setting the parameter
MSK IPAR NUM THREADS. This should never exceed the number of cores on the computer.

The speed-up obtained when using multiple threads is highly problem and hardware dependent, and
consequently, it is advisable to compare single threaded and multi threaded performance for the given
problem type to determine the optimal settings.

For small problems, using multiple threads is not be worthwhile and may even be counter productive.

10.2 Linear optimization

10.2.1 Optimizer selection

Two different types of optimizers are available for linear problems: The default is an interior-point
method, and the alternatives are simplex methods. The optimizer can be selected using the parameter
MSK IPAR OPTIMIZER.

10.2. LINEAR OPTIMIZATION 133

10.2.2 The interior-point optimizer

The purpose of this section is to provide information about the algorithm employed in MOSEK interior-
point optimizer.

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems
on standard form

minimize cTx
subject to Ax = b,

x ≥ 0.
(10.1)

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to
standard form before solving, then convert it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (10.1) has an optimal solution, is primal infeasible
or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason
that MOSEK solves the so-called homogeneous model

Ax− bτ = 0,

AT y + s− cτ = 0,

− cTx+ bT y − κ = 0,
x, s, τ, κ ≥ 0,

(10.2)

where y and s correspond to the dual variables in (10.1), and τ and κ are two additional scalar variables.
Note that the homogeneous model (10.2) always has solution since

(x, y, s, τ, κ) = (0, 0, 0, 0, 0)

is a solution, although not a very interesting one.

Any solution

(x∗, y∗, s∗, τ∗, κ∗)

to the homogeneous model (10.2) satisfies

x∗js
∗
j = 0 and τ∗κ∗ = 0.

Moreover, there is always a solution that has the property

τ∗ + κ∗ > 0.

First, assume that τ∗ > 0 . It follows that

134 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

A
x∗

τ∗
= b,

AT
y∗

τ∗
+
s∗

τ∗
= c,

− cT x
∗

τ∗
+ bT

y∗

τ∗
= 0,

x∗, s∗, τ∗, κ∗ ≥ 0.

This shows that x∗

τ∗ is a primal optimal solution and (y
∗

τ∗ ,
s∗

τ∗) is a dual optimal solution; this is reported
as the optimal interior-point solution since

(x, y, s) =

(
x∗

τ∗
,
y∗

τ∗
,
s∗

τ∗

)
is a primal-dual optimal solution.

On other hand, if κ∗ > 0 then

Ax∗ = 0,

AT y∗ + s∗ = 0,

− cTx∗ + bT y∗ = κ∗,
x∗, s∗, τ∗, κ∗ ≥ 0.

This implies that at least one of

− cTx∗ > 0 (10.3)

or

bT y∗ > 0 (10.4)

is satisfied. If (10.3) is satisfied then x∗ is a certificate of dual infeasibility, whereas if (10.4) is satisfied
then y∗ is a certificate of dual infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required
for a solution to the original problem is obtained. A solution to the homogeneous model can be
computed using a primal-dual interior-point algorithm [12].

10.2.2.1 Interior-point termination criterion

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact
optimal solution or an exact infeasibility certificate cannot be computed and a reasonable termination
criterion has to be employed.

In every iteration, k, of the interior-point algorithm a trial solution

(xk, yk, sk, τk, κk)

to homogeneous model is generated where

10.2. LINEAR OPTIMIZATION 135

xk, sk, τk, κk > 0.

Whenever the trial solution satisfies the criterion

∥∥∥∥Axkτk − b
∥∥∥∥∞ ≤ εp(1 + ‖b‖∞),∥∥∥∥AT ykτk +

sk

τk
− c
∥∥∥∥∞ ≤ εd(1 + ‖c‖∞), and

min

(
(xk)T sk

(τk)2
,

∣∣∣∣cTxkτk
− bT yk

τk

∣∣∣∣) ≤ εgmax

(
1,

min(
∣∣cTxk∣∣ , ∣∣bT yk∣∣)

τk

)
,

(10.5)

the interior-point optimizer is terminated and

(xk, yk, sk)

τk

is reported as the primal-dual optimal solution. The interpretation of (10.5) is that the optimizer is
terminated if

• xk

τk
is approximately primal feasible,

•
(
yk

τk
, s

k

τk

)
is approximately dual feasible, and

• the duality gap is almost zero.

On the other hand, if the trial solution satisfies

−εicTxk >
‖c‖∞

max(1, ‖b‖∞)

∥∥Axk∥∥∞
then the problem is declared dual infeasible and xk is reported as a certificate of dual infeasibility.
The motivation for this stopping criterion is as follows: First assume that

∥∥Axk∥∥∞ = 0 ; then xk is
an exact certificate of dual infeasibility. Next assume that this is not the case, i.e.

∥∥Axk∥∥∞ > 0,

and define

x̄ := εi
max(1, ‖b‖∞)

‖Axk‖∞ ‖c‖∞
xk.

It is easy to verify that

‖Ax̄‖∞ = εi
max(1, ‖b‖∞)

‖c‖∞
and − cT x̄ > 1,

which shows x̄ is an approximate certificate of dual infeasibility where εi controls the quality of the
approximation. A smaller value means a better approximation.

136 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Tolerance Parameter name
εp MSK DPAR INTPNT TOL PFEAS

εd MSK DPAR INTPNT TOL DFEAS

εg MSK DPAR INTPNT TOL REL GAP

εi MSK DPAR INTPNT TOL INFEAS

Table 10.1: Parameters employed in termination criterion.

Finally, if

εib
T yk >

‖b‖∞
max(1, ‖c‖∞)

∥∥AT yk + sk
∥∥∞

then yk is reported as a certificate of primal infeasibility.

It is possible to adjust the tolerances εp, εd, εg and εi using parameters; see table 10.1 for details. The
default values of the termination tolerances are chosen such that for a majority of problems appearing
in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances
usually is not worthwhile. However, an inspection of (10.5) reveals that quality of the solution is
dependent on ‖b‖∞ and ‖c‖∞; the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal
and dual feasibility at the same rate [12]. This means that if the optimizer is stopped prematurely
then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that
in most cases all the tolerances, εp, εd and εg, has to be relaxed together to achieve an effect.

The basis identification discussed in section 10.2.2.2 requires an optimal solution to work well; hence
basis identification should turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually is not worthwhile.

10.2.2.2 Basis identification

An interior-point optimizer does not return an optimal basic solution unless the problem has a
unique primal and dual optimal solution. Therefore, the interior-point optimizer has an optional
post-processing step that computes an optimal basic solution starting from the optimal interior-point
solution. More information about the basis identification procedure may be found in [13].

Please note that a basic solution is often more accurate than an interior-point solution.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the
basis identification procedure can be turned off. The parameters

• MSK IPAR INTPNT BASIS,

• MSK IPAR BI IGNORE MAX ITER, and

• MSK IPAR BI IGNORE NUM ERROR

controls when basis identification is performed.

10.2. LINEAR OPTIMIZATION 137

10.2.2.3 The interior-point log

Below is a typical log output from the interior-point optimizer presented:

Optimizer - threads : 1

Optimizer - solved problem : the dual

Optimizer - Constraints : 2

Optimizer - Cones : 0

Optimizer - Scalar variables : 6 conic : 0

Optimizer - Semi-definite variables: 0 scalarized : 0

Factor - setup time : 0.00 dense det. time : 0.00

Factor - ML order time : 0.00 GP order time : 0.00

Factor - nonzeros before factor : 3 after factor : 3

Factor - dense dim. : 0 flops : 7.00e+001

ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME

0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.0e+000 0.00

1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003 -7.394611417e+003 2.5e+000 0.00

2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-001 0.00

3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-002 0.01

4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-004 0.01

5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-008 0.01

6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-012 0.01

The first line displays the number of threads used by the optimizer and second line tells that the
optimizer choose to solve the dual problem rather than the primal problem. The next line displays
the problem dimensions as seen by the optimizer, and the ”Factor...” lines show various statistics.
This is followed by the iteration log.

Using the same notation as in section 10.2.2 the columns of the iteration log has the following meaning:

• ITE: Iteration index.

• PFEAS:
∥∥Axk − bτk∥∥∞ . The numbers in this column should converge monotonically towards to

zero but may stall at low level due to rounding errors.

• DFEAS:
∥∥AT yk + sk − cτk

∥∥∞ . The numbers in this column should converge monotonically to-
ward to zero but may stall at low level due to rounding errors.

• GFEAS:
∥∥− cxk + bT yk − κk

∥∥∞ . The numbers in this column should converge monotonically
toward to zero but may stall at low level due to rounding errors.

• PRSTATUS: This number converge to 1 if the problem has an optimal solution whereas it converge
to −1 if that is not the case.

• POBJ: cTxk/τk. An estimate for the primal objective value.

• DOBJ: bT yk/τk. An estimate for the dual objective value.

• MU: (xk)T sk+τkκk

n+1 . The numbers in this column should always converge monotonically to zero.

• TIME: Time spend since the optimization started.

138 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

10.2.3 The simplex based optimizer

An alternative to the interior-point optimizer is the simplex optimizer.

The simplex optimizer uses a different method that allows exploiting an initial guess for the optimal
solution to reduce the solution time. Depending on the problem it may be faster or slower to use an
initial guess; see section 10.2.4 for a discussion.

MOSEK provides both a primal and a dual variant of the simplex optimizer — we will return to this
later.

10.2.3.1 Simplex termination criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certifi-
cate. A basic solution is optimal when it is primal and dual feasible; see (17.1) and (17.2) for a
definition of the primal and dual problem. Due the fact that to computations are performed in finite
precision MOSEK allows violation of primal and dual feasibility within certain tolerances. The user
can control the allowed primal and dual infeasibility with the parameters MSK DPAR BASIS TOL X and
MSK DPAR BASIS TOL S.

10.2.3.2 Starting from an existing solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce
the solution time significantly. When a simplex optimizer starts from an existing solution it is said to
perform a hot-start. If the user is solving a sequence of optimization problems by solving the problem,
making modifications, and solving again, MOSEK will hot-start automatically.

Setting the parameter MSK IPAR OPTIMIZER to MSK OPTIMIZER FREE SIMPLEX instructs MOSEK to
select automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to
choose the best optimizer for the given problem and the available solution.

By default MOSEK uses presolve when performing a hot-start. If the optimizer only needs very few
iterations to find the optimal solution it may be better to turn off the presolve.

10.2.3.3 Numerical difficulties in the simplex optimizers

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible
when working in finite precision. MOSEK counts a ”numerical unexpected behavior” event inside the
optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number
is exceeded, the optimization will be aborted. Set-backs are implemented to avoid long sequences
where the optimizer tries to recover from an unstable situation.

Set-backs are, for example, repeated singularities when factorizing the basis matrix, repeated loss
of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical
difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled;
in such a situation try to reformulate into a better scaled problem. Then, if a lot of set-backs still
occur, trying one or more of the following suggestions may be worthwhile:

10.2. LINEAR OPTIMIZATION 139

• Raise tolerances for allowed primal or dual feasibility: Hence, increase the value of

– MSK DPAR BASIS TOL X, and

– MSK DPAR BASIS TOL S.

• Raise or lower pivot tolerance: Change the MSK DPAR SIMPLEX ABS TOL PIV parameter.

• Switch optimizer: Try another optimizer.

• Switch off crash: Set both MSK IPAR SIM PRIMAL CRASH and MSK IPAR SIM DUAL CRASH to 0.

• Experiment with other pricing strategies: Try different values for the parameters

– MSK IPAR SIM PRIMAL SELECTION and

– MSK IPAR SIM DUAL SELECTION.

• If you are using hot-starts, in rare cases switching off this feature may improve stability. This is
controlled by the MSK IPAR SIM HOTSTART parameter.

• Increase maximum set-backs allowed controlled by MSK IPAR SIM MAX NUM SETBACKS.

• If the problem repeatedly becomes infeasible try switching off the special degeneracy handling.
See the parameter MSK IPAR SIM DEGEN for details.

10.2.4 The interior-point or the simplex optimizer?

Given a linear optimization problem, which optimizer is the best: The primal simplex, the dual simplex
or the interior-point optimizer?

It is impossible to provide a general answer to this question, however, the interior-point optimizer
behaves more predictably — it tends to use between 20 and 100 iterations, almost independently of
problem size — but cannot perform hot-start, while simplex can take advantage of an initial solution,
but is less predictable for cold-start. The interior-point optimizer is used by default.

10.2.5 The primal or the dual simplex variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer
is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and
computational improvements, which, in our experience, makes it faster on average than the primal
simplex optimizer. Still, it depends much on the problem structure and size.

Setting the MSK IPAR OPTIMIZER parameter to MSK OPTIMIZER FREE SIMPLEX instructs MOSEK to
choose which simplex optimizer to use automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, you should try
all the optimizers.

140 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Parameter name Purpose
MSK DPAR INTPNT CO TOL PFEAS Controls primal feasibility
MSK DPAR INTPNT CO TOL DFEAS Controls dual feasibility
MSK DPAR INTPNT CO TOL REL GAP Controls relative gap
MSK DPAR INTPNT TOL INFEAS Controls when the problem is declared infeasible
MSK DPAR INTPNT CO TOL MU RED Controls when the complementarity is reduced enough

Table 10.2: Parameters employed in termination criterion.

10.3 Linear network optimization

10.3.1 Network flow problems

Linear optimization problems with network flow structure can often be solved significantly faster with
a specialized version of the simplex method [14] than with the general solvers.

MOSEK includes a network simplex solver which frequently solves network problems significantly faster
than the standard simplex optimizers.

To use the network simplex optimizer, do the following:

• Input the network flow problem as an ordinary linear optimization problem.

• Set the parameters

– MSK IPAR OPTIMIZER to MSK OPTIMIZER NETWORK PRIMAL SIMPLEX.

MOSEK will automatically detect the network structure and apply the specialized simplex optimizer.

10.4 Conic optimization

10.4.1 The interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available. The interior-point
optimizer is an implementation of the so-called homogeneous and self-dual algorithm. For a detailed
description of the algorithm, please see [15].

10.4.1.1 Interior-point termination criteria

The parameters controlling when the conic interior-point optimizer terminates are shown in Table 10.2.

10.5. NONLINEAR CONVEX OPTIMIZATION 141

10.5 Nonlinear convex optimization

10.5.1 The interior-point optimizer

For quadratic, quadratically constrained, and general convex optimization problems an interior-point
type optimizer is available. The interior-point optimizer is an implementation of the homogeneous and
self-dual algorithm. For a detailed description of the algorithm, please see [16], [17].

10.5.1.1 The convexity requirement

Continuous nonlinear problems are required to be convex. For quadratic problems MOSEK test this
requirement before optimizing. Specifying a non-convex problem results in an error message.

The following parameters are available to control the convexity check:

• MSK IPAR CHECK CONVEXITY: Turn convexity check on/off.

• MSK DPAR CHECK CONVEXITY REL TOL: Tolerance for convexity check.

• MSK IPAR LOG CHECK CONVEXITY: Turn on more log information for debugging.

10.5.1.2 The differentiabilty requirement

The nonlinear optimizer in MOSEK requires both first order and second order derivatives. This of
course implies care should be taken when solving problems involving non-differentiable functions.

For instance, the function

f(x) = x2

is differentiable everywhere whereas the function

f(x) =
√
x

is only differentiable for x > 0 . In order to make sure that MOSEK evaluates the functions at points
where they are differentiable, the function domains must be defined by setting appropriate variable
bounds.

In general, if a variable is not ranged MOSEK will only evaluate that variable at points strictly within
the bounds. Hence, imposing the bound

x ≥ 0

in the case of
√
x is sufficient to guarantee that the function will only be evaluated in points where it

is differentiable.

However, if a function is differentiable on closed a range, specifying the variable bounds is not sufficient.
Consider the function

142 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Parameter name Purpose
MSK DPAR INTPNT NL TOL PFEAS Controls primal feasibility
MSK DPAR INTPNT NL TOL DFEAS Controls dual feasibility
MSK DPAR INTPNT NL TOL REL GAP Controls relative gap
MSK DPAR INTPNT TOL INFEAS Controls when the problem is declared infeasible
MSK DPAR INTPNT NL TOL MU RED Controls when the complementarity is reduced enough

Table 10.3: Parameters employed in termination criteria.

f(x) =
1

x
+

1

1− x
. (10.6)

In this case the bounds

0 ≤ x ≤ 1

will not guarantee that MOSEK only evaluates the function for x between 0 and 1 . To force MOSEK to
strictly satisfy both bounds on ranged variables set the parameter MSK IPAR INTPNT STARTING POINT

to MSK STARTING POINT SATISFY BOUNDS.

For efficiency reasons it may be better to reformulate the problem than to force MOSEK to observe
ranged bounds strictly. For instance, (10.6) can be reformulated as follows

f(x) =
1

x
+

1

y
0 = 1− x− y
0 ≤ x
0 ≤ y.

10.5.1.3 Interior-point termination criteria

The parameters controlling when the general convex interior-point optimizer terminates are shown in
Table 10.3.

10.6 Solving problems in parallel

If a computer has multiple CPUs, or has a CPU with multiple cores, it is possible for MOSEK to take
advantage of this to speed up solution times.

10.6.1 Thread safety

The MOSEK API is thread-safe provided that a task is only modified or accessed from one thread at
any given time — accessing two separate tasks from two separate threads at the same time is safe.
Sharing an environment between threads is safe.

10.6. SOLVING PROBLEMS IN PARALLEL 143

10.6.2 The parallelized interior-point optimizer

The interior-point optimizer is capable of using multiple CPUs or cores. This implies that whenever
the MOSEK interior-point optimizer solves an optimization problem, it will try to divide the work so
that each core gets a share of the work. The user decides how many coress MOSEK should exploit.

It is not always possible to divide the work equally, and often parts of the computations and the
coordination of the work is processed sequentially, even if several cores are present. Therefore, the
speed-up obtained when using multiple cores is highly problem dependent. However, as a rule of
thumb, if the problem solves very quickly, i.e. in less than 60 seconds, it is not advantageous to use
the parallel option.

The MSK IPAR NUM THREADS parameter sets the number of threads (and therefore the number of cores)
that the interior point optimizer will use.

10.6.3 The concurrent optimizer

An alternative to the parallel interior-point optimizer is the concurrent optimizer. The idea of the
concurrent optimizer is to run multiple optimizers on the same problem concurrently, for instance,
it allows you to apply the interior-point and the dual simplex optimizers to a linear optimization
problem concurrently. The concurrent optimizer terminates when the first of the applied optimizers
has terminated successfully, and it reports the solution of the fastest optimizer. In that way a new
optimizer has been created which essentially performs as the fastest of the interior-point and the
dual simplex optimizers. Hence, the concurrent optimizer is the best one to use if there are multiple
optimizers available in MOSEK for the problem and you cannot say beforehand which one will be
faster.

Note in particular that any solution present in the task will also be used for hot-starting the simplex
algorithms. One possible scenario would therefore be running a hot-start dual simplex in parallel with
interior point, taking advantage of both the stability of the interior-point method and the ability of
the simplex method to use an initial solution.

By setting the

MSK IPAR OPTIMIZER

parameter to

MSK OPTIMIZER CONCURRENT

the concurrent optimizer chosen.

The number of optimizers used in parallel is determined by the

MSK IPAR CONCURRENT NUM OPTIMIZERS.

parameter. Moreover, the optimizers are selected according to a preassigned priority with optimizers
having the highest priority being selected first. The default priority for each optimizer is shown in
Table 10.6.3. For example, setting the MSK IPAR CONCURRENT NUM OPTIMIZERS parameter to 2 tells the
concurrent optimizer to the apply the two optimizers with highest priorities: In the default case that
means the interior-point optimizer and one of the simplex optimizers.

144 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Optimizer Associated Default
parameter priority

MSK OPTIMIZER INTPNT MSK IPAR CONCURRENT PRIORITY INTPNT 4
MSK OPTIMIZER FREE SIMPLEX MSK IPAR CONCURRENT PRIORITY FREE SIMPLEX 3
MSK OPTIMIZER PRIMAL SIMPLEX MSK IPAR CONCURRENT PRIORITY PRIMAL SIMPLEX 2
MSK OPTIMIZER DUAL SIMPLEX MSK IPAR CONCURRENT PRIORITY DUAL SIMPLEX 1

Table 10.4: Default priorities for optimizer selection in concurrent optimization.

10.6.3.1 Concurrent optimization through the API

The following example shows how to call the concurrent optimizer through the API.

Chapter 11

The solution summary

All computations inside MOSEK are performed using finite precision floating point numbers. This
implies the reported solution isonly be an approximate optimal solution. Therefore after solving an
optimization problem it is important to investigate how good an approximation the solution is. Recall
for a convex optimization problem the optimality conditions are:

• The primal solution must satisfy all the primal constraints.

• The dual solution much satisfy all the dual constraints.

• The primal and dual objective values must be identical.

Thus the solution summary reports information that makes it possible to evaluate the quality of the
solution obtained.

Suppose we have solved a problem as

[rcode,res] = mosekopt(’minimize info’,prob,param)

In case of a linear optimization problem the solution summary may look like

Basic solution summary

Problem status : PRIMAL AND DUAL FEASIBLE

Solution status : OPTIMAL

Primal. obj: -4.6475314286e+002 Viol. con: 2e-014 var: 0e+000

Dual. obj: -4.6475316001e+002 Viol. con: 7e-009 var: 4e-016

The summary reports information for the basic solution. In this case we see:

• The problem status is primal and dual feasible which means the problem has an optimal solution.
The problem status can be obtained using res.sol.itr.prosta.

• The solution status is optimal. The solution status can be obtained using res.sol.itr.solsta.

• Next information about the primal solution is reported. The information consists of the objective
value and violation meassures for the primal solution. In this case violations for the constraints
and variables are small meaning the solution is very close to being an exact feasible solution.
The primal feasibility measure is reported in res.info.MSK DINF INTPNT PRIMAL FEAS.

145

146 CHAPTER 11. THE SOLUTION SUMMARY

• Similarly for the dual solution the violations are small and hence the dual solution is feasible.
The dual feasibility measure is reported in res.info.MSK DINF INTPNT DUAL FEAS.

• Finally, it can be seen that the primal and dual objective values are almost identical. Using
res.info.MSK DINF INTPNT PRIMAL OBJ and res.info.MSK DINF INTPNT DUAL OBJ the primal
and dual objective values can be obtained.

To summarize in this case a primal and a dual solution with small feasiblity violations are available.
Moreover, the primal and dual objective values are almost identical and hence it can be concluded
that the reported solution is a good approximation to the optimal solution.

Now what happens if the problem does not have an optimal solution e.g. it is primal infeasible. In
that case the solution summary may look like

Basic solution summary

Problem status : PRIMAL INFEASIBLE

Solution status : PRIMAL INFEASIBLE CER

Dual. obj: 3.5894503823e+004 Viol. con: 0e+000 var: 2e-008

i.e. MOSEK reports that the solution is a certificate of primal infeasibility. Since the problem is primal
infeasible it does not make sense to report any information about the primal solution. However, the
dual solution should be a certificate of the primal infeasibility. If the problem is a minimization problem
then the dual objective value should be positive and in the case of a maximization problem it should be
negative. The quality of the certificate can be evaluated by comparing the dual objective value to the
violations. Indeed if the objective value is large compared to the largest violation then the certificate
highly accurate. Here is an example

Basic solution summary

Problem status : PRIMAL INFEASIBLE

Solution status : PRIMAL INFEASIBLE CER

Dual. obj: 3.0056574100e-005 Viol. con: 9e-013 var: 2e-011

of a not so strong infeasibility certificate because the dual objective value is small compared to largest
violation.

In the case a problem is dual infeasible then the solution summary may look like

Basic solution summary

Problem status : DUAL INFEASIBLE

Solution status : DUAL INFEASIBLE CER

Primal. obj: -1.4500853392e+001 Viol. con: 0e+000 var: 0e+000

Observe when a solution is a certificate of dual infeasibility then the primal solution contains the
certificate. Moreoever, given the problem is a minimization problem the objective value should negative
and the objective should be large compared to the worst violation if the certificate is strong.

Chapter 12

The optimizers for mixed-integer
problems

A problem is a mixed-integer optimization problem when one or more of the variables are constrained
to be integer valued. MOSEK contains two optimizers for mixed integer problems that is capable for
solving mixed-integer

• linear,

• quadratic and quadratically constrained, and

• conic

problems.

Readers unfamiliar with integer optimization are recommended to consult some relevant literature,
e.g. the book [5] by Wolsey.

12.1 Some concepts and facts related to mixed-integer opti-
mization

It is important to understand that in a worst-case scenario, the time required to solve integer optimiza-
tion problems grows exponentially with the size of the problem. For instance, assume that a problem
contains n binary variables, then the time required to solve the problem in the worst case may be
proportional to 2n . The value of 2n is huge even for moderate values of n .

In practice this implies that the focus should be on computing a near optimal solution quickly rather
than at locating an optimal solution. Even if the problem is only solved approximately, it is important
to know how far the approximate solution is from an optimal one. In order to say something about
the goodness of an approximate solution then the concept of a relaxation is important.

147

148 CHAPTER 12. THE OPTIMIZERS FOR MIXED-INTEGER PROBLEMS

Name Run-to-run deterministic Parallelized Strength Cost
Mixed-integer conic Yes Yes Conic Free add-on
Mixed-integer No Partial Linear Payed add-on

Table 12.1: Mixed-integer optimizers.

The mixed-integer optimization problem

z∗ = minimize cTx
subject to Ax = b,

x ≥ 0
xj ∈ Z, ∀j ∈ J ,

(12.1)

has the continuous relaxation

z = minimize cTx
subject to Ax = b,

x ≥ 0
(12.2)

The continuos relaxation is identical to the mixed-integer problem with the restriction that some
variables must be integer removed.

There are two important observations about the continuous relaxation. Firstly, the continuous relax-
ation is usually much faster to optimize than the mixed-integer problem. Secondly if x̂ is any feasible
solution to (12.1) and

z̄ := cT x̂

then

z ≤ z∗ ≤ z̄.

This is an important observation since if it is only possible to find a near optimal solution within a
reasonable time frame then the quality of the solution can nevertheless be evaluated. The value z is
a lower bound on the optimal objective value. This implies that the obtained solution is no further
away from the optimum than z̄ − z in terms of the objective value.

Whenever a mixed-integer problem is solved MOSEK rapports this lower bound so that the quality of
the reported solution can be evaluated.

12.2 The mixed-integer optimizers

MOSEK includes two mixed-integer optimizer which is compared in Table 12.1. Both optimizers can
handle problems with linear, quadratic objective and constraints and conic constraints. However, a
problem must not contain both quadratic objective and constraints and conic constraints.

12.3. THE MIXED-INTEGER CONIC OPTIMIZER 149

The mixed-integer conic optimizer is specialized for solving linear and conic optimization problems. It
can also solve pure quadratic and quadratically constrained problems, these problems are automatically
converted to conic problems before being solved. Whereas the mixed-integer optimizer deals with
quadratic and quadratically constrained problems directly.

The mixed-integer conic optimizer is run-to-run deterministic. This means that if a problem is solved
twice on the same computer with identical options then the obtained solution will be bit-for-bit identical
for the two runs. However, if a time limit is set then this may not be case since the time taken to solve
a problem is not deterministic. Moreover, the mixed-integer conic optimizer is parallelized i.e. it can
exploit multiple cores during the optimization. Finally, the mixed-integer conic optimizer is a free add-
on to the continuous optimizers. However, for some linear problems the mixed-integer optimizer may
outperform the mixed-integer conic optimizer. On the other hand the mixed-integer conic optimizer
is included with continuous optimizers free of charge and usually the fastest for conic problems.

None of the mixed-integer optimizers handles symmetric matrix variables i.e semi-definite optimization
problems.

12.3 The mixed-integer conic optimizer

The mixed-integer conic optimizer is employed by setting the parameter MSK IPAR OPTIMIZER to
MSK OPTIMIZER MIXED INT CONIC.

The mixed-integer conic employs three phases:

Presolve:

In this phase the optimizer tries to reduce the size of the problem using preprocessing techniques.
Moreover, it strengthens the continuous relaxation, if possible.

Heuristic:

Using heuristics the optimizer tries to guess a good feasible solution.

Optimization:

The optimal solution is located using a variant of the branch-and-cut method.

12.3.1 Presolve

In the preprocessing stage redundant variables and constraints are removed. The presolve stage can
be turned off using the MSK IPAR MIO PRESOLVE USE parameter.

12.3.2 Heuristic

Initially, the integer optimizer tries to guess a good feasible solution using a heuristic.

150 CHAPTER 12. THE OPTIMIZERS FOR MIXED-INTEGER PROBLEMS

12.3.3 The optimization phase

This phase solves the problem using the branch and cut algorithm.

12.3.4 Caveats

The mixed-integer conic optimizer ignores the parameter

MSK IPAR MIO CONT SOL:

The user should fix all the integer variables at their optimal value and reoptimize instead of
relying in this option.

12.4 The mixed-integer optimizer

The mixed-integer optimizer is employed by setting the parameter MSK IPAR OPTIMIZER to MSK OPTIMIZER MIXED INT.
In the following it is briefly described how the optimizer works.

The process of solving an integer optimization problem can be split in three phases:

Presolve:

In this phase the optimizer tries to reduce the size of the problem using preprocessing techniques.
Moreover, it strengthens the continuous relaxation, if possible.

Heuristic:

Using heuristics the optimizer tries to guess a good feasible solution.

Optimization:

The optimal solution is located using a variant of the branch-and-cut method.

12.4.1 Presolve

In the preprocessing stage redundant variables and constraints are removed. The presolve stage can
be turned off using the MSK IPAR MIO PRESOLVE USE parameter.

12.4.2 Heuristic

Initially, the integer optimizer tries to guess a good feasible solution using different heuristics:

• First a very simple rounding heuristic is employed.

• Next, if deemed worthwhile, the feasibility pump heuristic is used.

• Finally, if the two previous stages did not produce a good initial solution, more sophisticated
heuristics are used.

12.5. TERMINATION CRITERION 151

The following parameters can be used to control the effort made by the integer optimizer to find an
initial feasible solution.

• MSK IPAR MIO HEURISTIC LEVEL: Controls how sophisticated and computationally expensive a
heuristic to employ.

• MSK DPAR MIO HEURISTIC TIME: The minimum amount of time to spend in the heuristic search.

• MSK IPAR MIO FEASPUMP LEVEL: Controls how aggressively the feasibility pump heuristic is used.

12.4.3 The optimization phase

This phase solves the problem using the branch and cut algorithm.

12.5 Termination criterion

In general, it is time consuming to find an exact feasible and optimal solution to an integer optimization
problem, though in many practical cases it may be possible to find a sufficiently good solution. There-
fore, the mixed-integer optimizer employs a relaxed feasibility and optimality criterion to determine
when a satisfactory solution is located.

A candidate solution that is feasible to the continuous relaxation is said to be an integer feasible
solution if the criterion

min(|xj | − bxjc, dxje − |xj |) ≤ max(δ1, δ2|xj |) ∀j ∈ J

is satisfied.

Whenever the integer optimizer locates an integer feasible solution it will check if the criterion

z̄ − z ≤ max(δ3, δ4max(1, |z̄|))

is satisfied. If this is the case, the integer optimizer terminates and reports the integer feasible solution
as an optimal solution. Please note that z is a valid lower bound determined by the integer optimizer
during the solution process, i.e.

z ≤ z∗.

The lower bound z normally increases during the solution process.

12.5.1 Relaxed termination

If an optimal solution cannot be located within a reasonable time, it may be advantageous to employ
a relaxed termination criterion after some time. Whenever the integer optimizer locates an integer feasi-
ble solution and has spent at least the number of seconds defined by the MSK DPAR MIO DISABLE TERM TIME

parameter on solving the problem, it will check whether the criterion

152 CHAPTER 12. THE OPTIMIZERS FOR MIXED-INTEGER PROBLEMS

Tolerance Parameter name
δ1 MSK DPAR MIO TOL ABS RELAX INT

δ2 MSK DPAR MIO TOL REL RELAX INT

δ3 MSK DPAR MIO TOL ABS GAP

δ4 MSK DPAR MIO TOL REL GAP

δ5 MSK DPAR MIO NEAR TOL ABS GAP

δ6 MSK DPAR MIO NEAR TOL REL GAP

Table 12.2: Integer optimizer tolerances.

Parameter name Delayed Explanation
MSK IPAR MIO MAX NUM BRANCHES Yes Maximum number of branches allowed.
MSK IPAR MIO MAX NUM RELAXS Yes Maximum number of realizations allowed.
MSK IPAR MIO MAX NUM SOLUTIONS Yes Maximum number of feasible integer solutions allowed.

Table 12.3: Parameters affecting the termination of the integer optimizer.

z̄ − z ≤ max(δ5, δ6max(1, |z̄|))

is satisfied. If it is satisfied, the optimizer will report that the candidate solution is near optimal and
then terminate. Please note that since this criteria depends on timing, the optimizer will not be run
to run deterministic.

12.5.2 Important parameters

All δ tolerances can be adjusted using suitable parameters — see Table 12.2. In Table 12.3 some other
parameters affecting the integer optimizer termination criterion are shown. Please note that if the
effect of a parameter is delayed, the associated termination criterion is applied only after some time,
specified by the MSK DPAR MIO DISABLE TERM TIME parameter.

12.6 How to speed up the solution process

As mentioned previously, in many cases it is not possible to find an optimal solution to an integer
optimization problem in a reasonable amount of time. Some suggestions to reduce the solution time
are:

• Relax the termination criterion: In case the run time is not acceptable, the first thing to do is
to relax the termination criterion — see Section 12.5 for details.

• Specify a good initial solution: In many cases a good feasible solution is either known or easily
computed using problem specific knowledge. If a good feasible solution is known, it is usually
worthwhile to use this as a starting point for the integer optimizer.

12.7. UNDERSTANDING SOLUTION QUALITY 153

• Improve the formulation: A mixed-integer optimization problem may be impossible to solve
in one form and quite easy in another form. However, it is beyond the scope of this manual
to discuss good formulations for mixed-integer problems. For discussions on this topic see for
example [5].

12.7 Understanding solution quality

To determine the quality of the solution one should check the following:

• The solution status key returned by MOSEK.

• The optimality gap: A measure for how much the located solution can deviate from the optimal
solution to the problem.

• Feasibility. How much the solution violates the constraints of the problem.

The optimality gap is a measure for how close the solution is to the optimal solution. The optimality
gap is given by

ε = |(objective value of feasible solution)− (objective bound)|.

The objective value of the solution is guarantied to be within ε of the optimal solution.

The optimality gap can be retrieved through the solution item MSK DINF MIO OBJ ABS GAP. Often it is
more meaningful to look at the optimality gap normalized with the magnitude of the solution. The
relative optimality gap is available in MSK DINF MIO OBJ REL GAP.

154 CHAPTER 12. THE OPTIMIZERS FOR MIXED-INTEGER PROBLEMS

Chapter 13

The solution summary for mixed
integer problems

The solution summary for a mixed-integer problem may look like

Integer solution solution summary

Problem status : PRIMAL FEASIBLE

Solution status : INTEGER OPTIMAL

Primal. obj: 4.0593518000e+005 Viol. con: 4e-015 var: 3e-014 itg: 3e-014

The main diffrence compared to continous case covered previously is that no information about the
dual solution is provided. Simply because there is no dual solution available for a mixed integer
problem. In this case it can be seen that the solution is higly feasible because the violations are small.
Moreoever, the solution is denoted integer optimal. Observe itg: 3e-014 implies that all the integer
constrained variables are at most 3e− 014 from being an exact integer.

155

156 CHAPTER 13. THE SOLUTION SUMMARY FOR MIXED INTEGER PROBLEMS

Chapter 14

The analyzers

14.1 The problem analyzer

The problem analyzer prints a detailed survey of the

• linear constraints and objective

• quadratic constraints

• conic constraints

• variables

of the model.

In the initial stages of model formulation the problem analyzer may be used as a quick way of verifying
that the model has been built or imported correctly. In later stages it can help revealing special
structures within the model that may be used to tune the optimizer’s performance or to identify the
causes of numerical difficulties.

The problem analyzer is run using the mosekopt(’anapro’) command and produces something similar
to the following (this is the problemanalyzer’s survey of the aflow30a problem from the MIPLIB 2003
collection, see Appendix 26 for more examples):

Analyzing the problem

Constraints Bounds Variables

upper bd: 421 ranged : all cont: 421

fixed : 58 bin : 421

Objective, min cx

range: min |c|: 0.00000 min |c|>0: 11.0000 max |c|: 500.000

distrib: |c| vars

0 421

157

158 CHAPTER 14. THE ANALYZERS

[11, 100) 150

[100, 500] 271

Constraint matrix A has

479 rows (constraints)

842 columns (variables)

2091 (0.518449%) nonzero entries (coefficients)

Row nonzeros, A i

range: min A i: 2 (0.23753%) max A i: 34 (4.038%)

distrib: A i rows rows% acc%

2 421 87.89 87.89

[8, 15] 20 4.18 92.07

[16, 31] 30 6.26 98.33

[32, 34] 8 1.67 100.00

Column nonzeros, A|j

range: min A|j: 2 (0.417537%) max A|j: 3 (0.626305%)

distrib: A|j cols cols% acc%

2 435 51.66 51.66

3 407 48.34 100.00

A nonzeros, A(ij)

range: min |A(ij)|: 1.00000 max |A(ij)|: 100.000

distrib: A(ij) coeffs

[1, 10) 1670

[10, 100] 421

Constraint bounds, lb <= Ax <= ub

distrib: |b| lbs ubs

0 421

[1, 10] 58 58

Variable bounds, lb <= x <= ub

distrib: |b| lbs ubs

0 842

[1, 10) 421

[10, 100] 421

The survey is divided into six different sections, each described below. To keep the presentation short
with focus on key elements the analyzer generally attempts to display information on issues relevant
for the current model only: E.g., if the model does not have any conic constraints (this is the case in
the example above) or any integer variables, those parts of the analysis will not appear.

14.1.1 General characteristics

The first part of the survey consists of a brief summary of the model’s linear and quadratic constraints
(indexed by i) and variables (indexed by j). The summary is divided into three subsections:

14.1. THE PROBLEM ANALYZER 159

Constraints

upper bd:

The number of upper bounded constraints,
∑n−1
j=0 aijxj ≤ uci

lower bd:

The number of lower bounded constraints, lci ≤
∑n−1
j=0 aijxj

ranged :

The number of ranged constraints, lci ≤
∑n−1
j=0 aijxj ≤ uci

fixed :

The number of fixed constraints, lci =
∑n−1
j=0 aijxj = uci

free :

The number of free constraints

Bounds

upper bd:

The number of upper bounded variables, xj ≤ uxj
lower bd:

The number of lower bounded variables, lxk ≤ xj
ranged :

The number of ranged variables, lxk ≤ xj ≤ uxj
fixed :

The number of fixed variables, lxk = xj = uxj

free :

The number of free variables

Variables

cont:

The number of continuous variables, xj ∈ R

bin :

The number of binary variables, xj ∈ {0, 1}

int :

The number of general integer variables, xj ∈ Z

Only constraints, bounds and domains actually in the model will be reported on, cf. appendix 26; if
all entities in a section turn out to be of the same kind, the number will be replaced by all for brevity.

160 CHAPTER 14. THE ANALYZERS

14.1.2 Objective

The second part of the survey focuses on (the linear part of) the objective, summarizing the opti-
mization sense and the coefficients’ absolute value range and distribution. The number of 0 (zero)
coefficients is singled out (if any such variables are in the problem).

The range is displayed using three terms:

min |c|:

The minimum absolute value among all coeffecients

min |c|>0:

The minimum absolute value among the nonzero coefficients

max |c|:

The maximum absolute value among the coefficients

If some of these extrema turn out to be equal, the display is shortened accordingly:

• If min |c| is greater than zero, the min |c|?0 term is obsolete and will not be displayed

• If only one or two different coefficients occur this will be displayed using all and an explicit
listing of the coefficients

The absolute value distribution is displayed as a table summarizing the numbers by orders of magnitude
(with a ratio of 10). Again, the number of variables with a coefficient of 0 (if any) is singled out. Each
line of the table is headed by an interval (half-open intervals including their lower bounds), and is
followed by the number of variables with their objective coefficient in this interval. Intervals with no
elements are skipped.

14.1.3 Linear constraints

The third part of the survey displays information on the nonzero coefficients of the linear constraint
matrix.

Following a brief summary of the matrix dimensions and the number of nonzero coefficients in total,
three sections provide further details on how the nonzero coefficients are distributed by row-wise count
(A i), by column-wise count (A|j), and by absolute value (|A(ij)|). Each section is headed by
a brief display of the distribution’s range (min and max), and for the row/column-wise counts the
corresponding densities are displayed too (in parentheses).

The distribution tables single out three particularly interesting counts: zero, one, and two nonzeros
per row/column; the remaining row/column nonzeros are displayed by orders of magnitude (ratio 2).
For each interval the relative and accumulated relative counts are also displayed.

Note that constraints may have both linear and quadratic terms, but the empty rows and columns
reported in this part of the survey relate to the linear terms only. If empty rows and/or columns are
found in the linear constraint matrix, the problem is analyzed further in order to determine if the

14.2. ANALYZING INFEASIBLE PROBLEMS 161

corresponding constraints have any quadratic terms or the corresponding variables are used in conic
or quadratic constraints; cf. the last two examples of appendix 26.

The distribution of the absolute values, |A(ij)|, is displayed just as for the objective coefficients
described above.

14.1.4 Constraint and variable bounds

The fourth part of the survey displays distributions for the absolute values of the finite lower and upper
bounds for both constraints and variables. The number of bounds at 0 is singled out and, otherwise,
displayed by orders of magnitude (with a ratio of 10).

14.1.5 Quadratic constraints

The fifth part of the survey displays distributions for the nonzero elements in the gradient of the
quadratic constraints, i.e. the nonzero row counts for the column vectors Qx . The table is similar to
the tables for the linear constraints’ nonzero row and column counts described in the survey’s third
part.

Note: Quadratic constraints may also have a linear part, but that will be included in the linear
constraints survey; this means that if a problem has one or more pure quadratic constraints, part three
of the survey will report an equal number of linear constraint rows with 0 (zero) nonzeros, cf. the last
example in appendix 26. Likewise, variables that appear in quadratic terms only will be reported as
empty columns (0 nonzeros) in the linear constraint report.

14.1.6 Conic constraints

The last part of the survey summarizes the model’s conic constraints. For each of the two types of
cones, quadratic and rotated quadratic, the total number of cones are reported, and the distribution
of the cones’ dimensions are displayed using intervals. Cone dimensions of 2, 3, and 4 are singled out.

14.2 Analyzing infeasible problems

When developing and implementing a new optimization model, the first attempts will often be either
infeasible, due to specification of inconsistent constraints, or unbounded, if important constraints have
been left out.

In this chapter we will

• go over an example demonstrating how to locate infeasible constraints using the MOSEK infea-
sibility report tool,

• discuss in more general terms which properties that may cause infeasibilities, and

• present the more formal theory of infeasible and unbounded problems.

162 CHAPTER 14. THE ANALYZERS

Supply Demand

1

2

5

2

1

2

1

Plant 1

Plant 2

Plant 3
Store 4

Store 3

Store 2

Store 1

1000

1000

200

500

500

200
1100

Figure 14.1: Supply, demand and cost of transportation.

14.2.1 Example: Primal infeasibility

A problem is said to be primal infeasible if no solution exists that satisfy all the constraints of the
problem.

As an example of a primal infeasible problem consider the problem of minimizing the cost of trans-
portation between a number of production plants and stores: Each plant produces a fixed number of
goods, and each store has a fixed demand that must be met. Supply, demand and cost of transporta-
tion per unit are given in figure 14.1. The problem represented in figure 14.1 is infeasible, since the
total demand

2300 = 1100 + 200 + 500 + 500

exceeds the total supply

2200 = 200 + 1000 + 1000

If we denote the number of transported goods from plant i to store j by xij , the problem can be
formulated as the LP:

14.2. ANALYZING INFEASIBLE PROBLEMS 163

minimize x11 + 2x12 + 5x23 + 2x24 + x31 + 2x33 + x34

subject to x11 + x12 ≤ 200,
x23 + x24 ≤ 1000,

x31 + x33 + x34 ≤ 1000,
x11 + x31 = 1100,

x12 = 200,
x23 + x33 = 500,

x24 + x34 = 500,
xij ≥ 0.

(14.1)
Solving the problem (14.1) using MOSEK will result in a solution, a solution status and a problem
status. Among the log output from the execution of MOSEK on the above problem are the lines:

Basic solution

Problem status : PRIMAL INFEASIBLE

Solution status : PRIMAL INFEASIBLE CER

The first line indicates that the problem status is primal infeasible. The second line says that a
certificate of the infeasibility was found. The certificate is returned in place of the solution to the
problem.

14.2.2 Locating the cause of primal infeasibility

Usually a primal infeasible problem status is caused by a mistake in formulating the problem and
therefore the question arises: ”What is the cause of the infeasible status?” When trying to answer this
question, it is often advantageous to follow these steps:

• Remove the objective function. This does not change the infeasible status but simplifies the
problem, eliminating any possibility of problems related to the objective function.

• Consider whether your problem has some necessary conditions for feasibility and examine if these
are satisfied, e.g. total supply should be greater than or equal to total demand.

• Verify that coefficients and bounds are reasonably sized in your problem.

If the problem is still primal infeasible, some of the constraints must be relaxed or removed completely.
The MOSEK infeasibility report (Section 14.2.4) may assist you in finding the constraints causing the
infeasibility.

Possible ways of relaxing your problem include:

• Increasing (decreasing) upper (lower) bounds on variables and constraints.

• Removing suspected constraints from the problem.

Returning to the transportation example, we discover that removing the fifth constraint

x12 = 200

164 CHAPTER 14. THE ANALYZERS

makes the problem feasible.

14.2.3 Locating the cause of dual infeasibility

A problem may also be dual infeasible. In this case the primal problem is often unbounded, mening
that feasbile solutions exists such that the objective tends towards infinity. An example of a dual
infeasible and primal unbounded problem is:

minimize x1

subject to x1 ≤ 5.

To resolve a dual infeasibility the primal problem must be made more restricted by

• Adding upper or lower bounds on variables or constraints.

• Removing variables.

• Changing the objective.

14.2.3.1 A cautious note

The problem

minimize 0
subject to 0 ≤ x1,

xj ≤ xj+1, j = 1, . . . , n− 1,
xn ≤ − 1

is clearly infeasible. Moreover, if any one of the constraints are dropped, then the problem becomes
feasible.

This illustrates the worst case scenario that all, or at least a significant portion, of the constraints are
involved in the infeasibility. Hence, it may not always be easy or possible to pinpoint a few constraints
which are causing the infeasibility.

14.2.4 The infeasibility report

MOSEK includes functionality for diagnosing the cause of a primal or a dual infeasibility. It can be
turned on by setting the MSK IPAR INFEAS REPORT AUTO to MSK ON. This causes MOSEK to print a
report on variables and constraints involved in the infeasibility.

The MSK IPAR INFEAS REPORT LEVEL parameter controls the amount of information presented in the
infeasibility report. The default value is 1 .

14.2. ANALYZING INFEASIBLE PROBLEMS 165

14.2.4.1 Example: Primal infeasibility

We will reuse the example (14.1) located in infeas.lp:

\
\ An example of an infeasible linear problem.

\
minimize

obj: + 1 x11 + 2 x12 + 1 x13

+ 4 x21 + 2 x22 + 5 x23

+ 4 x31 + 1 x32 + 2 x33

st

s0: + x11 + x12 <= 200

s1: + x23 + x24 <= 1000

s2: + x31 +x33 + x34 <= 1000

d1: + x11 + x31 = 1100

d2: + x12 = 200

d3: + x23 + x33 = 500

d4: + x24 + x34 = 500

bounds

end

Using the command line (please remeber it accepts options following the C API format)

mosek -d MSK IPAR INFEAS REPORT AUTO MSK ON infeas.lp

MOSEK produces the following infeasibility report

MOSEK PRIMAL INFEASIBILITY REPORT.

Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper

0 s0 NONE 2.000000e+002 0.000000e+000 1.000000e+000

2 s2 NONE 1.000000e+003 0.000000e+000 1.000000e+000

3 d1 1.100000e+003 1.100000e+003 1.000000e+000 0.000000e+000

4 d2 2.000000e+002 2.000000e+002 1.000000e+000 0.000000e+000

The following bound constraints are involved in the infeasibility.

Index Name Lower bound Upper bound Dual lower Dual upper

8 x33 0.000000e+000 NONE 1.000000e+000 0.000000e+000

10 x34 0.000000e+000 NONE 1.000000e+000 0.000000e+000

The infeasibility report is divided into two sections where the first section shows which constraints that
are important for the infeasibility. In this case the important constraints are the ones named s0, s2, d1,
and d2. The values in the columns ”Dual lower” and ”Dual upper” are also useful, since a non-zero
dual lower value for a constraint implies that the lower bound on the constraint is important for the
infeasibility. Similarly, a non-zero dual upper value implies that the upper bound on the constraint is
important for the infeasibility.

It is also possible to obtain the infeasible subproblem. The command line

mosek -d MSK IPAR INFEAS REPORT AUTO MSK ON infeas.lp -info rinfeas.lp

produces the files rinfeas.bas.inf.lp. In this case the content of the file rinfeas.bas.inf.lp is

minimize

166 CHAPTER 14. THE ANALYZERS

Obj: + CFIXVAR

st

s0: + x11 + x12 <= 200

s2: + x31 + x33 + x34 <= 1e+003

d1: + x11 + x31 = 1.1e+003

d2: + x12 = 200

bounds

x11 free

x12 free

x13 free

x21 free

x22 free

x23 free

x31 free

x32 free

x24 free

CFIXVAR = 0e+000

end

which is an optimization problem. This problem is identical to (14.1), except that the objective and
some of the constraints and bounds have been removed. Executing the command

mosek -d MSK IPAR INFEAS REPORT AUTO MSK ON infeas.bas.inf.lp

demonstrates that the reduced problem is primal infeasible. Since the reduced problem is usually
smaller than original problem, it should be easier to locate the cause of the infeasibility in this rather
than in the original (14.1).

14.2.4.2 Example: Dual infeasibility

The example problem

maximize - 200 y1 - 1000 y2 - 1000 y3

- 1100 y4 - 200 y5 - 500 y6

- 500 y7

subject to

x11: y1+y4 < 1

x12: y1+y5 < 2

x23: y2+y6 < 5

x24: y2+y7 < 2

x31: y3+y4 < 1

x33: y3+y6 < 2

x44: y3+y7 < 1

bounds

y1 < 0

y2 < 0

y3 < 0

y4 free

y5 free

y6 free

y7 free

end

is dual infeasible. This can be verified by proving that

y1=-1, y2=-1, y3=0, y4=1, y5=1

is a certificate of dual infeasibility. In this example the following infeasibility report is produced

14.2. ANALYZING INFEASIBLE PROBLEMS 167

(slightly edited):

The following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound

0 x11 -1.000000e+00 NONE 1.000000e+00

4 x31 -1.000000e+00 NONE 1.000000e+00

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound Upper bound

3 y4 -1.000000e+00 -1.100000e+03 NONE NONE

Interior-point solution

Problem status : DUAL INFEASIBLE

Solution status : DUAL INFEASIBLE CER

Primal - objective: 1.1000000000e+03 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00 cone infeas.: 0.00e+00

Dual - objective: 0.0000000000e+00 eq. infeas.: 0.00e+00 max bound infeas.: 0.00e+00 cone infeas.: 0.00e+00

Let x∗ denote the reported primal solution. MOSEK states

• that the problem is dual infeasible,

• that the reported solution is a certificate of dual infeasibility, and

• that the infeasibility measure for x∗ is approximately zero.

Since it was an maximization problem, this implies that

ctx∗ > 0. (14.2)

For a minimization problem this inequality would have been reversed — see (14.5).

From the infeasibility report we see that the variable y4, and the constraints x11 and x33 are involved
in the infeasibility since these appear with non-zero values in the ”Activity” column.

One possible strategy to ”fix” the infeasibility is to modify the problem so that the certificate of
infeasibility becomes invalid. In this case we may do one the following things:

• Put a lower bound in y3. This will directly invalidate the certificate of dual infeasibility.

• Increase the object coefficient of y3. Changing the coefficients sufficiently will invalidate the
inequality (14.2) and thus the certificate.

• Put lower bounds on x11 or x31. This will directly invalidate the certificate of infeasibility.

Please note that modifying the problem to invalidate the reported certificate does not imply that the
problem becomes dual feasible — the infeasibility may simply ”move”, resulting in a new infeasibility.

More often, the reported certificate can be used to give a hint about errors or inconsistencies in the
model that produced the problem.

168 CHAPTER 14. THE ANALYZERS

14.2.5 Theory concerning infeasible problems

This section discusses the theory of infeasibility certificates and how MOSEK uses a certificate to
produce an infeasibility report. In general, MOSEK solves the problem

minimize cTx+ cf

subject to lc ≤ Ax ≤ uc,
lx ≤ x ≤ ux

(14.3)

where the corresponding dual problem is

maximize (lc)T scl − (uc)T scu
+ (lx)T sxl − (ux)T sxu + cf

subject to AT y + sxl − sxu = c,
− y + scl − scu = 0,

scl , s
c
u, s

x
l , s

x
u ≥ 0.

(14.4)

We use the convension that for any bound that is not finite, the corresponding dual variable is fixed
at zero (and thus will have no influence on the dual problem). For example

lxj = −∞ ⇒ (sxl)j = 0

14.2.6 The certificate of primal infeasibility

A certificate of primal infeasibility is any solution to the homogenized dual problem

maximize (lc)T scl − (uc)T scu
+ (lx)T sxl − (ux)T sxu

subject to AT y + sxl − sxu = 0,
− y + scl − scu = 0,

scl , s
c
u, s

x
l , s

x
u ≥ 0.

with a positive objective value. That is, (sc∗l , s
c∗
u , s

x∗
l , s

x∗
u) is a certificate of primal infeasibility if

(lc)T sc∗l − (uc)T sc∗u + (lx)T sx∗l − (ux)T sx∗u > 0

and

AT y + sx∗l − sx∗u = 0,
− y + sc∗l − sc∗u = 0,
sc∗l , s

c∗
u , s

x∗
l , s

x∗
u ≥ 0.

The well-known Farkas Lemma tells us that (14.3) is infeasible if and only if a certificate of primal
infeasibility exists.

Let (sc∗l , s
c∗
u , s

x∗
l , s

x∗
u) be a certificate of primal infeasibility then

14.2. ANALYZING INFEASIBLE PROBLEMS 169

(sc∗l)i > 0((sc∗u)i > 0)

implies that the lower (upper) bound on the i th constraint is important for the infeasibility. Further-
more,

(sx∗l)j > 0((sx∗u)i > 0)

implies that the lower (upper) bound on the j th variable is important for the infeasibility.

14.2.7 The certificate of dual infeasibility

A certificate of dual infeasibility is any solution to the problem

minimize cTx
subject to l̄c ≤ Ax ≤ ūc,

l̄x ≤ x ≤ ūx

with negative objective value, where we use the definitions

l̄ci :=

{
0, lci > −∞,
−∞, otherwise,

, ūci :=

{
0, uci <∞,
∞, otherwise,

and

l̄xi :=

{
0, lxi > −∞,
−∞, otherwise,

and ūxi :=

{
0, uxi <∞,
∞, otherwise.

Stated differently, a certificate of dual infeasibility is any x∗ such that

cTx∗ < 0,
l̄c ≤ Ax∗ ≤ ūc,
l̄x ≤ x∗ ≤ ūx

(14.5)

The well-known Farkas Lemma tells us that (14.4) is infeasible if and only if a certificate of dual
infeasibility exists.

Note that if x∗ is a certificate of dual infeasibility then for any j such that

x∗j 6= 0,

variable j is involved in the dual infeasibility.

170 CHAPTER 14. THE ANALYZERS

Chapter 15

Primal feasibility repair

Section 14.2.2 discusses how MOSEK treats infeasible problems. In particular, it is discussed which
information MOSEK returns when a problem is infeasible and how this information can be used to
pinpoint the cause of the infeasibility.

In this section we discuss how to repair a primal infeasible problem by relaxing the constraints in a
controlled way. For the sake of simplicity we discuss the method in the context of linear optimization.

15.1 Manual repair

Subsequently we discuss an automatic method for repairing an infeasible optimization problem. How-
ever, it should be observed that the best way to repair an infeasible problem usually depends on what
the optimization problem models. For instance in many optimization problem it does not make sense
to relax the constraints x ≥ 0 e.g. it is not possible to produce a negative quantity. Hence, whatever
automatic method MOSEK provides it will never be as good as a method that exploits knowledge
about what is being modelled. This implies that it is usually better to remove the underlying cause of
infeasibility at the modelling stage.

Indeed consider the example

minimize
subject to x1 + x2 = 1,

x3 + x4 = 1,
− x1 − x3 = − 1 + ε

− x2 − x4 = − 1,
x1, x2, x3, x4 ≥ 0

(15.1)

then if we add the equalties together we obtain the implied equality

0 = ε

171

172 CHAPTER 15. PRIMAL FEASIBILITY REPAIR

which is infeasible for any ε 6= 0. Here the infeasibility is caused by a linear dependency in the constraint
matrix and that the right-hand side does not match if ε 6= 0. Observe even if the problem is feasible
then just a tiny perturbation to the right-hand side will make the problem infeasible. Therefore, even
though the problem can be repaired then a much more robust solution is to avoid problems with linear
dependent constraints. Indeed if a problem contains linear dependencies then the problem is either
infeasible or contains redundant constraints. In the above case any of the equality constraints can be
removed while not changing the set of feasible solutions.

To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore
it is better to avoid them. Note that most network flow models usually is formulated with one linear
dependent constraint.

Next consider the problem

minimize
subject to x1 − 0.01x2 = 0

x2 − 0.01x3 = 0
x3 − 0.01x4 = 0

x1 ≥ − 1.0e− 9
x1 ≤ 1.0e− 9
x4 ≤ − 1.0e− 4

(15.2)

Now the MOSEK presolve for the sake of efficiency fix variables (and constraints) that has tight bounds
where tightness is controlled by the parameter MSK DPAR PRESOLVE TOL X. Since, the bounds

−1.0e− 9 ≤ x1 ≤ 1.0e− 9

are tight then the MOSEK presolve will fix variable x1 at the mid point between the bounds i.e. at 0.
It easy to see that this implies x4 = 0 too which leads to the incorrect conclusion that the problem is
infeasible. Observe tiny change of the size 1.0e-9 make the problem switch from feasible to infeasible.
Such a problem is inherently unstable and is hard to solve. We normally call such a problem ill-posed.
In general it is recommended to avoid ill-posed problems, but if that is not possible then one solution
to this issue is is to reduce the parameter to say MSK DPAR PRESOLVE TOL X to say 1.0e-10. This will
at least make sure that the presolve does not make the wrong conclusion.

15.2 Automatic repair

In this section we will describe the idea behind a method that automatically can repair an infeasible
probem. The main idea can be described as follows.

Consider the linear optimization problem with m constraints and n variables

minimize cTx+ cf

subject to lc ≤ Ax ≤ uc,
lx ≤ x ≤ ux,

(15.3)

which is assumed to be infeasible.

15.2. AUTOMATIC REPAIR 173

One way of making the problem feasible is to reduce the lower bounds and increase the upper bounds.
If the change is sufficiently large the problem becomes feasible. Now an obvious idea is to compute
the optimal relaxation by solving an optimization problem. The problem

minimize p(vcl , v
c
u, v

x
l , v

x
u)

subject to lc ≤ Ax+ vcl − vcu ≤ uc,
lx ≤ x+ vxl − vxu ≤ ux,

vcl , v
c
u, v

x
l , v

x
u ≥ 0

(15.4)

does exactly that. The additional variables (vcl)i, (vcu)i, (vxl)j and (vcu)j are elasticity variables because
they allow a constraint to be violated and hence add some elasticity to the problem. For instance,
the elasticity variable (vcl)i controls how much the lower bound (lc)i should be relaxed to make the
problem feasible. Finally, the so-called penalty function

p(vcl , v
c
u, v

x
l , v

x
u)

is chosen so it penalize changes to bounds. Given the weights

• wcl ∈ Rm (associated with lc),

• wcu ∈ Rm (associated with uc),

• wxl ∈ Rn (associated with lx),

• wxu ∈ Rn (associated with ux),

then a natural choice is

p(vcl , v
c
u, v

x
l , v

x
u) = (wcl)

T vcl + (wcu)T vcu + (wxl)T vxl + (wxu)T vxu. (15.5)

Hence, the penalty function p() is a weighted sum of the relaxation and therefore the problem (15.4)
keeps the amount of relaxation at a minimum. Please observe that

• the problem (15.6) is always feasible.

• a negative weight implies problem (15.6) is unbounded. For this reason if the value of a weight
is negative MOSEK fixes the associated elasticity variable to zero. Clearly, if one or more of the
weights are negative may imply that it is not possible repair the problem.

A simple choice of weights is to let them all to be 1, but of course that does not take into account that
constraints may have different importance.

15.2.1 Caveats

Observe if the infeasible problem

174 CHAPTER 15. PRIMAL FEASIBILITY REPAIR

minimize x+ z
subject to x = − 1,

x ≥ 0
(15.6)

is repaired then it will be unbounded. Hence, a repaired problem may not have an optimal solution.

Another and more important caveat is that only a minimial repair is perfomed i.e. the repair that just
make the problem feasible. Hence, the repaired problem is barely feasible and that sometimes make
the repaired problem hard to solve.

15.3 Feasibility repair in MOSEK

MOSEK includes a function that repair an infeasible problem using the idea described in the previous
section simply by passing a set of weights to MOSEK. This can be used for linear and conic optimization
problems, possibly having integer constrained variables.

15.3.1 An example using feasibility repair

Consider the example linear optimization

minimize − 10x1 − 9x2,
subject to 7/10x1 + 1x2 ≤ 630,

1/2x1 + 5/6x2 ≤ 600,
1x1 + 2/3x2 ≤ 708,

1/10x1 + 1/4x2 ≤ 135,
x1, x2 ≥ 0,

x2 ≥ 650

(15.7)

which is infeasible. Now suppose we wish to use MOSEK to suggest a modification to the bounds that
makes the problem feasible.

The following example

[r,res]=mosekopt(’read(feasrepair.lp)’);

res.prob.primalrepair = [];

res.prob.primalrepair.wux = [1,1];

res.prob.primalrepair.wlx = [1,1];

res.prob.primalrepair.wuc = [1,1,1,1];

res.prob.primalrepair.wlc = [1,1,1,1];

param.MSK IPAR LOG FEAS REPAIR = 3;

[r,res]=mosekopt(’minimize primalrepair’,res.prob,param);

will form the repaired problem and solve it. The parameter

MSK IPAR LOG FEAS REPAIR

controls the amount of log output from the repair. A value of 2 causes the optimal repair to printed out.
If the fields wlx, wux, wlc or wuc are not specified, they are all assumed to be 1-vectors of appropriate
dimensions.

15.3. FEASIBILITY REPAIR IN MOSEK 175

The output from running the commands above is:

Copyright (c) 1998-2013 MOSEK ApS, Denmark. WWW: http://mosek.com

Open file ’feasrepair.lp’

Read summary

Type : LO (linear optimization problem)

Objective sense : min

Constraints : 4

Scalar variables : 2

Matrix variables : 0

Time : 0.0

Computer

Platform : Windows/64-X86

Cores : 4

Problem

Name :

Objective sense : min

Type : LO (linear optimization problem)

Constraints : 4

Cones : 0

Scalar variables : 2

Matrix variables : 0

Integer variables : 0

Primal feasibility repair started.

Optimizer started.

Interior-point optimizer started.

Presolve started.

Linear dependency checker started.

Linear dependency checker terminated.

Eliminator started.

Total number of eliminations : 2

Eliminator terminated.

Eliminator - tries : 1 time : 0.00

Eliminator - elim’s : 2

Lin. dep. - tries : 1 time : 0.00

Lin. dep. - number : 0

Presolve terminated. Time: 0.00

Optimizer - threads : 1

Optimizer - solved problem : the primal

Optimizer - Constraints : 2

Optimizer - Cones : 0

Optimizer - Scalar variables : 6 conic : 0

Optimizer - Semi-definite variables: 0 scalarized : 0

Factor - setup time : 0.00 dense det. time : 0.00

Factor - ML order time : 0.00 GP order time : 0.00

Factor - nonzeros before factor : 3 after factor : 3

Factor - dense dim. : 0 flops : 5.40e+001

ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME

0 2.7e+001 1.0e+000 4.8e+000 1.00e+000 4.195228609e+000 0.000000000e+000 1.0e+000 0.00

1 2.4e+001 8.6e-001 1.5e+000 0.00e+000 1.227497414e+001 1.504971820e+001 2.6e+000 0.00

2 2.6e+000 9.7e-002 1.7e-001 -6.19e-001 4.363064729e+001 4.648523094e+001 3.0e-001 0.00

3 4.7e-001 1.7e-002 3.1e-002 1.24e+000 4.256803136e+001 4.298540657e+001 5.2e-002 0.00

4 8.7e-004 3.2e-005 5.7e-005 1.08e+000 4.249989892e+001 4.250078747e+001 9.7e-005 0.00

176 CHAPTER 15. PRIMAL FEASIBILITY REPAIR

5 8.7e-008 3.2e-009 5.7e-009 1.00e+000 4.249999999e+001 4.250000008e+001 9.7e-009 0.00

6 8.7e-012 3.2e-013 5.7e-013 1.00e+000 4.250000000e+001 4.250000000e+001 9.7e-013 0.00

Basis identification started.

Primal basis identification phase started.

ITER TIME

0 0.00

Primal basis identification phase terminated. Time: 0.00

Dual basis identification phase started.

ITER TIME

0 0.00

Dual basis identification phase terminated. Time: 0.00

Basis identification terminated. Time: 0.00

Interior-point optimizer terminated. Time: 0.00.

Optimizer terminated. Time: 0.03

Basic solution summary

Problem status : PRIMAL AND DUAL FEASIBLE

Solution status : OPTIMAL

Primal. obj: 4.2500000000e+001 Viol. con: 1e-013 var: 0e+000

Dual. obj: 4.2500000000e+001 Viol. con: 0e+000 var: 5e-013

Optimal objective value of the penalty problem: 4.250000000000e+001

Repairing bounds.

Increasing the upper bound -2.25e+001 on constraint ’c4’ (3) with 1.35e+002.

Decreasing the lower bound 6.50e+002 on variable ’x2’ (4) with 2.00e+001.

Primal feasibility repair terminated.

Optimizer started.

Interior-point optimizer started.

Presolve started.

Presolve terminated. Time: 0.00

Interior-point optimizer terminated. Time: 0.00.

Optimizer terminated. Time: 0.00

Interior-point solution summary

Problem status : PRIMAL AND DUAL FEASIBLE

Solution status : OPTIMAL

Primal. obj: -5.6700000000e+003 Viol. con: 0e+000 var: 0e+000

Dual. obj: -5.6700000000e+003 Viol. con: 0e+000 var: 0e+000

Basic solution summary

Problem status : PRIMAL AND DUAL FEASIBLE

Solution status : OPTIMAL

Primal. obj: -5.6700000000e+003 Viol. con: 0e+000 var: 0e+000

Dual. obj: -5.6700000000e+003 Viol. con: 0e+000 var: 0e+000

Optimizer summary

Optimizer - time: 0.00

Interior-point - iterations : 0 time: 0.00

Basis identification - time: 0.00

Primal - iterations : 0 time: 0.00

Dual - iterations : 0 time: 0.00

Clean primal - iterations : 0 time: 0.00

Clean dual - iterations : 0 time: 0.00

Clean primal-dual - iterations : 0 time: 0.00

Simplex - time: 0.00

Primal simplex - iterations : 0 time: 0.00

Dual simplex - iterations : 0 time: 0.00

15.3. FEASIBILITY REPAIR IN MOSEK 177

Primal-dual simplex - iterations : 0 time: 0.00

Mixed integer - relaxations: 0 time: 0.00

reports the optimal repair. In this case it is to increase the upper bound on constraint c4 by 1.35e2
and decrease the lower bound on variable x2 by 20.

178 CHAPTER 15. PRIMAL FEASIBILITY REPAIR

Chapter 16

Sensitivity analysis

16.1 Introduction

Given an optimization problem it is often useful to obtain information about how the optimal objective
value changes when the problem parameters are perturbed. E.g, assume that a bound represents a
capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it
is worthwhile knowing what the value of additional capacity is. This is precisely the type of questions
the sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called sensi-
tivity analysis.

16.2 Restrictions

Currently, sensitivity analysis is only available for continuous linear optimization problems. Moreover,
MOSEK can only deal with perturbations in bounds and objective coefficients.

16.3 References

The book [1] discusses the classical sensitivity analysis in Chapter 10 whereas the book [18] presents
a modern introduction to sensitivity analysis. Finally, it is recommended to read the short paper [19]
to avoid some of the pitfalls associated with sensitivity analysis.

179

180 CHAPTER 16. SENSITIVITY ANALYSIS

f()β

0 ββ β1 2

f()β

0 βββ 21

Figure 16.1: The optimal value function flci (β). Left: β = 0 is in the interior of linearity interval.
Right: β = 0 is a breakpoint.

16.4 Sensitivity analysis for linear problems

16.4.1 The optimal objective value function

Assume that we are given the problem

z(lc, uc, lx, ux, c) = minimize cTx
subject to lc ≤ Ax ≤ uc,

lx ≤ x ≤ ux,
(16.1)

and we want to know how the optimal objective value changes as lci is perturbed. To answer this
question we define the perturbed problem for lci as follows

flci (β) = minimize cTx
subject to lc + βei ≤ Ax ≤ uc,

lx ≤ x ≤ ux,
where ei is the i th column of the identity matrix. The function

flci (β) (16.2)

shows the optimal objective value as a function of β. Please note that a change in β corresponds to a
perturbation in lci and hence (16.2) shows the optimal objective value as a function of lci .

It is possible to prove that the function (16.2) is a piecewise linear and convex function, i.e. the function
may look like the illustration in Figure 16.1. Clearly, if the function flci (β) does not change much when
β is changed, then we can conclude that the optimal objective value is insensitive to changes in lci .
Therefore, we are interested in the rate of change in flci (β) for small changes in β — specificly the
gradient

f ′lci (0),

which is called the shadow pricerelated to lci . The shadow price specifies how the objective value
changes for small changes in β around zero. Moreover, we are interested in the linearity interval

16.4. SENSITIVITY ANALYSIS FOR LINEAR PROBLEMS 181

β ∈ [β1, β2]

for which

f ′lci (β) = f ′lci (0).

Since flci is not a smooth function f ′lci
may not be defined at 0, as illustrated by the right example in

figure 16.1. In this case we can define a left and a right shadow price and a left and a right linearity
interval.

The function flci considered only changes in lci . We can define similar functions for the remaining
parameters of the z defined in (16.1) as well:

fuci (β) = z(lc, uc + βei, l
x, ux, c), i = 1, . . . ,m,

flxj (β) = z(lc, uc, lx + βej , u
x, c), j = 1, . . . , n,

fuxj (β) = z(lc, uc, lx, ux + βej , c), j = 1, . . . , n,

fcj (β) = z(lc, uc, lx, ux, c+ βej), j = 1, . . . , n.

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the
parameters uci etc.

16.4.1.1 Equality constraints

In MOSEK a constraint can be specified as either an equality constraint or a ranged constraint. If
constraint i is an equality constraint, we define the optimal value function for this as

feci (β) = z(lc + βei, u
c + βei, l

x, ux, c)

Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed
simultaneously. Therefore, MOSEK will handle sensitivity analysis differently for a ranged constraint
with lci = uci and for an equality constraint.

16.4.2 The basis type sensitivity analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [1], is
based on an optimal basic solution or, equivalently, on an optimal basis. This method may produce
misleading results [18] but is computationally cheap. Therefore, and for historical reasons this
method is available in MOSEK We will now briefly discuss the basis type sensitivity analysis. Given
an optimal basic solution which provides a partition of variables into basic and non-basic variables, the
basis type sensitivity analysis computes the linearity interval [β1, β2] so that the basis remains optimal
for the perturbed problem. A shadow price associated with the linearity interval is also computed.
However, it is well-known that an optimal basic solution may not be unique and therefore the result
depends on the optimal basic solution employed in the sensitivity analysis. This implies that the
computed interval is only a subset of the largest interval for which the shadow price is constant.
Furthermore, the optimal objective value function might have a breakpoint for β = 0. In this case the
basis type sensitivity method will only provide a subset of either the left or the right linearity interval.

182 CHAPTER 16. SENSITIVITY ANALYSIS

In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete
information. Hence, the results of the basis type sensitivity analysis should be used with care.

16.4.3 The optimal partition type sensitivity analysis

Another method for computing the complete linearity interval is called the optimal partition type
sensitivity analysis. The main drawback of the optimal partition type sensitivity analysis is that it
is computationally expensive compared to the basis type analysts. This type of sensitivity analysis is
currently provided as an experimental feature in MOSEK.

Given the optimal primal and dual solutions to (16.1), i.e. x∗ and ((scl)
∗, (scu)∗, (sxl)∗, (sxu)∗) the optimal

objective value is given by

z∗ := cTx∗.

The left and right shadow prices σ1 and σ2 for lci are given by this pair of optimization problems:

σ1 = minimize eTi s
c
l

subject to AT (scl − scu) + sxl − sxu = c,

(lc)
T (scl)− (uc)

T (scu) + (lx)T (sxl)− (ux)T (sxu) = z∗,
scl , s

c
u, s

c
l , s

x
u ≥ 0

and

σ2 = maximize eTi s
c
l

subject to AT (scl − scu) + sxl − sxu = c,

(lc)
T (scl)− (uc)

T (scu) + (lx)T (sxl)− (ux)T (sxu) = z∗,
scl , s

c
u, s

c
l , s

x
u ≥ 0.

These two optimization problems make it easy to interpret the shadow price. Indeed, if ((scl)
∗, (scu)∗, (sxl)∗, (sxu)∗)

is an arbitrary optimal solution then

(scl)
∗
i ∈ [σ1, σ2].

Next, the linearity interval [β1, β2] for lci is computed by solving the two optimization problems

β1 = minimize β
subject to lc + βei ≤ Ax ≤ uc,

cTx− σ1β = z∗,
lx ≤ x ≤ ux,

and

β2 = maximize β
subject to lc + βei ≤ Ax ≤ uc,

cTx− σ2β = z∗,
lx ≤ x ≤ ux.

16.4. SENSITIVITY ANALYSIS FOR LINEAR PROBLEMS 183

The linearity intervals and shadow prices for uci , l
x
j , and uxj are computed similarly to lci .

The left and right shadow prices for cj denoted σ1 and σ2 respectively are computed as follows:

σ1 = minimize eTj x
subject to lc + βei ≤ Ax ≤ uc,

cTx = z∗,
lx ≤ x ≤ ux

and

σ2 = maximize eTj x
subject to lc + βei ≤ Ax ≤ uc,

cTx = z∗,
lx ≤ x ≤ ux.

Once again the above two optimization problems make it easy to interpret the shadow prices. Indeed,
if x∗ is an arbitrary primal optimal solution, then

x∗j ∈ [σ1, σ2].

The linearity interval [β1, β2] for a cj is computed as follows:

β1 = minimize β

subject to AT (scl − scu) + sxl − sxu = c+ βej ,

(lc)
T (scl)− (uc)

T (scu) + (lx)T (sxl)− (ux)T (sxu)− σ1β ≤ z∗,
scl , s

c
u, s

c
l , s

x
u ≥ 0

and

β2 = maximize β

subject to AT (scl − scu) + sxl − sxu = c+ βej ,

(lc)
T (scl)− (uc)

T (scu) + (lx)T (sxl)− (ux)T (sxu)− σ2β ≤ z∗,
scl , s

c
u, s

c
l , s

x
u ≥ 0.

16.4.4 Example: Sensitivity analysis

As an example we will use the following transportation problem. Consider the problem of minimizing
the transportation cost between a number of production plants and stores. Each plant supplies a
number of goods and each store has a given demand that must be met. Supply, demand and cost of
transportation per unit are shown in Figure 16.2. If we denote the number of transported goods from
location i to location j by xij , problem can be formulated as the linear optimization problem minimize

1x11 + 2x12 + 5x23 + 2x24 + 1x31 + 2x33 + 1x34

subject to

184 CHAPTER 16. SENSITIVITY ANALYSIS

Supply Demand

1

2

5

2

1

2

1

Plant 1

Plant 2

Plant 3
Store 4

Store 3

Store 2

Store 1

1000

500

500

800

100

400

1200

Figure 16.2: Supply, demand and cost of transportation.

16.4. SENSITIVITY ANALYSIS FOR LINEAR PROBLEMS 185

Basis type Optimal partition type
Con. β1 β2 σ1 σ2

1 −300.00 0.00 3.00 3.00
2 −700.00 +∞ 0.00 0.00
3 −500.00 0.00 3.00 3.00
4 −0.00 500.00 4.00 4.00
5 −0.00 300.00 5.00 5.00
6 −0.00 700.00 5.00 5.00
7 −500.00 700.00 2.00 2.00
Var. β1 β2 σ1 σ2

x11 −∞ 300.00 0.00 0.00
x12 −∞ 100.00 0.00 0.00
x23 −∞ 0.00 0.00 0.00
x24 −∞ 500.00 0.00 0.00
x31 −∞ 500.00 0.00 0.00
x33 −∞ 500.00 0.00 0.00
x34 −0.000000 500.00 2.00 2.00

Con. β1 β2 σ1 σ2

1 −300.00 500.00 3.00 1.00
2 −700.00 +∞ −0.00 −0.00
3 −500.00 500.00 3.00 1.00
4 −500.00 500.00 2.00 4.00
5 −100.00 300.00 3.00 5.00
6 −500.00 700.00 3.00 5.00
7 −500.00 700.00 2.00 2.00
Var. β1 β2 σ1 σ2

x11 −∞ 300.00 0.00 0.00
x12 −∞ 100.00 0.00 0.00
x23 −∞ 500.00 0.00 2.00
x24 −∞ 500.00 0.00 0.00
x31 −∞ 500.00 0.00 0.00
x33 −∞ 500.00 0.00 0.00
x34 −∞ 500.00 0.00 2.00

Table 16.1: Ranges and shadow prices related to bounds on constraints and variables. Left: Results
for the basis type sensitivity analysis. Right: Results for the optimal partition type sensitivity analysis.

x11 + x12 ≤ 400,
x23 + x24 ≤ 1200,

x31 + x33 + x34 ≤ 1000,
x11 + x31 = 800,

x12 = 100,
x23 + x33 = 500,

x24 + x34 = 500,
x11, x12, x23, x24, x31, x33, x34 ≥ 0.

(16.3)

The basis type and the optimal partition type sensitivity results for the transportation problem are
shown in Table 16.1 and 16.2 respectively. Examining the results from the optimal partition type
sensitivity analysis we see that for constraint number 1 we have σ1 6= σ2 and β1 6= β2. Therefore, we
have a left linearity interval of [−300, 0] and a right interval of [0, 500]. The corresponding left and
right shadow prices are 3 and 1 respectively. This implies that if the upper bound on constraint 1
increases by

β ∈ [0, β1] = [0, 500]

then the optimal objective value will decrease by the value

σ2β = 1β.

Correspondingly, if the upper bound on constraint 1 is decreased by

186 CHAPTER 16. SENSITIVITY ANALYSIS

Basis type Optimal partition type
Var. β1 β2 σ1 σ2

c1 −∞ 3.00 300.00 300.00
c2 −∞ ∞ 100.00 100.00
c3 −2.00 ∞ 0.00 0.00
c4 −∞ 2.00 500.00 500.00
c5 −3.00 ∞ 500.00 500.00
c6 −∞ 2.00 500.00 500.00
c7 −2.00 ∞ 0.00 0.00

Var. β1 β2 σ1 σ2

c1 −∞ 3.00 300.00 300.00
c2 −∞ ∞ 100.00 100.00
c3 −2.00 ∞ 0.00 0.00
c4 −∞ 2.00 500.00 500.00
c5 −3.00 ∞ 500.00 500.00
c6 −∞ 2.00 500.00 500.00
c7 −2.00 ∞ 0.00 0.00

Table 16.2: Ranges and shadow prices related to the objective coefficients. Left: Results for the basis
type sensitivity analysis. Right: Results for the optimal partition type sensitivity analysis.

β ∈ [0, 300]

then the optimal objective value will increase by the value

σ1β = 3β.

16.5 Sensitivity analysis in the MATLAB toolbox

The following describe sensitivity analysis from the MATLAB toolbox.

16.5.1 On bounds

The index of bounds/variables to analyzed for sensitivity are specified in the following subfields of the
matlab structure prob:

.prisen.cons.subu

Indexes of constraints, where upper bounds are analyzed for sensitivity.

.prisen.cons.subl

Indexes of constraints, where lower bounds are analyzed for sensitivity.

.prisen.vars.subu

Indexes of variables, where upper bounds are analyzed for sensitivity.

.prisen.vars.subl

Indexes of variables, where lower bounds are analyzed for sensitivity.

.duasen.sub

Index of variables where coefficients are analyzed for sensitivity.

16.5. SENSITIVITY ANALYSIS IN THE MATLAB TOOLBOX 187

For an equality constraint, the index can be specified in either subu or subl. After calling

[r,res] = mosekopt(’minimize’,prob)

the results are returned in the subfields prisen and duasen of res.

16.5.1.1 prisen

The field prisen is structured as follows:

.cons

MATLAB structure with subfields:

.lr bl

Left value β1 in the linearity interval for a lower bound.

.rr bl

Right value β2 in the linearity interval for a lower bound.

.ls bl

Left shadow price sl for a lower bound.

.rs bl

Right shadow price sr for a lower bound.

.lr bu

Left value β1 in the linearity interval for an upper bound.

.rr bu

Right value β2 in the linearity interval for an upper bound.

.ls bu

Left shadow price sl for an upper bound.

.rs bu

Right shadow price sr for an upper bound.

.var

MATLAB structure with subfields:

.lr bl

Left value β1 in the linearity interval for a lower bound on a varable.

.rr bl

Right value β2 in the linearity interval for a lower bound on a varable.

.ls bl

Left shadow price sl for a lower bound on a varable.

.rs bl

Right shadow price sr for lower bound on a varable.

188 CHAPTER 16. SENSITIVITY ANALYSIS

.lr bu

Left value β1 in the linearity interval for an upper bound on a varable.

.rr bu

Right value β2 in the linearity interval for an upper bound on a varable.

.ls bu

Left shadow price sl for an upper bound on a varables.

.rs bu

Right shadow price sr for an upper bound on a varables.

16.5.1.2 duasen

The field duasen is structured as follows:

.lr c

Left value β1 of linearity interval for an objective coefficient.

.rr c

Right value β2 of linearity interval for an objective coefficient.

.ls c

Left shadow price sl for an objective coefficients .

.rs c

Right shadow price sr for an objective coefficients.

16.5.2 Selecting analysis type

The type (basis or optimal partition) of analysis to be performed can be selected by setting the
parameter

MSK IPAR SENSITIVITY TYPE

to one of the values:

MSK SENSITIVITY TYPE BASIS = 0

MSK SENSITIVITY TYPE OPTIMAL PARTITION = 1

as seen in the following example.

16.5.3 An example

Consider the problem defined in (16.3). Suppose we wish to perform sensitivity analysis on all bounds
and coefficients. The following example demonstrates this as well as the method for changing between
basic and full sensitivity analysis.

% sensitivity.m

16.5. SENSITIVITY ANALYSIS IN THE MATLAB TOOLBOX 189

% Obtain all symbolic constants

% defined by MOSEK.

[r,res] = mosekopt(’symbcon’);

sc = res.symbcon;

[r,res] = mosekopt(’read(../../tools/examples/data/transport.lp)’);

prob = res.prob;

% analyse upper bound 1:7

prob.prisen.cons.subl = [];

prob.prisen.cons.subu = [1:7];

% analyse lower bound on variables 1:7

prob.prisen.vars.subl = [1:7];

prob.prisen.vars.subu = [];

% analyse coeficient 1:7

prob.duasen.sub = [1:7];

%Select basis sensitivity analysis and optimize.

param.MSK IPAR SENSITIVITY TYPE=sc.MSK SENSITIVITY TYPE BASIS;

[r,res] = mosekopt(’minimize echo(0)’,prob,param);

results(1) = res;

% Select optimal partition sensitivity analysis and optimize.

param.MSK IPAR SENSITIVITY TYPE=sc.MSK SENSITIVITY TYPE OPTIMAL PARTITION;

[r,res] = mosekopt(’minimize echo(0)’,prob,param);

results(2) = res;

%Print results

for m = [1:2]

if m == 1

fprintf(’\nBasis sensitivity results:\n’)
else

fprintf(’\nOptimal partition sensitivity results:\n’)
end

fprintf(’\nSensitivity for bounds on constraints:\n’)
for i = 1:length(prob.prisen.cons.subl)

fprintf (...

’con = %d, beta 1 = %.1f, beta 2 = %.1f, delta 1 = %.1f,delta 2 = %.1f\n’, ...

prob.prisen.cons.subu(i),results(m).prisen.cons.lr bu(i), ...

results(m).prisen.cons.rr bu(i),...

results(m).prisen.cons.ls bu(i),...

results(m).prisen.cons.rs bu(i));

end

for i = 1:length(prob.prisen.cons.subu)

fprintf (...

’con = %d, beta 1 = %.1f, beta 2 = %.1f, delta 1 = %.1f,delta 2 = %.1f\n’, ...

prob.prisen.cons.subu(i),results(m).prisen.cons.lr bu(i), ...

results(m).prisen.cons.rr bu(i),...

results(m).prisen.cons.ls bu(i),...

results(m).prisen.cons.rs bu(i));

end

fprintf(’Sensitivity for bounds on variables:\n’)
for i = 1:length(prob.prisen.vars.subl)

fprintf (...

’var = %d, beta 1 = %.1f, beta 2 = %.1f, delta 1 = %.1f,delta 2 = %.1f\n’, ...

prob.prisen.vars.subl(i),results(m).prisen.vars.lr bl(i), ...

results(m).prisen.vars.rr bl(i),...

results(m).prisen.vars.ls bl(i),...

results(m).prisen.vars.rs bl(i));

end

190 CHAPTER 16. SENSITIVITY ANALYSIS

for i = 1:length(prob.prisen.vars.subu)

fprintf (...

’var = %d, beta 1 = %.1f, beta 2 = %.1f, delta 1 = %.1f,delta 2 = %.1f\n’, ...

prob.prisen.vars.subu(i),results(m).prisen.vars.lr bu(i), ...

results(m).prisen.vars.rr bu(i),...

results(m).prisen.vars.ls bu(i),...

results(m).prisen.vars.rs bu(i));

end

fprintf(’Sensitivity for coefficients in objective:\n’)
for i = 1:length(prob.duasen.sub)

fprintf (...

’var = %d, beta 1 = %.1f, beta 2 = %.1f, delta 1 = %.1f,delta 2 = %.1f\n’, ...

prob.duasen.sub(i),results(m).duasen.lr c(i), ...

results(m).duasen.rr c(i),...

results(m).duasen.ls c(i),...

results(m).duasen.rs c(i));

end

end

The output from running the example sensitivity.m is shown below.

Basis sensitivity results:

Sensitivity for bounds on constraints:

con = 1, beta 1 = -300.0, beta 2 = 0.0, delta 1 = 3.0,delta 2 = 3.0

con = 2, beta 1 = -700.0, beta 2 = Inf, delta 1 = 0.0,delta 2 = 0.0

con = 3, beta 1 = -500.0, beta 2 = 0.0, delta 1 = 3.0,delta 2 = 3.0

con = 4, beta 1 = -0.0, beta 2 = 500.0, delta 1 = 4.0,delta 2 = 4.0

con = 5, beta 1 = -0.0, beta 2 = 300.0, delta 1 = 5.0,delta 2 = 5.0

con = 6, beta 1 = -0.0, beta 2 = 700.0, delta 1 = 5.0,delta 2 = 5.0

con = 7, beta 1 = -500.0, beta 2 = 700.0, delta 1 = 2.0,delta 2 = 2.0

Sensitivity for bounds on variables:

var = 1, beta 1 = Inf, beta 2 = 300.0, delta 1 = 0.0,delta 2 = 0.0

var = 2, beta 1 = Inf, beta 2 = 100.0, delta 1 = 0.0,delta 2 = 0.0

var = 3, beta 1 = Inf, beta 2 = 0.0, delta 1 = 0.0,delta 2 = 0.0

var = 4, beta 1 = Inf, beta 2 = 500.0, delta 1 = 0.0,delta 2 = 0.0

var = 5, beta 1 = Inf, beta 2 = 500.0, delta 1 = 0.0,delta 2 = 0.0

var = 6, beta 1 = Inf, beta 2 = 500.0, delta 1 = 0.0,delta 2 = 0.0

var = 7, beta 1 = -0.0, beta 2 = 500.0, delta 1 = 2.0,delta 2 = 2.0

Sensitivity for coefficients in objective:

var = 1, beta 1 = Inf, beta 2 = 3.0, delta 1 = 300.0,delta 2 = 300.0

var = 2, beta 1 = Inf, beta 2 = Inf, delta 1 = 100.0,delta 2 = 100.0

var = 3, beta 1 = -2.0, beta 2 = Inf, delta 1 = 0.0,delta 2 = 0.0

var = 4, beta 1 = Inf, beta 2 = 2.0, delta 1 = 500.0,delta 2 = 500.0

var = 5, beta 1 = -3.0, beta 2 = Inf, delta 1 = 500.0,delta 2 = 500.0

var = 6, beta 1 = Inf, beta 2 = 2.0, delta 1 = 500.0,delta 2 = 500.0

var = 7, beta 1 = -2.0, beta 2 = Inf, delta 1 = 0.0,delta 2 = 0.0

Optimal partition sensitivity results:

Sensitivity for bounds on constraints:

con = 1, beta 1 = -300.0, beta 2 = 500.0, delta 1 = 3.0,delta 2 = 1.0

con = 2, beta 1 = -700.0, beta 2 = Inf, delta 1 = -0.0,delta 2 = -0.0

con = 3, beta 1 = -500.0, beta 2 = 500.0, delta 1 = 3.0,delta 2 = 1.0

con = 4, beta 1 = -500.0, beta 2 = 500.0, delta 1 = 2.0,delta 2 = 4.0

con = 5, beta 1 = -100.0, beta 2 = 300.0, delta 1 = 3.0,delta 2 = 5.0

con = 6, beta 1 = -500.0, beta 2 = 700.0, delta 1 = 3.0,delta 2 = 5.0

con = 7, beta 1 = -500.0, beta 2 = 700.0, delta 1 = 2.0,delta 2 = 2.0

16.5. SENSITIVITY ANALYSIS IN THE MATLAB TOOLBOX 191

Sensitivity for bounds on variables:

var = 1, beta 1 = Inf, beta 2 = 300.0, delta 1 = 0.0,delta 2 = 0.0

var = 2, beta 1 = Inf, beta 2 = 100.0, delta 1 = 0.0,delta 2 = 0.0

var = 3, beta 1 = Inf, beta 2 = 500.0, delta 1 = 0.0,delta 2 = 2.0

var = 4, beta 1 = Inf, beta 2 = 500.0, delta 1 = 0.0,delta 2 = 0.0

var = 5, beta 1 = Inf, beta 2 = 500.0, delta 1 = 0.0,delta 2 = 0.0

var = 6, beta 1 = Inf, beta 2 = 500.0, delta 1 = 0.0,delta 2 = 0.0

var = 7, beta 1 = Inf, beta 2 = 500.0, delta 1 = 0.0,delta 2 = 2.0

Sensitivity for coefficients in objective:

var = 1, beta 1 = Inf, beta 2 = 3.0, delta 1 = 300.0,delta 2 = 300.0

var = 2, beta 1 = Inf, beta 2 = Inf, delta 1 = 100.0,delta 2 = 100.0

var = 3, beta 1 = -2.0, beta 2 = Inf, delta 1 = 0.0,delta 2 = 0.0

var = 4, beta 1 = Inf, beta 2 = 2.0, delta 1 = 500.0,delta 2 = 500.0

var = 5, beta 1 = -3.0, beta 2 = Inf, delta 1 = 500.0,delta 2 = 500.0

var = 6, beta 1 = Inf, beta 2 = 2.0, delta 1 = 500.0,delta 2 = 500.0

var = 7, beta 1 = -2.0, beta 2 = Inf, delta 1 = 0.0,delta 2 = 0.0

192 CHAPTER 16. SENSITIVITY ANALYSIS

Chapter 17

Problem formulation and solutions

In this chapter we will discuss the following issues:

• The formal definitions of the problem types that MOSEK can solve.

• The solution information produced by MOSEK.

• The information produced by MOSEK if the problem is infeasible.

17.1 Linear optimization

A linear optimization problem can be written as

minimize cTx+ cf

subject to lc ≤ Ax ≤ uc,
lx ≤ x ≤ ux,

(17.1)

where

• m is the number of constraints.

• n is the number of decision variables.

• x ∈ Rn is a vector of decision variables.

• c ∈ Rn is the linear part of the objective function.

• A ∈ Rm×n is the constraint matrix.

• lc ∈ Rm is the lower limit on the activity for the constraints.

• uc ∈ Rm is the upper limit on the activity for the constraints.

193

194 CHAPTER 17. PROBLEM FORMULATION AND SOLUTIONS

• lx ∈ Rn is the lower limit on the activity for the variables.

• ux ∈ Rn is the upper limit on the activity for the variables.

A primal solution (x) is (primal) feasible if it satisfies all constraints in (17.1). If (17.1) has at least
one primal feasible solution, then (17.1) is said to be (primal) feasible.

In case (17.1) does not have a feasible solution, the problem is said to be (primal) infeasible .

17.1.1 Duality for linear optimization

Corresponding to the primal problem (17.1), there is a dual problem

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu + cf

subject to AT y + sxl − sxu = c,
− y + scl − scu = 0,
scl , s

c
u, s

x
l , s

x
u ≥ 0.

(17.2)

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at
0, and we use the convention that the product of the bound value and the corresponding dual variable
is 0. E.g.

lxj = −∞ ⇒ (sxl)j = 0 and lxj · (sxl)j = 0.

This is equivalent to removing variable (sxl)j from the dual problem.

A solution

(y, scl , s
c
u, s

x
l , s

x
u)

to the dual problem is feasible if it satisfies all the constraints in (17.2). If (17.2) has at least one
feasible solution, then (17.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

17.1.1.1 A primal-dual feasible solution

A solution

(x, y, scl , s
c
u, s

x
l , s

x
u)

is denoted a primal-dual feasible solution, if (x) is a solution to the primal problem (17.1) and
(y, scl , s

c
u, s

x
l , s

x
u) is a solution to the corresponding dual problem (17.2).

17.1.1.2 The duality gap

Let

(x∗, y∗, (scl)
∗, (scu)∗, (sxl)∗, (sxu)∗)

17.1. LINEAR OPTIMIZATION 195

be a primal-dual feasible solution, and let

(xc)∗ := Ax∗.

For a primal-dual feasible solution we define the duality gap as the difference between the primal and
the dual objective value,

cTx∗ + cf −
(
(lc)T (scl)

∗ − (uc)T (scu)∗ + (lx)T (sxl)∗ − (ux)T (sxu)∗ + cf
)

=

m−1∑
i=0

[(scl)
∗
i ((x

c
i)
∗ − lci) + (scu)∗i (u

c
i − (xci)

∗)] +

n−1∑
j=0

[
(sxl)∗j (xj − lxj) + (sxu)∗j (u

x
j − x∗j)

]
≥ 0

(17.3)

where the first relation can be obtained by transposing and multiplying the dual constraints (17.2)
by x∗ and (xc)∗ respectively, and the second relation comes from the fact that each term in each sum
is nonnegative. It follows that the primal objective will always be greater than or equal to the dual
objective.

17.1.1.3 When the objective is to be maximized

When the objective sense of problem (17.1) is maximization, i.e.

maximize cTx+ cf

subject to lc ≤ Ax ≤ uc,
lx ≤ x ≤ ux,

the objective sense of the dual problem changes to minimization, and the domain of all dual variables
changes sign in comparison to (17.2). The dual problem thus takes the form

minimize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu + cf

subject to AT y + sxl − sxu = c,
− y + scl − scu = 0,
scl , s

c
u, s

x
l , s

x
u ≤ 0.

This means that the duality gap, defined in (17.3) as the primal minus the dual objective value,
becomes nonpositive. It follows that the dual objective will always be greater than or equal to the
primal objective.

17.1.1.4 An optimal solution

It is well-known that a linear optimization problem has an optimal solution if and only if there exist
feasible primal and dual solutions so that the duality gap is zero, or, equivalently, that the comple-
mentarity conditions

196 CHAPTER 17. PROBLEM FORMULATION AND SOLUTIONS

(scl)
∗
i ((x

c
i)
∗ − lci) = 0, i = 0, . . . ,m− 1,

(scu)∗i (u
c
i − (xci)

∗) = 0, i = 0, . . . ,m− 1,
(sxl)∗j (x

∗
j − lxj) = 0, j = 0, . . . , n− 1,

(sxu)∗j (u
x
j − x∗j) = 0, j = 0, . . . , n− 1,

are satisfied.

If (17.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and
dual solution are reported, including a status indicating the exact state of the solution.

17.1.2 Infeasibility for linear optimization

17.1.2.1 Primal infeasible problems

If the problem (17.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal
infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is
undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu
subject to AT y + sxl − sxu = 0,

− y + scl − scu = 0,
scl , s

c
u, s

x
l , s

x
u ≥ 0,

(17.4)

such that the objective value is strictly positive, i.e. a solution

(y∗, (scl)
∗, (scu)∗, (sxl)∗, (sxu)∗)

to (17.4) so that

(lc)T (scl)
∗ − (uc)T (scu)∗ + (lx)T (sxl)∗ − (ux)T (sxu)∗ > 0.

Such a solution implies that (17.4) is unbounded, and that its dual is infeasible. As the constraints to
the dual of (17.4) is identical to the constraints of problem (17.1), we thus have that problem (17.1) is
also infeasible.

17.1.2.2 Dual infeasible problems

If the problem (17.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual
infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is
undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem

minimize cTx

subject to l̂c ≤ Ax ≤ ûc,

l̂x ≤ x ≤ ûx,

(17.5)

17.2. CONIC QUADRATIC OPTIMIZATION 197

where

l̂ci =

{
0 if lci > −∞,
−∞ otherwise,

and ûci :=

{
0 if uci <∞,
∞ otherwise,

and

l̂xj =

{
0 if lxj > −∞,
−∞ otherwise,

and ûxj :=

{
0 if uxj <∞,
∞ otherwise,

such that the objective value cTx is strictly negative.

Such a solution implies that (17.5) is unbounded, and that its dual is infeasible. As the constraints to
the dual of (17.5) is identical to the constraints of problem (17.2), we thus have that problem (17.2) is
also infeasible.

17.1.2.3 Primal and dual infeasible case

In case that both the primal problem (17.1) and the dual problem (17.2) are infeasible, MOSEK will
report only one of the two possible certificates — which one is not defined (MOSEK returns the first
certificate found).

17.2 Conic quadratic optimization

Conic quadratic optimization is an extensions of linear optimization (see Section 17.1) allowing conic
domains to be specified for subsets of the problem variables. A conic quadratic optimization problem
can be written as

minimize cTx+ cf

subject to lc ≤ Ax ≤ uc,
lx ≤ x ≤ ux,

x ∈ C,

(17.6)

where set C is a Cartesian product of convex cones, namely C = C1× · · ·×Cp. Having the domain
restriction, x ∈ C, is thus equivalent to

xt ∈ Ct ⊆ Rnt ,

where x = (x1, . . . , xp) is a partition of the problem variables. Please note that the n-dimensional
Euclidean space Rn is a cone itself, so simple linear variables are still allowed.

MOSEK supports only a limited number of cones, specifically:

• The Rn set.

198 CHAPTER 17. PROBLEM FORMULATION AND SOLUTIONS

• The quadratic cone:

Qn =

x ∈ Rn : x1 ≥

√√√√ n∑
j=2

x2
j

 .

• The rotated quadratic cone:

Qrn =

x ∈ Rn : 2x1x2 ≥
n∑
j=3

x2
j , x1 ≥ 0, x2 ≥ 0

 .

Although these cones may seem to provide only limited expressive power they can be used to model a
wide range of problems as demonstrated in [20].

17.2.1 Duality for conic quadratic optimization

The dual problem corresponding to the conic quadratic optimization problem (17.6) is given by

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu + cf

subject to AT y + sxl − sxu + sxn = c,
− y + scl − scu = 0,
scl , s

c
u, s

x
l , s

x
u ≥ 0,

sxn ∈ C∗,

(17.7)

where the dual cone C∗ is a Cartesian product of the cones

C∗ = C∗1× · · ·×C∗p ,
where each C∗t is the dual cone of Ct. For the cone types MOSEK can handle, the relation between the
primal and dual cone is given as follows:

• The Rn set:

Ct = Rnt ⇔ C∗t = {s ∈ Rnt : s = 0} .

• The quadratic cone:

Ct = Qnt ⇔ C∗t = Qnt =

s ∈ Rnt : s1 ≥

√√√√ nt∑
j=2

s2
j

 .

• The rotated quadratic cone:

Ct = Qrnt ⇔ C∗t = Qrnt =

s ∈ Rnt : 2s1s2 ≥
nt∑
j=3

s2
j , s1 ≥ 0, s2 ≥ 0

 .

17.2. CONIC QUADRATIC OPTIMIZATION 199

Please note that the dual problem of the dual problem is identical to the original primal problem.

17.2.2 Infeasibility for conic quadratic optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works
exactly as for linear problems (see Section 17.1.2).

17.2.2.1 Primal infeasible problems

If the problem (17.6) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual
solution reported is the certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu
subject to AT y + sxl − sxu + sxn = 0,

− y + scl − scu = 0,
scl , s

c
u, s

x
l , s

x
u ≥ 0,

sxn ∈ C∗,

(17.8)

such that the objective value is strictly positive.

17.2.2.2 Dual infeasible problems

If the problem (17.7) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal
solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize cTx

subject to l̂c ≤ Ax ≤ ûc,

l̂x ≤ x ≤ ûx,
x ∈ C,

(17.9)

where

l̂ci =

{
0 if lci > −∞,
−∞ otherwise,

and ûci :=

{
0 if uci <∞,
∞ otherwise,

and

l̂xj =

{
0 if lxj > −∞,
−∞ otherwise,

and ûxj :=

{
0 if uxj <∞,
∞ otherwise,

such that the objective value is strictly negative.

200 CHAPTER 17. PROBLEM FORMULATION AND SOLUTIONS

17.3 Semidefinite optimization

Semidefinite optimization is an extension of conic quadratic optimization (see Section 17.2) allowing
positive semidefinite matrix variables to be used in addition to the usual scalar variables. A semidefinite
optimization problem can be written as

minimize

n−1∑
j=0

cjxj +

p−1∑
j=0

〈
Cj , Xj

〉
+ cf

subject to lci ≤
n−1∑
j=0

aijxj +

p−1∑
j=0

〈
Aij , Xj

〉
≤ uci , i = 0, . . . ,m− 1

lxj ≤ xj ≤ uxj , j = 0, . . . , n− 1

x ∈ C, Xj ∈ S+
rj , j = 0, . . . , p− 1

(17.10)

where the problem has p symmetric positive semidefinite variables Xj ∈ S+
rj of dimension rj with

symmetric coefficient matrices Cj ∈ Srj and Ai,j ∈ Srj . We use standard notation for the matrix inner
product, i.e., for U, V ∈ Rm×n we have

〈U, V 〉 :=

m−1∑
i=0

n−1∑
j=0

UijVij .

With semidefinite optimization we can model a wide range of problems as demonstrated in [20].

17.3.1 Duality for semidefinite optimization

The dual problem corresponding to the semidefinite optimization problem (17.10) is given by

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu + cf

subject to
c−AT y + sxu − sxl = sxn,

Cj −
m∑
i=0

yiAij = Sj , j = 0, . . . , p− 1

scl − scu = y,
scl , s

c
u, s

x
l , s

x
u ≥ 0,

sxn ∈ C∗, Sj ∈ S+
rj , j = 0, . . . , p− 1

(17.11)

where A ∈ Rm×n, Aij = aij , which is similar to the dual problem for conic quadratic optimization (see
Section 17.7), except for the addition of dual constraints

(Cj −
m∑
i=0

yiAij) ∈ S+
rj .

Note that the dual of the dual problem is identical to the original primal problem.

17.3. SEMIDEFINITE OPTIMIZATION 201

17.3.2 Infeasibility for semidefinite optimization

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works
exactly as for linear problems (see Section 17.1.2).

17.3.2.1 Primal infeasible problems

If the problem (17.10) is infeasible, MOSEK will report a certificate of primal infeasibility: The dual
solution reported is a certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the problem

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu

subject to
AT y + sxl − sxu + sxn = 0,

m−1∑
i=0

yiAij + Sj = 0, j = 0, . . . , p− 1

− y + scl − scu = 0,
scl , s

c
u, s

x
l , s

x
u ≥ 0,

sxn ∈ C∗, Sj ∈ S+
rj , j = 0, . . . , p− 1

(17.12)

such that the objective value is strictly positive.

17.3.2.2 Dual infeasible problems

If the problem (17.11) is infeasible, MOSEK will report a certificate of dual infeasibility: The primal
solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize

n−1∑
j=0

cjxj +

p−1∑
j=0

〈
Cj , Xj

〉
subject to l̂ci ≤

∑
j=1

aijxj +

p−1∑
j=0

〈
Aij , Xj

〉
≤ ûci , i = 0, . . . ,m− 1

l̂x ≤ x ≤ ûx,
x ∈ C, Xj ∈ S+

rj , j = 0, . . . , p− 1

(17.13)

where

l̂ci =

{
0 if lci > −∞,
−∞ otherwise,

and ûci :=

{
0 if uci <∞,
∞ otherwise,

and

l̂xj =

{
0 if lxj > −∞,
−∞ otherwise,

and ûxj :=

{
0 if uxj <∞,
∞ otherwise,

202 CHAPTER 17. PROBLEM FORMULATION AND SOLUTIONS

such that the objective value is strictly negative.

17.4 Quadratic and quadratically constrained optimization

A convex quadratic and quadratically constrained optimization problem is an optimization problem of
the form

minimize
1

2
xTQox+ cTx+ cf

subject to lck ≤ 1

2
xTQkx+

n−1∑
j=0

akjxj ≤ uck, k = 0, . . . ,m− 1,

lxj ≤ xj ≤ uxj , j = 0, . . . , n− 1,

(17.14)

whereQo and allQk are symmetric matrices. Moreover for convexity, Qo must be a positive semidefinite
matrix and Qk must satisfy

−∞ < lck ⇒ Qk is negative semidefinite,

uck <∞ ⇒ Qk is positive semidefinite,

−∞ < lck ≤ uck <∞ ⇒ Qk = 0.

The convexity requirement is very important and it is strongly recommended that MOSEK is applied
to convex problems only.

Note that any convex quadratic and quadratically constrained optimization problem can be reformu-
lated as a conic optimization problem. It is our experience that for the majority of practical applications
it is better to cast them as conic problems because

• the resulting problem is convex by construction, and

• the conic optimizer is more efficient than the optimizer for general quadratic problems.

See [20] for further details.

17.4.1 Duality for quadratic and quadratically constrained optimization

The dual problem corresponding to the quadratic and quadratically constrained optimization problem
(17.14) is given by

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu +
1

2
xT

(
m−1∑
k=0

ykQ
k −Qo

)
x+ cf

subject to AT y + sxl − sxu +

(
m−1∑
k=0

ykQ
k −Qo

)
x = c,

− y + scl − scu = 0,
scl , s

c
u, s

x
l , s

x
u ≥ 0.

(17.15)

17.5. GENERAL CONVEX OPTIMIZATION 203

The dual problem is related to the dual problem for linear optimization (see Section 17.2), but depend
on variable x which in general can not be eliminated. In the solutions reported by MOSEK, the value
of x is the same for the primal problem (17.14) and the dual problem (17.15).

17.4.2 Infeasibility for quadratic and quadratically constrained optimiza-
tion

In case MOSEK finds a problem to be infeasible it reports a certificate of the infeasibility. This works
exactly as for linear problems (see Section 17.1.2).

17.4.2.1 Primal infeasible problems

If the problem (17.14) with all Qk = 0 is infeasible, MOSEK will report a certificate of primal infeasi-
bility. As the constraints is the same as for a linear problem, the certificate of infeasibility is the same
as for linear optimization (see Section 17.1.2.1).

17.4.2.2 Dual infeasible problems

If the problem (17.15) with all Qk = 0 is infeasible, MOSEK will report a certificate of dual infeasibility:
The primal solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize cTx

subject to l̂c ≤ Ax ≤ ûc,
0 ≤ Qox ≤ 0,

l̂x ≤ x ≤ ûx,

(17.16)

where

l̂ci =

{
0 if lci > −∞,
−∞ otherwise,

and ûci :=

{
0 if uci <∞,
∞ otherwise,

and

l̂xj =

{
0 if lxj > −∞,
−∞ otherwise,

and ûxj :=

{
0 if uxj <∞,
∞ otherwise,

such that the objective value is strictly negative.

17.5 General convex optimization

MOSEK is capable of solving smooth (twice differentiable) convex nonlinear optimization problems of
the form

204 CHAPTER 17. PROBLEM FORMULATION AND SOLUTIONS

minimize f(x) + cTx+ cf

subject to lc ≤ g(x) +Ax ≤ uc,
lx ≤ x ≤ ux,

(17.17)

where

• m is the number of constraints.

• n is the number of decision variables.

• x ∈ Rn is a vector of decision variables.

• c ∈ Rn is the linear part objective function.

• A ∈ Rm×n is the constraint matrix.

• lc ∈ Rm is the lower limit on the activity for the constraints.

• uc ∈ Rm is the upper limit on the activity for the constraints.

• lx ∈ Rn is the lower limit on the activity for the variables.

• ux ∈ Rn is the upper limit on the activity for the variables.

• f : Rn → R is a nonlinear function.

• g : Rn → Rm is a nonlinear vector function.

This means that the ith constraint has the form

lci ≤ gi(x) +

n∑
j=1

aijxj ≤ uci .

The linear term Ax is not included in g(x) since it can be handled much more efficiently as a separate
entity when optimizing.

The nonlinear functions f and g must be smooth in all x ∈ [lx;ux]. Moreover, f(x) must be a convex
function and gi(x) must satisfy

−∞ < lci ⇒ gi(x) is concave,
uci <∞ ⇒ gi(x) is convex,

−∞ < lci ≤ uci <∞ ⇒ gi(x) = 0.

17.5.1 Duality for general convex optimization

Similar to the linear case, MOSEK reports dual information in the general nonlinear case. Indeed in
this case the Lagrange function is defined by

17.5. GENERAL CONVEX OPTIMIZATION 205

L(x, scl , s
c
u, s

x
l , s

x
u) := f(x) + cTx+ cf

− (scl)
T (g(x) +Ax− lc)− (scu)T (uc − g(x)−Ax)

− (sxl)T (x− lx)− (sxu)T (ux − x),

and the dual problem is given by

maximize L(x, scl , s
c
u, s

x
l , s

x
u)

subject to ∇xL(x, scl , s
c
u, s

x
l , s

x
u)T = 0,

scl , s
c
u, s

x
l , s

x
u ≥ 0,

which is equivalent to

maximize (lc)T scl − (uc)T scu + (lx)T sxl − (ux)T sxu + cf

+ f(x)− g(x)T y − (∇f(x)T −∇g(x)T y)Tx

subject to AT y + sxl − sxu − (∇f(x)T −∇g(x)T y) = c,
− y + scl − scu = 0,

scl , s
c
u, s

x
l , s

x
u ≥ 0.

(17.18)

In this context we use the following definition for scalar functions

∇f(x) =

[
∂f(x)

∂x1
, ...,

∂f(x)

∂xn

]
,

and accordingly for vector functions

∇g(x) =

 ∇g1(x)
:

∇gm(x)

 .

206 CHAPTER 17. PROBLEM FORMULATION AND SOLUTIONS

Chapter 18

The MPS file format

MOSEK supports the standard MPS format with some extensions. For a detailed description of the
MPS format see the book by Nazareth [2].

18.1 MPS file structure

The version of the MPS format supported by MOSEK allows specification of an optimization problem
on the form

lc ≤ Ax+ q(x) ≤ uc,
lx ≤ x ≤ ux,

x ∈ C,
xJ integer,

(18.1)

where

• x ∈ Rn is the vector of decision variables.

• A ∈ Rm×n is the constraint matrix.

• lc ∈ Rm is the lower limit on the activity for the constraints.

• uc ∈ Rm is the upper limit on the activity for the constraints.

• lx ∈ Rn is the lower limit on the activity for the variables.

• ux ∈ Rn is the upper limit on the activity for the variables.

• q : Rn → R is a vector of quadratic functions. Hence,

qi(x) = 1/2xTQix

where it is assumed that

207

208 CHAPTER 18. THE MPS FILE FORMAT

Qi = (Qi)T .

Please note the explicit 1/2 in the quadratic term and that Qi is required to be symmetric.

• C is a convex cone.

• J ⊆ {1, 2, . . . , n} is an index set of the integer-constrained variables.

An MPS file with one row and one column can be illustrated like this:

* 1 2 3 4 5 6

*23456789012345678901234567890123456789012345678901234567890

NAME [name]

OBJSENSE

[objsense]

OBJNAME

[objname]

ROWS

? [cname1]

COLUMNS

[vname1] [cname1] [value1] [vname3] [value2]

RHS

[name] [cname1] [value1] [cname2] [value2]

RANGES

[name] [cname1] [value1] [cname2] [value2]

QSECTION [cname1]

[vname1] [vname2] [value1] [vname3] [value2]

BOUNDS

?? [name] [vname1] [value1]

CSECTION [kname1] [value1] [ktype]

[vname1]

ENDATA

Here the names in capitals are keywords of the MPS format and names in brackets are custom defined
names or values. A couple of notes on the structure:

Fields:

All items surrounded by brackets appear in fields. The fields named ”valueN” are numerical
values. Hence, they must have the format

[+|-]XXXXXXX.XXXXXX[[e|E][+|-]XXX]

where

X = [0|1|2|3|4|5|6|7|8|9].

Sections:

The MPS file consists of several sections where the names in capitals indicate the beginning of a
new section. For example, COLUMNS denotes the beginning of the columns section.

Comments:

Lines starting with an ”*” are comment lines and are ignored by MOSEK.

Keys:

The question marks represent keys to be specified later.

18.1. MPS FILE STRUCTURE 209

Extensions:

The sections QSECTION and CSECTION are MOSEK specific extensions of the MPS format.

The standard MPS format is a fixed format, i.e. everything in the MPS file must be within certain
fixed positions. MOSEK also supports a free format. See Section 18.5 for details.

18.1.1 Linear example lo1.mps

A concrete example of a MPS file is presented below:

* File: lo1.mps

NAME lo1

OBJSENSE

MAX

ROWS

N obj

E c1

G c2

L c3

COLUMNS

x1 obj 3

x1 c1 3

x1 c2 2

x2 obj 1

x2 c1 1

x2 c2 1

x2 c3 2

x3 obj 5

x3 c1 2

x3 c2 3

x4 obj 1

x4 c2 1

x4 c3 3

RHS

rhs c1 30

rhs c2 15

rhs c3 25

RANGES

BOUNDS

UP bound x2 10

ENDATA

Subsequently each individual section in the MPS format is discussed.

18.1.2 NAME

In this section a name ([name]) is assigned to the problem.

18.1.3 OBJSENSE (optional)

This is an optional section that can be used to specify the sense of the objective function. The OBJSENSE
section contains one line at most which can be one of the following

210 CHAPTER 18. THE MPS FILE FORMAT

MIN

MINIMIZE

MAX

MAXIMIZE

It should be obvious what the implication is of each of these four lines.

18.1.4 OBJNAME (optional)

This is an optional section that can be used to specify the name of the row that is used as objective
function. The OBJNAME section contains one line at most which has the form

objname

objname should be a valid row name.

18.1.5 ROWS

A record in the ROWS section has the form

? [cname1]

where the requirements for the fields are as follows:

Field Starting Maximum Re- Description
position width quired

? 2 1 Yes Constraint key
[cname1] 5 8 Yes Constraint name

Hence, in this section each constraint is assigned an unique name denoted by [cname1]. Please note
that [cname1] starts in position 5 and the field can be at most 8 characters wide. An initial key (?)
must be present to specify the type of the constraint. The key can have the values E, G, L, or N with
the following interpretation:

Constraint lci uci
type
E finite lci
G finite ∞
L −∞ finite
N −∞ ∞

In the MPS format an objective vector is not specified explicitly, but one of the constraints having the
key N will be used as the objective vector c . In general, if multiple N type constraints are specified,
then the first will be used as the objective vector c .

18.1.6 COLUMNS

In this section the elements of A are specified using one or more records having the form

18.1. MPS FILE STRUCTURE 211

[vname1] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Maximum Re- Description
position width quired

[vname1] 5 8 Yes Variable name
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

Hence, a record specifies one or two elements aij of A using the principle that [vname1] and [cname1]

determines j and i respectively. Please note that [cname1] must be a constraint name specified in
the ROWS section. Finally, [value1] denotes the numerical value of aij . Another optional element
is specified by [cname2], and [value2] for the variable specified by [vname1]. Some important
comments are:

• All elements belonging to one variable must be grouped together.

• Zero elements of A should not be specified.

• At least one element for each variable should be specified.

18.1.7 RHS (optional)

A record in this section has the format

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Maximum Re- Description
position width quired

[name] 5 8 Yes Name of the RHS vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The interpretation of a record is that [name] is the name of the RHS vector to be specified. In general,
several vectors can be specified. [cname1] denotes a constraint name previously specified in the ROWS

section. Now, assume that this name has been assigned to the i th constraint and v1 denotes the value
specified by [value1], then the interpretation of v1 is:

212 CHAPTER 18. THE MPS FILE FORMAT

Constraint lci uci
type
E v1 v1

G v1

L v1

N

An optional second element is specified by [cname2] and [value2] and is interpreted in the same way.
Please note that it is not necessary to specify zero elements, because elements are assumed to be zero.

18.1.8 RANGES (optional)

A record in this section has the form

[name] [cname1] [value1] [cname2] [value2]

where the requirements for each fields are as follows:

Field Starting Maximum Re- Description
position width quired

[name] 5 8 Yes Name of the RANGE vector
[cname1] 15 8 Yes Constraint name
[value1] 25 12 Yes Numerical value
[cname2] 40 8 No Constraint name
[value2] 50 12 No Numerical value

The records in this section are used to modify the bound vectors for the constraints, i.e. the values
in lc and uc . A record has the following interpretation: [name] is the name of the RANGE vector and
[cname1] is a valid constraint name. Assume that [cname1] is assigned to the i th constraint and let
v1 be the value specified by [value1], then a record has the interpretation:

Constraint Sign of v1 lci uci
type
E - uci + v1

E + lci + v1

G - or + lci + |v1|
L - or + uci − |v1|
N

18.1.9 QSECTION (optional)

Within the QSECTION the label [cname1] must be a constraint name previously specified in the ROWS

section. The label [cname1] denotes the constraint to which the quadratic term belongs. A record in
the QSECTION has the form

[vname1] [vname2] [value1] [vname3] [value2]

where the requirements for each field are:

18.1. MPS FILE STRUCTURE 213

Field Starting Maximum Re- Description
position width quired

[vname1] 5 8 Yes Variable name
[vname2] 15 8 Yes Variable name
[value1] 25 12 Yes Numerical value
[vname3] 40 8 No Variable name
[value2] 50 12 No Numerical value

A record specifies one or two elements in the lower triangular part of the Qi matrix where [cname1]

specifies the i . Hence, if the names [vname1] and [vname2] have been assigned to the k th and j th
variable, then Qikj is assigned the value given by [value1] An optional second element is specified in
the same way by the fields [vname1], [vname3], and [value2].

The example

minimize − x2 + 0.5(2x2
1 − 2x1x3 + 0.2x2

2 + 2x2
3)

subject to x1 + x2 + x3 ≥ 1,
x ≥ 0

has the following MPS file representation

* File: qo1.mps

NAME qo1

ROWS

N obj

G c1

COLUMNS

x1 c1 1.0

x2 obj -1.0

x2 c1 1.0

x3 c1 1.0

RHS

rhs c1 1.0

QSECTION obj

x1 x1 2.0

x1 x3 -1.0

x2 x2 0.2

x3 x3 2.0

ENDATA

Regarding the QSECTIONs please note that:

• Only one QSECTION is allowed for each constraint.

• The QSECTIONs can appear in an arbitrary order after the COLUMNS section.

• All variable names occurring in the QSECTION must already be specified in the COLUMNS section.

• All entries specified in a QSECTION are assumed to belong to the lower triangular part of the
quadratic term of Q .

214 CHAPTER 18. THE MPS FILE FORMAT

18.1.10 BOUNDS (optional)

In the BOUNDS section changes to the default bounds vectors lx and ux are specified. The default
bounds vectors are lx = 0 and ux = ∞ . Moreover, it is possible to specify several sets of bound
vectors. A record in this section has the form

?? [name] [vname1] [value1]

where the requirements for each field are:

Field Starting Maximum Re- Description
position width quired

?? 2 2 Yes Bound key
[name] 5 8 Yes Name of the BOUNDS vector
[vname1] 15 8 Yes Variable name
[value1] 25 12 No Numerical value

Hence, a record in the BOUNDS section has the following interpretation: [name] is the name of the
bound vector and [vname1] is the name of the variable which bounds are modified by the record. ??

and [value1] are used to modify the bound vectors according to the following table:

?? lxj uxj Made integer
(added to J)

FR −∞ ∞ No
FX v1 v1 No
LO v1 unchanged No
MI −∞ unchanged No
PL unchanged ∞ No
UP unchanged v1 No
BV 0 1 Yes
LI dv1e unchanged Yes
UI unchanged bv1c Yes

v1 is the value specified by [value1].

18.1.11 CSECTION (optional)

The purpose of the CSECTION is to specify the constraint

x ∈ C.
in (18.1).

It is assumed that C satisfies the following requirements. Let

xt ∈ Rn
t

, t = 1, . . . , k

be vectors comprised of parts of the decision variables x so that each decision variable is a member of
exactly one vector xt , for example

18.1. MPS FILE STRUCTURE 215

x1 =

 x1

x4

x7

 and x2 =

x6

x5

x3

x2

 .
Next define

C :=
{
x ∈ Rn : xt ∈ Ct, t = 1, . . . , k

}
where Ct must have one of the following forms

• R set:

Ct = {x ∈ Rn
t

}.

• Quadratic cone:

Ct =

x ∈ Rn
t

: x1 ≥

√√√√ nt∑
j=2

x2
j

 . (18.2)

• Rotated quadratic cone:

Ct =

x ∈ Rn
t

: 2x1x2 ≥
nt∑
j=3

x2
j , x1, x2 ≥ 0

 . (18.3)

In general, only quadratic and rotated quadratic cones are specified in the MPS file whereas membership
of the R set is not. If a variable is not a member of any other cone then it is assumed to be a member
of an R cone.

Next, let us study an example. Assume that the quadratic cone

x4 ≥
√
x2

5 + x2
8 (18.4)

and the rotated quadratic cone

2x3x7 ≥ x2
1 + x2

0, x3, x7 ≥ 0, (18.5)

should be specified in the MPS file. One CSECTION is required for each cone and they are specified as
follows:

* 1 2 3 4 5 6

*23456789012345678901234567890123456789012345678901234567890

CSECTION konea 0.0 QUAD

x4

x5

x8

216 CHAPTER 18. THE MPS FILE FORMAT

CSECTION koneb 0.0 RQUAD

x7

x3

x1

x0

This first CSECTION specifies the cone (18.4) which is given the name konea. This is a quadratic cone
which is specified by the keyword QUAD in the CSECTION header. The 0.0 value in the CSECTION header
is not used by the QUAD cone.

The second CSECTION specifies the rotated quadratic cone (18.5). Please note the keyword RQUAD in
the CSECTION which is used to specify that the cone is a rotated quadratic cone instead of a quadratic
cone. The 0.0 value in the CSECTION header is not used by the RQUAD cone.

In general, a CSECTION header has the format

CSECTION [kname1] [value1] [ktype]

where the requirement for each field are as follows:

Field Starting Maximum Re- Description
position width quired

[kname1] 5 8 Yes Name of the cone
[value1] 15 12 No Cone parameter
[ktype] 25 Yes Type of the cone.

The possible cone type keys are:

Cone type key Members Interpretation.
QUAD ≥ 1 Quadratic cone i.e. (18.2).
RQUAD ≥ 2 Rotated quadratic cone i.e. (18.3).

Please note that a quadratic cone must have at least one member whereas a rotated quadratic cone
must have at least two members. A record in the CSECTION has the format

[vname1]

where the requirements for each field are

Field Starting Maximum Re- Description
position width quired

[vname1] 2 8 Yes A valid variable name

The most important restriction with respect to the CSECTION is that a variable must occur in only one
CSECTION.

18.1.12 ENDATA

This keyword denotes the end of the MPS file.

18.2. INTEGER VARIABLES 217

18.2 Integer variables

Using special bound keys in the BOUNDS section it is possible to specify that some or all of the variables
should be integer-constrained i.e. be members of J . However, an alternative method is available.

This method is available only for backward compatibility and we recommend that it is not used. This
method requires that markers are placed in the COLUMNS section as in the example:

COLUMNS

x1 obj -10.0 c1 0.7

x1 c2 0.5 c3 1.0

x1 c4 0.1

* Start of integer-constrained variables.

MARK000 ’MARKER’ ’INTORG’

x2 obj -9.0 c1 1.0

x2 c2 0.8333333333 c3 0.66666667

x2 c4 0.25

x3 obj 1.0 c6 2.0

MARK001 ’MARKER’ ’INTEND’

* End of integer-constrained variables.

Please note that special marker lines are used to indicate the start and the end of the integer variables.
Furthermore be aware of the following

• IMPORTANT: All variables between the markers are assigned a default lower bound of 0 and
a default upper bound of 1. This may not be what is intended. If it is not intended, the
correct bounds should be defined in the BOUNDS section of the MPS formatted file.

• MOSEK ignores field 1, i.e. MARK0001 and MARK001, however, other optimization systems require
them.

• Field 2, i.e. ’MARKER’, must be specified including the single quotes. This implies that no row
can be assigned the name ’MARKER’.

• Field 3 is ignored and should be left blank.

• Field 4, i.e. ’INTORG’ and ’INTEND’, must be specified.

• It is possible to specify several such integer marker sections within the COLUMNS section.

18.3 General limitations

• An MPS file should be an ASCII file.

18.4 Interpretation of the MPS format

Several issues related to the MPS format are not well-defined by the industry standard. However,
MOSEK uses the following interpretation:

218 CHAPTER 18. THE MPS FILE FORMAT

• If a matrix element in the COLUMNS section is specified multiple times, then the multiple entries
are added together.

• If a matrix element in a QSECTION section is specified multiple times, then the multiple entries
are added together.

18.5 The free MPS format

MOSEK supports a free format variation of the MPS format. The free format is similar to the MPS file
format but less restrictive, e.g. it allows longer names. However, it also presents two main limitations:

• By default a line in the MPS file must not contain more than 1024 characters. However, by mod-
ifying the parameter MSK IPAR READ MPS WIDTH an arbitrary large line width will be accepted.

• A name must not contain any blanks.

To use the free MPS format instead of the default MPS format the MOSEK parameter MSK IPAR READ MPS FORMAT

should be changed.

Chapter 19

The LP file format

MOSEK supports the LP file format with some extensions i.e. MOSEK can read and write LP
formatted files.

Please note that the LP format is not a completely well-defined standard and hence different optimiza-
tion packages may interpret the same LP file in slightly different ways. MOSEK tries to emulate as
closely as possible CPLEX’s behavior, but tries to stay backward compatible.

The LP file format can specify problems on the form

minimize/maximize cTx+
1

2
qo(x)

subject to lc ≤ Ax+
1

2
q(x) ≤ uc,

lx ≤ x ≤ ux,
xJ integer,

where

• x ∈ Rn is the vector of decision variables.

• c ∈ Rn is the linear term in the objective.

• qo :∈ Rn → R is the quadratic term in the objective where

qo(x) = xTQox

and it is assumed that

Qo = (Qo)T .

• A ∈ Rm×n is the constraint matrix.

• lc ∈ Rm is the lower limit on the activity for the constraints.

219

220 CHAPTER 19. THE LP FILE FORMAT

• uc ∈ Rm is the upper limit on the activity for the constraints.

• lx ∈ Rn is the lower limit on the activity for the variables.

• ux ∈ Rn is the upper limit on the activity for the variables.

• q : Rn → R is a vector of quadratic functions. Hence,

qi(x) = xTQix

where it is assumed that

Qi = (Qi)T .

• J ⊆ {1, 2, . . . , n} is an index set of the integer constrained variables.

19.1 The sections

An LP formatted file contains a number of sections specifying the objective, constraints, variable
bounds, and variable types. The section keywords may be any mix of upper and lower case letters.

19.1.1 The objective

The first section beginning with one of the keywords

max

maximum

maximize

min

minimum

minimize

defines the objective sense and the objective function, i.e.

cTx+
1

2
xTQox.

The objective may be given a name by writing

myname:

before the expressions. If no name is given, then the objective is named obj.

The objective function contains linear and quadratic terms. The linear terms are written as

4 x1 + x2 - 0.1 x3

and so forth. The quadratic terms are written in square brackets ([]) and are either squared or
multiplied as in the examples

x1^2

and

19.1. THE SECTIONS 221

x1 * x2

There may be zero or more pairs of brackets containing quadratic expressions.

An example of an objective section is:

minimize

myobj: 4 x1 + x2 - 0.1 x3 + [x1^2 + 2.1 x1 * x2]/2

Please note that the quadratic expressions are multiplied with 1
2 , so that the above expression means

minimize 4x1 + x2 − 0.1 · x3 +
1

2
(x2

1 + 2.1 · x1 · x2)

If the same variable occurs more than once in the linear part, the coefficients are added, so that 4 x1

+ 2 x1 is equivalent to 6 x1. In the quadratic expressions x1 * x2 is equivalent to x2 * x1 and as
in the linear part , if the same variables multiplied or squared occur several times their coefficients are
added.

19.1.2 The constraints

The second section beginning with one of the keywords

subj to

subject to

s.t.

st

defines the linear constraint matrix (A) and the quadratic matrices (Qi).

A constraint contains a name (optional), expressions adhering to the same rules as in the objective
and a bound:

subject to

con1: x1 + x2 + [x3^2]/2 <= 5.1

The bound type (here <=) may be any of <, <=, =, >, >= (< and <= mean the same), and the bound
may be any number.

In the standard LP format it is not possible to define more than one bound, but MOSEK supports
defining ranged constraints by using double-colon (’’::’’) instead of a single-colon (”:”) after the
constraint name, i.e.

− 5 ≤ x1 + x2 ≤ 5 (19.1)

may be written as

con:: -5 < x 1 + x 2 < 5

By default MOSEK writes ranged constraints this way.

If the files must adhere to the LP standard, ranged constraints must either be split into upper bounded
and lower bounded constraints or be written as en equality with a slack variable. For example the
expression (19.1) may be written as

x1 + x2 − sl1 = 0,−5 ≤ sl1 ≤ 5.

222 CHAPTER 19. THE LP FILE FORMAT

19.1.3 Bounds

Bounds on the variables can be specified in the bound section beginning with one of the keywords

bound

bounds

The bounds section is optional but should, if present, follow the subject to section. All variables
listed in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and +∞ . A variable may be declared free with the keyword
free, which means that the lower bound is −∞ and the upper bound is +∞ . Furthermore it may be
assigned a finite lower and upper bound. The bound definitions for a given variable may be written in
one or two lines, and bounds can be any number or ±∞ (written as +inf/-inf/+infinity/-infinity)
as in the example

bounds

x1 free

x2 <= 5

0.1 <= x2

x3 = 42

2 <= x4 < +inf

19.1.4 Variable types

The final two sections are optional and must begin with one of the keywords

bin

binaries

binary

and

gen

general

Under general all integer variables are listed, and under binary all binary (integer variables with
bounds 0 and 1) are listed:

general

x1 x2

binary

x3 x4

Again, all variables listed in the binary or general sections must occur in either the objective or a
constraint.

19.1.5 Terminating section

Finally, an LP formatted file must be terminated with the keyword

end

19.2. LP FORMAT PECULIARITIES 223

19.1.6 Linear example lo1.lp

A simple example of an LP file is:

\ File: lo1.lp

maximize

obj: 3 x1 + x2 + 5 x3 + x4

subject to

c1: 3 x1 + x2 + 2 x3 = 30

c2: 2 x1 + x2 + 3 x3 + x4 >= 15

c3: 2 x2 + 3 x4 <= 25

bounds

0 <= x1 <= +infinity

0 <= x2 <= 10

0 <= x3 <= +infinity

0 <= x4 <= +infinity

end

19.1.7 Mixed integer example milo1.lp

maximize

obj: x1 + 6.4e-01 x2

subject to

c1: 5e+01 x1 + 3.1e+01 x2 <= 2.5e+02

c2: 3e+00 x1 - 2e+00 x2 >= -4e+00

bounds

0 <= x1 <= +infinity

0 <= x2 <= +infinity

general

x1 x2

end

19.2 LP format peculiarities

19.2.1 Comments

Anything on a line after a ”\” is ignored and is treated as a comment.

19.2.2 Names

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits 0-9 and
the characters

!"#$%&()/,.;?@ ’‘|~

The first character in a name must not be a number, a period or the letter ’e’ or ’E’. Keywords must
not be used as names.

MOSEK accepts any character as valid for names, except ‘\0’. When writing a name that is not
allowed in LP files, it is changed and a warning is issued.

224 CHAPTER 19. THE LP FILE FORMAT

The algorithm for making names LP valid works as follows: The name is interpreted as an utf-8

string. For a unicode character c:

• If c==‘ ’ (underscore), the output is ‘ ’ (two underscores).

• If c is a valid LP name character, the output is just c.

• If c is another character in the ASCII range, the output is XX, where XX is the hexadecimal code
for the character.

• If c is a character in the range 127—65535, the output is uXXXX, where XXXX is the hexadecimal
code for the character.

• If c is a character above 65535, the output is UXXXXXXXX, where XXXXXXXX is the hexadecimal
code for the character.

Invalid utf-8 substrings are escaped as ‘ XX’, and if a name starts with a period, ‘e’ or ‘E’, that
character is escaped as ‘ XX’.

19.2.3 Variable bounds

Specifying several upper or lower bounds on one variable is possible but MOSEK uses only the tightest
bounds. If a variable is fixed (with =), then it is considered the tightest bound.

19.2.4 MOSEK specific extensions to the LP format

Some optimization software packages employ a more strict definition of the LP format that the one
used by MOSEK. The limitations imposed by the strict LP format are the following:

• Quadratic terms in the constraints are not allowed.

• Names can be only 16 characters long.

• Lines must not exceed 255 characters in length.

If an LP formatted file created by MOSEK should satisfies the strict definition, then the parameter

MSK IPAR WRITE LP STRICT FORMAT

should be set; note, however, that some problems cannot be written correctly as a strict LP formatted
file. For instance, all names are truncated to 16 characters and hence they may loose their uniqueness
and change the problem.

To get around some of the inconveniences converting from other problem formats, MOSEK allows lines
to contain 1024 characters and names may have any length (shorter than the 1024 characters).

Internally in MOSEK names may contain any (printable) character, many of which cannot be used in
LP names. Setting the parameters

19.3. THE STRICT LP FORMAT 225

MSK IPAR READ LP QUOTED NAMES

and

MSK IPAR WRITE LP QUOTED NAMES

allows MOSEK to use quoted names. The first parameter tells MOSEK to remove quotes from quoted
names e.g, "x1", when reading LP formatted files. The second parameter tells MOSEK to put quotes
around any semi-illegal name (names beginning with a number or a period) and fully illegal name
(containing illegal characters). As double quote is a legal character in the LP format, quoting semi-
illegal names makes them legal in the pure LP format as long as they are still shorter than 16 characters.
Fully illegal names are still illegal in a pure LP file.

19.3 The strict LP format

The LP format is not a formal standard and different vendors have slightly different interpretations of
the LP format. To make MOSEK’s definition of the LP format more compatible with the definitions
of other vendors, use the parameter setting

MSK IPAR WRITE LP STRICT FORMAT = MSK ON

This setting may lead to truncation of some names and hence to an invalid LP file. The simple solution
to this problem is to use the parameter setting

MSK IPAR WRITE GENERIC NAMES = MSK ON

which will cause all names to be renamed systematically in the output file.

19.4 Formatting of an LP file

A few parameters control the visual formatting of LP files written by MOSEK in order to make it
easier to read the files. These parameters are

MSK IPAR WRITE LP LINE WIDTH

MSK IPAR WRITE LP TERMS PER LINE

The first parameter sets the maximum number of characters on a single line. The default value is 80
corresponding roughly to the width of a standard text document.

The second parameter sets the maximum number of terms per line; a term means a sign, a coefficient,
and a name (for example ”+ 42 elephants”). The default value is 0, meaning that there is no
maximum.

226 CHAPTER 19. THE LP FILE FORMAT

19.4.1 Speeding up file reading

If the input file should be read as fast as possible using the least amount of memory, then it is important
to tell MOSEK how many non-zeros, variables and constraints the problem contains. These values can
be set using the parameters

MSK IPAR READ CON

MSK IPAR READ VAR

MSK IPAR READ ANZ

MSK IPAR READ QNZ

19.4.2 Unnamed constraints

Reading and writing an LP file with MOSEK may change it superficially. If an LP file contains
unnamed constraints or objective these are given their generic names when the file is read (however
unnamed constraints in MOSEK are written without names).

Chapter 20

The OPF format

The Optimization Problem Format (OPF) is an alternative to LP and MPS files for specifying opti-
mization problems. It is row-oriented, inspired by the CPLEX LP format.

Apart from containing objective, constraints, bounds etc. it may contain complete or partial solutions,
comments and extra information relevant for solving the problem. It is designed to be easily read and
modified by hand and to be forward compatible with possible future extensions.

20.1 Intended use

The OPF file format is meant to replace several other files:

• The LP file format. Any problem that can be written as an LP file can be written as an OPF file
to; furthermore it naturally accommodates ranged constraints and variables as well as arbitrary
characters in names, fixed expressions in the objective, empty constraints, and conic constraints.

• Parameter files. It is possible to specify integer, double and string parameters along with the
problem (or in a separate OPF file).

• Solution files. It is possible to store a full or a partial solution in an OPF file and later reload it.

20.2 The file format

The format uses tags to structure data. A simple example with the basic sections may look like this:

[comment]

This is a comment. You may write almost anything here...

[/comment]

This is a single-line comment.

[objective min ’myobj’]

227

228 CHAPTER 20. THE OPF FORMAT

x + 3 y + x^2 + 3 y^2 + z + 1

[/objective]

[constraints]

[con ’con01’] 4 <= x + y [/con]

[/constraints]

[bounds]

[b] -10 <= x,y <= 10 [/b]

[cone quad] x,y,z [/cone]

[/bounds]

A scope is opened by a tag of the form [tag] and closed by a tag of the form [/tag]. An opening tag
may accept a list of unnamed and named arguments, for examples

[tag value] tag with one unnamed argument [/tag]

[tag arg=value] tag with one named argument in quotes [/tag]

Unnamed arguments are identified by their order, while named arguments may appear in any order,
but never before an unnamed argument. The value can be a quoted, single-quoted or double-quoted
text string, i.e.

[tag ’value’] single-quoted value [/tag]

[tag arg=’value’] single-quoted value [/tag]

[tag "value"] double-quoted value [/tag]

[tag arg="value"] double-quoted value [/tag]

20.2.1 Sections

The recognized tags are

• [comment] A comment section. This can contain almost any text: Between single quotes (’) or
double quotes (") any text may appear. Outside quotes the markup characters ([and]) must
be prefixed by backslashes. Both single and double quotes may appear alone or inside a pair of
quotes if it is prefixed by a backslash.

• [objective] The objective function: This accepts one or two parameters, where the first one
(in the above example ‘min’) is either min or max (regardless of case) and defines the objective
sense, and the second one (above ‘myobj’), if present, is the objective name. The section may
contain linear and quadratic expressions.

If several objectives are specified, all but the last are ignored.

• [constraints] This does not directly contain any data, but may contain the subsection ‘con’
defining a linear constraint.

[con] defines a single constraint; if an argument is present ([con NAME]) this is used as the name
of the constraint, otherwise it is given a null-name. The section contains a constraint definition
written as linear and quadratic expressions with a lower bound, an upper bound, with both or
with an equality. Examples:

[constraints]

[con ’con1’] 0 <= x + y [/con]

[con ’con2’] 0 >= x + y [/con]

20.2. THE FILE FORMAT 229

[con ’con3’] 0 <= x + y <= 10 [/con]

[con ’con4’] x + y = 10 [/con]

[/constraints]

Constraint names are unique. If a constraint is specified which has the same name as a previously
defined constraint, the new constraint replaces the existing one.

• [bounds] This does not directly contain any data, but may contain the subsections ‘b’ (linear
bounds on variables) and cone’ (quadratic cone).

– [b]. Bound definition on one or several variables separated by comma (‘,’). An upper or
lower bound on a variable replaces any earlier defined bound on that variable. If only one
bound (upper or lower) is given only this bound is replaced. This means that upper and
lower bounds can be specified separately. So the OPF bound definition:
[b] x,y >= -10 [/b]

[b] x,y <= 10 [/b]

results in the bound

−10 ≤ x, y ≤ 10.

– [cone]. Currently, the supported cones are the quadratic cone and the rotated quadratic
cone A conic constraint is defined as a set of variables which belongs to a single unique cone.

A quadratic cone of n variables x1, . . . , xn defines a constraint of the form

x2
1 >

n∑
i=2

x2
i .

A rotated quadratic cone of n variables x1, . . . , xn defines a constraint of the form

x1x2 >

n∑
i=3

x2
i .

A [bounds]-section example:

[bounds]

[b] 0 <= x,y <= 10 [/b] # ranged bound

[b] 10 >= x,y >= 0 [/b] # ranged bound

[b] 0 <= x,y <= inf [/b] # using inf

[b] x,y free [/b] # free variables

Let (x,y,z,w) belong to the cone K

[cone quad] x,y,z,w [/cone] # quadratic cone

[cone rquad] x,y,z,w [/cone] # rotated quadratic cone

[/bounds]

By default all variables are free.

• [variables] This defines an ordering of variables as they should appear in the problem. This
is simply a space-separated list of variable names.

• [integer] This contains a space-separated list of variables and defines the constraint that the
listed variables must be integer values.

230 CHAPTER 20. THE OPF FORMAT

• [hints] This may contain only non-essential data; for example estimates of the number of
variables, constraints and non-zeros. Placed before all other sections containing data this may
reduce the time spent reading the file.

In the hints section, any subsection which is not recognized by MOSEK is simply ignored. In
this section a hint in a subsection is defined as follows:

[hint ITEM] value [/hint]

where ITEM may be replaced by numvar (number of variables), numcon (number of linear/quadratic
constraints), numanz (number of linear non-zeros in constraints) and numqnz (number of quadratic
non-zeros in constraints).

• [solutions] This section can contain a set of full or partial solutions to a problem. Each solution
must be specified using a [solution]-section, i.e.

[solutions]

[solution]...[/solution] #solution 1

[solution]...[/solution] #solution 2

#other solutions....

[solution]...[/solution] #solution n

[/solutions]

Note that a [solution]-section must be always specified inside a [solutions]-section. The
syntax of a [solution]-section is the following:

[solution SOLTYPE status=STATUS]...[/solution]

where SOLTYPE is one of the strings

– ‘interior’, a non-basic solution,

– ‘basic’, a basic solution,

– ‘integer’, an integer solution,

and STATUS is one of the strings

– ‘UNKNOWN’,

– ‘OPTIMAL’,

– ‘INTEGER OPTIMAL’,

– ‘PRIM FEAS’,

– ‘DUAL FEAS’,

– ‘PRIM AND DUAL FEAS’,

– ‘NEAR OPTIMAL’,

– ‘NEAR PRIM FEAS’,

– ‘NEAR DUAL FEAS’,

– ‘NEAR PRIM AND DUAL FEAS’,

– ‘PRIM INFEAS CER’,

– ‘DUAL INFEAS CER’,

– ‘NEAR PRIM INFEAS CER’,

20.2. THE FILE FORMAT 231

– ‘NEAR DUAL INFEAS CER’,

– ‘NEAR INTEGER OPTIMAL’.

Most of these values are irrelevant for input solutions; when constructing a solution for simplex
hot-start or an initial solution for a mixed integer problem the safe setting is UNKNOWN.

A [solution]-section contains [con] and [var] sections. Each [con] and [var] section defines
solution information for a single variable or constraint, specified as list of KEYWORD/value pairs,
in any order, written as

KEYWORD=value

Allowed keywords are as follows:

– sk. The status of the item, where the value is one of the following strings:

∗ LOW, the item is on its lower bound.

∗ UPR, the item is on its upper bound.

∗ FIX, it is a fixed item.

∗ BAS, the item is in the basis.

∗ SUPBAS, the item is super basic.

∗ UNK, the status is unknown.

∗ INF, the item is outside its bounds (infeasible).

– lvl Defines the level of the item.

– sl Defines the level of the dual variable associated with its lower bound.

– su Defines the level of the dual variable associated with its upper bound.

– sn Defines the level of the variable associated with its cone.

– y Defines the level of the corresponding dual variable (for constraints only).

A [var] section should always contain the items sk, lvl, sl and su. Items sl and su are not
required for integer solutions.

A [con] section should always contain sk, lvl, sl, su and y.

An example of a solution section

[solution basic status=UNKNOWN]

[var x0] sk=LOW lvl=5.0 [/var]

[var x1] sk=UPR lvl=10.0 [/var]

[var x2] sk=SUPBAS lvl=2.0 sl=1.5 su=0.0 [/var]

[con c0] sk=LOW lvl=3.0 y=0.0 [/con]

[con c0] sk=UPR lvl=0.0 y=5.0 [/con]

[/solution]

• [vendor] This contains solver/vendor specific data. It accepts one argument, which is a vendor
ID – for MOSEK the ID is simply mosek – and the section contains the subsection parameters

defining solver parameters. When reading a vendor section, any unknown vendor can be safely
ignored. This is described later.

Comments using the ‘#’ may appear anywhere in the file. Between the ‘#’ and the following line-break
any text may be written, including markup characters.

232 CHAPTER 20. THE OPF FORMAT

20.2.2 Numbers

Numbers, when used for parameter values or coefficients, are written in the usual way by the printf

function. That is, they may be prefixed by a sign (+ or -) and may contain an integer part, decimal
part and an exponent. The decimal point is always ‘.’ (a dot). Some examples are

1

1.0

.0

1.

1e10

1e+10

1e-10

Some invalid examples are

e10 # invalid, must contain either integer or decimal part

. # invalid

.e10 # invalid

More formally, the following standard regular expression describes numbers as used:

[+|-]?([0-9]+[.][0-9]*|[.][0-9]+)([eE][+|-]?[0-9]+)?

20.2.3 Names

Variable names, constraint names and objective name may contain arbitrary characters, which in some
cases must be enclosed by quotes (single or double) that in turn must be preceded by a backslash.
Unquoted names must begin with a letter (a-z or A-Z) and contain only the following characters: the
letters a-z and A-Z, the digits 0-9, braces ({ and }) and underscore ().

Some examples of legal names:

an unquoted name

another name{123}
’single quoted name’

"double quoted name"

"name with \\"quote\\" in it"

"name with []s in it"

20.3 Parameters section

In the vendor section solver parameters are defined inside the parameters subsection. Each parameter
is written as

[p PARAMETER NAME] value [/p]

where PARAMETER NAME is replaced by a MOSEK parameter name, usually of the form MSK IPAR ...,
MSK DPAR ... or MSK SPAR ..., and the value is replaced by the value of that parameter; both integer
values and named values may be used. Some simple examples are:

[vendor mosek]

[parameters]

[p MSK IPAR OPF MAX TERMS PER LINE] 10 [/p]

20.4. WRITING OPF FILES FROM MOSEK 233

[p MSK IPAR OPF WRITE PARAMETERS] MSK ON [/p]

[p MSK DPAR DATA TOL BOUND INF] 1.0e18 [/p]

[/parameters]

[/vendor]

20.4 Writing OPF files from MOSEK

To write an OPF file set the parameter MSK IPAR WRITE DATA FORMAT to MSK DATA FORMAT OP as this
ensures that OPF format is used. Then modify the following parameters to define what the file should
contain:

• MSK IPAR OPF WRITE HEADER, include a small header with comments.

• MSK IPAR OPF WRITE HINTS, include hints about the size of the problem.

• MSK IPAR OPF WRITE PROBLEM, include the problem itself — objective, constraints and bounds.

• MSK IPAR OPF WRITE SOLUTIONS, include solutions if they are defined. If this is off, no solutions
are included.

• MSK IPAR OPF WRITE SOL BAS, include basic solution, if defined.

• MSK IPAR OPF WRITE SOL ITG, include integer solution, if defined.

• MSK IPAR OPF WRITE SOL ITR, include interior solution, if defined.

• MSK IPAR OPF WRITE PARAMETERS, include all parameter settings.

20.5 Examples

This section contains a set of small examples written in OPF and describing how to formulate linear,
quadratic and conic problems.

20.5.1 Linear example lo1.opf

Consider the example:

maximize 3x0 + 1x1 + 5x2 + 1x3

subject to 3x0 + 1x1 + 2x2 = 30,
2x0 + 1x1 + 3x2 + 1x3 ≥ 15,

2x1 + 3x3 ≤ 25,

having the bounds

234 CHAPTER 20. THE OPF FORMAT

0 ≤ x0 ≤ ∞,
0 ≤ x1 ≤ 10,
0 ≤ x2 ≤ ∞,
0 ≤ x3 ≤ ∞.

In the OPF format the example is displayed as shown below:

[comment]

The lo1 example in OPF format

[/comment]

[hints]

[hint NUMVAR] 4 [/hint]

[hint NUMCON] 3 [/hint]

[hint NUMANZ] 9 [/hint]

[/hints]

[variables disallow new variables]

x1 x2 x3 x4

[/variables]

[objective maximize ’obj’]

3 x1 + x2 + 5 x3 + x4

[/objective]

[constraints]

[con ’c1’] 3 x1 + x2 + 2 x3 = 30 [/con]

[con ’c2’] 2 x1 + x2 + 3 x3 + x4 >= 15 [/con]

[con ’c3’] 2 x2 + 3 x4 <= 25 [/con]

[/constraints]

[bounds]

[b] 0 <= * [/b]

[b] 0 <= x2 <= 10 [/b]

[/bounds]

20.5.2 Quadratic example qo1.opf

An example of a quadratic optimization problem is

minimize x2
1 + 0.1x2

2 + x2
3 − x1x3 − x2

subject to 1 ≤ x1 + x2 + x3,
x ≥ 0.

This can be formulated in opf as shown below.

[comment]

The qo1 example in OPF format

[/comment]

[hints]

[hint NUMVAR] 3 [/hint]

[hint NUMCON] 1 [/hint]

[hint NUMANZ] 3 [/hint]

[hint NUMQNZ] 4 [/hint]

20.5. EXAMPLES 235

[/hints]

[variables disallow new variables]

x1 x2 x3

[/variables]

[objective minimize ’obj’]

The quadratic terms are often written with a factor of 1/2 as here,

but this is not required.

- x2 + 0.5 (2.0 x1 ^ 2 - 2.0 x3 * x1 + 0.2 x2 ^ 2 + 2.0 x3 ^ 2)

[/objective]

[constraints]

[con ’c1’] 1.0 <= x1 + x2 + x3 [/con]

[/constraints]

[bounds]

[b] 0 <= * [/b]

[/bounds]

20.5.3 Conic quadratic example cqo1.opf

Consider the example:

minimize x3 + x4 + x5

subject to x0 + x1 + 2x2 = 1,
x0, x1, x2 ≥ 0,

x3 ≥
√
x2

0 + x2
1,

2x4x5 ≥ x2
2.

Please note that the type of the cones is defined by the parameter to [cone ...]; the content of the
cone-section is the names of variables that belong to the cone.

[comment]

The cqo1 example in OPF format.

[/comment]

[hints]

[hint NUMVAR] 6 [/hint]

[hint NUMCON] 1 [/hint]

[hint NUMANZ] 3 [/hint]

[/hints]

[variables disallow new variables]

x1 x2 x3 x4 x5 x6

[/variables]

[objective minimize ’obj’]

x4 + x5 + x6

[/objective]

[constraints]

[con ’c1’] x1 + x2 + 2e+00 x3 = 1e+00 [/con]

236 CHAPTER 20. THE OPF FORMAT

[/constraints]

[bounds]

We let all variables default to the positive orthant

[b] 0 <= * [/b]

...and change those that differ from the default

[b] x4,x5,x6 free [/b]

Define quadratic cone: x4 >= sqrt(x1^2 + x2^2)

[cone quad ’k1’] x4, x1, x2 [/cone]

Define rotated quadratic cone: 2 x5 x6 >= x3^2

[cone rquad ’k2’] x5, x6, x3 [/cone]

[/bounds]

20.5.4 Mixed integer example milo1.opf

Consider the mixed integer problem:

maximize x0 + 0.64x1

subject to 50x0 + 31x1 ≤ 250,
3x0 − 2x1 ≥ − 4,
x0, x1 ≥ 0 and integer

This can be implemented in OPF with:

[comment]

The milo1 example in OPF format

[/comment]

[hints]

[hint NUMVAR] 2 [/hint]

[hint NUMCON] 2 [/hint]

[hint NUMANZ] 4 [/hint]

[/hints]

[variables disallow new variables]

x1 x2

[/variables]

[objective maximize ’obj’]

x1 + 6.4e-1 x2

[/objective]

[constraints]

[con ’c1’] 5e+1 x1 + 3.1e+1 x2 <= 2.5e+2 [/con]

[con ’c2’] -4 <= 3 x1 - 2 x2 [/con]

[/constraints]

[bounds]

[b] 0 <= * [/b]

[/bounds]

[integer]

20.5. EXAMPLES 237

x1 x2

[/integer]

238 CHAPTER 20. THE OPF FORMAT

Chapter 21

The Task format

The Task format is MOSEK’s native binary format. It contains a complete image of a MOSEK task,
i.e.

• Problem data: Linear, conic quadratic, semidefinite and quadratic data

• Problem item names: Variable names, constraints names, cone names etc.

• Parameter settings

• Solutions

There are a few things to be aware of:

• The task format does not support General Convex problems since these are defined by arbitrary
user-defined functions.

• Status of a solution read from a file will always be unknown.

The format is based on the TAR (USTar) file format. This means that the individual pieces of data
in a .task file can be examined by unpacking it as a TAR file. Please note that the inverse may not
work: Creating a file using TAR will most probably not create a valid MOSEK Task file since the
order of the entries is important.

239

240 CHAPTER 21. THE TASK FORMAT

Chapter 22

The XML (OSiL) format

MOSEK can write data in the standard OSiL xml format. For a definition of the OSiL format please
see http://www.optimizationservices.org/. Only linear constraints (possibly with integer variables) are
supported. By default output files with the extension .xml are written in the OSiL format.

The parameter MSK IPAR WRITE XML MODE controls if the linear coefficients in the A matrix are written
in row or column order.

241

http://www.optimizationservices.org/

242 CHAPTER 22. THE XML (OSIL) FORMAT

Chapter 23

Parameters

Parameters grouped by functionality.

Analysis parameters.

Parameters controling the behaviour of the problem and solution analyzers.

• MSK DPAR ANA SOL INFEAS TOL. If a constraint violates its bound with an amount larger
than this value, the constraint name, index and violation will be printed by the solution
analyzer.

Basis identification parameters.

• MSK IPAR BI CLEAN OPTIMIZER. Controls which simplex optimizer is used in the clean-up
phase.

• MSK IPAR BI IGNORE MAX ITER. Turns on basis identification in case the interior-point op-
timizer is terminated due to maximum number of iterations.

• MSK IPAR BI IGNORE NUM ERROR. Turns on basis identification in case the interior-point op-
timizer is terminated due to a numerical problem.

• MSK IPAR BI MAX ITERATIONS. Maximum number of iterations after basis identification.

• MSK IPAR INTPNT BASIS. Controls whether basis identification is performed.

• MSK IPAR LOG BI. Controls the amount of output printed by the basis identification proce-
dure. A higher level implies that more information is logged.

• MSK IPAR LOG BI FREQ. Controls the logging frequency.

• MSK DPAR SIM LU TOL REL PIV. Relative pivot tolerance employed when computing the LU
factorization of the basis matrix.

Behavior of the optimization task.

Parameters defining the behavior of an optimization task when loading data.

• MSK SPAR FEASREPAIR NAME PREFIX. Feasibility repair name prefix.

243

244 CHAPTER 23. PARAMETERS

• MSK SPAR FEASREPAIR NAME SEPARATOR. Feasibility repair name separator.

• MSK SPAR FEASREPAIR NAME WSUMVIOL. Feasibility repair name violation name.

Conic interior-point method parameters.

Parameters defining the behavior of the interior-point method for conic problems.

• MSK DPAR INTPNT CO TOL DFEAS. Dual feasibility tolerance used by the conic interior-point
optimizer.

• MSK DPAR INTPNT CO TOL INFEAS. Infeasibility tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL MU RED. Optimality tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL NEAR REL. Optimality tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL PFEAS. Primal feasibility tolerance used by the conic interior-point
optimizer.

• MSK DPAR INTPNT CO TOL REL GAP. Relative gap termination tolerance used by the conic
interior-point optimizer.

Data check parameters.

These parameters defines data checking settings and problem data tolerances, i.e. which values
are rounded to 0 or infinity, and which values are large or small enough to produce a warning.

• MSK DPAR DATA TOL AIJ. Data tolerance threshold.

• MSK DPAR DATA TOL AIJ HUGE. Data tolerance threshold.

• MSK DPAR DATA TOL AIJ LARGE. Data tolerance threshold.

• MSK DPAR DATA TOL BOUND INF. Data tolerance threshold.

• MSK DPAR DATA TOL BOUND WRN. Data tolerance threshold.

• MSK DPAR DATA TOL C HUGE. Data tolerance threshold.

• MSK DPAR DATA TOL CJ LARGE. Data tolerance threshold.

• MSK DPAR DATA TOL QIJ. Data tolerance threshold.

• MSK DPAR DATA TOL X. Data tolerance threshold.

• MSK IPAR LOG CHECK CONVEXITY. Controls logging in convexity check on quadratic prob-
lems. Set to a positive value to turn logging on.

If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a
list of negative (positive) pivot elements is printed. The absolute value of the pivot elements
is also shown.

Data input/output parameters.

Parameters defining the behavior of data readers and writers.

• MSK SPAR BAS SOL FILE NAME. Name of the bas solution file.

• MSK SPAR DATA FILE NAME. Data are read and written to this file.

• MSK SPAR DEBUG FILE NAME. MOSEK debug file.

• MSK SPAR INT SOL FILE NAME. Name of the int solution file.

245

• MSK SPAR ITR SOL FILE NAME. Name of the itr solution file.

• MSK IPAR LOG FILE. If turned on, then some log info is printed when a file is written or
read.

• MSK SPAR MIO DEBUG STRING. For internal use only.

• MSK SPAR PARAM COMMENT SIGN. Solution file comment character.

• MSK SPAR PARAM READ FILE NAME. Modifications to the parameter database is read from this
file.

• MSK SPAR PARAM WRITE FILE NAME. The parameter database is written to this file.

• MSK SPAR READ MPS BOU NAME. Name of the BOUNDS vector used. An empty name means
that the first BOUNDS vector is used.

• MSK SPAR READ MPS OBJ NAME. Objective name in the MPS file.

• MSK SPAR READ MPS RAN NAME. Name of the RANGE vector used. An empty name means
that the first RANGE vector is used.

• MSK SPAR READ MPS RHS NAME. Name of the RHS used. An empty name means that the first
RHS vector is used.

• MSK SPAR SOL FILTER XC LOW. Solution file filter.

• MSK SPAR SOL FILTER XC UPR. Solution file filter.

• MSK SPAR SOL FILTER XX LOW. Solution file filter.

• MSK SPAR SOL FILTER XX UPR. Solution file filter.

• MSK SPAR STAT FILE NAME. Statistics file name.

• MSK SPAR STAT KEY. Key used when writing the summary file.

• MSK SPAR STAT NAME. Name used when writing the statistics file.

• MSK SPAR WRITE LP GEN VAR NAME. Added variable names in the LP files.

Debugging parameters.

These parameters defines that can be used when debugging a problem.

• MSK IPAR AUTO SORT A BEFORE OPT. Controls whether the elements in each column of A are
sorted before an optimization is performed.

Dual simplex optimizer parameters.

Parameters defining the behavior of the dual simplex optimizer for linear problems.

• MSK IPAR SIM DUAL CRASH. Controls whether crashing is performed in the dual simplex op-
timizer.

• MSK IPAR SIM DUAL RESTRICT SELECTION. Controls how aggressively restricted selection is
used.

• MSK IPAR SIM DUAL SELECTION. Controls the dual simplex strategy.

Feasibility repair parameters.

246 CHAPTER 23. PARAMETERS

• MSK DPAR FEASREPAIR TOL. Tolerance for constraint enforcing upper bound on sum of weighted
violations in feasibility repair.

Infeasibility report parameters.

• MSK IPAR LOG INFEAS ANA. Controls log level for the infeasibility analyzer.

Interior-point method parameters.

Parameters defining the behavior of the interior-point method for linear, conic and convex prob-
lems.

• MSK IPAR BI IGNORE MAX ITER. Turns on basis identification in case the interior-point op-
timizer is terminated due to maximum number of iterations.

• MSK IPAR BI IGNORE NUM ERROR. Turns on basis identification in case the interior-point op-
timizer is terminated due to a numerical problem.

• MSK DPAR CHECK CONVEXITY REL TOL. Convexity check tolerance.

• MSK IPAR INTPNT BASIS. Controls whether basis identification is performed.

• MSK DPAR INTPNT CO TOL DFEAS. Dual feasibility tolerance used by the conic interior-point
optimizer.

• MSK DPAR INTPNT CO TOL INFEAS. Infeasibility tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL MU RED. Optimality tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL NEAR REL. Optimality tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL PFEAS. Primal feasibility tolerance used by the conic interior-point
optimizer.

• MSK DPAR INTPNT CO TOL REL GAP. Relative gap termination tolerance used by the conic
interior-point optimizer.

• MSK IPAR INTPNT DIFF STEP. Controls whether different step sizes are allowed in the primal
and dual space.

• MSK IPAR INTPNT MAX ITERATIONS. Controls the maximum number of iterations allowed in
the interior-point optimizer.

• MSK IPAR INTPNT MAX NUM COR. Maximum number of correction steps.

• MSK IPAR INTPNT MAX NUM REFINEMENT STEPS. Maximum number of steps to be used by
the iterative search direction refinement.

• MSK DPAR INTPNT NL MERIT BAL. Controls if the complementarity and infeasibility is con-
verging to zero at about equal rates.

• MSK DPAR INTPNT NL TOL DFEAS. Dual feasibility tolerance used when a nonlinear model is
solved.

• MSK DPAR INTPNT NL TOL MU RED. Relative complementarity gap tolerance.

• MSK DPAR INTPNT NL TOL NEAR REL. Nonlinear solver optimality tolerance parameter.

• MSK DPAR INTPNT NL TOL PFEAS. Primal feasibility tolerance used when a nonlinear model
is solved.

247

• MSK DPAR INTPNT NL TOL REL GAP. Relative gap termination tolerance for nonlinear prob-
lems.

• MSK DPAR INTPNT NL TOL REL STEP. Relative step size to the boundary for general nonlinear
optimization problems.

• MSK IPAR INTPNT OFF COL TRH. Controls the aggressiveness of the offending column detec-
tion.

• MSK IPAR INTPNT ORDER METHOD. Controls the ordering strategy.

• MSK IPAR INTPNT REGULARIZATION USE. Controls whether regularization is allowed.

• MSK IPAR INTPNT SCALING. Controls how the problem is scaled before the interior-point
optimizer is used.

• MSK IPAR INTPNT SOLVE FORM. Controls whether the primal or the dual problem is solved.

• MSK IPAR INTPNT STARTING POINT. Starting point used by the interior-point optimizer.

• MSK DPAR INTPNT TOL DFEAS. Dual feasibility tolerance used for linear and quadratic opti-
mization problems.

• MSK DPAR INTPNT TOL DSAFE. Controls the interior-point dual starting point.

• MSK DPAR INTPNT TOL INFEAS. Nonlinear solver infeasibility tolerance parameter.

• MSK DPAR INTPNT TOL MU RED. Relative complementarity gap tolerance.

• MSK DPAR INTPNT TOL PATH. interior-point centering aggressiveness.

• MSK DPAR INTPNT TOL PFEAS. Primal feasibility tolerance used for linear and quadratic op-
timization problems.

• MSK DPAR INTPNT TOL PSAFE. Controls the interior-point primal starting point.

• MSK DPAR INTPNT TOL REL GAP. Relative gap termination tolerance.

• MSK DPAR INTPNT TOL REL STEP. Relative step size to the boundary for linear and quadratic
optimization problems.

• MSK DPAR INTPNT TOL STEP SIZE. If the step size falls below the value of this parameter,
then the interior-point optimizer assumes that it is stalled. In other words the interior-point
optimizer does not make any progress and therefore it is better stop.

• MSK IPAR LOG INTPNT. Controls the amount of log information from the interior-point op-
timizers.

• MSK IPAR LOG PRESOLVE. Controls amount of output printed by the presolve procedure. A
higher level implies that more information is logged.

• MSK DPAR QCQO REFORMULATE REL DROP TOL. This parameter determines when columns are
dropped in incomplete cholesky factorization doing reformulation of quadratic problems.

License manager parameters.

• MSK IPAR LICENSE ALLOW OVERUSE. Controls if license overuse is allowed when caching li-
censes

• MSK IPAR LICENSE DEBUG. Controls the license manager client debugging behavior.

• MSK IPAR LICENSE PAUSE TIME. Controls license manager client behavior.

248 CHAPTER 23. PARAMETERS

• MSK IPAR LICENSE SUPPRESS EXPIRE WRNS. Controls license manager client behavior.

• MSK IPAR LICENSE WAIT. Controls if MOSEK should queue for a license if none is available.

Logging parameters.

• MSK IPAR LOG. Controls the amount of log information.

• MSK IPAR LOG BI. Controls the amount of output printed by the basis identification proce-
dure. A higher level implies that more information is logged.

• MSK IPAR LOG BI FREQ. Controls the logging frequency.

• MSK IPAR LOG CONCURRENT. Controls amount of output printed by the concurrent optimizer.

• MSK IPAR LOG EXPAND. Controls the amount of logging when a data item such as the maxi-
mum number constrains is expanded.

• MSK IPAR LOG FACTOR. If turned on, then the factor log lines are added to the log.

• MSK IPAR LOG FEAS REPAIR. Controls the amount of output printed when performing feasi-
bility repair. A value higher than one means extensive logging.

• MSK IPAR LOG FILE. If turned on, then some log info is printed when a file is written or
read.

• MSK IPAR LOG HEAD. If turned on, then a header line is added to the log.

• MSK IPAR LOG INFEAS ANA. Controls log level for the infeasibility analyzer.

• MSK IPAR LOG INTPNT. Controls the amount of log information from the interior-point op-
timizers.

• MSK IPAR LOG MIO. Controls the amount of log information from the mixed-integer optimiz-
ers.

• MSK IPAR LOG MIO FREQ. The mixed-integer solver logging frequency.

• MSK IPAR LOG NONCONVEX. Controls amount of output printed by the nonconvex optimizer.

• MSK IPAR LOG OPTIMIZER. Controls the amount of general optimizer information that is
logged.

• MSK IPAR LOG ORDER. If turned on, then factor lines are added to the log.

• MSK IPAR LOG PARAM. Controls the amount of information printed out about parameter
changes.

• MSK IPAR LOG PRESOLVE. Controls amount of output printed by the presolve procedure. A
higher level implies that more information is logged.

• MSK IPAR LOG RESPONSE. Controls amount of output printed when response codes are re-
ported. A higher level implies that more information is logged.

• MSK IPAR LOG SIM. Controls the amount of log information from the simplex optimizers.

• MSK IPAR LOG SIM FREQ. Controls simplex logging frequency.

• MSK IPAR LOG SIM NETWORK FREQ. Controls the network simplex logging frequency.

• MSK IPAR LOG STORAGE. Controls the memory related log information.

Mixed-integer optimization parameters.

249

• MSK IPAR LOG MIO. Controls the amount of log information from the mixed-integer optimiz-
ers.

• MSK IPAR LOG MIO FREQ. The mixed-integer solver logging frequency.

• MSK IPAR MIO BRANCH DIR. Controls whether the mixed-integer optimizer is branching up
or down by default.

• MSK IPAR MIO CONSTRUCT SOL. Controls if an initial mixed integer solution should be con-
structed from the values of the integer variables.

• MSK IPAR MIO CONT SOL. Controls the meaning of interior-point and basic solutions in mixed
integer problems.

• MSK IPAR MIO CUT LEVEL ROOT. Controls the cut level employed by the mixed-integer opti-
mizer at the root node.

• MSK IPAR MIO CUT LEVEL TREE. Controls the cut level employed by the mixed-integer opti-
mizer in the tree.

• MSK DPAR MIO DISABLE TERM TIME. Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

• MSK IPAR MIO FEASPUMP LEVEL. Controls the feasibility pump heuristic which is used to
construct a good initial feasible solution.

• MSK IPAR MIO HEURISTIC LEVEL. Controls the heuristic employed by the mixed-integer op-
timizer to locate an initial integer feasible solution.

• MSK DPAR MIO HEURISTIC TIME. Time limit for the mixed-integer heuristics.

• MSK IPAR MIO HOTSTART. Controls whether the integer optimizer is hot-started.

• MSK IPAR MIO KEEP BASIS. Controls whether the integer presolve keeps bases in memory.

• MSK IPAR MIO MAX NUM BRANCHES. Maximum number of branches allowed during the branch
and bound search.

• MSK IPAR MIO MAX NUM RELAXS. Maximum number of relaxations in branch and bound search.

• MSK IPAR MIO MAX NUM SOLUTIONS. Controls how many feasible solutions the mixed-integer
optimizer investigates.

• MSK DPAR MIO MAX TIME. Time limit for the mixed-integer optimizer.

• MSK DPAR MIO MAX TIME APRX OPT. Time limit for the mixed-integer optimizer.

• MSK DPAR MIO NEAR TOL ABS GAP. Relaxed absolute optimality tolerance employed by the
mixed-integer optimizer.

• MSK DPAR MIO NEAR TOL REL GAP. The mixed-integer optimizer is terminated when this tol-
erance is satisfied.

• MSK IPAR MIO NODE OPTIMIZER. Controls which optimizer is employed at the non-root nodes
in the mixed-integer optimizer.

• MSK IPAR MIO NODE SELECTION. Controls the node selection strategy employed by the mixed-
integer optimizer.

• MSK IPAR MIO OPTIMIZER MODE. An exprimental feature.

• MSK IPAR MIO PRESOLVE AGGREGATE. Controls whether problem aggregation is performed in
the mixed-integer presolve.

250 CHAPTER 23. PARAMETERS

• MSK IPAR MIO PRESOLVE PROBING. Controls whether probing is employed by the mixed-
integer presolve.

• MSK IPAR MIO PRESOLVE USE. Controls whether presolve is performed by the mixed-integer
optimizer.

• MSK DPAR MIO REL ADD CUT LIMITED. Controls cut generation for mixed-integer optimizer.

• MSK DPAR MIO REL GAP CONST. This value is used to compute the relative gap for the solution
to an integer optimization problem.

• MSK IPAR MIO ROOT OPTIMIZER. Controls which optimizer is employed at the root node in
the mixed-integer optimizer.

• MSK IPAR MIO STRONG BRANCH. The depth from the root in which strong branching is em-
ployed.

• MSK DPAR MIO TOL ABS GAP. Absolute optimality tolerance employed by the mixed-integer
optimizer.

• MSK DPAR MIO TOL ABS RELAX INT. Integer constraint tolerance.

• MSK DPAR MIO TOL FEAS. Feasibility tolerance for mixed integer solver. Any solution with
maximum infeasibility below this value will be considered feasible.

• MSK DPAR MIO TOL REL DUAL BOUND IMPROVEMENT. Controls cut generation for mixed-integer
optimizer.

• MSK DPAR MIO TOL REL GAP. Relative optimality tolerance employed by the mixed-integer
optimizer.

• MSK DPAR MIO TOL REL RELAX INT. Integer constraint tolerance.

• MSK DPAR MIO TOL X. Absolute solution tolerance used in mixed-integer optimizer.

• MSK IPAR MIO USE MULTITHREADED OPTIMIZER. Controls wheter the new multithreaded op-
timizer should be used for Mixed integer problems.

Network simplex optimizer parameters.

Parameters defining the behavior of the network simplex optimizer for linear problems.

• MSK IPAR LOG SIM NETWORK FREQ. Controls the network simplex logging frequency.

• MSK IPAR SIM REFACTOR FREQ. Controls the basis refactoring frequency.

Non-convex solver parameters.

• MSK IPAR LOG NONCONVEX. Controls amount of output printed by the nonconvex optimizer.

• MSK IPAR NONCONVEX MAX ITERATIONS. Maximum number of iterations that can be used by
the nonconvex optimizer.

• MSK DPAR NONCONVEX TOL FEAS. Feasibility tolerance used by the nonconvex optimizer.

• MSK DPAR NONCONVEX TOL OPT. Optimality tolerance used by the nonconvex optimizer.

Nonlinear convex method parameters.

Parameters defining the behavior of the interior-point method for nonlinear convex problems.

251

• MSK DPAR INTPNT NL MERIT BAL. Controls if the complementarity and infeasibility is con-
verging to zero at about equal rates.

• MSK DPAR INTPNT NL TOL DFEAS. Dual feasibility tolerance used when a nonlinear model is
solved.

• MSK DPAR INTPNT NL TOL MU RED. Relative complementarity gap tolerance.

• MSK DPAR INTPNT NL TOL NEAR REL. Nonlinear solver optimality tolerance parameter.

• MSK DPAR INTPNT NL TOL PFEAS. Primal feasibility tolerance used when a nonlinear model
is solved.

• MSK DPAR INTPNT NL TOL REL GAP. Relative gap termination tolerance for nonlinear prob-
lems.

• MSK DPAR INTPNT NL TOL REL STEP. Relative step size to the boundary for general nonlinear
optimization problems.

• MSK DPAR INTPNT TOL INFEAS. Nonlinear solver infeasibility tolerance parameter.

• MSK IPAR LOG CHECK CONVEXITY. Controls logging in convexity check on quadratic prob-
lems. Set to a positive value to turn logging on.

If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a
list of negative (positive) pivot elements is printed. The absolute value of the pivot elements
is also shown.

Optimization system parameters.

Parameters defining the overall solver system environment. This includes system and platform
related information and behavior.

• MSK IPAR CACHE LICENSE. Control license caching.

• MSK IPAR LICENSE WAIT. Controls if MOSEK should queue for a license if none is available.

• MSK IPAR LOG STORAGE. Controls the memory related log information.

• MSK IPAR NUM THREADS. Controls the number of threads employed by the optimizer. If set to
0 the number of threads used will be equal to the number of cores detected on the machine.

Output information parameters.

• MSK IPAR LICENSE SUPPRESS EXPIRE WRNS. Controls license manager client behavior.

• MSK IPAR LOG. Controls the amount of log information.

• MSK IPAR LOG BI. Controls the amount of output printed by the basis identification proce-
dure. A higher level implies that more information is logged.

• MSK IPAR LOG BI FREQ. Controls the logging frequency.

• MSK IPAR LOG EXPAND. Controls the amount of logging when a data item such as the maxi-
mum number constrains is expanded.

• MSK IPAR LOG FACTOR. If turned on, then the factor log lines are added to the log.

• MSK IPAR LOG FEAS REPAIR. Controls the amount of output printed when performing feasi-
bility repair. A value higher than one means extensive logging.

252 CHAPTER 23. PARAMETERS

• MSK IPAR LOG FILE. If turned on, then some log info is printed when a file is written or
read.

• MSK IPAR LOG HEAD. If turned on, then a header line is added to the log.

• MSK IPAR LOG INFEAS ANA. Controls log level for the infeasibility analyzer.

• MSK IPAR LOG INTPNT. Controls the amount of log information from the interior-point op-
timizers.

• MSK IPAR LOG MIO. Controls the amount of log information from the mixed-integer optimiz-
ers.

• MSK IPAR LOG MIO FREQ. The mixed-integer solver logging frequency.

• MSK IPAR LOG NONCONVEX. Controls amount of output printed by the nonconvex optimizer.

• MSK IPAR LOG OPTIMIZER. Controls the amount of general optimizer information that is
logged.

• MSK IPAR LOG ORDER. If turned on, then factor lines are added to the log.

• MSK IPAR LOG PARAM. Controls the amount of information printed out about parameter
changes.

• MSK IPAR LOG RESPONSE. Controls amount of output printed when response codes are re-
ported. A higher level implies that more information is logged.

• MSK IPAR LOG SIM. Controls the amount of log information from the simplex optimizers.

• MSK IPAR LOG SIM FREQ. Controls simplex logging frequency.

• MSK IPAR LOG SIM MINOR. Currently not in use.

• MSK IPAR LOG SIM NETWORK FREQ. Controls the network simplex logging frequency.

• MSK IPAR LOG STORAGE. Controls the memory related log information.

• MSK IPAR MAX NUM WARNINGS. Waning level. A higher value results in more warnings.

• MSK IPAR WARNING LEVEL. Warning level.

Overall solver parameters.

• MSK IPAR BI CLEAN OPTIMIZER. Controls which simplex optimizer is used in the clean-up
phase.

• MSK IPAR CONCURRENT NUM OPTIMIZERS. The maximum number of simultaneous optimiza-
tions that will be started by the concurrent optimizer.

• MSK IPAR CONCURRENT PRIORITY DUAL SIMPLEX. Priority of the dual simplex algorithm when
selecting solvers for concurrent optimization.

• MSK IPAR CONCURRENT PRIORITY FREE SIMPLEX. Priority of the free simplex optimizer when
selecting solvers for concurrent optimization.

• MSK IPAR CONCURRENT PRIORITY INTPNT. Priority of the interior-point algorithm when se-
lecting solvers for concurrent optimization.

• MSK IPAR CONCURRENT PRIORITY PRIMAL SIMPLEX. Priority of the primal simplex algorithm
when selecting solvers for concurrent optimization.

253

• MSK IPAR INFEAS PREFER PRIMAL. Controls which certificate is used if both primal- and
dual- certificate of infeasibility is available.

• MSK IPAR LICENSE WAIT. Controls if MOSEK should queue for a license if none is available.

• MSK IPAR MIO CONT SOL. Controls the meaning of interior-point and basic solutions in mixed
integer problems.

• MSK IPAR MIO LOCAL BRANCH NUMBER. Controls the size of the local search space when doing
local branching.

• MSK IPAR MIO MODE. Turns on/off the mixed-integer mode.

• MSK IPAR OPTIMIZER. Controls which optimizer is used to optimize the task.

• MSK IPAR PRESOLVE LEVEL. Currently not used.

• MSK IPAR PRESOLVE USE. Controls whether the presolve is applied to a problem before it is
optimized.

• MSK IPAR SOLUTION CALLBACK. Indicates whether solution call-backs will be performed dur-
ing the optimization.

Presolve parameters.

• MSK IPAR PRESOLVE ELIM FILL. Maximum amount of fill-in in the elimination phase.

• MSK IPAR PRESOLVE ELIMINATOR MAX NUM TRIES. Control the maximum number of times
the eliminator is tried.

• MSK IPAR PRESOLVE ELIMINATOR USE. Controls whether free or implied free variables are
eliminated from the problem.

• MSK IPAR PRESOLVE LEVEL. Currently not used.

• MSK IPAR PRESOLVE LINDEP ABS WORK TRH. Controls linear dependency check in presolve.

• MSK IPAR PRESOLVE LINDEP REL WORK TRH. Controls linear dependency check in presolve.

• MSK IPAR PRESOLVE LINDEP USE. Controls whether the linear constraints are checked for
linear dependencies.

• MSK DPAR PRESOLVE TOL ABS LINDEP. Absolute tolerance employed by the linear depen-
dency checker.

• MSK DPAR PRESOLVE TOL AIJ. Absolute zero tolerance employed for constraint coefficients
in the presolve.

• MSK DPAR PRESOLVE TOL REL LINDEP. Relative tolerance employed by the linear dependency
checker.

• MSK DPAR PRESOLVE TOL S. Absolute zero tolerance employed for slack variables in the pre-
solve.

• MSK DPAR PRESOLVE TOL X. Absolute zero tolerance employed for variables in the presolve.

• MSK IPAR PRESOLVE USE. Controls whether the presolve is applied to a problem before it is
optimized.

Primal simplex optimizer parameters.

Parameters defining the behavior of the primal simplex optimizer for linear problems.

254 CHAPTER 23. PARAMETERS

• MSK IPAR SIM PRIMAL CRASH. Controls the simplex crash.

• MSK IPAR SIM PRIMAL RESTRICT SELECTION. Controls how aggressively restricted selection
is used.

• MSK IPAR SIM PRIMAL SELECTION. Controls the primal simplex strategy.

Progress call-back parameters.

• MSK IPAR SOLUTION CALLBACK. Indicates whether solution call-backs will be performed dur-
ing the optimization.

Simplex optimizer parameters.

Parameters defining the behavior of the simplex optimizer for linear problems.

• MSK DPAR BASIS REL TOL S. Maximum relative dual bound violation allowed in an optimal
basic solution.

• MSK DPAR BASIS TOL S. Maximum absolute dual bound violation in an optimal basic solu-
tion.

• MSK DPAR BASIS TOL X. Maximum absolute primal bound violation allowed in an optimal
basic solution.

• MSK IPAR LOG SIM. Controls the amount of log information from the simplex optimizers.

• MSK IPAR LOG SIM FREQ. Controls simplex logging frequency.

• MSK IPAR LOG SIM MINOR. Currently not in use.

• MSK IPAR SIM BASIS FACTOR USE. Controls whether a (LU) factorization of the basis is used
in a hot-start. Forcing a refactorization sometimes improves the stability of the simplex
optimizers, but in most cases there is a performance penanlty.

• MSK IPAR SIM DEGEN. Controls how aggressively degeneration is handled.

• MSK IPAR SIM DUAL PHASEONE METHOD. An exprimental feature.

• MSK IPAR SIM EXPLOIT DUPVEC. Controls if the simplex optimizers are allowed to exploit
duplicated columns.

• MSK IPAR SIM HOTSTART. Controls the type of hot-start that the simplex optimizer perform.

• MSK IPAR SIM INTEGER. An exprimental feature.

• MSK DPAR SIM LU TOL REL PIV. Relative pivot tolerance employed when computing the LU
factorization of the basis matrix.

• MSK IPAR SIM MAX ITERATIONS. Maximum number of iterations that can be used by a sim-
plex optimizer.

• MSK IPAR SIM MAX NUM SETBACKS. Controls how many set-backs that are allowed within a
simplex optimizer.

• MSK IPAR SIM NON SINGULAR. Controls if the simplex optimizer ensures a non-singular basis,
if possible.

• MSK IPAR SIM PRIMAL PHASEONE METHOD. An exprimental feature.

• MSK IPAR SIM REFORMULATION. Controls if the simplex optimizers are allowed to reformulate
the problem.

255

• MSK IPAR SIM SAVE LU. Controls if the LU factorization stored should be replaced with the
LU factorization corresponding to the initial basis.

• MSK IPAR SIM SCALING. Controls how much effort is used in scaling the problem before a
simplex optimizer is used.

• MSK IPAR SIM SCALING METHOD. Controls how the problem is scaled before a simplex opti-
mizer is used.

• MSK IPAR SIM SOLVE FORM. Controls whether the primal or the dual problem is solved by
the primal-/dual- simplex optimizer.

• MSK IPAR SIM STABILITY PRIORITY. Controls how high priority the numerical stability should
be given.

• MSK IPAR SIM SWITCH OPTIMIZER. Controls the simplex behavior.

• MSK DPAR SIMPLEX ABS TOL PIV. Absolute pivot tolerance employed by the simplex opti-
mizers.

Solution input/output parameters.

Parameters defining the behavior of solution reader and writer.

• MSK SPAR BAS SOL FILE NAME. Name of the bas solution file.

• MSK SPAR INT SOL FILE NAME. Name of the int solution file.

• MSK SPAR ITR SOL FILE NAME. Name of the itr solution file.

• MSK IPAR SOL FILTER KEEP BASIC. Controls the license manager client behavior.

• MSK SPAR SOL FILTER XC LOW. Solution file filter.

• MSK SPAR SOL FILTER XC UPR. Solution file filter.

• MSK SPAR SOL FILTER XX LOW. Solution file filter.

• MSK SPAR SOL FILTER XX UPR. Solution file filter.

Termination criterion parameters.

Parameters which define termination and optimality criteria and related information.

• MSK DPAR BASIS REL TOL S. Maximum relative dual bound violation allowed in an optimal
basic solution.

• MSK DPAR BASIS TOL S. Maximum absolute dual bound violation in an optimal basic solu-
tion.

• MSK DPAR BASIS TOL X. Maximum absolute primal bound violation allowed in an optimal
basic solution.

• MSK IPAR BI MAX ITERATIONS. Maximum number of iterations after basis identification.

• MSK DPAR INTPNT CO TOL DFEAS. Dual feasibility tolerance used by the conic interior-point
optimizer.

• MSK DPAR INTPNT CO TOL INFEAS. Infeasibility tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL MU RED. Optimality tolerance for the conic solver.

• MSK DPAR INTPNT CO TOL NEAR REL. Optimality tolerance for the conic solver.

256 CHAPTER 23. PARAMETERS

• MSK DPAR INTPNT CO TOL PFEAS. Primal feasibility tolerance used by the conic interior-point
optimizer.

• MSK DPAR INTPNT CO TOL REL GAP. Relative gap termination tolerance used by the conic
interior-point optimizer.

• MSK IPAR INTPNT MAX ITERATIONS. Controls the maximum number of iterations allowed in
the interior-point optimizer.

• MSK DPAR INTPNT NL TOL DFEAS. Dual feasibility tolerance used when a nonlinear model is
solved.

• MSK DPAR INTPNT NL TOL MU RED. Relative complementarity gap tolerance.

• MSK DPAR INTPNT NL TOL NEAR REL. Nonlinear solver optimality tolerance parameter.

• MSK DPAR INTPNT NL TOL PFEAS. Primal feasibility tolerance used when a nonlinear model
is solved.

• MSK DPAR INTPNT NL TOL REL GAP. Relative gap termination tolerance for nonlinear prob-
lems.

• MSK DPAR INTPNT TOL DFEAS. Dual feasibility tolerance used for linear and quadratic opti-
mization problems.

• MSK DPAR INTPNT TOL INFEAS. Nonlinear solver infeasibility tolerance parameter.

• MSK DPAR INTPNT TOL MU RED. Relative complementarity gap tolerance.

• MSK DPAR INTPNT TOL PFEAS. Primal feasibility tolerance used for linear and quadratic op-
timization problems.

• MSK DPAR INTPNT TOL REL GAP. Relative gap termination tolerance.

• MSK DPAR LOWER OBJ CUT. Objective bound.

• MSK DPAR LOWER OBJ CUT FINITE TRH. Objective bound.

• MSK DPAR MIO DISABLE TERM TIME. Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

• MSK IPAR MIO MAX NUM BRANCHES. Maximum number of branches allowed during the branch
and bound search.

• MSK IPAR MIO MAX NUM SOLUTIONS. Controls how many feasible solutions the mixed-integer
optimizer investigates.

• MSK DPAR MIO MAX TIME. Time limit for the mixed-integer optimizer.

• MSK DPAR MIO NEAR TOL REL GAP. The mixed-integer optimizer is terminated when this tol-
erance is satisfied.

• MSK DPAR MIO REL GAP CONST. This value is used to compute the relative gap for the solution
to an integer optimization problem.

• MSK DPAR MIO TOL REL GAP. Relative optimality tolerance employed by the mixed-integer
optimizer.

• MSK DPAR OPTIMIZER MAX TIME. Solver time limit.

• MSK IPAR SIM MAX ITERATIONS. Maximum number of iterations that can be used by a sim-
plex optimizer.

23.1. MSKDPARAME: DOUBLE PARAMETERS 257

• MSK DPAR UPPER OBJ CUT. Objective bound.

• MSK DPAR UPPER OBJ CUT FINITE TRH. Objective bound.

• Integer parameters

• Double parameters

• String parameters

23.1 MSKdparame: Double parameters

23.1.1 MSK DPAR ANA SOL INFEAS TOL

Corresponding constant:

MSK DPAR ANA SOL INFEAS TOL

Description:

If a constraint violates its bound with an amount larger than this value, the constraint name,
index and violation will be printed by the solution analyzer.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1e-6

23.1.2 MSK DPAR BASIS REL TOL S

Corresponding constant:

MSK DPAR BASIS REL TOL S

Description:

Maximum relative dual bound violation allowed in an optimal basic solution.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-12

258 CHAPTER 23. PARAMETERS

23.1.3 MSK DPAR BASIS TOL S

Corresponding constant:

MSK DPAR BASIS TOL S

Description:

Maximum absolute dual bound violation in an optimal basic solution.

Possible Values:

Any number between 1.0e-9 and +inf.

Default value:

1.0e-6

23.1.4 MSK DPAR BASIS TOL X

Corresponding constant:

MSK DPAR BASIS TOL X

Description:

Maximum absolute primal bound violation allowed in an optimal basic solution.

Possible Values:

Any number between 1.0e-9 and +inf.

Default value:

1.0e-6

23.1.5 MSK DPAR CHECK CONVEXITY REL TOL

Corresponding constant:

MSK DPAR CHECK CONVEXITY REL TOL

Description:

This parameter controls when the full convexity check declares a problem to be non-convex.
Increasing this tolerance relaxes the criteria for declaring the problem non-convex.

A problem is declared non-convex if negative (positive) pivot elements are detected in the cholesky
factor of a matrix which is required to be PSD (NSD). This parameter controles how much this
non-negativity requirement may be violated.

If di is the pivot element for column i, then the matrix Q is considered to not be PSD if:

di ≤ − |Qii| ∗ check convexity rel tol

23.1. MSKDPARAME: DOUBLE PARAMETERS 259

Possible Values:

Any number between 0 and +inf.

Default value:

1e-10

23.1.6 MSK DPAR DATA TOL AIJ

Corresponding constant:

MSK DPAR DATA TOL AIJ

Description:

Absolute zero tolerance for elements in A. If any value Aij is smaller than this parameter in
absolute terms MOSEK will treat the values as zero and generate a warning.

Possible Values:

Any number between 1.0e-16 and 1.0e-6.

Default value:

1.0e-12

23.1.7 MSK DPAR DATA TOL AIJ HUGE

Corresponding constant:

MSK DPAR DATA TOL AIJ HUGE

Description:

An element in A which is larger than this value in absolute size causes an error.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e20

23.1.8 MSK DPAR DATA TOL AIJ LARGE

Corresponding constant:

MSK DPAR DATA TOL AIJ LARGE

Description:

An element in A which is larger than this value in absolute size causes a warning message to be
printed.

260 CHAPTER 23. PARAMETERS

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e10

23.1.9 MSK DPAR DATA TOL BOUND INF

Corresponding constant:

MSK DPAR DATA TOL BOUND INF

Description:

Any bound which in absolute value is greater than this parameter is considered infinite.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e16

23.1.10 MSK DPAR DATA TOL BOUND WRN

Corresponding constant:

MSK DPAR DATA TOL BOUND WRN

Description:

If a bound value is larger than this value in absolute size, then a warning message is issued.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e8

23.1.11 MSK DPAR DATA TOL C HUGE

Corresponding constant:

MSK DPAR DATA TOL C HUGE

Description:

An element in c which is larger than the value of this parameter in absolute terms is considered
to be huge and generates an error.

23.1. MSKDPARAME: DOUBLE PARAMETERS 261

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e16

23.1.12 MSK DPAR DATA TOL CJ LARGE

Corresponding constant:

MSK DPAR DATA TOL CJ LARGE

Description:

An element in c which is larger than this value in absolute terms causes a warning message to
be printed.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e8

23.1.13 MSK DPAR DATA TOL QIJ

Corresponding constant:

MSK DPAR DATA TOL QIJ

Description:

Absolute zero tolerance for elements in Q matrixes.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-16

23.1.14 MSK DPAR DATA TOL X

Corresponding constant:

MSK DPAR DATA TOL X

Description:

Zero tolerance for constraints and variables i.e. if the distance between the lower and upper
bound is less than this value, then the lower and lower bound is considered identical.

262 CHAPTER 23. PARAMETERS

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-8

23.1.15 MSK DPAR FEASREPAIR TOL

Corresponding constant:

MSK DPAR FEASREPAIR TOL

Description:

Tolerance for constraint enforcing upper bound on sum of weighted violations in feasibility repair.

Possible Values:

Any number between 1.0e-16 and 1.0e+16.

Default value:

1.0e-10

23.1.16 MSK DPAR INTPNT CO TOL DFEAS

Corresponding constant:

MSK DPAR INTPNT CO TOL DFEAS

Description:

Dual feasibility tolerance used by the conic interior-point optimizer.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

See also:

• MSK DPAR INTPNT CO TOL NEAR REL Optimality tolerance for the conic solver.

23.1. MSKDPARAME: DOUBLE PARAMETERS 263

23.1.17 MSK DPAR INTPNT CO TOL INFEAS

Corresponding constant:

MSK DPAR INTPNT CO TOL INFEAS

Description:

Controls when the conic interior-point optimizer declares the model primal or dual infeasible. A
small number means the optimizer gets more conservative about declaring the model infeasible.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-10

23.1.18 MSK DPAR INTPNT CO TOL MU RED

Corresponding constant:

MSK DPAR INTPNT CO TOL MU RED

Description:

Relative complementarity gap tolerance feasibility tolerance used by the conic interior-point
optimizer.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

23.1.19 MSK DPAR INTPNT CO TOL NEAR REL

Corresponding constant:

MSK DPAR INTPNT CO TOL NEAR REL

Description:

If MOSEK cannot compute a solution that has the prescribed accuracy, then it will multiply the
termination tolerances with value of this parameter. If the solution then satisfies the termination
criteria, then the solution is denoted near optimal, near feasible and so forth.

Possible Values:

Any number between 1.0 and +inf.

Default value:

1000

264 CHAPTER 23. PARAMETERS

23.1.20 MSK DPAR INTPNT CO TOL PFEAS

Corresponding constant:

MSK DPAR INTPNT CO TOL PFEAS

Description:

Primal feasibility tolerance used by the conic interior-point optimizer.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

See also:

• MSK DPAR INTPNT CO TOL NEAR REL Optimality tolerance for the conic solver.

23.1.21 MSK DPAR INTPNT CO TOL REL GAP

Corresponding constant:

MSK DPAR INTPNT CO TOL REL GAP

Description:

Relative gap termination tolerance used by the conic interior-point optimizer.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-7

See also:

• MSK DPAR INTPNT CO TOL NEAR REL Optimality tolerance for the conic solver.

23.1.22 MSK DPAR INTPNT NL MERIT BAL

Corresponding constant:

MSK DPAR INTPNT NL MERIT BAL

Description:

Controls if the complementarity and infeasibility is converging to zero at about equal rates.

Possible Values:

Any number between 0.0 and 0.99.

23.1. MSKDPARAME: DOUBLE PARAMETERS 265

Default value:

1.0e-4

23.1.23 MSK DPAR INTPNT NL TOL DFEAS

Corresponding constant:

MSK DPAR INTPNT NL TOL DFEAS

Description:

Dual feasibility tolerance used when a nonlinear model is solved.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

23.1.24 MSK DPAR INTPNT NL TOL MU RED

Corresponding constant:

MSK DPAR INTPNT NL TOL MU RED

Description:

Relative complementarity gap tolerance.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-12

23.1.25 MSK DPAR INTPNT NL TOL NEAR REL

Corresponding constant:

MSK DPAR INTPNT NL TOL NEAR REL

Description:

If the MOSEK nonlinear interior-point optimizer cannot compute a solution that has the pre-
scribed accuracy, then it will multiply the termination tolerances with value of this parameter.
If the solution then satisfies the termination criteria, then the solution is denoted near optimal,
near feasible and so forth.

Possible Values:

Any number between 1.0 and +inf.

266 CHAPTER 23. PARAMETERS

Default value:

1000.0

23.1.26 MSK DPAR INTPNT NL TOL PFEAS

Corresponding constant:

MSK DPAR INTPNT NL TOL PFEAS

Description:

Primal feasibility tolerance used when a nonlinear model is solved.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

23.1.27 MSK DPAR INTPNT NL TOL REL GAP

Corresponding constant:

MSK DPAR INTPNT NL TOL REL GAP

Description:

Relative gap termination tolerance for nonlinear problems.

Possible Values:

Any number between 1.0e-14 and +inf.

Default value:

1.0e-6

23.1.28 MSK DPAR INTPNT NL TOL REL STEP

Corresponding constant:

MSK DPAR INTPNT NL TOL REL STEP

Description:

Relative step size to the boundary for general nonlinear optimization problems.

Possible Values:

Any number between 1.0e-4 and 0.9999999.

Default value:

0.995

23.1. MSKDPARAME: DOUBLE PARAMETERS 267

23.1.29 MSK DPAR INTPNT TOL DFEAS

Corresponding constant:

MSK DPAR INTPNT TOL DFEAS

Description:

Dual feasibility tolerance used for linear and quadratic optimization problems.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

23.1.30 MSK DPAR INTPNT TOL DSAFE

Corresponding constant:

MSK DPAR INTPNT TOL DSAFE

Description:

Controls the initial dual starting point used by the interior-point optimizer. If the interior-point
optimizer converges slowly.

Possible Values:

Any number between 1.0e-4 and +inf.

Default value:

1.0

23.1.31 MSK DPAR INTPNT TOL INFEAS

Corresponding constant:

MSK DPAR INTPNT TOL INFEAS

Description:

Controls when the optimizer declares the model primal or dual infeasible. A small number means
the optimizer gets more conservative about declaring the model infeasible.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-10

268 CHAPTER 23. PARAMETERS

23.1.32 MSK DPAR INTPNT TOL MU RED

Corresponding constant:

MSK DPAR INTPNT TOL MU RED

Description:

Relative complementarity gap tolerance.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-16

23.1.33 MSK DPAR INTPNT TOL PATH

Corresponding constant:

MSK DPAR INTPNT TOL PATH

Description:

Controls how close the interior-point optimizer follows the central path. A large value of this
parameter means the central is followed very closely. On numerical unstable problems it may be
worthwhile to increase this parameter.

Possible Values:

Any number between 0.0 and 0.9999.

Default value:

1.0e-8

23.1.34 MSK DPAR INTPNT TOL PFEAS

Corresponding constant:

MSK DPAR INTPNT TOL PFEAS

Description:

Primal feasibility tolerance used for linear and quadratic optimization problems.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-8

23.1. MSKDPARAME: DOUBLE PARAMETERS 269

23.1.35 MSK DPAR INTPNT TOL PSAFE

Corresponding constant:

MSK DPAR INTPNT TOL PSAFE

Description:

Controls the initial primal starting point used by the interior-point optimizer. If the interior-
point optimizer converges slowly and/or the constraint or variable bounds are very large, then it
may be worthwhile to increase this value.

Possible Values:

Any number between 1.0e-4 and +inf.

Default value:

1.0

23.1.36 MSK DPAR INTPNT TOL REL GAP

Corresponding constant:

MSK DPAR INTPNT TOL REL GAP

Description:

Relative gap termination tolerance.

Possible Values:

Any number between 1.0e-14 and +inf.

Default value:

1.0e-8

23.1.37 MSK DPAR INTPNT TOL REL STEP

Corresponding constant:

MSK DPAR INTPNT TOL REL STEP

Description:

Relative step size to the boundary for linear and quadratic optimization problems.

Possible Values:

Any number between 1.0e-4 and 0.999999.

Default value:

0.9999

270 CHAPTER 23. PARAMETERS

23.1.38 MSK DPAR INTPNT TOL STEP SIZE

Corresponding constant:

MSK DPAR INTPNT TOL STEP SIZE

Description:

If the step size falls below the value of this parameter, then the interior-point optimizer assumes
that it is stalled. In other words the interior-point optimizer does not make any progress and
therefore it is better stop.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

1.0e-6

23.1.39 MSK DPAR LOWER OBJ CUT

Corresponding constant:

MSK DPAR LOWER OBJ CUT

Description:

If either a primal or dual feasible solution is found proving that the optimal objective value
is outside, the interval [MSK DPAR LOWER OBJ CUT, MSK DPAR UPPER OBJ CUT], then MOSEK is
terminated.

Possible Values:

Any number between -inf and +inf.

Default value:

-1.0e30

See also:

• MSK DPAR LOWER OBJ CUT FINITE TRH Objective bound.

23.1.40 MSK DPAR LOWER OBJ CUT FINITE TRH

Corresponding constant:

MSK DPAR LOWER OBJ CUT FINITE TRH

Description:

If the lower objective cut is less than the value of this parameter value, then the lower objective
cut i.e. MSK DPAR LOWER OBJ CUT is treated as −∞.

23.1. MSKDPARAME: DOUBLE PARAMETERS 271

Possible Values:

Any number between -inf and +inf.

Default value:

-0.5e30

23.1.41 MSK DPAR MIO DISABLE TERM TIME

Corresponding constant:

MSK DPAR MIO DISABLE TERM TIME

Description:

The termination criteria governed by

• MSK IPAR MIO MAX NUM RELAXS

• MSK IPAR MIO MAX NUM BRANCHES

• MSK DPAR MIO NEAR TOL ABS GAP

• MSK DPAR MIO NEAR TOL REL GAP

is disabled the first n seconds. This parameter specifies the number n. A negative value is
identical to infinity i.e. the termination criteria are never checked.

Possible Values:

Any number between -inf and +inf.

Default value:

-1.0

See also:

• MSK IPAR MIO MAX NUM RELAXS Maximum number of relaxations in branch and bound search.

• MSK IPAR MIO MAX NUM BRANCHES Maximum number of branches allowed during the branch
and bound search.

• MSK DPAR MIO NEAR TOL ABS GAP Relaxed absolute optimality tolerance employed by the
mixed-integer optimizer.

• MSK DPAR MIO NEAR TOL REL GAP The mixed-integer optimizer is terminated when this tol-
erance is satisfied.

23.1.42 MSK DPAR MIO HEURISTIC TIME

Corresponding constant:

MSK DPAR MIO HEURISTIC TIME

272 CHAPTER 23. PARAMETERS

Description:

Minimum amount of time to be used in the heuristic search for a good feasible integer solution. A
negative values implies that the optimizer decides the amount of time to be spent in the heuristic.

Possible Values:

Any number between -inf and +inf.

Default value:

-1.0

23.1.43 MSK DPAR MIO MAX TIME

Corresponding constant:

MSK DPAR MIO MAX TIME

Description:

This parameter limits the maximum time spent by the mixed-integer optimizer. A negative
number means infinity.

Possible Values:

Any number between -inf and +inf.

Default value:

-1.0

23.1.44 MSK DPAR MIO MAX TIME APRX OPT

Corresponding constant:

MSK DPAR MIO MAX TIME APRX OPT

Description:

Number of seconds spent by the mixed-integer optimizer before the MSK DPAR MIO TOL REL RELAX INT

is applied.

Possible Values:

Any number between 0.0 and +inf.

Default value:

60

23.1. MSKDPARAME: DOUBLE PARAMETERS 273

23.1.45 MSK DPAR MIO NEAR TOL ABS GAP

Corresponding constant:

MSK DPAR MIO NEAR TOL ABS GAP

Description:

Relaxed absolute optimality tolerance employed by the mixed-integer optimizer. This termina-
tion criteria is delayed. See MSK DPAR MIO DISABLE TERM TIME for details.

Possible Values:

Any number between 0.0 and +inf.

Default value:

0.0

See also:

• MSK DPAR MIO DISABLE TERM TIME Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

23.1.46 MSK DPAR MIO NEAR TOL REL GAP

Corresponding constant:

MSK DPAR MIO NEAR TOL REL GAP

Description:

The mixed-integer optimizer is terminated when this tolerance is satisfied. This termination
criteria is delayed. See MSK DPAR MIO DISABLE TERM TIME for details.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-3

See also:

• MSK DPAR MIO DISABLE TERM TIME Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

274 CHAPTER 23. PARAMETERS

23.1.47 MSK DPAR MIO REL ADD CUT LIMITED

Corresponding constant:

MSK DPAR MIO REL ADD CUT LIMITED

Description:

Controls how many cuts the mixed-integer optimizer is allowed to add to the problem. Let α
be the value of this parameter and m the number constraints, then mixed-integer optimizer is
allowed to αm cuts.

Possible Values:

Any number between 0.0 and 2.0.

Default value:

0.75

23.1.48 MSK DPAR MIO REL GAP CONST

Corresponding constant:

MSK DPAR MIO REL GAP CONST

Description:

This value is used to compute the relative gap for the solution to an integer optimization problem.

Possible Values:

Any number between 1.0e-15 and +inf.

Default value:

1.0e-10

23.1.49 MSK DPAR MIO TOL ABS GAP

Corresponding constant:

MSK DPAR MIO TOL ABS GAP

Description:

Absolute optimality tolerance employed by the mixed-integer optimizer.

Possible Values:

Any number between 0.0 and +inf.

Default value:

0.0

23.1. MSKDPARAME: DOUBLE PARAMETERS 275

23.1.50 MSK DPAR MIO TOL ABS RELAX INT

Corresponding constant:

MSK DPAR MIO TOL ABS RELAX INT

Description:

Absolute relaxation tolerance of the integer constraints. I.e. min(|x| − bxc, dxe− |x|) is less than
the tolerance then the integer restrictions assumed to be satisfied.

Possible Values:

Any number between 1e-9 and +inf.

Default value:

1.0e-5

23.1.51 MSK DPAR MIO TOL FEAS

Corresponding constant:

MSK DPAR MIO TOL FEAS

Description:

Feasibility tolerance for mixed integer solver. Any solution with maximum infeasibility below
this value will be considered feasible.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-7

23.1.52 MSK DPAR MIO TOL REL DUAL BOUND IMPROVEMENT

Corresponding constant:

MSK DPAR MIO TOL REL DUAL BOUND IMPROVEMENT

Description:

If the relative improvement of the dual bound is smaller than this value, the solver will terminate
the root cut generation. A value of 0.0 means that the value is selected automatically.

Possible Values:

Any number between 0.0 and 1.0.

Default value:

0.0

276 CHAPTER 23. PARAMETERS

23.1.53 MSK DPAR MIO TOL REL GAP

Corresponding constant:

MSK DPAR MIO TOL REL GAP

Description:

Relative optimality tolerance employed by the mixed-integer optimizer.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-4

23.1.54 MSK DPAR MIO TOL REL RELAX INT

Corresponding constant:

MSK DPAR MIO TOL REL RELAX INT

Description:

Relative relaxation tolerance of the integer constraints. I.e (min(|x|− bxc, dxe− |x|)) is less than
the tolerance times |x| then the integer restrictions assumed to be satisfied.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-6

23.1.55 MSK DPAR MIO TOL X

Corresponding constant:

MSK DPAR MIO TOL X

Description:

Absolute solution tolerance used in mixed-integer optimizer.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-6

23.1. MSKDPARAME: DOUBLE PARAMETERS 277

23.1.56 MSK DPAR NONCONVEX TOL FEAS

Corresponding constant:

MSK DPAR NONCONVEX TOL FEAS

Description:

Feasibility tolerance used by the nonconvex optimizer.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-6

23.1.57 MSK DPAR NONCONVEX TOL OPT

Corresponding constant:

MSK DPAR NONCONVEX TOL OPT

Description:

Optimality tolerance used by the nonconvex optimizer.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-7

23.1.58 MSK DPAR OPTIMIZER MAX TIME

Corresponding constant:

MSK DPAR OPTIMIZER MAX TIME

Description:

Maximum amount of time the optimizer is allowed to spent on the optimization. A negative
number means infinity.

Possible Values:

Any number between -inf and +inf.

Default value:

-1.0

278 CHAPTER 23. PARAMETERS

23.1.59 MSK DPAR PRESOLVE TOL ABS LINDEP

Corresponding constant:

MSK DPAR PRESOLVE TOL ABS LINDEP

Description:

Absolute tolerance employed by the linear dependency checker.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-6

23.1.60 MSK DPAR PRESOLVE TOL AIJ

Corresponding constant:

MSK DPAR PRESOLVE TOL AIJ

Description:

Absolute zero tolerance employed for aij in the presolve.

Possible Values:

Any number between 1.0e-15 and +inf.

Default value:

1.0e-12

23.1.61 MSK DPAR PRESOLVE TOL REL LINDEP

Corresponding constant:

MSK DPAR PRESOLVE TOL REL LINDEP

Description:

Relative tolerance employed by the linear dependency checker.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-10

23.1. MSKDPARAME: DOUBLE PARAMETERS 279

23.1.62 MSK DPAR PRESOLVE TOL S

Corresponding constant:

MSK DPAR PRESOLVE TOL S

Description:

Absolute zero tolerance employed for si in the presolve.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-8

23.1.63 MSK DPAR PRESOLVE TOL X

Corresponding constant:

MSK DPAR PRESOLVE TOL X

Description:

Absolute zero tolerance employed for xj in the presolve.

Possible Values:

Any number between 0.0 and +inf.

Default value:

1.0e-8

23.1.64 MSK DPAR QCQO REFORMULATE REL DROP TOL

Corresponding constant:

MSK DPAR QCQO REFORMULATE REL DROP TOL

Description:

This parameter determines when columns are dropped in incomplete cholesky factorization doing
reformulation of quadratic problems.

Possible Values:

Any number between 0 and +inf.

Default value:

1e-15

280 CHAPTER 23. PARAMETERS

23.1.65 MSK DPAR SIM LU TOL REL PIV

Corresponding constant:

MSK DPAR SIM LU TOL REL PIV

Description:

Relative pivot tolerance employed when computing the LU factorization of the basis in the
simplex optimizers and in the basis identification procedure.

A value closer to 1.0 generally improves numerical stability but typically also implies an increase
in the computational work.

Possible Values:

Any number between 1.0e-6 and 0.999999.

Default value:

0.01

23.1.66 MSK DPAR SIMPLEX ABS TOL PIV

Corresponding constant:

MSK DPAR SIMPLEX ABS TOL PIV

Description:

Absolute pivot tolerance employed by the simplex optimizers.

Possible Values:

Any number between 1.0e-12 and +inf.

Default value:

1.0e-7

23.1.67 MSK DPAR UPPER OBJ CUT

Corresponding constant:

MSK DPAR UPPER OBJ CUT

Description:

If either a primal or dual feasible solution is found proving that the optimal objective value is
outside, [MSK DPAR LOWER OBJ CUT, MSK DPAR UPPER OBJ CUT], then MOSEK is terminated.

Possible Values:

Any number between -inf and +inf.

23.2. MSKIPARAME: INTEGER PARAMETERS 281

Default value:

1.0e30

See also:

• MSK DPAR UPPER OBJ CUT FINITE TRH Objective bound.

23.1.68 MSK DPAR UPPER OBJ CUT FINITE TRH

Corresponding constant:

MSK DPAR UPPER OBJ CUT FINITE TRH

Description:

If the upper objective cut is greater than the value of this value parameter, then the the upper
objective cut MSK DPAR UPPER OBJ CUT is treated as ∞.

Possible Values:

Any number between -inf and +inf.

Default value:

0.5e30

23.2 MSKiparame: Integer parameters

23.2.1 MSK IPAR ALLOC ADD QNZ

Corresponding constant:

MSK IPAR ALLOC ADD QNZ

Description:

Additional number of Q non-zeros that are allocated space for when numanz exceeds maxnumqnz
during addition of new Q entries.

Possible Values:

Any number between 0 and +inf.

Default value:

5000

282 CHAPTER 23. PARAMETERS

23.2.2 MSK IPAR ANA SOL BASIS

Corresponding constant:

MSK IPAR ANA SOL BASIS

Description:

Controls whether the basis matrix is analyzed in solaution analyzer.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.3 MSK IPAR ANA SOL PRINT VIOLATED

Corresponding constant:

MSK IPAR ANA SOL PRINT VIOLATED

Description:

Controls whether a list of violated constraints is printed.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.4 MSK IPAR AUTO SORT A BEFORE OPT

Corresponding constant:

MSK IPAR AUTO SORT A BEFORE OPT

Description:

Controls whether the elements in each column of A are sorted before an optimization is performed.
This is not required but makes the optimization more deterministic.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2. MSKIPARAME: INTEGER PARAMETERS 283

23.2.5 MSK IPAR AUTO UPDATE SOL INFO

Corresponding constant:

MSK IPAR AUTO UPDATE SOL INFO

Description:

Controls whether the solution information items are automatically updated after an optimization
is performed.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.6 MSK IPAR BASIS SOLVE USE PLUS ONE

Corresponding constant:

MSK IPAR BASIS SOLVE USE PLUS ONE

Description:

If a slack variable is in the basis, then the corresponding column in the basis is a unit vector
with -1 in the right position. However, if this parameter is set to MSK ON, -1 is replaced by 1.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.7 MSK IPAR BI CLEAN OPTIMIZER

Corresponding constant:

MSK IPAR BI CLEAN OPTIMIZER

Description:

Controls which simplex optimizer is used in the clean-up phase.

Possible values:

• MSK OPTIMIZER CONCURRENT The optimizer for nonconvex nonlinear problems.

284 CHAPTER 23. PARAMETERS

• MSK OPTIMIZER CONIC The optimizer for problems having conic constraints.

• MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

• MSK OPTIMIZER FREE The optimizer is chosen automatically.

• MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

• MSK OPTIMIZER INTPNT The interior-point optimizer is used.

• MSK OPTIMIZER MIXED INT The mixed-integer optimizer.

• MSK OPTIMIZER MIXED INT CONIC The mixed-integer optimizer for conic and linear prob-
lems.

• MSK OPTIMIZER NETWORK PRIMAL SIMPLEX The network primal simplex optimizer is used.
It is only applicable to pute network problems.

• MSK OPTIMIZER NONCONVEX The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER PRIMAL DUAL SIMPLEX The primal dual simplex optimizer is used.

• MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

Default value:

MSK OPTIMIZER FREE

23.2.8 MSK IPAR BI IGNORE MAX ITER

Corresponding constant:

MSK IPAR BI IGNORE MAX ITER

Description:

If the parameter MSK IPAR INTPNT BASIS has the value MSK BI NO ERROR and the interior-point
optimizer has terminated due to maximum number of iterations, then basis identification is
performed if this parameter has the value MSK ON.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.9 MSK IPAR BI IGNORE NUM ERROR

Corresponding constant:

MSK IPAR BI IGNORE NUM ERROR

23.2. MSKIPARAME: INTEGER PARAMETERS 285

Description:

If the parameter MSK IPAR INTPNT BASIS has the value MSK BI NO ERROR and the interior-point
optimizer has terminated due to a numerical problem, then basis identification is performed if
this parameter has the value MSK ON.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.10 MSK IPAR BI MAX ITERATIONS

Corresponding constant:

MSK IPAR BI MAX ITERATIONS

Description:

Controls the maximum number of simplex iterations allowed to optimize a basis after the basis
identification.

Possible Values:

Any number between 0 and +inf.

Default value:

1000000

23.2.11 MSK IPAR CACHE LICENSE

Corresponding constant:

MSK IPAR CACHE LICENSE

Description:

Specifies if the license is kept checked out for the lifetime of the mosek environment (on) or
returned to the server immediately after the optimization (off).

Check-in and check-out of licenses have an overhead. Frequent communication with the license
server should be avoided.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

286 CHAPTER 23. PARAMETERS

23.2.12 MSK IPAR CHECK CONVEXITY

Corresponding constant:

MSK IPAR CHECK CONVEXITY

Description:

Specify the level of convexity check on quadratic problems

Possible values:

• MSK CHECK CONVEXITY FULL Perform a full convexity check.

• MSK CHECK CONVEXITY NONE No convexity check.

• MSK CHECK CONVEXITY SIMPLE Perform simple and fast convexity check.

Default value:

MSK CHECK CONVEXITY FULL

23.2.13 MSK IPAR COMPRESS STATFILE

Corresponding constant:

MSK IPAR COMPRESS STATFILE

Description:

Control compression of stat files.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.14 MSK IPAR CONCURRENT NUM OPTIMIZERS

Corresponding constant:

MSK IPAR CONCURRENT NUM OPTIMIZERS

Description:

The maximum number of simultaneous optimizations that will be started by the concurrent
optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

2

23.2. MSKIPARAME: INTEGER PARAMETERS 287

23.2.15 MSK IPAR CONCURRENT PRIORITY DUAL SIMPLEX

Corresponding constant:

MSK IPAR CONCURRENT PRIORITY DUAL SIMPLEX

Description:

Priority of the dual simplex algorithm when selecting solvers for concurrent optimization.

Possible Values:

Any number between 0 and +inf.

Default value:

2

23.2.16 MSK IPAR CONCURRENT PRIORITY FREE SIMPLEX

Corresponding constant:

MSK IPAR CONCURRENT PRIORITY FREE SIMPLEX

Description:

Priority of the free simplex optimizer when selecting solvers for concurrent optimization.

Possible Values:

Any number between 0 and +inf.

Default value:

3

23.2.17 MSK IPAR CONCURRENT PRIORITY INTPNT

Corresponding constant:

MSK IPAR CONCURRENT PRIORITY INTPNT

Description:

Priority of the interior-point algorithm when selecting solvers for concurrent optimization.

Possible Values:

Any number between 0 and +inf.

Default value:

4

288 CHAPTER 23. PARAMETERS

23.2.18 MSK IPAR CONCURRENT PRIORITY PRIMAL SIMPLEX

Corresponding constant:

MSK IPAR CONCURRENT PRIORITY PRIMAL SIMPLEX

Description:

Priority of the primal simplex algorithm when selecting solvers for concurrent optimization.

Possible Values:

Any number between 0 and +inf.

Default value:

1

23.2.19 MSK IPAR FEASREPAIR OPTIMIZE

Corresponding constant:

MSK IPAR FEASREPAIR OPTIMIZE

Description:

Controls which type of feasibility analysis is to be performed.

Possible values:

• MSK FEASREPAIR OPTIMIZE COMBINED Minimize with original objective subject to minimal
weighted violation of bounds.

• MSK FEASREPAIR OPTIMIZE NONE Do not optimize the feasibility repair problem.

• MSK FEASREPAIR OPTIMIZE PENALTY Minimize weighted sum of violations.

Default value:

MSK FEASREPAIR OPTIMIZE NONE

23.2.20 MSK IPAR INFEAS GENERIC NAMES

Corresponding constant:

MSK IPAR INFEAS GENERIC NAMES

Description:

Controls whether generic names are used when an infeasible subproblem is created.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2. MSKIPARAME: INTEGER PARAMETERS 289

23.2.21 MSK IPAR INFEAS PREFER PRIMAL

Corresponding constant:

MSK IPAR INFEAS PREFER PRIMAL

Description:

If both certificates of primal and dual infeasibility are supplied then only the primal is used when
this option is turned on.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.22 MSK IPAR INFEAS REPORT AUTO

Corresponding constant:

MSK IPAR INFEAS REPORT AUTO

Description:

Controls whether an infeasibility report is automatically produced after the optimization if the
problem is primal or dual infeasible.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.23 MSK IPAR INFEAS REPORT LEVEL

Corresponding constant:

MSK IPAR INFEAS REPORT LEVEL

Description:

Controls the amount of information presented in an infeasibility report. Higher values imply
more information.

Possible Values:

Any number between 0 and +inf.

290 CHAPTER 23. PARAMETERS

Default value:

1

23.2.24 MSK IPAR INTPNT BASIS

Corresponding constant:

MSK IPAR INTPNT BASIS

Description:

Controls whether the interior-point optimizer also computes an optimal basis.

Possible values:

• MSK BI ALWAYS Basis identification is always performed even if the interior-point optimizer
terminates abnormally.

• MSK BI IF FEASIBLE Basis identification is not performed if the interior-point optimizer
terminates with a problem status saying that the problem is primal or dual infeasible.

• MSK BI NEVER Never do basis identification.

• MSK BI NO ERROR Basis identification is performed if the interior-point optimizer terminates
without an error.

• MSK BI RESERVERED Not currently in use.

Default value:

MSK BI ALWAYS

See also:

• MSK IPAR BI IGNORE MAX ITER Turns on basis identification in case the interior-point opti-
mizer is terminated due to maximum number of iterations.

• MSK IPAR BI IGNORE NUM ERROR Turns on basis identification in case the interior-point op-
timizer is terminated due to a numerical problem.

23.2.25 MSK IPAR INTPNT DIFF STEP

Corresponding constant:

MSK IPAR INTPNT DIFF STEP

Description:

Controls whether different step sizes are allowed in the primal and dual space.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2. MSKIPARAME: INTEGER PARAMETERS 291

23.2.26 MSK IPAR INTPNT FACTOR DEBUG LVL

Corresponding constant:

MSK IPAR INTPNT FACTOR DEBUG LVL

Description:

Controls factorization debug level.

Possible Values:

Any number between 0 and +inf.

Default value:

0

23.2.27 MSK IPAR INTPNT FACTOR METHOD

Corresponding constant:

MSK IPAR INTPNT FACTOR METHOD

Description:

Controls the method used to factor the Newton equation system.

Possible Values:

Any number between 0 and +inf.

Default value:

0

23.2.28 MSK IPAR INTPNT HOTSTART

Corresponding constant:

MSK IPAR INTPNT HOTSTART

Description:

Currently not in use.

Possible values:

• MSK INTPNT HOTSTART DUAL The interior-point optimizer exploits the dual solution only.

• MSK INTPNT HOTSTART NONE The interior-point optimizer performs a coldstart.

• MSK INTPNT HOTSTART PRIMAL The interior-point optimizer exploits the primal solution
only.

• MSK INTPNT HOTSTART PRIMAL DUAL The interior-point optimizer exploits both the primal
and dual solution.

292 CHAPTER 23. PARAMETERS

Default value:

MSK INTPNT HOTSTART NONE

23.2.29 MSK IPAR INTPNT MAX ITERATIONS

Corresponding constant:

MSK IPAR INTPNT MAX ITERATIONS

Description:

Controls the maximum number of iterations allowed in the interior-point optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

400

23.2.30 MSK IPAR INTPNT MAX NUM COR

Corresponding constant:

MSK IPAR INTPNT MAX NUM COR

Description:

Controls the maximum number of correctors allowed by the multiple corrector procedure. A
negative value means that MOSEK is making the choice.

Possible Values:

Any number between -1 and +inf.

Default value:

-1

23.2.31 MSK IPAR INTPNT MAX NUM REFINEMENT STEPS

Corresponding constant:

MSK IPAR INTPNT MAX NUM REFINEMENT STEPS

Description:

Maximum number of steps to be used by the iterative refinement of the search direction. A
negative value implies that the optimizer Chooses the maximum number of iterative refinement
steps.

Possible Values:

Any number between -inf and +inf.

23.2. MSKIPARAME: INTEGER PARAMETERS 293

Default value:

-1

23.2.32 MSK IPAR INTPNT OFF COL TRH

Corresponding constant:

MSK IPAR INTPNT OFF COL TRH

Description:

Controls how many offending columns are detected in the Jacobian of the constraint matrix.

1 means aggressive detection, higher values mean less aggressive detection.

0 means no detection.

Possible Values:

Any number between 0 and +inf.

Default value:

40

23.2.33 MSK IPAR INTPNT ORDER METHOD

Corresponding constant:

MSK IPAR INTPNT ORDER METHOD

Description:

Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton
equation system.

Possible values:

• MSK ORDER METHOD APPMINLOC Approximate minimum local fill-in ordering is employed.

• MSK ORDER METHOD EXPERIMENTAL This option should not be used.

• MSK ORDER METHOD FORCE GRAPHPAR Always use the graph partitioning based ordering even
if it is worse that the approximate minimum local fill ordering.

• MSK ORDER METHOD FREE The ordering method is chosen automatically.

• MSK ORDER METHOD NONE No ordering is used.

• MSK ORDER METHOD TRY GRAPHPAR Always try the the graph partitioning based ordering.

Default value:

MSK ORDER METHOD FREE

294 CHAPTER 23. PARAMETERS

23.2.34 MSK IPAR INTPNT REGULARIZATION USE

Corresponding constant:

MSK IPAR INTPNT REGULARIZATION USE

Description:

Controls whether regularization is allowed.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.35 MSK IPAR INTPNT SCALING

Corresponding constant:

MSK IPAR INTPNT SCALING

Description:

Controls how the problem is scaled before the interior-point optimizer is used.

Possible values:

• MSK SCALING AGGRESSIVE A very aggressive scaling is performed.

• MSK SCALING FREE The optimizer chooses the scaling heuristic.

• MSK SCALING MODERATE A conservative scaling is performed.

• MSK SCALING NONE No scaling is performed.

Default value:

MSK SCALING FREE

23.2.36 MSK IPAR INTPNT SOLVE FORM

Corresponding constant:

MSK IPAR INTPNT SOLVE FORM

Description:

Controls whether the primal or the dual problem is solved.

Possible values:

23.2. MSKIPARAME: INTEGER PARAMETERS 295

• MSK SOLVE DUAL The optimizer should solve the dual problem.

• MSK SOLVE FREE The optimizer is free to solve either the primal or the dual problem.

• MSK SOLVE PRIMAL The optimizer should solve the primal problem.

Default value:

MSK SOLVE FREE

23.2.37 MSK IPAR INTPNT STARTING POINT

Corresponding constant:

MSK IPAR INTPNT STARTING POINT

Description:

Starting point used by the interior-point optimizer.

Possible values:

• MSK STARTING POINT CONSTANT The optimizer constructs a starting point by assigning a
constant value to all primal and dual variables. This starting point is normally robust.

• MSK STARTING POINT FREE The starting point is chosen automatically.

• MSK STARTING POINT GUESS The optimizer guesses a starting point.

• MSK STARTING POINT SATISFY BOUNDS The starting point is choosen to satisfy all the simple
bounds on nonlinear variables. If this starting point is employed, then more care than usual
should employed when choosing the bounds on the nonlinear variables. In particular very
tight bounds should be avoided.

Default value:

MSK STARTING POINT FREE

23.2.38 MSK IPAR LIC TRH EXPIRY WRN

Corresponding constant:

MSK IPAR LIC TRH EXPIRY WRN

Description:

If a license feature expires in a numbers days less than the value of this parameter then a warning
will be issued.

Possible Values:

Any number between 0 and +inf.

Default value:

7

296 CHAPTER 23. PARAMETERS

23.2.39 MSK IPAR LICENSE ALLOW OVERUSE

Corresponding constant:

MSK IPAR LICENSE ALLOW OVERUSE

Description:

Controls if license overuse is allowed when caching licenses

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.40 MSK IPAR LICENSE DEBUG

Corresponding constant:

MSK IPAR LICENSE DEBUG

Description:

This option is used to turn on debugging of the incense manager.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.41 MSK IPAR LICENSE PAUSE TIME

Corresponding constant:

MSK IPAR LICENSE PAUSE TIME

Description:

If MSK IPAR LICENSE WAIT=MSK ON and no license is available, then MOSEK sleeps a number of
milliseconds between each check of whether a license has become free.

Possible Values:

Any number between 0 and 1000000.

Default value:

100

23.2. MSKIPARAME: INTEGER PARAMETERS 297

23.2.42 MSK IPAR LICENSE SUPPRESS EXPIRE WRNS

Corresponding constant:

MSK IPAR LICENSE SUPPRESS EXPIRE WRNS

Description:

Controls whether license features expire warnings are suppressed.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.43 MSK IPAR LICENSE WAIT

Corresponding constant:

MSK IPAR LICENSE WAIT

Description:

If all licenses are in use MOSEK returns with an error code. However, by turning on this
parameter MOSEK will wait for an available license.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.44 MSK IPAR LOG

Corresponding constant:

MSK IPAR LOG

Description:

Controls the amount of log information. The value 0 implies that all log information is suppressed.
A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems the value of
this parameter is reduced by the value of MSK IPAR LOG CUT SECOND OPT for the second and any
subsequent optimizations.

298 CHAPTER 23. PARAMETERS

Possible Values:

Any number between 0 and +inf.

Default value:

10

See also:

• MSK IPAR LOG CUT SECOND OPT Controls the reduction in the log levels for the second and
any subsequent optimizations.

23.2.45 MSK IPAR LOG BI

Corresponding constant:

MSK IPAR LOG BI

Description:

Controls the amount of output printed by the basis identification procedure. A higher level
implies that more information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

4

23.2.46 MSK IPAR LOG BI FREQ

Corresponding constant:

MSK IPAR LOG BI FREQ

Description:

Controls how frequent the optimizer outputs information about the basis identification and how
frequent the user-defined call-back function is called.

Possible Values:

Any number between 0 and +inf.

Default value:

2500

23.2. MSKIPARAME: INTEGER PARAMETERS 299

23.2.47 MSK IPAR LOG CHECK CONVEXITY

Corresponding constant:

MSK IPAR LOG CHECK CONVEXITY

Description:

Controls logging in convexity check on quadratic problems. Set to a positive value to turn logging
on.

If a quadratic coefficient matrix is found to violate the requirement of PSD (NSD) then a list
of negative (positive) pivot elements is printed. The absolute value of the pivot elements is also
shown.

Possible Values:

Any number between 0 and +inf.

Default value:

0

23.2.48 MSK IPAR LOG CONCURRENT

Corresponding constant:

MSK IPAR LOG CONCURRENT

Description:

Controls amount of output printed by the concurrent optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

1

23.2.49 MSK IPAR LOG CUT SECOND OPT

Corresponding constant:

MSK IPAR LOG CUT SECOND OPT

Description:

If a task is employed to solve a sequence of optimization problems, then the value of the log
levels is reduced by the value of this parameter. E.g MSK IPAR LOG and MSK IPAR LOG SIM are
reduced by the value of this parameter for the second and any subsequent optimizations.

Possible Values:

Any number between 0 and +inf.

300 CHAPTER 23. PARAMETERS

Default value:

1

See also:

• MSK IPAR LOG Controls the amount of log information.

• MSK IPAR LOG INTPNT Controls the amount of log information from the interior-point opti-
mizers.

• MSK IPAR LOG MIO Controls the amount of log information from the mixed-integer optimiz-
ers.

• MSK IPAR LOG SIM Controls the amount of log information from the simplex optimizers.

23.2.50 MSK IPAR LOG EXPAND

Corresponding constant:

MSK IPAR LOG EXPAND

Description:

Controls the amount of logging when a data item such as the maximum number constrains is
expanded.

Possible Values:

Any number between 0 and +inf.

Default value:

0

23.2.51 MSK IPAR LOG FACTOR

Corresponding constant:

MSK IPAR LOG FACTOR

Description:

If turned on, then the factor log lines are added to the log.

Possible Values:

Any number between 0 and +inf.

Default value:

1

23.2. MSKIPARAME: INTEGER PARAMETERS 301

23.2.52 MSK IPAR LOG FEAS REPAIR

Corresponding constant:

MSK IPAR LOG FEAS REPAIR

Description:

Controls the amount of output printed when performing feasibility repair. A value higher than
one means extensive logging.

Possible Values:

Any number between 0 and +inf.

Default value:

1

23.2.53 MSK IPAR LOG FILE

Corresponding constant:

MSK IPAR LOG FILE

Description:

If turned on, then some log info is printed when a file is written or read.

Possible Values:

Any number between 0 and +inf.

Default value:

1

23.2.54 MSK IPAR LOG HEAD

Corresponding constant:

MSK IPAR LOG HEAD

Description:

If turned on, then a header line is added to the log.

Possible Values:

Any number between 0 and +inf.

Default value:

1

302 CHAPTER 23. PARAMETERS

23.2.55 MSK IPAR LOG INFEAS ANA

Corresponding constant:

MSK IPAR LOG INFEAS ANA

Description:

Controls amount of output printed by the infeasibility analyzer procedures. A higher level implies
that more information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

1

23.2.56 MSK IPAR LOG INTPNT

Corresponding constant:

MSK IPAR LOG INTPNT

Description:

Controls amount of output printed printed by the interior-point optimizer. A higher level implies
that more information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

4

23.2.57 MSK IPAR LOG MIO

Corresponding constant:

MSK IPAR LOG MIO

Description:

Controls the log level for the mixed-integer optimizer. A higher level implies that more informa-
tion is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

4

23.2. MSKIPARAME: INTEGER PARAMETERS 303

23.2.58 MSK IPAR LOG MIO FREQ

Corresponding constant:

MSK IPAR LOG MIO FREQ

Description:

Controls how frequent the mixed-integer optimizer prints the log line. It will print line every
time MSK IPAR LOG MIO FREQ relaxations have been solved.

Possible Values:

A integer value.

Default value:

1000

23.2.59 MSK IPAR LOG NONCONVEX

Corresponding constant:

MSK IPAR LOG NONCONVEX

Description:

Controls amount of output printed by the nonconvex optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

1

23.2.60 MSK IPAR LOG OPTIMIZER

Corresponding constant:

MSK IPAR LOG OPTIMIZER

Description:

Controls the amount of general optimizer information that is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

1

304 CHAPTER 23. PARAMETERS

23.2.61 MSK IPAR LOG ORDER

Corresponding constant:

MSK IPAR LOG ORDER

Description:

If turned on, then factor lines are added to the log.

Possible Values:

Any number between 0 and +inf.

Default value:

1

23.2.62 MSK IPAR LOG PARAM

Corresponding constant:

MSK IPAR LOG PARAM

Description:

Controls the amount of information printed out about parameter changes.

Possible Values:

Any number between 0 and +inf.

Default value:

0

23.2.63 MSK IPAR LOG PRESOLVE

Corresponding constant:

MSK IPAR LOG PRESOLVE

Description:

Controls amount of output printed by the presolve procedure. A higher level implies that more
information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

1

23.2. MSKIPARAME: INTEGER PARAMETERS 305

23.2.64 MSK IPAR LOG RESPONSE

Corresponding constant:

MSK IPAR LOG RESPONSE

Description:

Controls amount of output printed when response codes are reported. A higher level implies that
more information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

0

23.2.65 MSK IPAR LOG SENSITIVITY

Corresponding constant:

MSK IPAR LOG SENSITIVITY

Description:

Controls the amount of logging during the sensitivity analysis. 0: Means no logging information
is produced. 1: Timing information is printed. 2: Sensitivity results are printed.

Possible Values:

Any number between 0 and +inf.

Default value:

1

23.2.66 MSK IPAR LOG SENSITIVITY OPT

Corresponding constant:

MSK IPAR LOG SENSITIVITY OPT

Description:

Controls the amount of logging from the optimizers employed during the sensitivity analysis. 0
means no logging information is produced.

Possible Values:

Any number between 0 and +inf.

Default value:

0

306 CHAPTER 23. PARAMETERS

23.2.67 MSK IPAR LOG SIM

Corresponding constant:

MSK IPAR LOG SIM

Description:

Controls amount of output printed by the simplex optimizer. A higher level implies that more
information is logged.

Possible Values:

Any number between 0 and +inf.

Default value:

4

23.2.68 MSK IPAR LOG SIM FREQ

Corresponding constant:

MSK IPAR LOG SIM FREQ

Description:

Controls how frequent the simplex optimizer outputs information about the optimization and
how frequent the user-defined call-back function is called.

Possible Values:

Any number between 0 and +inf.

Default value:

1000

23.2.69 MSK IPAR LOG SIM MINOR

Corresponding constant:

MSK IPAR LOG SIM MINOR

Description:

Currently not in use.

Possible Values:

Any number between 0 and +inf.

Default value:

1

23.2. MSKIPARAME: INTEGER PARAMETERS 307

23.2.70 MSK IPAR LOG SIM NETWORK FREQ

Corresponding constant:

MSK IPAR LOG SIM NETWORK FREQ

Description:

Controls how frequent the network simplex optimizer outputs information about the optimization
and how frequent the user-defined call-back function is called. The network optimizer will use a
logging frequency equal to MSK IPAR LOG SIM FREQ times MSK IPAR LOG SIM NETWORK FREQ.

Possible Values:

Any number between 0 and +inf.

Default value:

1000

23.2.71 MSK IPAR LOG STORAGE

Corresponding constant:

MSK IPAR LOG STORAGE

Description:

When turned on, MOSEK prints messages regarding the storage usage and allocation.

Possible Values:

Any number between 0 and +inf.

Default value:

0

23.2.72 MSK IPAR MAX NUM WARNINGS

Corresponding constant:

MSK IPAR MAX NUM WARNINGS

Description:

Waning level. A higher value results in more warnings.

Possible Values:

Any number between 0 and +inf.

Default value:

10

308 CHAPTER 23. PARAMETERS

23.2.73 MSK IPAR MIO BRANCH DIR

Corresponding constant:

MSK IPAR MIO BRANCH DIR

Description:

Controls whether the mixed-integer optimizer is branching up or down by default.

Possible values:

• MSK BRANCH DIR DOWN The mixed-integer optimizer always chooses the down branch first.

• MSK BRANCH DIR FREE The mixed-integer optimizer decides which branch to choose.

• MSK BRANCH DIR UP The mixed-integer optimizer always chooses the up branch first.

Default value:

MSK BRANCH DIR FREE

23.2.74 MSK IPAR MIO BRANCH PRIORITIES USE

Corresponding constant:

MSK IPAR MIO BRANCH PRIORITIES USE

Description:

Controls whether branching priorities are used by the mixed-integer optimizer.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.75 MSK IPAR MIO CONSTRUCT SOL

Corresponding constant:

MSK IPAR MIO CONSTRUCT SOL

Description:

If set to MSK ON and all integer variables have been given a value for which a feasible mixed
integer solution exists, then MOSEK generates an initial solution to the mixed integer problem
by fixing all integer values and solving the remaining problem.

Possible values:

23.2. MSKIPARAME: INTEGER PARAMETERS 309

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.76 MSK IPAR MIO CONT SOL

Corresponding constant:

MSK IPAR MIO CONT SOL

Description:

Controls the meaning of the interior-point and basic solutions in mixed integer problems.

Possible values:

• MSK MIO CONT SOL ITG The reported interior-point and basic solutions are a solution to the
problem with all integer variables fixed at the value they have in the integer solution. A
solution is only reported in case the problem has a primal feasible solution.

• MSK MIO CONT SOL ITG REL In case the problem is primal feasible then the reported interior-
point and basic solutions are a solution to the problem with all integer variables fixed at
the value they have in the integer solution. If the problem is primal infeasible, then the
solution to the root node problem is reported.

• MSK MIO CONT SOL NONE No interior-point or basic solution are reported when the mixed-
integer optimizer is used.

• MSK MIO CONT SOL ROOT The reported interior-point and basic solutions are a solution to
the root node problem when mixed-integer optimizer is used.

Default value:

MSK MIO CONT SOL NONE

23.2.77 MSK IPAR MIO CUT LEVEL ROOT

Corresponding constant:

MSK IPAR MIO CUT LEVEL ROOT

Description:

Controls the cut level employed by the mixed-integer optimizer at the root node. A negative
value means a default value determined by the mixed-integer optimizer is used. By adding the
appropriate values from the following table the employed cut types can be controlled.

310 CHAPTER 23. PARAMETERS

GUB cover +2
Flow cover +4
Lifting +8
Plant location +16
Disaggregation +32
Knapsack cover +64
Lattice +128
Gomory +256
Coefficient reduction +512
GCD +1024
Obj. integrality +2048

Possible Values:

Any value.

Default value:

-1

23.2.78 MSK IPAR MIO CUT LEVEL TREE

Corresponding constant:

MSK IPAR MIO CUT LEVEL TREE

Description:

Controls the cut level employed by the mixed-integer optimizer at the tree. See MSK IPAR MIO CUT LEVEL ROOT

for an explanation of the parameter values.

Possible Values:

Any value.

Default value:

-1

23.2.79 MSK IPAR MIO FEASPUMP LEVEL

Corresponding constant:

MSK IPAR MIO FEASPUMP LEVEL

Description:

Feasibility pump is a heuristic designed to compute an initial feasible solution. A value of 0
implies that the feasibility pump heuristic is not used. A value of -1 implies that the mixed-
integer optimizer decides how the feasibility pump heuristic is used. A larger value than 1
implies that the feasibility pump is employed more aggressively. Normally a value beyond 3 is
not worthwhile.

23.2. MSKIPARAME: INTEGER PARAMETERS 311

Possible Values:

Any number between -inf and 3.

Default value:

-1

23.2.80 MSK IPAR MIO HEURISTIC LEVEL

Corresponding constant:

MSK IPAR MIO HEURISTIC LEVEL

Description:

Controls the heuristic employed by the mixed-integer optimizer to locate an initial good integer
feasible solution. A value of zero means the heuristic is not used at all. A larger value than
0 means that a gradually more sophisticated heuristic is used which is computationally more
expensive. A negative value implies that the optimizer chooses the heuristic. Normally a value
around 3 to 5 should be optimal.

Possible Values:

Any value.

Default value:

-1

23.2.81 MSK IPAR MIO HOTSTART

Corresponding constant:

MSK IPAR MIO HOTSTART

Description:

Controls whether the integer optimizer is hot-started.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

312 CHAPTER 23. PARAMETERS

23.2.82 MSK IPAR MIO KEEP BASIS

Corresponding constant:

MSK IPAR MIO KEEP BASIS

Description:

Controls whether the integer presolve keeps bases in memory. This speeds on the solution process
at cost of bigger memory consumption.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.83 MSK IPAR MIO LOCAL BRANCH NUMBER

Corresponding constant:

MSK IPAR MIO LOCAL BRANCH NUMBER

Description:

Controls the size of the local search space when doing local branching.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

23.2.84 MSK IPAR MIO MAX NUM BRANCHES

Corresponding constant:

MSK IPAR MIO MAX NUM BRANCHES

Description:

Maximum number of branches allowed during the branch and bound search. A negative value
means infinite.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

23.2. MSKIPARAME: INTEGER PARAMETERS 313

See also:

• MSK DPAR MIO DISABLE TERM TIME Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

23.2.85 MSK IPAR MIO MAX NUM RELAXS

Corresponding constant:

MSK IPAR MIO MAX NUM RELAXS

Description:

Maximum number of relaxations allowed during the branch and bound search. A negative value
means infinite.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

See also:

• MSK DPAR MIO DISABLE TERM TIME Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

23.2.86 MSK IPAR MIO MAX NUM SOLUTIONS

Corresponding constant:

MSK IPAR MIO MAX NUM SOLUTIONS

Description:

The mixed-integer optimizer can be terminated after a certain number of different feasible so-
lutions has been located. If this parameter has the value n and n is strictly positive, then the
mixed-integer optimizer will be terminated when n feasible solutions have been located.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

See also:

• MSK DPAR MIO DISABLE TERM TIME Certain termination criteria is disabled within the mixed-
integer optimizer for period time specified by the parameter.

314 CHAPTER 23. PARAMETERS

23.2.87 MSK IPAR MIO MODE

Corresponding constant:

MSK IPAR MIO MODE

Description:

Controls whether the optimizer includes the integer restrictions when solving a (mixed) integer
optimization problem.

Possible values:

• MSK MIO MODE IGNORED The integer constraints are ignored and the problem is solved as a
continuous problem.

• MSK MIO MODE LAZY Integer restrictions should be satisfied if an optimizer is available for
the problem.

• MSK MIO MODE SATISFIED Integer restrictions should be satisfied.

Default value:

MSK MIO MODE SATISFIED

23.2.88 MSK IPAR MIO MT USER CB

Corresponding constant:

MSK IPAR MIO MT USER CB

Description:

It true user callbacks are called from each thread used by this optimizer. If false the user callback
is only called from a single thread.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.89 MSK IPAR MIO NODE OPTIMIZER

Corresponding constant:

MSK IPAR MIO NODE OPTIMIZER

Description:

Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

23.2. MSKIPARAME: INTEGER PARAMETERS 315

Possible values:

• MSK OPTIMIZER CONCURRENT The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER CONIC The optimizer for problems having conic constraints.

• MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

• MSK OPTIMIZER FREE The optimizer is chosen automatically.

• MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

• MSK OPTIMIZER INTPNT The interior-point optimizer is used.

• MSK OPTIMIZER MIXED INT The mixed-integer optimizer.

• MSK OPTIMIZER MIXED INT CONIC The mixed-integer optimizer for conic and linear prob-
lems.

• MSK OPTIMIZER NETWORK PRIMAL SIMPLEX The network primal simplex optimizer is used.
It is only applicable to pute network problems.

• MSK OPTIMIZER NONCONVEX The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER PRIMAL DUAL SIMPLEX The primal dual simplex optimizer is used.

• MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

Default value:

MSK OPTIMIZER FREE

23.2.90 MSK IPAR MIO NODE SELECTION

Corresponding constant:

MSK IPAR MIO NODE SELECTION

Description:

Controls the node selection strategy employed by the mixed-integer optimizer.

Possible values:

• MSK MIO NODE SELECTION BEST The optimizer employs a best bound node selection strategy.

• MSK MIO NODE SELECTION FIRST The optimizer employs a depth first node selection strat-
egy.

• MSK MIO NODE SELECTION FREE The optimizer decides the node selection strategy.

• MSK MIO NODE SELECTION HYBRID The optimizer employs a hybrid strategy.

• MSK MIO NODE SELECTION PSEUDO The optimizer employs selects the node based on a pseudo
cost estimate.

• MSK MIO NODE SELECTION WORST The optimizer employs a worst bound node selection strat-
egy.

Default value:

MSK MIO NODE SELECTION FREE

316 CHAPTER 23. PARAMETERS

23.2.91 MSK IPAR MIO OPTIMIZER MODE

Corresponding constant:

MSK IPAR MIO OPTIMIZER MODE

Description:

An exprimental feature.

Possible Values:

Any number between 0 and 1.

Default value:

0

23.2.92 MSK IPAR MIO PRESOLVE AGGREGATE

Corresponding constant:

MSK IPAR MIO PRESOLVE AGGREGATE

Description:

Controls whether the presolve used by the mixed-integer optimizer tries to aggregate the con-
straints.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.93 MSK IPAR MIO PRESOLVE PROBING

Corresponding constant:

MSK IPAR MIO PRESOLVE PROBING

Description:

Controls whether the mixed-integer presolve performs probing. Probing can be very time con-
suming.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2. MSKIPARAME: INTEGER PARAMETERS 317

23.2.94 MSK IPAR MIO PRESOLVE USE

Corresponding constant:

MSK IPAR MIO PRESOLVE USE

Description:

Controls whether presolve is performed by the mixed-integer optimizer.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.95 MSK IPAR MIO ROOT OPTIMIZER

Corresponding constant:

MSK IPAR MIO ROOT OPTIMIZER

Description:

Controls which optimizer is employed at the root node in the mixed-integer optimizer.

Possible values:

• MSK OPTIMIZER CONCURRENT The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER CONIC The optimizer for problems having conic constraints.

• MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

• MSK OPTIMIZER FREE The optimizer is chosen automatically.

• MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

• MSK OPTIMIZER INTPNT The interior-point optimizer is used.

• MSK OPTIMIZER MIXED INT The mixed-integer optimizer.

• MSK OPTIMIZER MIXED INT CONIC The mixed-integer optimizer for conic and linear prob-
lems.

• MSK OPTIMIZER NETWORK PRIMAL SIMPLEX The network primal simplex optimizer is used.
It is only applicable to pute network problems.

• MSK OPTIMIZER NONCONVEX The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER PRIMAL DUAL SIMPLEX The primal dual simplex optimizer is used.

• MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

Default value:

MSK OPTIMIZER FREE

318 CHAPTER 23. PARAMETERS

23.2.96 MSK IPAR MIO STRONG BRANCH

Corresponding constant:

MSK IPAR MIO STRONG BRANCH

Description:

The value specifies the depth from the root in which strong branching is used. A negative value
means that the optimizer chooses a default value automatically.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

23.2.97 MSK IPAR MIO USE MULTITHREADED OPTIMIZER

Corresponding constant:

MSK IPAR MIO USE MULTITHREADED OPTIMIZER

Description:

Controls wheter the new multithreaded optimizer should be used for Mixed integer problems.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.98 MSK IPAR MT SPINCOUNT

Corresponding constant:

MSK IPAR MT SPINCOUNT

Description:

Set the number of iterations to spin before sleeping.

Possible Values:

Any integer greater or equal to 0.

Default value:

0

23.2. MSKIPARAME: INTEGER PARAMETERS 319

23.2.99 MSK IPAR NONCONVEX MAX ITERATIONS

Corresponding constant:

MSK IPAR NONCONVEX MAX ITERATIONS

Description:

Maximum number of iterations that can be used by the nonconvex optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

100000

23.2.100 MSK IPAR NUM THREADS

Corresponding constant:

MSK IPAR NUM THREADS

Description:

Controls the number of threads employed by the optimizer. If set to 0 the number of threads
used will be equal to the number of cores detected on the machine.

Possible Values:

Any integer greater or equal to 0.

Default value:

0

23.2.101 MSK IPAR OPF MAX TERMS PER LINE

Corresponding constant:

MSK IPAR OPF MAX TERMS PER LINE

Description:

The maximum number of terms (linear and quadratic) per line when an OPF file is written.

Possible Values:

Any number between 0 and +inf.

Default value:

5

320 CHAPTER 23. PARAMETERS

23.2.102 MSK IPAR OPF WRITE HEADER

Corresponding constant:

MSK IPAR OPF WRITE HEADER

Description:

Write a text header with date and MOSEK version in an OPF file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.103 MSK IPAR OPF WRITE HINTS

Corresponding constant:

MSK IPAR OPF WRITE HINTS

Description:

Write a hint section with problem dimensions in the beginning of an OPF file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.104 MSK IPAR OPF WRITE PARAMETERS

Corresponding constant:

MSK IPAR OPF WRITE PARAMETERS

Description:

Write a parameter section in an OPF file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2. MSKIPARAME: INTEGER PARAMETERS 321

23.2.105 MSK IPAR OPF WRITE PROBLEM

Corresponding constant:

MSK IPAR OPF WRITE PROBLEM

Description:

Write objective, constraints, bounds etc. to an OPF file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.106 MSK IPAR OPF WRITE SOL BAS

Corresponding constant:

MSK IPAR OPF WRITE SOL BAS

Description:

If MSK IPAR OPF WRITE SOLUTIONS is MSK ON and a basic solution is defined, include the basic
solution in OPF files.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.107 MSK IPAR OPF WRITE SOL ITG

Corresponding constant:

MSK IPAR OPF WRITE SOL ITG

Description:

If MSK IPAR OPF WRITE SOLUTIONS is MSK ON and an integer solution is defined, write the integer
solution in OPF files.

Possible values:

• MSK OFF Switch the option off.

322 CHAPTER 23. PARAMETERS

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.108 MSK IPAR OPF WRITE SOL ITR

Corresponding constant:

MSK IPAR OPF WRITE SOL ITR

Description:

If MSK IPAR OPF WRITE SOLUTIONS is MSK ON and an interior solution is defined, write the interior
solution in OPF files.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.109 MSK IPAR OPF WRITE SOLUTIONS

Corresponding constant:

MSK IPAR OPF WRITE SOLUTIONS

Description:

Enable inclusion of solutions in the OPF files.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2. MSKIPARAME: INTEGER PARAMETERS 323

23.2.110 MSK IPAR OPTIMIZER

Corresponding constant:

MSK IPAR OPTIMIZER

Description:

The paramter controls which optimizer is used to optimize the task.

Possible values:

• MSK OPTIMIZER CONCURRENT The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER CONIC The optimizer for problems having conic constraints.

• MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

• MSK OPTIMIZER FREE The optimizer is chosen automatically.

• MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

• MSK OPTIMIZER INTPNT The interior-point optimizer is used.

• MSK OPTIMIZER MIXED INT The mixed-integer optimizer.

• MSK OPTIMIZER MIXED INT CONIC The mixed-integer optimizer for conic and linear prob-
lems.

• MSK OPTIMIZER NETWORK PRIMAL SIMPLEX The network primal simplex optimizer is used.
It is only applicable to pute network problems.

• MSK OPTIMIZER NONCONVEX The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER PRIMAL DUAL SIMPLEX The primal dual simplex optimizer is used.

• MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

Default value:

MSK OPTIMIZER FREE

23.2.111 MSK IPAR PARAM READ CASE NAME

Corresponding constant:

MSK IPAR PARAM READ CASE NAME

Description:

If turned on, then names in the parameter file are case sensitive.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

324 CHAPTER 23. PARAMETERS

23.2.112 MSK IPAR PARAM READ IGN ERROR

Corresponding constant:

MSK IPAR PARAM READ IGN ERROR

Description:

If turned on, then errors in paramter settings is ignored.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.113 MSK IPAR PRESOLVE ELIM FILL

Corresponding constant:

MSK IPAR PRESOLVE ELIM FILL

Description:

Controls the maximum amount of fill-in that can be created during the elimination phase of the
presolve. This parameter times (numcon+numvar) denotes the amount of fill-in.

Possible Values:

Any number between 0 and +inf.

Default value:

1

23.2.114 MSK IPAR PRESOLVE ELIMINATOR MAX NUM TRIES

Corresponding constant:

MSK IPAR PRESOLVE ELIMINATOR MAX NUM TRIES

Description:

Control the maximum number of times the eliminator is tried.

Possible Values:

A negative value implies MOSEK decides maximum number of times.

Default value:

-1

23.2. MSKIPARAME: INTEGER PARAMETERS 325

23.2.115 MSK IPAR PRESOLVE ELIMINATOR USE

Corresponding constant:

MSK IPAR PRESOLVE ELIMINATOR USE

Description:

Controls whether free or implied free variables are eliminated from the problem.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.116 MSK IPAR PRESOLVE LEVEL

Corresponding constant:

MSK IPAR PRESOLVE LEVEL

Description:

Currently not used.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

23.2.117 MSK IPAR PRESOLVE LINDEP ABS WORK TRH

Corresponding constant:

MSK IPAR PRESOLVE LINDEP ABS WORK TRH

Description:

The linear dependency check is potentially computationally expensive.

Possible Values:

Any number between 0 and +inf.

Default value:

100

326 CHAPTER 23. PARAMETERS

23.2.118 MSK IPAR PRESOLVE LINDEP REL WORK TRH

Corresponding constant:

MSK IPAR PRESOLVE LINDEP REL WORK TRH

Description:

The linear dependency check is potentially computationally expensive.

Possible Values:

Any number between 0 and +inf.

Default value:

100

23.2.119 MSK IPAR PRESOLVE LINDEP USE

Corresponding constant:

MSK IPAR PRESOLVE LINDEP USE

Description:

Controls whether the linear constraints are checked for linear dependencies.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.120 MSK IPAR PRESOLVE MAX NUM REDUCTIONS

Corresponding constant:

MSK IPAR PRESOLVE MAX NUM REDUCTIONS

Description:

Controls the maximum number reductions performed by the presolve. The value of the parameter
is normally only changed in connection with debugging. A negative value implies that an infinite
number of reductions are allowed.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

23.2. MSKIPARAME: INTEGER PARAMETERS 327

23.2.121 MSK IPAR PRESOLVE USE

Corresponding constant:

MSK IPAR PRESOLVE USE

Description:

Controls whether the presolve is applied to a problem before it is optimized.

Possible values:

• MSK PRESOLVE MODE FREE It is decided automatically whether to presolve before the problem
is optimized.

• MSK PRESOLVE MODE OFF The problem is not presolved before it is optimized.

• MSK PRESOLVE MODE ON The problem is presolved before it is optimized.

Default value:

MSK PRESOLVE MODE FREE

23.2.122 MSK IPAR PRIMAL REPAIR OPTIMIZER

Corresponding constant:

MSK IPAR PRIMAL REPAIR OPTIMIZER

Description:

Controls which optimizer that is used to find the optimal repair.

Possible values:

• MSK OPTIMIZER CONCURRENT The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER CONIC The optimizer for problems having conic constraints.

• MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

• MSK OPTIMIZER FREE The optimizer is chosen automatically.

• MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

• MSK OPTIMIZER INTPNT The interior-point optimizer is used.

• MSK OPTIMIZER MIXED INT The mixed-integer optimizer.

• MSK OPTIMIZER MIXED INT CONIC The mixed-integer optimizer for conic and linear prob-
lems.

• MSK OPTIMIZER NETWORK PRIMAL SIMPLEX The network primal simplex optimizer is used.
It is only applicable to pute network problems.

• MSK OPTIMIZER NONCONVEX The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER PRIMAL DUAL SIMPLEX The primal dual simplex optimizer is used.

• MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

Default value:

MSK OPTIMIZER FREE

328 CHAPTER 23. PARAMETERS

23.2.123 MSK IPAR QO SEPARABLE REFORMULATION

Corresponding constant:

MSK IPAR QO SEPARABLE REFORMULATION

Description:

Determine if Quadratic programing problems should be reformulated to separable form.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.124 MSK IPAR READ ANZ

Corresponding constant:

MSK IPAR READ ANZ

Description:

Expected maximum number of A non-zeros to be read. The option is used only by fast MPS
and LP file readers.

Possible Values:

Any number between 0 and +inf.

Default value:

100000

23.2.125 MSK IPAR READ CON

Corresponding constant:

MSK IPAR READ CON

Description:

Expected maximum number of constraints to be read. The option is only used by fast MPS and
LP file readers.

Possible Values:

Any number between 0 and +inf.

Default value:

10000

23.2. MSKIPARAME: INTEGER PARAMETERS 329

23.2.126 MSK IPAR READ CONE

Corresponding constant:

MSK IPAR READ CONE

Description:

Expected maximum number of conic constraints to be read. The option is used only by fast
MPS and LP file readers.

Possible Values:

Any number between 0 and +inf.

Default value:

2500

23.2.127 MSK IPAR READ DATA COMPRESSED

Corresponding constant:

MSK IPAR READ DATA COMPRESSED

Description:

If this option is turned on,it is assumed that the data file is compressed.

Possible values:

• MSK COMPRESS FREE The type of compression used is chosen automatically.

• MSK COMPRESS GZIP The type of compression used is gzip compatible.

• MSK COMPRESS NONE No compression is used.

Default value:

MSK COMPRESS FREE

23.2.128 MSK IPAR READ DATA FORMAT

Corresponding constant:

MSK IPAR READ DATA FORMAT

Description:

Format of the data file to be read.

Possible values:

• MSK DATA FORMAT EXTENSION The file extension is used to determine the data file format.

• MSK DATA FORMAT FREE MPS The data data a free MPS formatted file.

330 CHAPTER 23. PARAMETERS

• MSK DATA FORMAT LP The data file is LP formatted.

• MSK DATA FORMAT MPS The data file is MPS formatted.

• MSK DATA FORMAT OP The data file is an optimization problem formatted file.

• MSK DATA FORMAT TASK Generic task dump file.

• MSK DATA FORMAT XML The data file is an XML formatted file.

Default value:

MSK DATA FORMAT EXTENSION

23.2.129 MSK IPAR READ KEEP FREE CON

Corresponding constant:

MSK IPAR READ KEEP FREE CON

Description:

Controls whether the free constraints are included in the problem.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.130 MSK IPAR READ LP DROP NEW VARS IN BOU

Corresponding constant:

MSK IPAR READ LP DROP NEW VARS IN BOU

Description:

If this option is turned on, MOSEK will drop variables that are defined for the first time in the
bounds section.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2. MSKIPARAME: INTEGER PARAMETERS 331

23.2.131 MSK IPAR READ LP QUOTED NAMES

Corresponding constant:

MSK IPAR READ LP QUOTED NAMES

Description:

If a name is in quotes when reading an LP file, the quotes will be removed.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.132 MSK IPAR READ MPS FORMAT

Corresponding constant:

MSK IPAR READ MPS FORMAT

Description:

Controls how strictly the MPS file reader interprets the MPS format.

Possible values:

• MSK MPS FORMAT FREE It is assumed that the input file satisfies the free MPS format. This
implies that spaces are not allowed in names. Otherwise the format is free.

• MSK MPS FORMAT RELAXED It is assumed that the input file satisfies a slightly relaxed version
of the MPS format.

• MSK MPS FORMAT STRICT It is assumed that the input file satisfies the MPS format strictly.

Default value:

MSK MPS FORMAT RELAXED

23.2.133 MSK IPAR READ MPS KEEP INT

Corresponding constant:

MSK IPAR READ MPS KEEP INT

Description:

Controls whether MOSEK should keep the integer restrictions on the variables while reading the
MPS file.

332 CHAPTER 23. PARAMETERS

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.134 MSK IPAR READ MPS OBJ SENSE

Corresponding constant:

MSK IPAR READ MPS OBJ SENSE

Description:

If turned on, the MPS reader uses the objective sense section. Otherwise the MPS reader ignores
it.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.135 MSK IPAR READ MPS RELAX

Corresponding constant:

MSK IPAR READ MPS RELAX

Description:

If this option is turned on, then mixed integer constraints are ignored when a problem is read.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2. MSKIPARAME: INTEGER PARAMETERS 333

23.2.136 MSK IPAR READ MPS WIDTH

Corresponding constant:

MSK IPAR READ MPS WIDTH

Description:

Controls the maximal number of characters allowed in one line of the MPS file.

Possible Values:

Any positive number greater than 80.

Default value:

1024

23.2.137 MSK IPAR READ QNZ

Corresponding constant:

MSK IPAR READ QNZ

Description:

Expected maximum number of Q non-zeros to be read. The option is used only by MPS and LP
file readers.

Possible Values:

Any number between 0 and +inf.

Default value:

20000

23.2.138 MSK IPAR READ TASK IGNORE PARAM

Corresponding constant:

MSK IPAR READ TASK IGNORE PARAM

Description:

Controls whether MOSEK should ignore the parameter setting defined in the task file and use
the default parameter setting instead.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

334 CHAPTER 23. PARAMETERS

23.2.139 MSK IPAR READ VAR

Corresponding constant:

MSK IPAR READ VAR

Description:

Expected maximum number of variable to be read. The option is used only by MPS and LP file
readers.

Possible Values:

Any number between 0 and +inf.

Default value:

10000

23.2.140 MSK IPAR SENSITIVITY ALL

Corresponding constant:

MSK IPAR SENSITIVITY ALL

Description:

Not applicable.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.141 MSK IPAR SENSITIVITY OPTIMIZER

Corresponding constant:

MSK IPAR SENSITIVITY OPTIMIZER

Description:

Controls which optimizer is used for optimal partition sensitivity analysis.

Possible values:

• MSK OPTIMIZER CONCURRENT The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER CONIC The optimizer for problems having conic constraints.

• MSK OPTIMIZER DUAL SIMPLEX The dual simplex optimizer is used.

23.2. MSKIPARAME: INTEGER PARAMETERS 335

• MSK OPTIMIZER FREE The optimizer is chosen automatically.

• MSK OPTIMIZER FREE SIMPLEX One of the simplex optimizers is used.

• MSK OPTIMIZER INTPNT The interior-point optimizer is used.

• MSK OPTIMIZER MIXED INT The mixed-integer optimizer.

• MSK OPTIMIZER MIXED INT CONIC The mixed-integer optimizer for conic and linear prob-
lems.

• MSK OPTIMIZER NETWORK PRIMAL SIMPLEX The network primal simplex optimizer is used.
It is only applicable to pute network problems.

• MSK OPTIMIZER NONCONVEX The optimizer for nonconvex nonlinear problems.

• MSK OPTIMIZER PRIMAL DUAL SIMPLEX The primal dual simplex optimizer is used.

• MSK OPTIMIZER PRIMAL SIMPLEX The primal simplex optimizer is used.

Default value:

MSK OPTIMIZER FREE SIMPLEX

23.2.142 MSK IPAR SENSITIVITY TYPE

Corresponding constant:

MSK IPAR SENSITIVITY TYPE

Description:

Controls which type of sensitivity analysis is to be performed.

Possible values:

• MSK SENSITIVITY TYPE BASIS Basis sensitivity analysis is performed.

• MSK SENSITIVITY TYPE OPTIMAL PARTITION Optimal partition sensitivity analysis is per-
formed.

Default value:

MSK SENSITIVITY TYPE BASIS

23.2.143 MSK IPAR SIM BASIS FACTOR USE

Corresponding constant:

MSK IPAR SIM BASIS FACTOR USE

Description:

Controls whether a (LU) factorization of the basis is used in a hot-start. Forcing a refactor-
ization sometimes improves the stability of the simplex optimizers, but in most cases there is a
performance penanlty.

336 CHAPTER 23. PARAMETERS

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.144 MSK IPAR SIM DEGEN

Corresponding constant:

MSK IPAR SIM DEGEN

Description:

Controls how aggressively degeneration is handled.

Possible values:

• MSK SIM DEGEN AGGRESSIVE The simplex optimizer should use an aggressive degeneration
strategy.

• MSK SIM DEGEN FREE The simplex optimizer chooses the degeneration strategy.

• MSK SIM DEGEN MINIMUM The simplex optimizer should use a minimum degeneration strat-
egy.

• MSK SIM DEGEN MODERATE The simplex optimizer should use a moderate degeneration strat-
egy.

• MSK SIM DEGEN NONE The simplex optimizer should use no degeneration strategy.

Default value:

MSK SIM DEGEN FREE

23.2.145 MSK IPAR SIM DUAL CRASH

Corresponding constant:

MSK IPAR SIM DUAL CRASH

Description:

Controls whether crashing is performed in the dual simplex optimizer.

In general if a basis consists of more than (100-this parameter value)% fixed variables, then a
crash will be performed.

Possible Values:

Any number between 0 and +inf.

Default value:

90

23.2. MSKIPARAME: INTEGER PARAMETERS 337

23.2.146 MSK IPAR SIM DUAL PHASEONE METHOD

Corresponding constant:

MSK IPAR SIM DUAL PHASEONE METHOD

Description:

An exprimental feature.

Possible Values:

Any number between 0 and 10.

Default value:

0

23.2.147 MSK IPAR SIM DUAL RESTRICT SELECTION

Corresponding constant:

MSK IPAR SIM DUAL RESTRICT SELECTION

Description:

The dual simplex optimizer can use a so-called restricted selection/pricing strategy to chooses
the outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer
first choose a subset of all the potential outgoing variables. Next, for some time it will choose
the outgoing variable only among the subset. From time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be more aggressive in its restriction
strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

Possible Values:

Any number between 0 and 100.

Default value:

50

23.2.148 MSK IPAR SIM DUAL SELECTION

Corresponding constant:

MSK IPAR SIM DUAL SELECTION

Description:

Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex
optimizer.

Possible values:

• MSK SIM SELECTION ASE The optimizer uses approximate steepest-edge pricing.

338 CHAPTER 23. PARAMETERS

• MSK SIM SELECTION DEVEX The optimizer uses devex steepest-edge pricing (or if it is not
available an approximate steep-edge selection).

• MSK SIM SELECTION FREE The optimizer chooses the pricing strategy.

• MSK SIM SELECTION FULL The optimizer uses full pricing.

• MSK SIM SELECTION PARTIAL The optimizer uses a partial selection approach. The approach
is usually beneficial if the number of variables is much larger than the number of constraints.

• MSK SIM SELECTION SE The optimizer uses steepest-edge selection (or if it is not available
an approximate steep-edge selection).

Default value:

MSK SIM SELECTION FREE

23.2.149 MSK IPAR SIM EXPLOIT DUPVEC

Corresponding constant:

MSK IPAR SIM EXPLOIT DUPVEC

Description:

Controls if the simplex optimizers are allowed to exploit duplicated columns.

Possible values:

• MSK SIM EXPLOIT DUPVEC FREE The simplex optimizer can choose freely.

• MSK SIM EXPLOIT DUPVEC OFF Disallow the simplex optimizer to exploit duplicated columns.

• MSK SIM EXPLOIT DUPVEC ON Allow the simplex optimizer to exploit duplicated columns.

Default value:

MSK SIM EXPLOIT DUPVEC OFF

23.2.150 MSK IPAR SIM HOTSTART

Corresponding constant:

MSK IPAR SIM HOTSTART

Description:

Controls the type of hot-start that the simplex optimizer perform.

Possible values:

• MSK SIM HOTSTART FREE The simplex optimize chooses the hot-start type.

• MSK SIM HOTSTART NONE The simplex optimizer performs a coldstart.

• MSK SIM HOTSTART STATUS KEYS Only the status keys of the constraints and variables are
used to choose the type of hot-start.

Default value:

MSK SIM HOTSTART FREE

23.2. MSKIPARAME: INTEGER PARAMETERS 339

23.2.151 MSK IPAR SIM HOTSTART LU

Corresponding constant:

MSK IPAR SIM HOTSTART LU

Description:

Determines if the simplex optimizer should exploit the initial factorization.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.152 MSK IPAR SIM INTEGER

Corresponding constant:

MSK IPAR SIM INTEGER

Description:

An exprimental feature.

Possible Values:

Any number between 0 and 10.

Default value:

0

23.2.153 MSK IPAR SIM MAX ITERATIONS

Corresponding constant:

MSK IPAR SIM MAX ITERATIONS

Description:

Maximum number of iterations that can be used by a simplex optimizer.

Possible Values:

Any number between 0 and +inf.

Default value:

10000000

340 CHAPTER 23. PARAMETERS

23.2.154 MSK IPAR SIM MAX NUM SETBACKS

Corresponding constant:

MSK IPAR SIM MAX NUM SETBACKS

Description:

Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event
where the optimizer moves in the wrong direction. This is impossible in theory but may happen
due to numerical problems.

Possible Values:

Any number between 0 and +inf.

Default value:

250

23.2.155 MSK IPAR SIM NON SINGULAR

Corresponding constant:

MSK IPAR SIM NON SINGULAR

Description:

Controls if the simplex optimizer ensures a non-singular basis, if possible.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.156 MSK IPAR SIM PRIMAL CRASH

Corresponding constant:

MSK IPAR SIM PRIMAL CRASH

Description:

Controls whether crashing is performed in the primal simplex optimizer.

In general, if a basis consists of more than (100-this parameter value)% fixed variables, then a
crash will be performed.

Possible Values:

Any nonnegative integer value.

23.2. MSKIPARAME: INTEGER PARAMETERS 341

Default value:

90

23.2.157 MSK IPAR SIM PRIMAL PHASEONE METHOD

Corresponding constant:

MSK IPAR SIM PRIMAL PHASEONE METHOD

Description:

An exprimental feature.

Possible Values:

Any number between 0 and 10.

Default value:

0

23.2.158 MSK IPAR SIM PRIMAL RESTRICT SELECTION

Corresponding constant:

MSK IPAR SIM PRIMAL RESTRICT SELECTION

Description:

The primal simplex optimizer can use a so-called restricted selection/pricing strategy to chooses
the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer
first choose a subset of all the potential incoming variables. Next, for some time it will choose
the incoming variable only among the subset. From time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be more aggressive in its restriction
strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

Possible Values:

Any number between 0 and 100.

Default value:

50

23.2.159 MSK IPAR SIM PRIMAL SELECTION

Corresponding constant:

MSK IPAR SIM PRIMAL SELECTION

Description:

Controls the choice of the incoming variable, known as the selection strategy, in the primal
simplex optimizer.

342 CHAPTER 23. PARAMETERS

Possible values:

• MSK SIM SELECTION ASE The optimizer uses approximate steepest-edge pricing.

• MSK SIM SELECTION DEVEX The optimizer uses devex steepest-edge pricing (or if it is not
available an approximate steep-edge selection).

• MSK SIM SELECTION FREE The optimizer chooses the pricing strategy.

• MSK SIM SELECTION FULL The optimizer uses full pricing.

• MSK SIM SELECTION PARTIAL The optimizer uses a partial selection approach. The approach
is usually beneficial if the number of variables is much larger than the number of constraints.

• MSK SIM SELECTION SE The optimizer uses steepest-edge selection (or if it is not available
an approximate steep-edge selection).

Default value:

MSK SIM SELECTION FREE

23.2.160 MSK IPAR SIM REFACTOR FREQ

Corresponding constant:

MSK IPAR SIM REFACTOR FREQ

Description:

Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines
the best point of refactorization.

It is strongly recommended NOT to change this parameter.

Possible Values:

Any number between 0 and +inf.

Default value:

0

23.2.161 MSK IPAR SIM REFORMULATION

Corresponding constant:

MSK IPAR SIM REFORMULATION

Description:

Controls if the simplex optimizers are allowed to reformulate the problem.

Possible values:

• MSK SIM REFORMULATION AGGRESSIVE The simplex optimizer should use an aggressive re-
formulation strategy.

23.2. MSKIPARAME: INTEGER PARAMETERS 343

• MSK SIM REFORMULATION FREE The simplex optimizer can choose freely.

• MSK SIM REFORMULATION OFF Disallow the simplex optimizer to reformulate the problem.

• MSK SIM REFORMULATION ON Allow the simplex optimizer to reformulate the problem.

Default value:

MSK SIM REFORMULATION OFF

23.2.162 MSK IPAR SIM SAVE LU

Corresponding constant:

MSK IPAR SIM SAVE LU

Description:

Controls if the LU factorization stored should be replaced with the LU factorization corresponding
to the initial basis.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.163 MSK IPAR SIM SCALING

Corresponding constant:

MSK IPAR SIM SCALING

Description:

Controls how much effort is used in scaling the problem before a simplex optimizer is used.

Possible values:

• MSK SCALING AGGRESSIVE A very aggressive scaling is performed.

• MSK SCALING FREE The optimizer chooses the scaling heuristic.

• MSK SCALING MODERATE A conservative scaling is performed.

• MSK SCALING NONE No scaling is performed.

Default value:

MSK SCALING FREE

344 CHAPTER 23. PARAMETERS

23.2.164 MSK IPAR SIM SCALING METHOD

Corresponding constant:

MSK IPAR SIM SCALING METHOD

Description:

Controls how the problem is scaled before a simplex optimizer is used.

Possible values:

• MSK SCALING METHOD FREE The optimizer chooses the scaling heuristic.

• MSK SCALING METHOD POW2 Scales only with power of 2 leaving the mantissa untouched.

Default value:

MSK SCALING METHOD POW2

23.2.165 MSK IPAR SIM SOLVE FORM

Corresponding constant:

MSK IPAR SIM SOLVE FORM

Description:

Controls whether the primal or the dual problem is solved by the primal-/dual- simplex optimizer.

Possible values:

• MSK SOLVE DUAL The optimizer should solve the dual problem.

• MSK SOLVE FREE The optimizer is free to solve either the primal or the dual problem.

• MSK SOLVE PRIMAL The optimizer should solve the primal problem.

Default value:

MSK SOLVE FREE

23.2.166 MSK IPAR SIM STABILITY PRIORITY

Corresponding constant:

MSK IPAR SIM STABILITY PRIORITY

Description:

Controls how high priority the numerical stability should be given.

Possible Values:

Any number between 0 and 100.

Default value:

50

23.2. MSKIPARAME: INTEGER PARAMETERS 345

23.2.167 MSK IPAR SIM SWITCH OPTIMIZER

Corresponding constant:

MSK IPAR SIM SWITCH OPTIMIZER

Description:

The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem.
This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized,
then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on
and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal
(dual) one, then it is switched to the dual (primal).

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.168 MSK IPAR SOL FILTER KEEP BASIC

Corresponding constant:

MSK IPAR SOL FILTER KEEP BASIC

Description:

If turned on, then basic and super basic constraints and variables are written to the solution file
independent of the filter setting.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.169 MSK IPAR SOL FILTER KEEP RANGED

Corresponding constant:

MSK IPAR SOL FILTER KEEP RANGED

Description:

If turned on, then ranged constraints and variables are written to the solution file independent
of the filter setting.

346 CHAPTER 23. PARAMETERS

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.170 MSK IPAR SOL READ NAME WIDTH

Corresponding constant:

MSK IPAR SOL READ NAME WIDTH

Description:

When a solution is read by MOSEK and some constraint, variable or cone names contain blanks,
then a maximum name width much be specified. A negative value implies that no name contain
blanks.

Possible Values:

Any number between -inf and +inf.

Default value:

-1

23.2.171 MSK IPAR SOL READ WIDTH

Corresponding constant:

MSK IPAR SOL READ WIDTH

Description:

Controls the maximal acceptable width of line in the solutions when read by MOSEK.

Possible Values:

Any positive number greater than 80.

Default value:

1024

23.2. MSKIPARAME: INTEGER PARAMETERS 347

23.2.172 MSK IPAR SOLUTION CALLBACK

Corresponding constant:

MSK IPAR SOLUTION CALLBACK

Description:

Indicates whether solution call-backs will be performed during the optimization.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.173 MSK IPAR TIMING LEVEL

Corresponding constant:

MSK IPAR TIMING LEVEL

Description:

Controls the a amount of timing performed inside MOSEK.

Possible Values:

Any integer greater or equal to 0.

Default value:

1

23.2.174 MSK IPAR WARNING LEVEL

Corresponding constant:

MSK IPAR WARNING LEVEL

Description:

Warning level.

Possible Values:

Any number between 0 and +inf.

Default value:

1

348 CHAPTER 23. PARAMETERS

23.2.175 MSK IPAR WRITE BAS CONSTRAINTS

Corresponding constant:

MSK IPAR WRITE BAS CONSTRAINTS

Description:

Controls whether the constraint section is written to the basic solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.176 MSK IPAR WRITE BAS HEAD

Corresponding constant:

MSK IPAR WRITE BAS HEAD

Description:

Controls whether the header section is written to the basic solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.177 MSK IPAR WRITE BAS VARIABLES

Corresponding constant:

MSK IPAR WRITE BAS VARIABLES

Description:

Controls whether the variables section is written to the basic solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2. MSKIPARAME: INTEGER PARAMETERS 349

23.2.178 MSK IPAR WRITE DATA COMPRESSED

Corresponding constant:

MSK IPAR WRITE DATA COMPRESSED

Description:

Controls whether the data file is compressed while it is written. 0 means no compression while
higher values mean more compression.

Possible Values:

Any number between 0 and +inf.

Default value:

0

23.2.179 MSK IPAR WRITE DATA FORMAT

Corresponding constant:

MSK IPAR WRITE DATA FORMAT

Description:

Controls the file format when writing task data to a file.

Possible values:

• MSK DATA FORMAT EXTENSION The file extension is used to determine the data file format.

• MSK DATA FORMAT FREE MPS The data data a free MPS formatted file.

• MSK DATA FORMAT LP The data file is LP formatted.

• MSK DATA FORMAT MPS The data file is MPS formatted.

• MSK DATA FORMAT OP The data file is an optimization problem formatted file.

• MSK DATA FORMAT TASK Generic task dump file.

• MSK DATA FORMAT XML The data file is an XML formatted file.

Default value:

MSK DATA FORMAT EXTENSION

23.2.180 MSK IPAR WRITE DATA PARAM

Corresponding constant:

MSK IPAR WRITE DATA PARAM

Description:

If this option is turned on the parameter settings are written to the data file as parameters.

350 CHAPTER 23. PARAMETERS

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.181 MSK IPAR WRITE FREE CON

Corresponding constant:

MSK IPAR WRITE FREE CON

Description:

Controls whether the free constraints are written to the data file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.182 MSK IPAR WRITE GENERIC NAMES

Corresponding constant:

MSK IPAR WRITE GENERIC NAMES

Description:

Controls whether the generic names or user-defined names are used in the data file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2. MSKIPARAME: INTEGER PARAMETERS 351

23.2.183 MSK IPAR WRITE GENERIC NAMES IO

Corresponding constant:

MSK IPAR WRITE GENERIC NAMES IO

Description:

Index origin used in generic names.

Possible Values:

Any number between 0 and +inf.

Default value:

1

23.2.184 MSK IPAR WRITE IGNORE INCOMPATIBLE CONIC ITEMS

Corresponding constant:

MSK IPAR WRITE IGNORE INCOMPATIBLE CONIC ITEMS

Description:

If the output format is not compatible with conic quadratic problems this parameter controls if
the writer ignores the conic parts or produces an error.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.185 MSK IPAR WRITE IGNORE INCOMPATIBLE ITEMS

Corresponding constant:

MSK IPAR WRITE IGNORE INCOMPATIBLE ITEMS

Description:

Controls if the writer ignores incompatible problem items when writing files.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

352 CHAPTER 23. PARAMETERS

23.2.186 MSK IPAR WRITE IGNORE INCOMPATIBLE NL ITEMS

Corresponding constant:

MSK IPAR WRITE IGNORE INCOMPATIBLE NL ITEMS

Description:

Controls if the writer ignores general non-linear terms or produces an error.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.187 MSK IPAR WRITE IGNORE INCOMPATIBLE PSD ITEMS

Corresponding constant:

MSK IPAR WRITE IGNORE INCOMPATIBLE PSD ITEMS

Description:

If the output format is not compatible with semidefinite problems this parameter controls if the
writer ignores the conic parts or produces an error.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.188 MSK IPAR WRITE INT CONSTRAINTS

Corresponding constant:

MSK IPAR WRITE INT CONSTRAINTS

Description:

Controls whether the constraint section is written to the integer solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2. MSKIPARAME: INTEGER PARAMETERS 353

23.2.189 MSK IPAR WRITE INT HEAD

Corresponding constant:

MSK IPAR WRITE INT HEAD

Description:

Controls whether the header section is written to the integer solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.190 MSK IPAR WRITE INT VARIABLES

Corresponding constant:

MSK IPAR WRITE INT VARIABLES

Description:

Controls whether the variables section is written to the integer solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.191 MSK IPAR WRITE LP LINE WIDTH

Corresponding constant:

MSK IPAR WRITE LP LINE WIDTH

Description:

Maximum width of line in an LP file written by MOSEK.

Possible Values:

Any positive number.

Default value:

80

354 CHAPTER 23. PARAMETERS

23.2.192 MSK IPAR WRITE LP QUOTED NAMES

Corresponding constant:

MSK IPAR WRITE LP QUOTED NAMES

Description:

If this option is turned on, then MOSEK will quote invalid LP names when writing an LP file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.193 MSK IPAR WRITE LP STRICT FORMAT

Corresponding constant:

MSK IPAR WRITE LP STRICT FORMAT

Description:

Controls whether LP output files satisfy the LP format strictly.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2.194 MSK IPAR WRITE LP TERMS PER LINE

Corresponding constant:

MSK IPAR WRITE LP TERMS PER LINE

Description:

Maximum number of terms on a single line in an LP file written by MOSEK. 0 means unlimited.

Possible Values:

Any number between 0 and +inf.

Default value:

10

23.2. MSKIPARAME: INTEGER PARAMETERS 355

23.2.195 MSK IPAR WRITE MPS INT

Corresponding constant:

MSK IPAR WRITE MPS INT

Description:

Controls if marker records are written to the MPS file to indicate whether variables are integer
restricted.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.196 MSK IPAR WRITE PRECISION

Corresponding constant:

MSK IPAR WRITE PRECISION

Description:

Controls the precision with which double numbers are printed in the MPS data file. In general
it is not worthwhile to use a value higher than 15.

Possible Values:

Any number between 0 and +inf.

Default value:

8

23.2.197 MSK IPAR WRITE SOL BARVARIABLES

Corresponding constant:

MSK IPAR WRITE SOL BARVARIABLES

Description:

Controls whether the symmetric matrix variables section is written to the solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

356 CHAPTER 23. PARAMETERS

23.2.198 MSK IPAR WRITE SOL CONSTRAINTS

Corresponding constant:

MSK IPAR WRITE SOL CONSTRAINTS

Description:

Controls whether the constraint section is written to the solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.199 MSK IPAR WRITE SOL HEAD

Corresponding constant:

MSK IPAR WRITE SOL HEAD

Description:

Controls whether the header section is written to the solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.200 MSK IPAR WRITE SOL IGNORE INVALID NAMES

Corresponding constant:

MSK IPAR WRITE SOL IGNORE INVALID NAMES

Description:

Even if the names are invalid MPS names, then they are employed when writing the solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK OFF

23.2. MSKIPARAME: INTEGER PARAMETERS 357

23.2.201 MSK IPAR WRITE SOL VARIABLES

Corresponding constant:

MSK IPAR WRITE SOL VARIABLES

Description:

Controls whether the variables section is written to the solution file.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.202 MSK IPAR WRITE TASK INC SOL

Corresponding constant:

MSK IPAR WRITE TASK INC SOL

Description:

Controls whether the solutions are stored in the task file too.

Possible values:

• MSK OFF Switch the option off.

• MSK ON Switch the option on.

Default value:

MSK ON

23.2.203 MSK IPAR WRITE XML MODE

Corresponding constant:

MSK IPAR WRITE XML MODE

Description:

Controls if linear coefficients should be written by row or column when writing in the XML file
format.

Possible values:

• MSK WRITE XML MODE COL Write in column order.

• MSK WRITE XML MODE ROW Write in row order.

Default value:

MSK WRITE XML MODE ROW

358 CHAPTER 23. PARAMETERS

23.3 MSKsparame: String parameter types

23.3.1 MSK SPAR BAS SOL FILE NAME

Corresponding constant:

MSK SPAR BAS SOL FILE NAME

Description:

Name of the bas solution file.

Possible Values:

Any valid file name.

Default value:

""

23.3.2 MSK SPAR DATA FILE NAME

Corresponding constant:

MSK SPAR DATA FILE NAME

Description:

Data are read and written to this file.

Possible Values:

Any valid file name.

Default value:

""

23.3.3 MSK SPAR DEBUG FILE NAME

Corresponding constant:

MSK SPAR DEBUG FILE NAME

Description:

MOSEK debug file.

Possible Values:

Any valid file name.

Default value:

""

23.3. MSKSPARAME: STRING PARAMETER TYPES 359

23.3.4 MSK SPAR FEASREPAIR NAME PREFIX

Corresponding constant:

MSK SPAR FEASREPAIR NAME PREFIX

Description:

Not applicable.

Possible Values:

Any valid string.

Default value:

"MSK-"

23.3.5 MSK SPAR FEASREPAIR NAME SEPARATOR

Corresponding constant:

MSK SPAR FEASREPAIR NAME SEPARATOR

Description:

Not applicable.

Possible Values:

Any valid string.

Default value:

"-"

23.3.6 MSK SPAR FEASREPAIR NAME WSUMVIOL

Corresponding constant:

MSK SPAR FEASREPAIR NAME WSUMVIOL

Description:

The constraint and variable associated with the total weighted sum of violations are each given
the name of this parameter postfixed with CON and VAR respectively.

Possible Values:

Any valid string.

Default value:

"WSUMVIOL"

360 CHAPTER 23. PARAMETERS

23.3.7 MSK SPAR INT SOL FILE NAME

Corresponding constant:

MSK SPAR INT SOL FILE NAME

Description:

Name of the int solution file.

Possible Values:

Any valid file name.

Default value:

""

23.3.8 MSK SPAR ITR SOL FILE NAME

Corresponding constant:

MSK SPAR ITR SOL FILE NAME

Description:

Name of the itr solution file.

Possible Values:

Any valid file name.

Default value:

""

23.3.9 MSK SPAR MIO DEBUG STRING

Corresponding constant:

MSK SPAR MIO DEBUG STRING

Description:

For internal use only.

Possible Values:

Any valid string.

Default value:

""

23.3. MSKSPARAME: STRING PARAMETER TYPES 361

23.3.10 MSK SPAR PARAM COMMENT SIGN

Corresponding constant:

MSK SPAR PARAM COMMENT SIGN

Description:

Only the first character in this string is used. It is considered as a start of comment sign in the
MOSEK parameter file. Spaces are ignored in the string.

Possible Values:

Any valid string.

Default value:

"%%"

23.3.11 MSK SPAR PARAM READ FILE NAME

Corresponding constant:

MSK SPAR PARAM READ FILE NAME

Description:

Modifications to the parameter database is read from this file.

Possible Values:

Any valid file name.

Default value:

""

23.3.12 MSK SPAR PARAM WRITE FILE NAME

Corresponding constant:

MSK SPAR PARAM WRITE FILE NAME

Description:

The parameter database is written to this file.

Possible Values:

Any valid file name.

Default value:

""

362 CHAPTER 23. PARAMETERS

23.3.13 MSK SPAR READ MPS BOU NAME

Corresponding constant:

MSK SPAR READ MPS BOU NAME

Description:

Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is
used.

Possible Values:

Any valid MPS name.

Default value:

""

23.3.14 MSK SPAR READ MPS OBJ NAME

Corresponding constant:

MSK SPAR READ MPS OBJ NAME

Description:

Name of the free constraint used as objective function. An empty name means that the first
constraint is used as objective function.

Possible Values:

Any valid MPS name.

Default value:

""

23.3.15 MSK SPAR READ MPS RAN NAME

Corresponding constant:

MSK SPAR READ MPS RAN NAME

Description:

Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

Possible Values:

Any valid MPS name.

Default value:

""

23.3. MSKSPARAME: STRING PARAMETER TYPES 363

23.3.16 MSK SPAR READ MPS RHS NAME

Corresponding constant:

MSK SPAR READ MPS RHS NAME

Description:

Name of the RHS used. An empty name means that the first RHS vector is used.

Possible Values:

Any valid MPS name.

Default value:

""

23.3.17 MSK SPAR SENSITIVITY FILE NAME

Corresponding constant:

MSK SPAR SENSITIVITY FILE NAME

Description:

Not applicable.

Possible Values:

Any valid string.

Default value:

""

23.3.18 MSK SPAR SENSITIVITY RES FILE NAME

Corresponding constant:

MSK SPAR SENSITIVITY RES FILE NAME

Description:

Not applicable.

Possible Values:

Any valid string.

Default value:

""

364 CHAPTER 23. PARAMETERS

23.3.19 MSK SPAR SOL FILTER XC LOW

Corresponding constant:

MSK SPAR SOL FILTER XC LOW

Description:

A filter used to determine which constraints should be listed in the solution file. A value of ”0.5”
means that all constraints having xc[i]>0.5 should be listed, whereas ”+0.5” means that all
constraints having xc[i]>=blc[i]+0.5 should be listed. An empty filter means that no filter is
applied.

Possible Values:

Any valid filter.

Default value:

""

23.3.20 MSK SPAR SOL FILTER XC UPR

Corresponding constant:

MSK SPAR SOL FILTER XC UPR

Description:

A filter used to determine which constraints should be listed in the solution file. A value of
”0.5” means that all constraints having xc[i]<0.5 should be listed, whereas ”-0.5” means all
constraints having xc[i]<=buc[i]-0.5 should be listed. An empty filter means that no filter is
applied.

Possible Values:

Any valid filter.

Default value:

""

23.3.21 MSK SPAR SOL FILTER XX LOW

Corresponding constant:

MSK SPAR SOL FILTER XX LOW

Description:

A filter used to determine which variables should be listed in the solution file. A value of ”0.5”
means that all constraints having xx[j]>=0.5 should be listed, whereas ”+0.5” means that
all constraints having xx[j]>=blx[j]+0.5 should be listed. An empty filter means no filter is
applied.

23.3. MSKSPARAME: STRING PARAMETER TYPES 365

Possible Values:

Any valid filter.

Default value:

""

23.3.22 MSK SPAR SOL FILTER XX UPR

Corresponding constant:

MSK SPAR SOL FILTER XX UPR

Description:

A filter used to determine which variables should be listed in the solution file. A value of
”0.5” means that all constraints having xx[j]<0.5 should be printed, whereas ”-0.5” means
all constraints having xx[j]<=bux[j]-0.5 should be listed. An empty filter means no filter is
applied.

Possible Values:

Any valid file name.

Default value:

""

23.3.23 MSK SPAR STAT FILE NAME

Corresponding constant:

MSK SPAR STAT FILE NAME

Description:

Statistics file name.

Possible Values:

Any valid file name.

Default value:

""

23.3.24 MSK SPAR STAT KEY

Corresponding constant:

MSK SPAR STAT KEY

Description:

Key used when writing the summary file.

366 CHAPTER 23. PARAMETERS

Possible Values:

Any valid XML string.

Default value:

""

23.3.25 MSK SPAR STAT NAME

Corresponding constant:

MSK SPAR STAT NAME

Description:

Name used when writing the statistics file.

Possible Values:

Any valid XML string.

Default value:

""

23.3.26 MSK SPAR WRITE LP GEN VAR NAME

Corresponding constant:

MSK SPAR WRITE LP GEN VAR NAME

Description:

Sometimes when an LP file is written additional variables must be inserted. They will have the
prefix denoted by this parameter.

Possible Values:

Any valid string.

Default value:

"xmskgen"

Chapter 24

Response codes

Response codes ordered by name.

MSK RES ERR AD INVALID CODELIST

The code list data was invalid.

MSK RES ERR AD INVALID OPERAND

The code list data was invalid. An unknown operand was used.

MSK RES ERR AD INVALID OPERATOR

The code list data was invalid. An unknown operator was used.

MSK RES ERR AD MISSING OPERAND

The code list data was invalid. Missing operand for operator.

MSK RES ERR AD MISSING RETURN

The code list data was invalid. Missing return operation in function.

MSK RES ERR API ARRAY TOO SMALL

An input array was too short.

MSK RES ERR API CB CONNECT

Failed to connect a callback object.

MSK RES ERR API FATAL ERROR

An internal error occurred in the API. Please report this problem.

MSK RES ERR API INTERNAL

An internal fatal error occurred in an interface function.

MSK RES ERR ARG IS TOO LARGE

The value of a argument is too small.

367

368 CHAPTER 24. RESPONSE CODES

MSK RES ERR ARG IS TOO SMALL

The value of a argument is too small.

MSK RES ERR ARGUMENT DIMENSION

A function argument is of incorrect dimension.

MSK RES ERR ARGUMENT IS TOO LARGE

The value of a function argument is too large.

MSK RES ERR ARGUMENT LENNEQ

Incorrect length of arguments.

MSK RES ERR ARGUMENT PERM ARRAY

An invalid permutation array is specified.

MSK RES ERR ARGUMENT TYPE

Incorrect argument type.

MSK RES ERR BAR VAR DIM

The dimension of a symmetric matrix variable has to greater than 0.

MSK RES ERR BASIS

An invalid basis is specified. Either too many or too few basis variables are specified.

MSK RES ERR BASIS FACTOR

The factorization of the basis is invalid.

MSK RES ERR BASIS SINGULAR

The basis is singular and hence cannot be factored.

MSK RES ERR BLANK NAME

An all blank name has been specified.

MSK RES ERR CANNOT CLONE NL

A task with a nonlinear function call-back cannot be cloned.

MSK RES ERR CANNOT HANDLE NL

A function cannot handle a task with nonlinear function call-backs.

MSK RES ERR CON Q NOT NSD

The quadratic constraint matrix is not negative semidefinite as expected for a constraint with fi-
nite lower bound. This results in a nonconvex problem. The parameter MSK DPAR CHECK CONVEXITY REL TOL

can be used to relax the convexity check.

369

MSK RES ERR CON Q NOT PSD

The quadratic constraint matrix is not positive semidefinite as expected for a constraint with fi-
nite upper bound. This results in a nonconvex problem. The parameter MSK DPAR CHECK CONVEXITY REL TOL

can be used to relax the convexity check.

MSK RES ERR CONCURRENT OPTIMIZER

An unsupported optimizer was chosen for use with the concurrent optimizer.

MSK RES ERR CONE INDEX

An index of a non-existing cone has been specified.

MSK RES ERR CONE OVERLAP

A new cone which variables overlap with an existing cone has been specified.

MSK RES ERR CONE OVERLAP APPEND

The cone to be appended has one variable which is already memeber of another cone.

MSK RES ERR CONE REP VAR

A variable is included multiple times in the cone.

MSK RES ERR CONE SIZE

A cone with too few members is specified.

MSK RES ERR CONE TYPE

Invalid cone type specified.

MSK RES ERR CONE TYPE STR

Invalid cone type specified.

MSK RES ERR DATA FILE EXT

The data file format cannot be determined from the file name.

MSK RES ERR DUP NAME

The same name was used multiple times for the same problem item type.

MSK RES ERR DUPLICATE BARVARIABLE NAMES

Two barvariable names are identical.

MSK RES ERR DUPLICATE CONE NAMES

Two cone names are identical.

MSK RES ERR DUPLICATE CONSTRAINT NAMES

Two constraint names are identical.

MSK RES ERR DUPLICATE VARIABLE NAMES

Two variable names are identical.

370 CHAPTER 24. RESPONSE CODES

MSK RES ERR END OF FILE

End of file reached.

MSK RES ERR FACTOR

An error occurred while factorizing a matrix.

MSK RES ERR FEASREPAIR CANNOT RELAX

An optimization problem cannot be relaxed. This is the case e.g. for general nonlinear optimiza-
tion problems.

MSK RES ERR FEASREPAIR INCONSISTENT BOUND

The upper bound is less than the lower bound for a variable or a constraint. Please correct this
before running the feasibility repair.

MSK RES ERR FEASREPAIR SOLVING RELAXED

The relaxed problem could not be solved to optimality. Please consult the log file for further
details.

MSK RES ERR FILE LICENSE

Invalid license file.

MSK RES ERR FILE OPEN

Error while opening a file.

MSK RES ERR FILE READ

File read error.

MSK RES ERR FILE WRITE

File write error.

MSK RES ERR FIRST

Invalid first.

MSK RES ERR FIRSTI

Invalid firsti.

MSK RES ERR FIRSTJ

Invalid firstj.

MSK RES ERR FIXED BOUND VALUES

A fixed constraint/variable has been specified using the bound keys but the numerical value of
the lower and upper bound is different.

MSK RES ERR FLEXLM

The FLEXlm license manager reported an error.

371

MSK RES ERR GLOBAL INV CONIC PROBLEM

The global optimizer can only be applied to problems without semidefinite variables.

MSK RES ERR HUGE AIJ

A numerically huge value is specified for an ai,j element inA. The parameter MSK DPAR DATA TOL AIJ HUGE

controls when an ai,j is considered huge.

MSK RES ERR HUGE C

A huge value in absolute size is specified for one cj .

MSK RES ERR IDENTICAL TASKS

Some tasks related to this function call were identical. Unique tasks were expected.

MSK RES ERR IN ARGUMENT

A function argument is incorrect.

MSK RES ERR INDEX

An index is out of range.

MSK RES ERR INDEX ARR IS TOO LARGE

An index in an array argument is too large.

MSK RES ERR INDEX ARR IS TOO SMALL

An index in an array argument is too small.

MSK RES ERR INDEX IS TOO LARGE

An index in an argument is too large.

MSK RES ERR INDEX IS TOO SMALL

An index in an argument is too small.

MSK RES ERR INF DOU INDEX

A double information index is out of range for the specified type.

MSK RES ERR INF DOU NAME

A double information name is invalid.

MSK RES ERR INF INT INDEX

An integer information index is out of range for the specified type.

MSK RES ERR INF INT NAME

An integer information name is invalid.

MSK RES ERR INF LINT INDEX

A long integer information index is out of range for the specified type.

372 CHAPTER 24. RESPONSE CODES

MSK RES ERR INF LINT NAME

A long integer information name is invalid.

MSK RES ERR INF TYPE

The information type is invalid.

MSK RES ERR INFEAS UNDEFINED

The requested value is not defined for this solution type.

MSK RES ERR INFINITE BOUND

A numerically huge bound value is specified.

MSK RES ERR INT64 TO INT32 CAST

An 32 bit integer could not cast to a 64 bit integer.

MSK RES ERR INTERNAL

An internal error occurred. Please report this problem.

MSK RES ERR INTERNAL TEST FAILED

An internal unit test function failed.

MSK RES ERR INV APTRE

aptre[j] is strictly smaller than aptrb[j] for some j.

MSK RES ERR INV BK

Invalid bound key.

MSK RES ERR INV BKC

Invalid bound key is specified for a constraint.

MSK RES ERR INV BKX

An invalid bound key is specified for a variable.

MSK RES ERR INV CONE TYPE

Invalid cone type code is encountered.

MSK RES ERR INV CONE TYPE STR

Invalid cone type string encountered.

MSK RES ERR INV CONIC PROBLEM

The conic optimizer can only be applied to problems with linear objective and constraints.
Many problems such convex quadratically constrained problems can easily be reformulated to
conic problems. See the appropriate MOSEK manual for details.

MSK RES ERR INV MARKI

Invalid value in marki.

373

MSK RES ERR INV MARKJ

Invalid value in markj.

MSK RES ERR INV NAME ITEM

An invalid name item code is used.

MSK RES ERR INV NUMI

Invalid numi.

MSK RES ERR INV NUMJ

Invalid numj.

MSK RES ERR INV OPTIMIZER

An invalid optimizer has been chosen for the problem. This means that the simplex or the conic
optimizer is chosen to optimize a nonlinear problem.

MSK RES ERR INV PROBLEM

Invalid problem type. Probably a nonconvex problem has been specified.

MSK RES ERR INV QCON SUBI

Invalid value in qcsubi.

MSK RES ERR INV QCON SUBJ

Invalid value in qcsubj.

MSK RES ERR INV QCON SUBK

Invalid value in qcsubk.

MSK RES ERR INV QCON VAL

Invalid value in qcval.

MSK RES ERR INV QOBJ SUBI

Invalid value in qosubi.

MSK RES ERR INV QOBJ SUBJ

Invalid value in qosubj.

MSK RES ERR INV QOBJ VAL

Invalid value in qoval.

MSK RES ERR INV SK

Invalid status key code.

MSK RES ERR INV SK STR

Invalid status key string encountered.

374 CHAPTER 24. RESPONSE CODES

MSK RES ERR INV SKC

Invalid value in skc.

MSK RES ERR INV SKN

Invalid value in skn.

MSK RES ERR INV SKX

Invalid value in skx.

MSK RES ERR INV VAR TYPE

An invalid variable type is specified for a variable.

MSK RES ERR INVALID ACCMODE

An invalid access mode is specified.

MSK RES ERR INVALID AMPL STUB

Invalid AMPL stub.

MSK RES ERR INVALID BARVAR NAME

An invalid symmetric matrix variable name is used.

MSK RES ERR INVALID BRANCH DIRECTION

An invalid branching direction is specified.

MSK RES ERR INVALID BRANCH PRIORITY

An invalid branching priority is specified. It should be nonnegative.

MSK RES ERR INVALID COMPRESSION

Invalid compression type.

MSK RES ERR INVALID CON NAME

An invalid constraint name is used.

MSK RES ERR INVALID CONE NAME

An invalid cone name is used.

MSK RES ERR INVALID FILE FORMAT FOR CONES

The file format does not support a problem with conic constraints.

MSK RES ERR INVALID FILE FORMAT FOR GENERAL NL

The file format does not support a problem with general nonlinear terms.

MSK RES ERR INVALID FILE FORMAT FOR SYM MAT

The file format does not support a problem with symmetric matrix variables.

MSK RES ERR INVALID FILE NAME

An invalid file name has been specified.

375

MSK RES ERR INVALID FORMAT TYPE

Invalid format type.

MSK RES ERR INVALID IDX

A specified index is invalid.

MSK RES ERR INVALID IOMODE

Invalid io mode.

MSK RES ERR INVALID MAX NUM

A specified index is invalid.

MSK RES ERR INVALID NAME IN SOL FILE

An invalid name occurred in a solution file.

MSK RES ERR INVALID NETWORK PROBLEM

The problem is not a network problem as expected. The error occurs if a network optimizer is
applied to a problem that cannot (easily) be converted to a network problem.

MSK RES ERR INVALID OBJ NAME

An invalid objective name is specified.

MSK RES ERR INVALID OBJECTIVE SENSE

An invalid objective sense is specified.

MSK RES ERR INVALID PROBLEM TYPE

An invalid problem type.

MSK RES ERR INVALID SOL FILE NAME

An invalid file name has been specified.

MSK RES ERR INVALID STREAM

An invalid stream is referenced.

MSK RES ERR INVALID SURPLUS

Invalid surplus.

MSK RES ERR INVALID SYM MAT DIM

A sparse symmetric matrix of invalid dimension is specified.

MSK RES ERR INVALID TASK

The task is invalid.

MSK RES ERR INVALID UTF8

An invalid UTF8 string is encountered.

376 CHAPTER 24. RESPONSE CODES

MSK RES ERR INVALID VAR NAME

An invalid variable name is used.

MSK RES ERR INVALID WCHAR

An invalid wchar string is encountered.

MSK RES ERR INVALID WHICHSOL

whichsol is invalid.

MSK RES ERR LAST

Invalid index last. A given index was out of expected range.

MSK RES ERR LASTI

Invalid lasti.

MSK RES ERR LASTJ

Invalid lastj.

MSK RES ERR LICENSE

Invalid license.

MSK RES ERR LICENSE CANNOT ALLOCATE

The license system cannot allocate the memory required.

MSK RES ERR LICENSE CANNOT CONNECT

MOSEK cannot connect to the license server. Most likely the license server is not up and running.

MSK RES ERR LICENSE EXPIRED

The license has expired.

MSK RES ERR LICENSE FEATURE

A requested feature is not available in the license file(s). Most likely due to an incorrect license
system setup.

MSK RES ERR LICENSE INVALID HOSTID

The host ID specified in the license file does not match the host ID of the computer.

MSK RES ERR LICENSE MAX

Maximum number of licenses is reached.

MSK RES ERR LICENSE MOSEKLM DAEMON

The MOSEKLM license manager daemon is not up and running.

MSK RES ERR LICENSE NO SERVER LINE

There is no SERVER line in the license file. All non-zero license count features need at least one
SERVER line.

377

MSK RES ERR LICENSE NO SERVER SUPPORT

The license server does not support the requested feature. Possible reasons for this error include:

• The feature has expired.

• The feature’s start date is later than today’s date.

• The version requested is higher than feature’s the highest supported version.

• A corrupted license file.

Try restarting the license and inspect the license server debug file, usually called lmgrd.log.

MSK RES ERR LICENSE SERVER

The license server is not responding.

MSK RES ERR LICENSE SERVER VERSION

The version specified in the checkout request is greater than the highest version number the
daemon supports.

MSK RES ERR LICENSE VERSION

The license is valid for another version of MOSEK.

MSK RES ERR LINK FILE DLL

A file cannot be linked to a stream in the DLL version.

MSK RES ERR LIVING TASKS

All tasks associated with an enviroment must be deleted before the environment is deleted. There
are still some undeleted tasks.

MSK RES ERR LOWER BOUND IS A NAN

The lower bound specificied is not a number (nan).

MSK RES ERR LP DUP SLACK NAME

The name of the slack variable added to a ranged constraint already exists.

MSK RES ERR LP EMPTY

The problem cannot be written to an LP formatted file.

MSK RES ERR LP FILE FORMAT

Syntax error in an LP file.

MSK RES ERR LP FORMAT

Syntax error in an LP file.

MSK RES ERR LP FREE CONSTRAINT

Free constraints cannot be written in LP file format.

MSK RES ERR LP INCOMPATIBLE

The problem cannot be written to an LP formatted file.

378 CHAPTER 24. RESPONSE CODES

MSK RES ERR LP INVALID CON NAME

A constraint name is invalid when used in an LP formatted file.

MSK RES ERR LP INVALID VAR NAME

A variable name is invalid when used in an LP formatted file.

MSK RES ERR LP WRITE CONIC PROBLEM

The problem contains cones that cannot be written to an LP formatted file.

MSK RES ERR LP WRITE GECO PROBLEM

The problem contains general convex terms that cannot be written to an LP formatted file.

MSK RES ERR LU MAX NUM TRIES

Could not compute the LU factors of the matrix within the maximum number of allowed tries.

MSK RES ERR MAX LEN IS TOO SMALL

An maximum length that is too small has been specfified.

MSK RES ERR MAXNUMBARVAR

The maximum number of semidefinite variables specified is smaller than the number of semidef-
inite variables in the task.

MSK RES ERR MAXNUMCON

The maximum number of constraints specified is smaller than the number of constraints in the
task.

MSK RES ERR MAXNUMCONE

The value specified for maxnumcone is too small.

MSK RES ERR MAXNUMQNZ

The maximum number of non-zeros specified for the Q matrixes is smaller than the number of
non-zeros in the current Q matrixes.

MSK RES ERR MAXNUMVAR

The maximum number of variables specified is smaller than the number of variables in the task.

MSK RES ERR MBT INCOMPATIBLE

The MBT file is incompatible with this platform. This results from reading a file on a 32 bit
platform generated on a 64 bit platform.

MSK RES ERR MBT INVALID

The MBT file is invalid.

MSK RES ERR MIO INTERNAL

A fatal error occurred in the mixed integer optimizer. Please contact MOSEK support.

379

MSK RES ERR MIO NO OPTIMIZER

No optimizer is available for the current class of integer optimization problems.

MSK RES ERR MIO NOT LOADED

The mixed-integer optimizer is not loaded.

MSK RES ERR MISSING LICENSE FILE

MOSEK cannot license file or a token server. See the MOSEK installation manual for details.

MSK RES ERR MIXED PROBLEM

The problem contains both conic and nonlinear constraints.

MSK RES ERR MPS CONE OVERLAP

A variable is specified to be a member of several cones.

MSK RES ERR MPS CONE REPEAT

A variable is repeated within the CSECTION.

MSK RES ERR MPS CONE TYPE

Invalid cone type specified in a CSECTION.

MSK RES ERR MPS FILE

An error occurred while reading an MPS file.

MSK RES ERR MPS INV BOUND KEY

An invalid bound key occurred in an MPS file.

MSK RES ERR MPS INV CON KEY

An invalid constraint key occurred in an MPS file.

MSK RES ERR MPS INV FIELD

A field in the MPS file is invalid. Probably it is too wide.

MSK RES ERR MPS INV MARKER

An invalid marker has been specified in the MPS file.

MSK RES ERR MPS INV SEC NAME

An invalid section name occurred in an MPS file.

MSK RES ERR MPS INV SEC ORDER

The sections in the MPS data file are not in the correct order.

MSK RES ERR MPS INVALID OBJ NAME

An invalid objective name is specified.

MSK RES ERR MPS INVALID OBJSENSE

An invalid objective sense is specified.

380 CHAPTER 24. RESPONSE CODES

MSK RES ERR MPS MUL CON NAME

A constraint name was specified multiple times in the ROWS section.

MSK RES ERR MPS MUL CSEC

Multiple CSECTIONs are given the same name.

MSK RES ERR MPS MUL QOBJ

The Q term in the objective is specified multiple times in the MPS data file.

MSK RES ERR MPS MUL QSEC

Multiple QSECTIONs are specified for a constraint in the MPS data file.

MSK RES ERR MPS NO OBJECTIVE

No objective is defined in an MPS file.

MSK RES ERR MPS NULL CON NAME

An empty constraint name is used in an MPS file.

MSK RES ERR MPS NULL VAR NAME

An empty variable name is used in an MPS file.

MSK RES ERR MPS SPLITTED VAR

All elements in a column of the A matrix must be specified consecutively. Hence, it is illegal to
specify non-zero elements in A for variable 1, then for variable 2 and then variable 1 again.

MSK RES ERR MPS TAB IN FIELD2

A tab char occurred in field 2.

MSK RES ERR MPS TAB IN FIELD3

A tab char occurred in field 3.

MSK RES ERR MPS TAB IN FIELD5

A tab char occurred in field 5.

MSK RES ERR MPS UNDEF CON NAME

An undefined constraint name occurred in an MPS file.

MSK RES ERR MPS UNDEF VAR NAME

An undefined variable name occurred in an MPS file.

MSK RES ERR MUL A ELEMENT

An element in A is defined multiple times.

MSK RES ERR NAME IS NULL

The name buffer is a NULL pointer.

381

MSK RES ERR NAME MAX LEN

A name is longer than the buffer that is supposed to hold it.

MSK RES ERR NAN IN AIJ

ai,j contains an invalid floating point value, i.e. a NaN.

MSK RES ERR NAN IN BLC

lc contains an invalid floating point value, i.e. a NaN.

MSK RES ERR NAN IN BLX

lx contains an invalid floating point value, i.e. a NaN.

MSK RES ERR NAN IN BUC

uc contains an invalid floating point value, i.e. a NaN.

MSK RES ERR NAN IN BUX

ux contains an invalid floating point value, i.e. a NaN.

MSK RES ERR NAN IN C

c contains an invalid floating point value, i.e. a NaN.

MSK RES ERR NAN IN DOUBLE DATA

An invalid floating point value was used in some double data.

MSK RES ERR NEGATIVE APPEND

Cannot append a negative number.

MSK RES ERR NEGATIVE SURPLUS

Negative surplus.

MSK RES ERR NEWER DLL

The dynamic link library is newer than the specified version.

MSK RES ERR NO BARS FOR SOLUTION

There is no s̄ available for the solution specified. In particular note there are no s̄ defined for the
basic and integer solutions.

MSK RES ERR NO BARX FOR SOLUTION

There is no X̄ available for the solution specified. In particular note there are no X̄ defined for
the basic and integer solutions.

MSK RES ERR NO BASIS SOL

No basic solution is defined.

MSK RES ERR NO DUAL FOR ITG SOL

No dual information is available for the integer solution.

382 CHAPTER 24. RESPONSE CODES

MSK RES ERR NO DUAL INFEAS CER

A certificate of infeasibility is not available.

MSK RES ERR NO DUAL INFO FOR ITG SOL

Dual information is not available for the integer solution.

MSK RES ERR NO INIT ENV

env is not initialized.

MSK RES ERR NO OPTIMIZER VAR TYPE

No optimizer is available for this class of optimization problems.

MSK RES ERR NO PRIMAL INFEAS CER

A certificate of primal infeasibility is not available.

MSK RES ERR NO SNX FOR BAS SOL

sxn is not available for the basis solution.

MSK RES ERR NO SOLUTION IN CALLBACK

The required solution is not available.

MSK RES ERR NON UNIQUE ARRAY

An array does not contain unique elements.

MSK RES ERR NONCONVEX

The optimization problem is nonconvex.

MSK RES ERR NONLINEAR EQUALITY

The model contains a nonlinear equality which defines a nonconvex set.

MSK RES ERR NONLINEAR FUNCTIONS NOT ALLOWED

An operation that is invalid for problems with nonlinear functions defined has been attempted.

MSK RES ERR NONLINEAR RANGED

The model contains a nonlinear ranged constraint which by definition defines a nonconvex set.

MSK RES ERR NR ARGUMENTS

Incorrect number of function arguments.

MSK RES ERR NULL ENV

env is a NULL pointer.

MSK RES ERR NULL POINTER

An argument to a function is unexpectedly a NULL pointer.

MSK RES ERR NULL TASK

task is a NULL pointer.

383

MSK RES ERR NUMCONLIM

Maximum number of constraints limit is exceeded.

MSK RES ERR NUMVARLIM

Maximum number of variables limit is exceeded.

MSK RES ERR OBJ Q NOT NSD

The quadratic coefficient matrix in the objective is not negative semidefinite as expected for
a maximization problem. The parameter MSK DPAR CHECK CONVEXITY REL TOL can be used to
relax the convexity check.

MSK RES ERR OBJ Q NOT PSD

The quadratic coefficient matrix in the objective is not positive semidefinite as expected for a
minimization problem. The parameter MSK DPAR CHECK CONVEXITY REL TOL can be used to relax
the convexity check.

MSK RES ERR OBJECTIVE RANGE

Empty objective range.

MSK RES ERR OLDER DLL

The dynamic link library is older than the specified version.

MSK RES ERR OPEN DL

A dynamic link library could not be opened.

MSK RES ERR OPF FORMAT

Syntax error in an OPF file

MSK RES ERR OPF NEW VARIABLE

Introducing new variables is now allowed. When a [variables] section is present, it is not
allowed to introduce new variables later in the problem.

MSK RES ERR OPF PREMATURE EOF

Premature end of file in an OPF file.

MSK RES ERR OPTIMIZER LICENSE

The optimizer required is not licensed.

MSK RES ERR ORD INVALID

Invalid content in branch ordering file.

MSK RES ERR ORD INVALID BRANCH DIR

An invalid branch direction key is specified.

MSK RES ERR OVERFLOW

A computation produced an overflow i.e. a very large number.

384 CHAPTER 24. RESPONSE CODES

MSK RES ERR PARAM INDEX

Parameter index is out of range.

MSK RES ERR PARAM IS TOO LARGE

The parameter value is too large.

MSK RES ERR PARAM IS TOO SMALL

The parameter value is too small.

MSK RES ERR PARAM NAME

The parameter name is not correct.

MSK RES ERR PARAM NAME DOU

The parameter name is not correct for a double parameter.

MSK RES ERR PARAM NAME INT

The parameter name is not correct for an integer parameter.

MSK RES ERR PARAM NAME STR

The parameter name is not correct for a string parameter.

MSK RES ERR PARAM TYPE

The parameter type is invalid.

MSK RES ERR PARAM VALUE STR

The parameter value string is incorrect.

MSK RES ERR PLATFORM NOT LICENSED

A requested license feature is not available for the required platform.

MSK RES ERR POSTSOLVE

An error occurred during the postsolve. Please contact MOSEK support.

MSK RES ERR PRO ITEM

An invalid problem is used.

MSK RES ERR PROB LICENSE

The software is not licensed to solve the problem.

MSK RES ERR QCON SUBI TOO LARGE

Invalid value in qcsubi.

MSK RES ERR QCON SUBI TOO SMALL

Invalid value in qcsubi.

385

MSK RES ERR QCON UPPER TRIANGLE

An element in the upper triangle of a Qk is specified. Only elements in the lower triangle should
be specified.

MSK RES ERR QOBJ UPPER TRIANGLE

An element in the upper triangle of Qo is specified. Only elements in the lower triangle should
be specified.

MSK RES ERR READ FORMAT

The specified format cannot be read.

MSK RES ERR READ LP MISSING END TAG

Missing End tag in LP file.

MSK RES ERR READ LP NONEXISTING NAME

A variable never occurred in objective or constraints.

MSK RES ERR REMOVE CONE VARIABLE

A variable cannot be removed because it will make a cone invalid.

MSK RES ERR REPAIR INVALID PROBLEM

The feasibility repair does not support the specified problem type.

MSK RES ERR REPAIR OPTIMIZATION FAILED

Computation the optimal relaxation failed. The cause may have been numerical problems.

MSK RES ERR SEN BOUND INVALID LO

Analysis of lower bound requested for an index, where no lower bound exists.

MSK RES ERR SEN BOUND INVALID UP

Analysis of upper bound requested for an index, where no upper bound exists.

MSK RES ERR SEN FORMAT

Syntax error in sensitivity analysis file.

MSK RES ERR SEN INDEX INVALID

Invalid range given in the sensitivity file.

MSK RES ERR SEN INDEX RANGE

Index out of range in the sensitivity analysis file.

MSK RES ERR SEN INVALID REGEXP

Syntax error in regexp or regexp longer than 1024.

MSK RES ERR SEN NUMERICAL

Numerical difficulties encountered performing the sensitivity analysis.

386 CHAPTER 24. RESPONSE CODES

MSK RES ERR SEN SOLUTION STATUS

No optimal solution found to the original problem given for sensitivity analysis.

MSK RES ERR SEN UNDEF NAME

An undefined name was encountered in the sensitivity analysis file.

MSK RES ERR SEN UNHANDLED PROBLEM TYPE

Sensitivity analysis cannot be performed for the spcified problem. Sensitivity analysis is only
possible for linear problems.

MSK RES ERR SIZE LICENSE

The problem is bigger than the license.

MSK RES ERR SIZE LICENSE CON

The problem has too many constraints to be solved with the available license.

MSK RES ERR SIZE LICENSE INTVAR

The problem contains too many integer variables to be solved with the available license.

MSK RES ERR SIZE LICENSE NUMCORES

The computer contains more cpu cores than the license allows for.

MSK RES ERR SIZE LICENSE VAR

The problem has too many variables to be solved with the available license.

MSK RES ERR SOL FILE INVALID NUMBER

An invalid number is specified in a solution file.

MSK RES ERR SOLITEM

The solution item number solitem is invalid. Please note that MSK SOL ITEM SNX is invalid for
the basic solution.

MSK RES ERR SOLVER PROBTYPE

Problem type does not match the chosen optimizer.

MSK RES ERR SPACE

Out of space.

MSK RES ERR SPACE LEAKING

MOSEK is leaking memory. This can be due to either an incorrect use of MOSEK or a bug.

MSK RES ERR SPACE NO INFO

No available information about the space usage.

MSK RES ERR SYM MAT DUPLICATE

A value in a symmetric matric as been specified more than once.

387

MSK RES ERR SYM MAT INVALID COL INDEX

A column index specified for sparse symmetric maxtrix is invalid.

MSK RES ERR SYM MAT INVALID ROW INDEX

A row index specified for sparse symmetric maxtrix is invalid.

MSK RES ERR SYM MAT INVALID VALUE

The numerical value specified in a sparse symmetric matrix is not a value floating value.

MSK RES ERR SYM MAT NOT LOWER TRINGULAR

Only the lower triangular part of sparse symmetric matrix should be specified.

MSK RES ERR TASK INCOMPATIBLE

The Task file is incompatible with this platform. This results from reading a file on a 32 bit
platform generated on a 64 bit platform.

MSK RES ERR TASK INVALID

The Task file is invalid.

MSK RES ERR THREAD COND INIT

Could not initialize a condition.

MSK RES ERR THREAD CREATE

Could not create a thread. This error may occur if a large number of environments are created
and not deleted again. In any case it is a good practice to minimize the number of environments
created.

MSK RES ERR THREAD MUTEX INIT

Could not initialize a mutex.

MSK RES ERR THREAD MUTEX LOCK

Could not lock a mutex.

MSK RES ERR THREAD MUTEX UNLOCK

Could not unlock a mutex.

MSK RES ERR TOO MANY CONCURRENT TASKS

Too many concurrent tasks specified.

MSK RES ERR TOO SMALL MAX NUM NZ

The maximum number of non-zeros specified is too small.

MSK RES ERR TOO SMALL MAXNUMANZ

The maximum number of non-zeros specified for A is smaller than the number of non-zeros in
the current A.

388 CHAPTER 24. RESPONSE CODES

MSK RES ERR UNB STEP SIZE

A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes
unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen
only if the problem is badly formulated. Please contact MOSEK support if this error occurs.

MSK RES ERR UNDEF SOLUTION

MOSEK has the following solution types:

• an interior-point solution,

• an basic solution,

• and an integer solution.

Each optimizer may set one or more of these solutions; e.g by default a successful optimization
with the interior-point optimizer defines the interior-point solution, and, for linear problems,
also the basic solution. This error occurs when asking for a solution or for information about a
solution that is not defined.

MSK RES ERR UNDEFINED OBJECTIVE SENSE

The objective sense has not been specified before the optimization.

MSK RES ERR UNHANDLED SOLUTION STATUS

Unhandled solution status.

MSK RES ERR UNKNOWN

Unknown error.

MSK RES ERR UPPER BOUND IS A NAN

The upper bound specificied is not a number (nan).

MSK RES ERR UPPER TRIANGLE

An element in the upper triangle of a lower triangular matrix is specified.

MSK RES ERR USER FUNC RET

An user function reported an error.

MSK RES ERR USER FUNC RET DATA

An user function returned invalid data.

MSK RES ERR USER NLO EVAL

The user-defined nonlinear function reported an error.

MSK RES ERR USER NLO EVAL HESSUBI

The user-defined nonlinear function reported an invalid subscript in the Hessian.

MSK RES ERR USER NLO EVAL HESSUBJ

The user-defined nonlinear function reported an invalid subscript in the Hessian.

389

MSK RES ERR USER NLO FUNC

The user-defined nonlinear function reported an error.

MSK RES ERR WHICHITEM NOT ALLOWED

whichitem is unacceptable.

MSK RES ERR WHICHSOL

The solution defined by compwhichsol does not exists.

MSK RES ERR WRITE LP FORMAT

Problem cannot be written as an LP file.

MSK RES ERR WRITE LP NON UNIQUE NAME

An auto-generated name is not unique.

MSK RES ERR WRITE MPS INVALID NAME

An invalid name is created while writing an MPS file. Usually this will make the MPS file
unreadable.

MSK RES ERR WRITE OPF INVALID VAR NAME

Empty variable names cannot be written to OPF files.

MSK RES ERR WRITING FILE

An error occurred while writing file

MSK RES ERR XML INVALID PROBLEM TYPE

The problem type is not supported by the XML format.

MSK RES ERR Y IS UNDEFINED

The solution item y is undefined.

MSK RES OK

No error occurred.

MSK RES TRM INTERNAL

The optimizer terminated due to some internal reason. Please contact MOSEK support.

MSK RES TRM INTERNAL STOP

The optimizer terminated for internal reasons. Please contact MOSEK support.

MSK RES TRM MAX ITERATIONS

The optimizer terminated at the maximum number of iterations.

MSK RES TRM MAX NUM SETBACKS

The optimizer terminated as the maximum number of set-backs was reached. This indicates
numerical problems and a possibly badly formulated problem.

390 CHAPTER 24. RESPONSE CODES

MSK RES TRM MAX TIME

The optimizer terminated at the maximum amount of time.

MSK RES TRM MIO NEAR ABS GAP

The mixed-integer optimizer terminated because the near optimal absolute gap tolerance was
satisfied.

MSK RES TRM MIO NEAR REL GAP

The mixed-integer optimizer terminated because the near optimal relative gap tolerance was
satisfied.

MSK RES TRM MIO NUM BRANCHES

The mixed-integer optimizer terminated as to the maximum number of branches was reached.

MSK RES TRM MIO NUM RELAXS

The mixed-integer optimizer terminated as the maximum number of relaxations was reached.

MSK RES TRM NUM MAX NUM INT SOLUTIONS

The mixed-integer optimizer terminated as the maximum number of feasible solutions was
reached.

MSK RES TRM NUMERICAL PROBLEM

The optimizer terminated due to numerical problems.

MSK RES TRM OBJECTIVE RANGE

The optimizer terminated on the bound of the objective range.

MSK RES TRM STALL

The optimizer is terminated due to slow progress.

Stalling means that numerical problems prevent the optimizer from making reasonable progress
and that it make no sense to continue. In many cases this happens if the problem is badly scaled
or otherwise ill-conditioned. There is no guarantee that the solution will be (near) feasible or
near optimal. However, often stalling happens near the optimum, and the returned solution may
be of good quality. Therefore, it is recommended to check the status of then solution. If the
solution near optimal the solution is most likely good enough for most practical purposes.

Please note that if a linear optimization problem is solved using the interior-point optimizer
with basis identification turned on, the returned basic solution likely to have high accuracy, even
though the optimizer stalled.

Some common causes of stalling are a) badly scaled models, b) near feasible or near infeasible
problems and c) a non-convex problems. Case c) is only relevant for general non-linear problems.
It is not possible in general for MOSEK to check if a specific problems is convex since such a
check would be NP hard in itself. This implies that care should be taken when solving problems
involving general user defined functions.

MSK RES TRM USER CALLBACK

The optimizer terminated due to the return of the user-defined call-back function.

391

MSK RES WRN ANA ALMOST INT BOUNDS

This warning is issued by the problem analyzer if a constraint is bound nearly integral.

MSK RES WRN ANA C ZERO

This warning is issued by the problem analyzer, if the coefficients in the linear part of the
objective are all zero.

MSK RES WRN ANA CLOSE BOUNDS

This warning is issued by problem analyzer, if ranged constraints or variables with very close
upper and lower bounds are detected. One should consider treating such constraints as equalities
and such variables as constants.

MSK RES WRN ANA EMPTY COLS

This warning is issued by the problem analyzer, if columns, in which all coefficients are zero, are
found.

MSK RES WRN ANA LARGE BOUNDS

This warning is issued by the problem analyzer, if one or more constraint or variable bounds are
very large. One should consider omitting these bounds entirely by setting them to +inf or -inf.

MSK RES WRN CONSTRUCT INVALID SOL ITG

The intial value for one or more of the integer variables is not feasible.

MSK RES WRN CONSTRUCT NO SOL ITG

The construct solution requires an integer solution.

MSK RES WRN CONSTRUCT SOLUTION INFEAS

After fixing the integer variables at the suggested values then the problem is infeasible.

MSK RES WRN DROPPED NZ QOBJ

One or more non-zero elements were dropped in the Q matrix in the objective.

MSK RES WRN DUPLICATE BARVARIABLE NAMES

Two barvariable names are identical.

MSK RES WRN DUPLICATE CONE NAMES

Two cone names are identical.

MSK RES WRN DUPLICATE CONSTRAINT NAMES

Two constraint names are identical.

MSK RES WRN DUPLICATE VARIABLE NAMES

Two variable names are identical.

MSK RES WRN ELIMINATOR SPACE

The eliminator is skipped at least once due to lack of space.

392 CHAPTER 24. RESPONSE CODES

MSK RES WRN EMPTY NAME

A variable or constraint name is empty. The output file may be invalid.

MSK RES WRN IGNORE INTEGER

Ignored integer constraints.

MSK RES WRN INCOMPLETE LINEAR DEPENDENCY CHECK

The linear dependency check(s) is not completed. Normally this is not an important warning
unless the optimization problem has been formulated with linear dependencies which is bad
practice.

MSK RES WRN LARGE AIJ

A numerically large value is specified for an ai,j element inA. The parameter MSK DPAR DATA TOL AIJ LARGE

controls when an ai,j is considered large.

MSK RES WRN LARGE BOUND

A numerically large bound value is specified.

MSK RES WRN LARGE CJ

A numerically large value is specified for one cj .

MSK RES WRN LARGE CON FX

An equality constraint is fixed to a numerically large value. This can cause numerical problems.

MSK RES WRN LARGE LO BOUND

A numerically large lower bound value is specified.

MSK RES WRN LARGE UP BOUND

A numerically large upper bound value is specified.

MSK RES WRN LICENSE EXPIRE

The license expires.

MSK RES WRN LICENSE FEATURE EXPIRE

The license expires.

MSK RES WRN LICENSE SERVER

The license server is not responding.

MSK RES WRN LP DROP VARIABLE

Ignored a variable because the variable was not previously defined. Usually this implies that a
variable appears in the bound section but not in the objective or the constraints.

MSK RES WRN LP OLD QUAD FORMAT

Missing ’/2’ after quadratic expressions in bound or objective.

393

MSK RES WRN MIO INFEASIBLE FINAL

The final mixed-integer problem with all the integer variables fixed at their optimal values is
infeasible.

MSK RES WRN MPS SPLIT BOU VECTOR

A BOUNDS vector is split into several nonadjacent parts in an MPS file.

MSK RES WRN MPS SPLIT RAN VECTOR

A RANGE vector is split into several nonadjacent parts in an MPS file.

MSK RES WRN MPS SPLIT RHS VECTOR

An RHS vector is split into several nonadjacent parts in an MPS file.

MSK RES WRN NAME MAX LEN

A name is longer than the buffer that is supposed to hold it.

MSK RES WRN NO DUALIZER

No automatic dualizer is available for the specified problem. The primal problem is solved.

MSK RES WRN NO GLOBAL OPTIMIZER

No global optimizer is available.

MSK RES WRN NO NONLINEAR FUNCTION WRITE

The problem contains a general nonlinear function in either the objective or the constraints. Such
a nonlinear function cannot be written to a disk file. Note that quadratic terms when inputted
explicitly can be written to disk.

MSK RES WRN NZ IN UPR TRI

Non-zero elements specified in the upper triangle of a matrix were ignored.

MSK RES WRN OPEN PARAM FILE

The parameter file could not be opened.

MSK RES WRN PARAM IGNORED CMIO

A parameter was ignored by the conic mixed integer optimizer.

MSK RES WRN PARAM NAME DOU

The parameter name is not recognized as a double parameter.

MSK RES WRN PARAM NAME INT

The parameter name is not recognized as a integer parameter.

MSK RES WRN PARAM NAME STR

The parameter name is not recognized as a string parameter.

MSK RES WRN PARAM STR VALUE

The string is not recognized as a symbolic value for the parameter.

394 CHAPTER 24. RESPONSE CODES

MSK RES WRN PRESOLVE OUTOFSPACE

The presolve is incomplete due to lack of space.

MSK RES WRN QUAD CONES WITH ROOT FIXED AT ZERO

For at least one quadratic cone the root is fixed at (nearly) zero. This may cause problems
such as a very large dual solution. Therefore, it is recommended to remove such cones before
optimizing the problems, or to fix all the variables in the cone to 0.

MSK RES WRN RQUAD CONES WITH ROOT FIXED AT ZERO

For at least one rotated quadratic cone at least one of the root variables are fixed at (nearly)
zero. This may cause problems such as a very large dual solution. Therefore, it is recommended
to remove such cones before optimizing the problems, or to fix all the variables in the cone to 0.

MSK RES WRN SOL FILE IGNORED CON

One or more lines in the constraint section were ignored when reading a solution file.

MSK RES WRN SOL FILE IGNORED VAR

One or more lines in the variable section were ignored when reading a solution file.

MSK RES WRN SOL FILTER

Invalid solution filter is specified.

MSK RES WRN SPAR MAX LEN

A value for a string parameter is longer than the buffer that is supposed to hold it.

MSK RES WRN TOO FEW BASIS VARS

An incomplete basis has been specified. Too few basis variables are specified.

MSK RES WRN TOO MANY BASIS VARS

A basis with too many variables has been specified.

MSK RES WRN TOO MANY THREADS CONCURRENT

The concurrent optimizer employs more threads than available. This will lead to poor perfor-
mance.

MSK RES WRN UNDEF SOL FILE NAME

Undefined name occurred in a solution.

MSK RES WRN USING GENERIC NAMES

Generic names are used because a name is not valid. For instance when writing an LP file the
names must not contain blanks or start with a digit.

MSK RES WRN WRITE CHANGED NAMES

Some names were changed because they were invalid for the output file format.

395

MSK RES WRN WRITE DISCARDED CFIX

The fixed objective term could not be converted to a variable and was discarded in the output
file.

MSK RES WRN ZERO AIJ

One or more zero elements are specified in A.

MSK RES WRN ZEROS IN SPARSE COL

One or more (near) zero elements are specified in a sparse column of a matrix. It is redundant
to specify zero elements. Hence, it may indicate an error.

MSK RES WRN ZEROS IN SPARSE ROW

One or more (near) zero elements are specified in a sparse row of a matrix. It is redundant to
specify zero elements. Hence it may indicate an error.

396 CHAPTER 24. RESPONSE CODES

Chapter 25

API constants

25.1 Constraint or variable access modes

MSK ACC VAR

Access data by columns (variable oriented)

MSK ACC CON

Access data by rows (constraint oriented)

25.2 Basis identification

MSK BI NEVER

Never do basis identification.

MSK BI ALWAYS

Basis identification is always performed even if the interior-point optimizer terminates abnor-
mally.

MSK BI NO ERROR

Basis identification is performed if the interior-point optimizer terminates without an error.

MSK BI IF FEASIBLE

Basis identification is not performed if the interior-point optimizer terminates with a problem
status saying that the problem is primal or dual infeasible.

MSK BI RESERVERED

Not currently in use.

397

398 CHAPTER 25. API CONSTANTS

25.3 Bound keys

MSK BK LO

The constraint or variable has a finite lower bound and an infinite upper bound.

MSK BK UP

The constraint or variable has an infinite lower bound and an finite upper bound.

MSK BK FX

The constraint or variable is fixed.

MSK BK FR

The constraint or variable is free.

MSK BK RA

The constraint or variable is ranged.

25.4 Specifies the branching direction.

MSK BRANCH DIR FREE

The mixed-integer optimizer decides which branch to choose.

MSK BRANCH DIR UP

The mixed-integer optimizer always chooses the up branch first.

MSK BRANCH DIR DOWN

The mixed-integer optimizer always chooses the down branch first.

25.5 Progress call-back codes

MSK CALLBACK BEGIN BI

The basis identification procedure has been started.

MSK CALLBACK BEGIN CONCURRENT

Concurrent optimizer is started.

MSK CALLBACK BEGIN CONIC

The call-back function is called when the conic optimizer is started.

MSK CALLBACK BEGIN DUAL BI

The call-back function is called from within the basis identification procedure when the dual
phase is started.

25.5. PROGRESS CALL-BACK CODES 399

MSK CALLBACK BEGIN DUAL SENSITIVITY

Dual sensitivity analysis is started.

MSK CALLBACK BEGIN DUAL SETUP BI

The call-back function is called when the dual BI phase is started.

MSK CALLBACK BEGIN DUAL SIMPLEX

The call-back function is called when the dual simplex optimizer started.

MSK CALLBACK BEGIN DUAL SIMPLEX BI

The call-back function is called from within the basis identification procedure when the dual
simplex clean-up phase is started.

MSK CALLBACK BEGIN FULL CONVEXITY CHECK

Begin full convexity check.

MSK CALLBACK BEGIN INFEAS ANA

The call-back function is called when the infeasibility analyzer is started.

MSK CALLBACK BEGIN INTPNT

The call-back function is called when the interior-point optimizer is started.

MSK CALLBACK BEGIN LICENSE WAIT

Begin waiting for license.

MSK CALLBACK BEGIN MIO

The call-back function is called when the mixed-integer optimizer is started.

MSK CALLBACK BEGIN NETWORK DUAL SIMPLEX

The call-back function is called when the dual network simplex optimizer is started.

MSK CALLBACK BEGIN NETWORK PRIMAL SIMPLEX

The call-back function is called when the primal network simplex optimizer is started.

MSK CALLBACK BEGIN NETWORK SIMPLEX

The call-back function is called when the simplex network optimizer is started.

MSK CALLBACK BEGIN NONCONVEX

The call-back function is called when the nonconvex optimizer is started.

MSK CALLBACK BEGIN OPTIMIZER

The call-back function is called when the optimizer is started.

MSK CALLBACK BEGIN PRESOLVE

The call-back function is called when the presolve is started.

400 CHAPTER 25. API CONSTANTS

MSK CALLBACK BEGIN PRIMAL BI

The call-back function is called from within the basis identification procedure when the primal
phase is started.

MSK CALLBACK BEGIN PRIMAL DUAL SIMPLEX

The call-back function is called when the primal-dual simplex optimizer is started.

MSK CALLBACK BEGIN PRIMAL DUAL SIMPLEX BI

The call-back function is called from within the basis identification procedure when the primal-
dual simplex clean-up phase is started.

MSK CALLBACK BEGIN PRIMAL REPAIR

Begin primal feasibility repair.

MSK CALLBACK BEGIN PRIMAL SENSITIVITY

Primal sensitivity analysis is started.

MSK CALLBACK BEGIN PRIMAL SETUP BI

The call-back function is called when the primal BI setup is started.

MSK CALLBACK BEGIN PRIMAL SIMPLEX

The call-back function is called when the primal simplex optimizer is started.

MSK CALLBACK BEGIN PRIMAL SIMPLEX BI

The call-back function is called from within the basis identification procedure when the primal
simplex clean-up phase is started.

MSK CALLBACK BEGIN QCQO REFORMULATE

Begin QCQO reformulation.

MSK CALLBACK BEGIN READ

MOSEK has started reading a problem file.

MSK CALLBACK BEGIN SIMPLEX

The call-back function is called when the simplex optimizer is started.

MSK CALLBACK BEGIN SIMPLEX BI

The call-back function is called from within the basis identification procedure when the simplex
clean-up phase is started.

MSK CALLBACK BEGIN SIMPLEX NETWORK DETECT

The call-back function is called when the network detection procedure is started.

MSK CALLBACK BEGIN WRITE

MOSEK has started writing a problem file.

25.5. PROGRESS CALL-BACK CODES 401

MSK CALLBACK CONIC

The call-back function is called from within the conic optimizer after the information database
has been updated.

MSK CALLBACK DUAL SIMPLEX

The call-back function is called from within the dual simplex optimizer.

MSK CALLBACK END BI

The call-back function is called when the basis identification procedure is terminated.

MSK CALLBACK END CONCURRENT

Concurrent optimizer is terminated.

MSK CALLBACK END CONIC

The call-back function is called when the conic optimizer is terminated.

MSK CALLBACK END DUAL BI

The call-back function is called from within the basis identification procedure when the dual
phase is terminated.

MSK CALLBACK END DUAL SENSITIVITY

Dual sensitivity analysis is terminated.

MSK CALLBACK END DUAL SETUP BI

The call-back function is called when the dual BI phase is terminated.

MSK CALLBACK END DUAL SIMPLEX

The call-back function is called when the dual simplex optimizer is terminated.

MSK CALLBACK END DUAL SIMPLEX BI

The call-back function is called from within the basis identification procedure when the dual
clean-up phase is terminated.

MSK CALLBACK END FULL CONVEXITY CHECK

End full convexity check.

MSK CALLBACK END INFEAS ANA

The call-back function is called when the infeasibility analyzer is terminated.

MSK CALLBACK END INTPNT

The call-back function is called when the interior-point optimizer is terminated.

MSK CALLBACK END LICENSE WAIT

End waiting for license.

MSK CALLBACK END MIO

The call-back function is called when the mixed-integer optimizer is terminated.

402 CHAPTER 25. API CONSTANTS

MSK CALLBACK END NETWORK DUAL SIMPLEX

The call-back function is called when the dual network simplex optimizer is terminated.

MSK CALLBACK END NETWORK PRIMAL SIMPLEX

The call-back function is called when the primal network simplex optimizer is terminated.

MSK CALLBACK END NETWORK SIMPLEX

The call-back function is called when the simplex network optimizer is terminated.

MSK CALLBACK END NONCONVEX

The call-back function is called when the nonconvex optimizer is terminated.

MSK CALLBACK END OPTIMIZER

The call-back function is called when the optimizer is terminated.

MSK CALLBACK END PRESOLVE

The call-back function is called when the presolve is completed.

MSK CALLBACK END PRIMAL BI

The call-back function is called from within the basis identification procedure when the primal
phase is terminated.

MSK CALLBACK END PRIMAL DUAL SIMPLEX

The call-back function is called when the primal-dual simplex optimizer is terminated.

MSK CALLBACK END PRIMAL DUAL SIMPLEX BI

The call-back function is called from within the basis identification procedure when the primal-
dual clean-up phase is terminated.

MSK CALLBACK END PRIMAL REPAIR

End primal feasibility repair.

MSK CALLBACK END PRIMAL SENSITIVITY

Primal sensitivity analysis is terminated.

MSK CALLBACK END PRIMAL SETUP BI

The call-back function is called when the primal BI setup is terminated.

MSK CALLBACK END PRIMAL SIMPLEX

The call-back function is called when the primal simplex optimizer is terminated.

MSK CALLBACK END PRIMAL SIMPLEX BI

The call-back function is called from within the basis identification procedure when the primal
clean-up phase is terminated.

MSK CALLBACK END QCQO REFORMULATE

End QCQO reformulation.

25.5. PROGRESS CALL-BACK CODES 403

MSK CALLBACK END READ

MOSEK has finished reading a problem file.

MSK CALLBACK END SIMPLEX

The call-back function is called when the simplex optimizer is terminated.

MSK CALLBACK END SIMPLEX BI

The call-back function is called from within the basis identification procedure when the simplex
clean-up phase is terminated.

MSK CALLBACK END SIMPLEX NETWORK DETECT

The call-back function is called when the network detection procedure is terminated.

MSK CALLBACK END WRITE

MOSEK has finished writing a problem file.

MSK CALLBACK IM BI

The call-back function is called from within the basis identification procedure at an intermediate
point.

MSK CALLBACK IM CONIC

The call-back function is called at an intermediate stage within the conic optimizer where the
information database has not been updated.

MSK CALLBACK IM DUAL BI

The call-back function is called from within the basis identification procedure at an intermediate
point in the dual phase.

MSK CALLBACK IM DUAL SENSIVITY

The call-back function is called at an intermediate stage of the dual sensitivity analysis.

MSK CALLBACK IM DUAL SIMPLEX

The call-back function is called at an intermediate point in the dual simplex optimizer.

MSK CALLBACK IM FULL CONVEXITY CHECK

The call-back function is called at an intermediate stage of the full convexity check.

MSK CALLBACK IM INTPNT

The call-back function is called at an intermediate stage within the interior-point optimizer where
the information database has not been updated.

MSK CALLBACK IM LICENSE WAIT

MOSEK is waiting for a license.

MSK CALLBACK IM LU

The call-back function is called from within the LU factorization procedure at an intermediate
point.

404 CHAPTER 25. API CONSTANTS

MSK CALLBACK IM MIO

The call-back function is called at an intermediate point in the mixed-integer optimizer.

MSK CALLBACK IM MIO DUAL SIMPLEX

The call-back function is called at an intermediate point in the mixed-integer optimizer while
running the dual simplex optimizer.

MSK CALLBACK IM MIO INTPNT

The call-back function is called at an intermediate point in the mixed-integer optimizer while
running the interior-point optimizer.

MSK CALLBACK IM MIO PRESOLVE

The call-back function is called at an intermediate point in the mixed-integer optimizer while
running the presolve.

MSK CALLBACK IM MIO PRIMAL SIMPLEX

The call-back function is called at an intermediate point in the mixed-integer optimizer while
running the primal simplex optimizer.

MSK CALLBACK IM NETWORK DUAL SIMPLEX

The call-back function is called at an intermediate point in the dual network simplex optimizer.

MSK CALLBACK IM NETWORK PRIMAL SIMPLEX

The call-back function is called at an intermediate point in the primal network simplex optimizer.

MSK CALLBACK IM NONCONVEX

The call-back function is called at an intermediate stage within the nonconvex optimizer where
the information database has not been updated.

MSK CALLBACK IM ORDER

The call-back function is called from within the matrix ordering procedure at an intermediate
point.

MSK CALLBACK IM PRESOLVE

The call-back function is called from within the presolve procedure at an intermediate stage.

MSK CALLBACK IM PRIMAL BI

The call-back function is called from within the basis identification procedure at an intermediate
point in the primal phase.

MSK CALLBACK IM PRIMAL DUAL SIMPLEX

The call-back function is called at an intermediate point in the primal-dual simplex optimizer.

MSK CALLBACK IM PRIMAL SENSIVITY

The call-back function is called at an intermediate stage of the primal sensitivity analysis.

25.5. PROGRESS CALL-BACK CODES 405

MSK CALLBACK IM PRIMAL SIMPLEX

The call-back function is called at an intermediate point in the primal simplex optimizer.

MSK CALLBACK IM QO REFORMULATE

The call-back function is called at an intermediate stage of the conic quadratic reformulation.

MSK CALLBACK IM READ

Intermediate stage in reading.

MSK CALLBACK IM SIMPLEX

The call-back function is called from within the simplex optimizer at an intermediate point.

MSK CALLBACK IM SIMPLEX BI

The call-back function is called from within the basis identification procedure at an intermedi-
ate point in the simplex clean-up phase. The frequency of the call-backs is controlled by the
MSK IPAR LOG SIM FREQ parameter.

MSK CALLBACK INTPNT

The call-back function is called from within the interior-point optimizer after the information
database has been updated.

MSK CALLBACK NEW INT MIO

The call-back function is called after a new integer solution has been located by the mixed-integer
optimizer.

MSK CALLBACK NONCOVEX

The call-back function is called from within the nonconvex optimizer after the information
database has been updated.

MSK CALLBACK PRIMAL SIMPLEX

The call-back function is called from within the primal simplex optimizer.

MSK CALLBACK READ OPF

The call-back function is called from the OPF reader.

MSK CALLBACK READ OPF SECTION

A chunk of Q non-zeos has been read from a problem file.

MSK CALLBACK UPDATE DUAL BI

The call-back function is called from within the basis identification procedure at an intermediate
point in the dual phase.

MSK CALLBACK UPDATE DUAL SIMPLEX

The call-back function is called in the dual simplex optimizer.

406 CHAPTER 25. API CONSTANTS

MSK CALLBACK UPDATE DUAL SIMPLEX BI

The call-back function is called from within the basis identification procedure at an intermediate
point in the dual simplex clean-up phase. The frequency of the call-backs is controlled by the
MSK IPAR LOG SIM FREQ parameter.

MSK CALLBACK UPDATE NETWORK DUAL SIMPLEX

The call-back function is called in the dual network simplex optimizer.

MSK CALLBACK UPDATE NETWORK PRIMAL SIMPLEX

The call-back function is called in the primal network simplex optimizer.

MSK CALLBACK UPDATE NONCONVEX

The call-back function is called at an intermediate stage within the nonconvex optimizer where
the information database has been updated.

MSK CALLBACK UPDATE PRESOLVE

The call-back function is called from within the presolve procedure.

MSK CALLBACK UPDATE PRIMAL BI

The call-back function is called from within the basis identification procedure at an intermediate
point in the primal phase.

MSK CALLBACK UPDATE PRIMAL DUAL SIMPLEX

The call-back function is called in the primal-dual simplex optimizer.

MSK CALLBACK UPDATE PRIMAL DUAL SIMPLEX BI

The call-back function is called from within the basis identification procedure at an intermediate
point in the primal-dual simplex clean-up phase. The frequency of the call-backs is controlled
by the MSK IPAR LOG SIM FREQ parameter.

MSK CALLBACK UPDATE PRIMAL SIMPLEX

The call-back function is called in the primal simplex optimizer.

MSK CALLBACK UPDATE PRIMAL SIMPLEX BI

The call-back function is called from within the basis identification procedure at an intermediate
point in the primal simplex clean-up phase. The frequency of the call-backs is controlled by the
MSK IPAR LOG SIM FREQ parameter.

MSK CALLBACK WRITE OPF

The call-back function is called from the OPF writer.

25.6. TYPES OF CONVEXITY CHECKS. 407

25.6 Types of convexity checks.

MSK CHECK CONVEXITY NONE

No convexity check.

MSK CHECK CONVEXITY SIMPLE

Perform simple and fast convexity check.

MSK CHECK CONVEXITY FULL

Perform a full convexity check.

25.7 Compression types

MSK COMPRESS NONE

No compression is used.

MSK COMPRESS FREE

The type of compression used is chosen automatically.

MSK COMPRESS GZIP

The type of compression used is gzip compatible.

25.8 Cone types

MSK CT QUAD

The cone is a quadratic cone.

MSK CT RQUAD

The cone is a rotated quadratic cone.

25.9 Data format types

MSK DATA FORMAT EXTENSION

The file extension is used to determine the data file format.

MSK DATA FORMAT MPS

The data file is MPS formatted.

MSK DATA FORMAT LP

The data file is LP formatted.

408 CHAPTER 25. API CONSTANTS

MSK DATA FORMAT OP

The data file is an optimization problem formatted file.

MSK DATA FORMAT XML

The data file is an XML formatted file.

MSK DATA FORMAT FREE MPS

The data data a free MPS formatted file.

MSK DATA FORMAT TASK

Generic task dump file.

25.10 Double information items

MSK DINF BI CLEAN DUAL TIME

Time spent within the dual clean-up optimizer of the basis identification procedure since its
invocation.

MSK DINF BI CLEAN PRIMAL DUAL TIME

Time spent within the primal-dual clean-up optimizer of the basis identification procedure since
its invocation.

MSK DINF BI CLEAN PRIMAL TIME

Time spent within the primal clean-up optimizer of the basis identification procedure since its
invocation.

MSK DINF BI CLEAN TIME

Time spent within the clean-up phase of the basis identification procedure since its invocation.

MSK DINF BI DUAL TIME

Time spent within the dual phase basis identification procedure since its invocation.

MSK DINF BI PRIMAL TIME

Time spent within the primal phase of the basis identification procedure since its invocation.

MSK DINF BI TIME

Time spent within the basis identification procedure since its invocation.

MSK DINF CONCURRENT TIME

Time spent within the concurrent optimizer since its invocation.

MSK DINF INTPNT DUAL FEAS

Dual feasibility measure reported by the interior-point optimizer. (For the interior-point op-
timizer this measure does not directly related to the original problem because a homogeneous
model is employed.)

25.10. DOUBLE INFORMATION ITEMS 409

MSK DINF INTPNT DUAL OBJ

Dual objective value reported by the interior-point optimizer.

MSK DINF INTPNT FACTOR NUM FLOPS

An estimate of the number of flops used in the factorization.

MSK DINF INTPNT OPT STATUS

This measure should converge to +1 if the problem has a primal-dual optimal solution, and
converge to -1 if problem is (strictly) primal or dual infeasible. Furthermore, if the measure
converges to 0 the problem is usually ill-posed.

MSK DINF INTPNT ORDER TIME

Order time (in seconds).

MSK DINF INTPNT PRIMAL FEAS

Primal feasibility measure reported by the interior-point optimizers. (For the interior-point
optimizer this measure does not directly related to the original problem because a homogeneous
model is employed).

MSK DINF INTPNT PRIMAL OBJ

Primal objective value reported by the interior-point optimizer.

MSK DINF INTPNT TIME

Time spent within the interior-point optimizer since its invocation.

MSK DINF MIO CONSTRUCT SOLUTION OBJ

If MOSEK has successfully constructed an integer feasible solution, then this item contains the
optimal objective value corresponding to the feasible solution.

MSK DINF MIO HEURISTIC TIME

Time spent in the optimizer while solving the relaxtions.

MSK DINF MIO OBJ ABS GAP

Given the mixed-integer optimizer has computed a feasible solution and a bound on the optimal
objective value, then this item contains the absolute gap defined by

|(objective value of feasible solution)− (objective bound)|.

Otherwise it has the value -1.0.

MSK DINF MIO OBJ BOUND

The best known bound on the objective function. This value is undefined until at least one
relaxation has been solved: To see if this is the case check that MSK IINF MIO NUM RELAX is
stricly positive.

410 CHAPTER 25. API CONSTANTS

MSK DINF MIO OBJ INT

The primal objective value corresponding to the best integer feasible solution. Please note that at
least one integer feasible solution must have located i.e. check MSK IINF MIO NUM INT SOLUTIONS.

MSK DINF MIO OBJ REL GAP

Given that the mixed-integer optimizer has computed a feasible solution and a bound on the
optimal objective value, then this item contains the relative gap defined by

|(objective value of feasible solution)− (objective bound)|
max(δ, |(objective value of feasible solution)|)

.

where δ is given by the paramater MSK DPAR MIO REL GAP CONST. Otherwise it has the value -1.0.

MSK DINF MIO OPTIMIZER TIME

Time spent in the optimizer while solving the relaxtions.

MSK DINF MIO ROOT OPTIMIZER TIME

Time spent in the optimizer while solving the root relaxation.

MSK DINF MIO ROOT PRESOLVE TIME

Time spent in while presolveing the root relaxation.

MSK DINF MIO TIME

Time spent in the mixed-integer optimizer.

MSK DINF MIO USER OBJ CUT

If the objective cut is used, then this information item has the value of the cut.

MSK DINF OPTIMIZER TIME

Total time spent in the optimizer since it was invoked.

MSK DINF PRESOLVE ELI TIME

Total time spent in the eliminator since the presolve was invoked.

MSK DINF PRESOLVE LINDEP TIME

Total time spent in the linear dependency checker since the presolve was invoked.

MSK DINF PRESOLVE TIME

Total time (in seconds) spent in the presolve since it was invoked.

MSK DINF PRIMAL REPAIR PENALTY OBJ

The optimal objective value of the penalty function.

MSK DINF QCQO REFORMULATE TIME

Time spent with conic quadratic reformulation.

25.10. DOUBLE INFORMATION ITEMS 411

MSK DINF RD TIME

Time spent reading the data file.

MSK DINF SIM DUAL TIME

Time spent in the dual simplex optimizer since invoking it.

MSK DINF SIM FEAS

Feasibility measure reported by the simplex optimizer.

MSK DINF SIM NETWORK DUAL TIME

Time spent in the dual network simplex optimizer since invoking it.

MSK DINF SIM NETWORK PRIMAL TIME

Time spent in the primal network simplex optimizer since invoking it.

MSK DINF SIM NETWORK TIME

Time spent in the network simplex optimizer since invoking it.

MSK DINF SIM OBJ

Objective value reported by the simplex optimizer.

MSK DINF SIM PRIMAL DUAL TIME

Time spent in the primal-dual simplex optimizer optimizer since invoking it.

MSK DINF SIM PRIMAL TIME

Time spent in the primal simplex optimizer since invoking it.

MSK DINF SIM TIME

Time spent in the simplex optimizer since invoking it.

MSK DINF SOL BAS DUAL OBJ

Dual objective value of the basic solution.

MSK DINF SOL BAS DVIOLCON

Maximal dual bound violation for xc in the basic solution.

MSK DINF SOL BAS DVIOLVAR

Maximal dual bound violation for xx in the basic solution.

MSK DINF SOL BAS PRIMAL OBJ

Primal objective value of the basic solution.

MSK DINF SOL BAS PVIOLCON

Maximal primal bound violation for xc in the basic solution.

MSK DINF SOL BAS PVIOLVAR

Maximal primal bound violation for xx in the basic solution.

412 CHAPTER 25. API CONSTANTS

MSK DINF SOL ITG PRIMAL OBJ

Primal objective value of the integer solution.

MSK DINF SOL ITG PVIOLBARVAR

Maximal primal bound violation for X̄ in the integer solution.

MSK DINF SOL ITG PVIOLCON

Maximal primal bound violation for xc in the integer solution.

MSK DINF SOL ITG PVIOLCONES

Maximal primal violation for primal conic constraints in the integer solution.

MSK DINF SOL ITG PVIOLITG

Maximal violation for the integer constraints in the integer solution.

MSK DINF SOL ITG PVIOLVAR

Maximal primal bound violation for xx in the integer solution.

MSK DINF SOL ITR DUAL OBJ

Dual objective value of the interior-point solution.

MSK DINF SOL ITR DVIOLBARVAR

Maximal dual bound violation for X̄ in the interior-point solution.

MSK DINF SOL ITR DVIOLCON

Maximal dual bound violation for xc in the interior-point solution.

MSK DINF SOL ITR DVIOLCONES

Maximal dual violation for dual conic constraints in the interior-point solution.

MSK DINF SOL ITR DVIOLVAR

Maximal dual bound violation for xx in the interior-point solution.

MSK DINF SOL ITR PRIMAL OBJ

Primal objective value of the interior-point solution.

MSK DINF SOL ITR PVIOLBARVAR

Maximal primal bound violation for X̄ in the interior-point solution.

MSK DINF SOL ITR PVIOLCON

Maximal primal bound violation for xc in the interior-point solution.

MSK DINF SOL ITR PVIOLCONES

Maximal primal violation for primal conic constraints in the interior-point solution.

MSK DINF SOL ITR PVIOLVAR

Maximal primal bound violation for xx in the interior-point solution.

25.11. FEASIBILITY REPAIR TYPES 413

25.11 Feasibility repair types

MSK FEASREPAIR OPTIMIZE NONE

Do not optimize the feasibility repair problem.

MSK FEASREPAIR OPTIMIZE PENALTY

Minimize weighted sum of violations.

MSK FEASREPAIR OPTIMIZE COMBINED

Minimize with original objective subject to minimal weighted violation of bounds.

25.12 License feature

MSK FEATURE PTS

Base system.

MSK FEATURE PTON

Nonlinear extension.

MSK FEATURE PTOM

Mixed-integer extension.

MSK FEATURE PTOX

Non-convex extension.

25.13 Integer information items.

MSK IINF ANA PRO NUM CON

Number of constraints in the problem.

MSK IINF ANA PRO NUM CON EQ

Number of equality constraints.

MSK IINF ANA PRO NUM CON FR

Number of unbounded constraints.

MSK IINF ANA PRO NUM CON LO

Number of constraints with a lower bound and an infinite upper bound.

MSK IINF ANA PRO NUM CON RA

Number of constraints with finite lower and upper bounds.

414 CHAPTER 25. API CONSTANTS

MSK IINF ANA PRO NUM CON UP

Number of constraints with an upper bound and an infinite lower bound.

MSK IINF ANA PRO NUM VAR

Number of variables in the problem.

MSK IINF ANA PRO NUM VAR BIN

Number of binary (0-1) variables.

MSK IINF ANA PRO NUM VAR CONT

Number of continuous variables.

MSK IINF ANA PRO NUM VAR EQ

Number of fixed variables.

MSK IINF ANA PRO NUM VAR FR

Number of free variables.

MSK IINF ANA PRO NUM VAR INT

Number of general integer variables.

MSK IINF ANA PRO NUM VAR LO

Number of variables with a lower bound and an infinite upper bound.

MSK IINF ANA PRO NUM VAR RA

Number of variables with finite lower and upper bounds.

MSK IINF ANA PRO NUM VAR UP

Number of variables with an upper bound and an infinite lower bound. This value is set by

MSK IINF CONCURRENT FASTEST OPTIMIZER

The type of the optimizer that finished first in a concurrent optimization.

MSK IINF INTPNT FACTOR DIM DENSE

Dimension of the dense sub system in factorization.

MSK IINF INTPNT ITER

Number of interior-point iterations since invoking the interior-point optimizer.

MSK IINF INTPNT NUM THREADS

Number of threads that the interior-point optimizer is using.

MSK IINF INTPNT SOLVE DUAL

Non-zero if the interior-point optimizer is solving the dual problem.

MSK IINF MIO CONSTRUCT NUM ROUNDINGS

Number of values in the integer solution that is rounded to an integer value.

25.13. INTEGER INFORMATION ITEMS. 415

MSK IINF MIO CONSTRUCT SOLUTION

If this item has the value 0, then MOSEK did not try to construct an initial integer feasible
solution. If the item has a positive value, then MOSEK successfully constructed an initial integer
feasible solution.

MSK IINF MIO INITIAL SOLUTION

Is non-zero if an initial integer solution is specified.

MSK IINF MIO NUM ACTIVE NODES

Number of active brabch bound nodes.

MSK IINF MIO NUM BASIS CUTS

Number of basis cuts.

MSK IINF MIO NUM BRANCH

Number of branches performed during the optimization.

MSK IINF MIO NUM CARDGUB CUTS

Number of cardgub cuts.

MSK IINF MIO NUM CLIQUE CUTS

Number of clique cuts.

MSK IINF MIO NUM COEF REDC CUTS

Number of coef. redc. cuts.

MSK IINF MIO NUM CONTRA CUTS

Number of contra cuts.

MSK IINF MIO NUM DISAGG CUTS

Number of diasagg cuts.

MSK IINF MIO NUM FLOW COVER CUTS

Number of flow cover cuts.

MSK IINF MIO NUM GCD CUTS

Number of gcd cuts.

MSK IINF MIO NUM GOMORY CUTS

Number of Gomory cuts.

MSK IINF MIO NUM GUB COVER CUTS

Number of GUB cover cuts.

MSK IINF MIO NUM INT SOLUTIONS

Number of integer feasible solutions that has been found.

416 CHAPTER 25. API CONSTANTS

MSK IINF MIO NUM KNAPSUR COVER CUTS

Number of knapsack cover cuts.

MSK IINF MIO NUM LATTICE CUTS

Number of lattice cuts.

MSK IINF MIO NUM LIFT CUTS

Number of lift cuts.

MSK IINF MIO NUM OBJ CUTS

Number of obj cuts.

MSK IINF MIO NUM PLAN LOC CUTS

Number of loc cuts.

MSK IINF MIO NUM RELAX

Number of relaxations solved during the optimization.

MSK IINF MIO NUMCON

Number of constraints in the problem solved be the mixed-integer optimizer.

MSK IINF MIO NUMINT

Number of integer variables in the problem solved be the mixed-integer optimizer.

MSK IINF MIO NUMVAR

Number of variables in the problem solved be the mixed-integer optimizer.

MSK IINF MIO OBJ BOUND DEFINED

Non-zero if a valid objective bound has been found, otherwise zero.

MSK IINF MIO TOTAL NUM CUTS

Total number of cuts generated by the mixed-integer optimizer.

MSK IINF MIO USER OBJ CUT

If it is non-zero, then the objective cut is used.

MSK IINF OPT NUMCON

Number of constraints in the problem solved when the optimizer is called.

MSK IINF OPT NUMVAR

Number of variables in the problem solved when the optimizer is called

MSK IINF OPTIMIZE RESPONSE

The reponse code returned by optimize.

MSK IINF RD NUMBARVAR

Number of variables read.

25.13. INTEGER INFORMATION ITEMS. 417

MSK IINF RD NUMCON

Number of constraints read.

MSK IINF RD NUMCONE

Number of conic constraints read.

MSK IINF RD NUMINTVAR

Number of integer-constrained variables read.

MSK IINF RD NUMQ

Number of nonempty Q matrixes read.

MSK IINF RD NUMVAR

Number of variables read.

MSK IINF RD PROTYPE

Problem type.

MSK IINF SIM DUAL DEG ITER

The number of dual degenerate iterations.

MSK IINF SIM DUAL HOTSTART

If 1 then the dual simplex algorithm is solving from an advanced basis.

MSK IINF SIM DUAL HOTSTART LU

If 1 then a valid basis factorization of full rank was located and used by the dual simplex
algorithm.

MSK IINF SIM DUAL INF ITER

The number of iterations taken with dual infeasibility.

MSK IINF SIM DUAL ITER

Number of dual simplex iterations during the last optimization.

MSK IINF SIM NETWORK DUAL DEG ITER

The number of dual network degenerate iterations.

MSK IINF SIM NETWORK DUAL HOTSTART

If 1 then the dual network simplex algorithm is solving from an advanced basis.

MSK IINF SIM NETWORK DUAL HOTSTART LU

If 1 then a valid basis factorization of full rank was located and used by the dual network simplex
algorithm.

MSK IINF SIM NETWORK DUAL INF ITER

The number of iterations taken with dual infeasibility in the network optimizer.

418 CHAPTER 25. API CONSTANTS

MSK IINF SIM NETWORK DUAL ITER

Number of dual network simplex iterations during the last optimization.

MSK IINF SIM NETWORK PRIMAL DEG ITER

The number of primal network degenerate iterations.

MSK IINF SIM NETWORK PRIMAL HOTSTART

If 1 then the primal network simplex algorithm is solving from an advanced basis.

MSK IINF SIM NETWORK PRIMAL HOTSTART LU

If 1 then a valid basis factorization of full rank was located and used by the primal network
simplex algorithm.

MSK IINF SIM NETWORK PRIMAL INF ITER

The number of iterations taken with primal infeasibility in the network optimizer.

MSK IINF SIM NETWORK PRIMAL ITER

Number of primal network simplex iterations during the last optimization.

MSK IINF SIM NUMCON

Number of constraints in the problem solved by the simplex optimizer.

MSK IINF SIM NUMVAR

Number of variables in the problem solved by the simplex optimizer.

MSK IINF SIM PRIMAL DEG ITER

The number of primal degenerate iterations.

MSK IINF SIM PRIMAL DUAL DEG ITER

The number of degenerate major iterations taken by the primal dual simplex algorithm.

MSK IINF SIM PRIMAL DUAL HOTSTART

If 1 then the primal dual simplex algorithm is solving from an advanced basis.

MSK IINF SIM PRIMAL DUAL HOTSTART LU

If 1 then a valid basis factorization of full rank was located and used by the primal dual simplex
algorithm.

MSK IINF SIM PRIMAL DUAL INF ITER

The number of master iterations with dual infeasibility taken by the primal dual simplex algo-
rithm.

MSK IINF SIM PRIMAL DUAL ITER

Number of primal dual simplex iterations during the last optimization.

MSK IINF SIM PRIMAL HOTSTART

If 1 then the primal simplex algorithm is solving from an advanced basis.

25.13. INTEGER INFORMATION ITEMS. 419

MSK IINF SIM PRIMAL HOTSTART LU

If 1 then a valid basis factorization of full rank was located and used by the primal simplex
algorithm.

MSK IINF SIM PRIMAL INF ITER

The number of iterations taken with primal infeasibility.

MSK IINF SIM PRIMAL ITER

Number of primal simplex iterations during the last optimization.

MSK IINF SIM SOLVE DUAL

Is non-zero if dual problem is solved.

MSK IINF SOL BAS PROSTA

Problem status of the basic solution. Updated after each optimization.

MSK IINF SOL BAS SOLSTA

Solution status of the basic solution. Updated after each optimization.

MSK IINF SOL INT PROSTA

Deprecated.

MSK IINF SOL INT SOLSTA

Degrecated.

MSK IINF SOL ITG PROSTA

Problem status of the integer solution. Updated after each optimization.

MSK IINF SOL ITG SOLSTA

Solution status of the integer solution. Updated after each optimization.

MSK IINF SOL ITR PROSTA

Problem status of the interior-point solution. Updated after each optimization.

MSK IINF SOL ITR SOLSTA

Solution status of the interior-point solution. Updated after each optimization.

MSK IINF STO NUM A CACHE FLUSHES

Number of times the cache of A elements is flushed. A large number implies that maxnumanz is
too small as well as an inefficient usage of MOSEK.

MSK IINF STO NUM A REALLOC

Number of times the storage for storing A has been changed. A large value may indicates that
memory fragmentation may occur.

MSK IINF STO NUM A TRANSPOSES

Number of times the A matrix is transposed. A large number implies that maxnumanz is too small
or an inefficient usage of MOSEK. This will occur in particular if the code alternate between
accessing rows and columns of A.

420 CHAPTER 25. API CONSTANTS

25.14 Information item types

MSK INF DOU TYPE

Is a double information type.

MSK INF INT TYPE

Is an integer.

MSK INF LINT TYPE

Is a long integer.

25.15 Hot-start type employed by the interior-point optimiz-
ers.

MSK INTPNT HOTSTART NONE

The interior-point optimizer performs a coldstart.

MSK INTPNT HOTSTART PRIMAL

The interior-point optimizer exploits the primal solution only.

MSK INTPNT HOTSTART DUAL

The interior-point optimizer exploits the dual solution only.

MSK INTPNT HOTSTART PRIMAL DUAL

The interior-point optimizer exploits both the primal and dual solution.

25.16 Input/output modes

MSK IOMODE READ

The file is read-only.

MSK IOMODE WRITE

The file is write-only. If the file exists then it is truncated when it is opened. Otherwise it is
created when it is opened.

MSK IOMODE READWRITE

The file is to read and written.

25.17. LANGUAGE SELECTION CONSTANTS 421

25.17 Language selection constants

MSK LANG ENG

English language selection

MSK LANG DAN

Danish language selection

25.18 Long integer information items.

MSK LIINF BI CLEAN DUAL DEG ITER

Number of dual degenerate clean iterations performed in the basis identification.

MSK LIINF BI CLEAN DUAL ITER

Number of dual clean iterations performed in the basis identification.

MSK LIINF BI CLEAN PRIMAL DEG ITER

Number of primal degenerate clean iterations performed in the basis identification.

MSK LIINF BI CLEAN PRIMAL DUAL DEG ITER

Number of primal-dual degenerate clean iterations performed in the basis identification.

MSK LIINF BI CLEAN PRIMAL DUAL ITER

Number of primal-dual clean iterations performed in the basis identification.

MSK LIINF BI CLEAN PRIMAL DUAL SUB ITER

Number of primal-dual subproblem clean iterations performed in the basis identification.

MSK LIINF BI CLEAN PRIMAL ITER

Number of primal clean iterations performed in the basis identification.

MSK LIINF BI DUAL ITER

Number of dual pivots performed in the basis identification.

MSK LIINF BI PRIMAL ITER

Number of primal pivots performed in the basis identification.

MSK LIINF INTPNT FACTOR NUM NZ

Number of non-zeros in factorization.

MSK LIINF MIO INTPNT ITER

Number of interior-point iterations performed by the mixed-integer optimizer.

MSK LIINF MIO SIMPLEX ITER

Number of simplex iterations performed by the mixed-integer optimizer.

422 CHAPTER 25. API CONSTANTS

MSK LIINF RD NUMANZ

Number of non-zeros in A that is read.

MSK LIINF RD NUMQNZ

Number of Q non-zeros.

25.19 Mark

MSK MARK LO

The lower bound is selected for sensitivity analysis.

MSK MARK UP

The upper bound is selected for sensitivity analysis.

25.20 Continuous mixed-integer solution type

MSK MIO CONT SOL NONE

No interior-point or basic solution are reported when the mixed-integer optimizer is used.

MSK MIO CONT SOL ROOT

The reported interior-point and basic solutions are a solution to the root node problem when
mixed-integer optimizer is used.

MSK MIO CONT SOL ITG

The reported interior-point and basic solutions are a solution to the problem with all integer
variables fixed at the value they have in the integer solution. A solution is only reported in case
the problem has a primal feasible solution.

MSK MIO CONT SOL ITG REL

In case the problem is primal feasible then the reported interior-point and basic solutions are
a solution to the problem with all integer variables fixed at the value they have in the integer
solution. If the problem is primal infeasible, then the solution to the root node problem is
reported.

25.21 Integer restrictions

MSK MIO MODE IGNORED

The integer constraints are ignored and the problem is solved as a continuous problem.

MSK MIO MODE SATISFIED

Integer restrictions should be satisfied.

25.22. MIXED-INTEGER NODE SELECTION TYPES 423

MSK MIO MODE LAZY

Integer restrictions should be satisfied if an optimizer is available for the problem.

25.22 Mixed-integer node selection types

MSK MIO NODE SELECTION FREE

The optimizer decides the node selection strategy.

MSK MIO NODE SELECTION FIRST

The optimizer employs a depth first node selection strategy.

MSK MIO NODE SELECTION BEST

The optimizer employs a best bound node selection strategy.

MSK MIO NODE SELECTION WORST

The optimizer employs a worst bound node selection strategy.

MSK MIO NODE SELECTION HYBRID

The optimizer employs a hybrid strategy.

MSK MIO NODE SELECTION PSEUDO

The optimizer employs selects the node based on a pseudo cost estimate.

25.23 MPS file format type

MSK MPS FORMAT STRICT

It is assumed that the input file satisfies the MPS format strictly.

MSK MPS FORMAT RELAXED

It is assumed that the input file satisfies a slightly relaxed version of the MPS format.

MSK MPS FORMAT FREE

It is assumed that the input file satisfies the free MPS format. This implies that spaces are not
allowed in names. Otherwise the format is free.

25.24 Message keys

MSK MSG READING FILE

MSK MSG WRITING FILE

MSK MSG MPS SELECTED

424 CHAPTER 25. API CONSTANTS

25.25 Cone types

MSK NAME TYPE GEN

General names. However, no duplicate and blank names are allowed.

MSK NAME TYPE MPS

MPS type names.

MSK NAME TYPE LP

LP type names.

25.26 Objective sense types

MSK OBJECTIVE SENSE MINIMIZE

The problem should be minimized.

MSK OBJECTIVE SENSE MAXIMIZE

The problem should be maximized.

25.27 On/off

MSK OFF

Switch the option off.

MSK ON

Switch the option on.

25.28 Optimizer types

MSK OPTIMIZER FREE

The optimizer is chosen automatically.

MSK OPTIMIZER INTPNT

The interior-point optimizer is used.

MSK OPTIMIZER CONIC

The optimizer for problems having conic constraints.

MSK OPTIMIZER PRIMAL SIMPLEX

The primal simplex optimizer is used.

25.29. ORDERING STRATEGIES 425

MSK OPTIMIZER DUAL SIMPLEX

The dual simplex optimizer is used.

MSK OPTIMIZER PRIMAL DUAL SIMPLEX

The primal dual simplex optimizer is used.

MSK OPTIMIZER FREE SIMPLEX

One of the simplex optimizers is used.

MSK OPTIMIZER NETWORK PRIMAL SIMPLEX

The network primal simplex optimizer is used. It is only applicable to pute network problems.

MSK OPTIMIZER MIXED INT CONIC

The mixed-integer optimizer for conic and linear problems.

MSK OPTIMIZER MIXED INT

The mixed-integer optimizer.

MSK OPTIMIZER CONCURRENT

The optimizer for nonconvex nonlinear problems.

MSK OPTIMIZER NONCONVEX

The optimizer for nonconvex nonlinear problems.

25.29 Ordering strategies

MSK ORDER METHOD FREE

The ordering method is chosen automatically.

MSK ORDER METHOD APPMINLOC

Approximate minimum local fill-in ordering is employed.

MSK ORDER METHOD EXPERIMENTAL

This option should not be used.

MSK ORDER METHOD TRY GRAPHPAR

Always try the the graph partitioning based ordering.

MSK ORDER METHOD FORCE GRAPHPAR

Always use the graph partitioning based ordering even if it is worse that the approximate mini-
mum local fill ordering.

MSK ORDER METHOD NONE

No ordering is used.

426 CHAPTER 25. API CONSTANTS

25.30 Parameter type

MSK PAR INVALID TYPE

Not a valid parameter.

MSK PAR DOU TYPE

Is a double parameter.

MSK PAR INT TYPE

Is an integer parameter.

MSK PAR STR TYPE

Is a string parameter.

25.31 Presolve method.

MSK PRESOLVE MODE OFF

The problem is not presolved before it is optimized.

MSK PRESOLVE MODE ON

The problem is presolved before it is optimized.

MSK PRESOLVE MODE FREE

It is decided automatically whether to presolve before the problem is optimized.

25.32 Problem data items

MSK PI VAR

Item is a variable.

MSK PI CON

Item is a constraint.

MSK PI CONE

Item is a cone.

25.33 Problem types

MSK PROBTYPE LO

The problem is a linear optimization problem.

25.34. PROBLEM STATUS KEYS 427

MSK PROBTYPE QO

The problem is a quadratic optimization problem.

MSK PROBTYPE QCQO

The problem is a quadratically constrained optimization problem.

MSK PROBTYPE GECO

General convex optimization.

MSK PROBTYPE CONIC

A conic optimization.

MSK PROBTYPE MIXED

General nonlinear constraints and conic constraints. This combination can not be solved by
MOSEK.

25.34 Problem status keys

MSK PRO STA UNKNOWN

Unknown problem status.

MSK PRO STA PRIM AND DUAL FEAS

The problem is primal and dual feasible.

MSK PRO STA PRIM FEAS

The problem is primal feasible.

MSK PRO STA DUAL FEAS

The problem is dual feasible.

MSK PRO STA PRIM INFEAS

The problem is primal infeasible.

MSK PRO STA DUAL INFEAS

The problem is dual infeasible.

MSK PRO STA PRIM AND DUAL INFEAS

The problem is primal and dual infeasible.

MSK PRO STA ILL POSED

The problem is ill-posed. For example, it may be primal and dual feasible but have a positive
duality gap.

MSK PRO STA NEAR PRIM AND DUAL FEAS

The problem is at least nearly primal and dual feasible.

428 CHAPTER 25. API CONSTANTS

MSK PRO STA NEAR PRIM FEAS

The problem is at least nearly primal feasible.

MSK PRO STA NEAR DUAL FEAS

The problem is at least nearly dual feasible.

MSK PRO STA PRIM INFEAS OR UNBOUNDED

The problem is either primal infeasible or unbounded. This may occur for mixed-integer prob-
lems.

25.35 Response code type

MSK RESPONSE OK

The response code is OK.

MSK RESPONSE WRN

The response code is a warning.

MSK RESPONSE TRM

The response code is an optimizer termination status.

MSK RESPONSE ERR

The response code is an error.

MSK RESPONSE UNK

The response code does not belong to any class.

25.36 Scaling type

MSK SCALING METHOD POW2

Scales only with power of 2 leaving the mantissa untouched.

MSK SCALING METHOD FREE

The optimizer chooses the scaling heuristic.

25.37 Scaling type

MSK SCALING FREE

The optimizer chooses the scaling heuristic.

25.38. SENSITIVITY TYPES 429

MSK SCALING NONE

No scaling is performed.

MSK SCALING MODERATE

A conservative scaling is performed.

MSK SCALING AGGRESSIVE

A very aggressive scaling is performed.

25.38 Sensitivity types

MSK SENSITIVITY TYPE BASIS

Basis sensitivity analysis is performed.

MSK SENSITIVITY TYPE OPTIMAL PARTITION

Optimal partition sensitivity analysis is performed.

25.39 Degeneracy strategies

MSK SIM DEGEN NONE

The simplex optimizer should use no degeneration strategy.

MSK SIM DEGEN FREE

The simplex optimizer chooses the degeneration strategy.

MSK SIM DEGEN AGGRESSIVE

The simplex optimizer should use an aggressive degeneration strategy.

MSK SIM DEGEN MODERATE

The simplex optimizer should use a moderate degeneration strategy.

MSK SIM DEGEN MINIMUM

The simplex optimizer should use a minimum degeneration strategy.

25.40 Exploit duplicate columns.

MSK SIM EXPLOIT DUPVEC OFF

Disallow the simplex optimizer to exploit duplicated columns.

MSK SIM EXPLOIT DUPVEC ON

Allow the simplex optimizer to exploit duplicated columns.

430 CHAPTER 25. API CONSTANTS

MSK SIM EXPLOIT DUPVEC FREE

The simplex optimizer can choose freely.

25.41 Hot-start type employed by the simplex optimizer

MSK SIM HOTSTART NONE

The simplex optimizer performs a coldstart.

MSK SIM HOTSTART FREE

The simplex optimize chooses the hot-start type.

MSK SIM HOTSTART STATUS KEYS

Only the status keys of the constraints and variables are used to choose the type of hot-start.

25.42 Problem reformulation.

MSK SIM REFORMULATION OFF

Disallow the simplex optimizer to reformulate the problem.

MSK SIM REFORMULATION ON

Allow the simplex optimizer to reformulate the problem.

MSK SIM REFORMULATION FREE

The simplex optimizer can choose freely.

MSK SIM REFORMULATION AGGRESSIVE

The simplex optimizer should use an aggressive reformulation strategy.

25.43 Simplex selection strategy

MSK SIM SELECTION FREE

The optimizer chooses the pricing strategy.

MSK SIM SELECTION FULL

The optimizer uses full pricing.

MSK SIM SELECTION ASE

The optimizer uses approximate steepest-edge pricing.

MSK SIM SELECTION DEVEX

The optimizer uses devex steepest-edge pricing (or if it is not available an approximate steep-edge
selection).

25.44. SOLUTION ITEMS 431

MSK SIM SELECTION SE

The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge
selection).

MSK SIM SELECTION PARTIAL

The optimizer uses a partial selection approach. The approach is usually beneficial if the number
of variables is much larger than the number of constraints.

25.44 Solution items

MSK SOL ITEM XC

Solution for the constraints.

MSK SOL ITEM XX

Variable solution.

MSK SOL ITEM Y

Lagrange multipliers for equations.

MSK SOL ITEM SLC

Lagrange multipliers for lower bounds on the constraints.

MSK SOL ITEM SUC

Lagrange multipliers for upper bounds on the constraints.

MSK SOL ITEM SLX

Lagrange multipliers for lower bounds on the variables.

MSK SOL ITEM SUX

Lagrange multipliers for upper bounds on the variables.

MSK SOL ITEM SNX

Lagrange multipliers corresponding to the conic constraints on the variables.

25.45 Solution status keys

MSK SOL STA UNKNOWN

Status of the solution is unknown.

MSK SOL STA OPTIMAL

The solution is optimal.

432 CHAPTER 25. API CONSTANTS

MSK SOL STA PRIM FEAS

The solution is primal feasible.

MSK SOL STA DUAL FEAS

The solution is dual feasible.

MSK SOL STA PRIM AND DUAL FEAS

The solution is both primal and dual feasible.

MSK SOL STA PRIM INFEAS CER

The solution is a certificate of primal infeasibility.

MSK SOL STA DUAL INFEAS CER

The solution is a certificate of dual infeasibility.

MSK SOL STA NEAR OPTIMAL

The solution is nearly optimal.

MSK SOL STA NEAR PRIM FEAS

The solution is nearly primal feasible.

MSK SOL STA NEAR DUAL FEAS

The solution is nearly dual feasible.

MSK SOL STA NEAR PRIM AND DUAL FEAS

The solution is nearly both primal and dual feasible.

MSK SOL STA NEAR PRIM INFEAS CER

The solution is almost a certificate of primal infeasibility.

MSK SOL STA NEAR DUAL INFEAS CER

The solution is almost a certificate of dual infeasibility.

MSK SOL STA INTEGER OPTIMAL

The primal solution is integer optimal.

MSK SOL STA NEAR INTEGER OPTIMAL

The primal solution is near integer optimal.

25.46. SOLUTION TYPES 433

25.46 Solution types

MSK SOL ITR

The interior solution.

MSK SOL BAS

The basic solution.

MSK SOL ITG

The integer solution.

25.47 Solve primal or dual form

MSK SOLVE FREE

The optimizer is free to solve either the primal or the dual problem.

MSK SOLVE PRIMAL

The optimizer should solve the primal problem.

MSK SOLVE DUAL

The optimizer should solve the dual problem.

25.48 Status keys

MSK SK UNK

The status for the constraint or variable is unknown.

MSK SK BAS

The constraint or variable is in the basis.

MSK SK SUPBAS

The constraint or variable is super basic.

MSK SK LOW

The constraint or variable is at its lower bound.

MSK SK UPR

The constraint or variable is at its upper bound.

MSK SK FIX

The constraint or variable is fixed.

MSK SK INF

The constraint or variable is infeasible in the bounds.

434 CHAPTER 25. API CONSTANTS

25.49 Starting point types

MSK STARTING POINT FREE

The starting point is chosen automatically.

MSK STARTING POINT GUESS

The optimizer guesses a starting point.

MSK STARTING POINT CONSTANT

The optimizer constructs a starting point by assigning a constant value to all primal and dual
variables. This starting point is normally robust.

MSK STARTING POINT SATISFY BOUNDS

The starting point is choosen to satisfy all the simple bounds on nonlinear variables. If this
starting point is employed, then more care than usual should employed when choosing the bounds
on the nonlinear variables. In particular very tight bounds should be avoided.

25.50 Stream types

MSK STREAM LOG

Log stream. Contains the aggregated contents of all other streams. This means that a message
written to any other stream will also be written to this stream.

MSK STREAM MSG

Message stream. Log information relating to performance and progress of the optimization is
written to this stream.

MSK STREAM ERR

Error stream. Error messages are written to this stream.

MSK STREAM WRN

Warning stream. Warning messages are written to this stream.

25.51 Cone types

MSK SYMMAT TYPE SPARSE

Sparse symmetric matrix.

25.52. INTEGER VALUES 435

25.52 Integer values

MSK LICENSE BUFFER LENGTH

The length of a license key buffer.

MSK MAX STR LEN

Maximum string length allowed in MOSEK.

25.53 Variable types

MSK VAR TYPE CONT

Is a continuous variable.

MSK VAR TYPE INT

Is an integer variable.

25.54 XML writer output mode

MSK WRITE XML MODE ROW

Write in row order.

MSK WRITE XML MODE COL

Write in column order.

436 CHAPTER 25. API CONSTANTS

Chapter 26

Problem analyzer examples

This appendix presents a few examples of the output produced by the problem analyzer described in
Section 14.1. The first two problems are taken from the MIPLIB 2003 collection, http://miplib.zib.de/.

26.1 air04

Analyzing the problem

Constraints Bounds Variables

fixed : all ranged : all bin : all

Objective, min cx

range: min |c|: 31.0000 max |c|: 2258.00

distrib: |c| vars

[31, 100) 176

[100, 1e+03) 8084

[1e+03, 2.26e+03] 644

Constraint matrix A has

823 rows (constraints)

8904 columns (variables)

72965 (0.995703%) nonzero entries (coefficients)

Row nonzeros, A i

range: min A i: 2 (0.0224618%) max A i: 368 (4.13297%)

distrib: A i rows rows% acc%

2 2 0.24 0.24

[3, 7] 4 0.49 0.73

[8, 15] 19 2.31 3.04

[16, 31] 80 9.72 12.76

[32, 63] 236 28.68 41.43

[64, 127] 289 35.12 76.55

437

http://miplib.zib.de/

438 CHAPTER 26. PROBLEM ANALYZER EXAMPLES

[128, 255] 186 22.60 99.15

[256, 368] 7 0.85 100.00

Column nonzeros, A|j

range: min A|j: 2 (0.243013%) max A|j: 15 (1.8226%)

distrib: A|j cols cols% acc%

2 118 1.33 1.33

[3, 7] 2853 32.04 33.37

[8, 15] 5933 66.63 100.00

A nonzeros, A(ij)

range: all |A(ij)| = 1.00000

Constraint bounds, lb <= Ax <= ub

distrib: |b| lbs ubs

[1, 10] 823 823

Variable bounds, lb <= x <= ub

distrib: |b| lbs ubs

0 8904

[1, 10] 8904

26.2 arki001

Analyzing the problem

Constraints Bounds Variables

lower bd: 82 lower bd: 38 cont: 850

upper bd: 946 fixed : 353 bin : 415

fixed : 20 free : 1 int : 123

ranged : 996

Objective, min cx

range: all |c| in {0.00000, 1.00000}
distrib: |c| vars

0 1387

1 1

Constraint matrix A has

1048 rows (constraints)

1388 columns (variables)

20439 (1.40511%) nonzero entries (coefficients)

Row nonzeros, A i

range: min A i: 1 (0.0720461%) max A i: 1046 (75.3602%)

distrib: A i rows rows% acc%

1 29 2.77 2.77

26.2. ARKI001 439

2 476 45.42 48.19

[3, 7] 49 4.68 52.86

[8, 15] 56 5.34 58.21

[16, 31] 64 6.11 64.31

[32, 63] 373 35.59 99.90

[1024, 1046] 1 0.10 100.00

Column nonzeros, A|j

range: min A|j: 1 (0.0954198%) max A|j: 29 (2.76718%)

distrib: A|j cols cols% acc%

1 381 27.45 27.45

2 19 1.37 28.82

[3, 7] 38 2.74 31.56

[8, 15] 233 16.79 48.34

[16, 29] 717 51.66 100.00

A nonzeros, A(ij)

range: min |A(ij)|: 0.000200000 max |A(ij)|: 2.33067e+07

distrib: A(ij) coeffs

[0.0002, 0.001) 167

[0.001, 0.01) 1049

[0.01, 0.1) 4553

[0.1, 1) 8840

[1, 10) 3822

[10, 100) 630

[100, 1e+03) 267

[1e+03, 1e+04) 699

[1e+04, 1e+05) 291

[1e+05, 1e+06) 83

[1e+06, 1e+07) 19

[1e+07, 2.33e+07] 19

Constraint bounds, lb <= Ax <= ub

distrib: |b| lbs ubs

[0.1, 1) 386

[1, 10) 74

[10, 100) 101 456

[100, 1000) 34

[1000, 10000) 15

[100000, 1e+06] 1 1

Variable bounds, lb <= x <= ub

distrib: |b| lbs ubs

0 974 323

[0.001, 0.01) 19

[0.1, 1) 370 57

[1, 10) 41 704

[10, 100] 2 246

440 CHAPTER 26. PROBLEM ANALYZER EXAMPLES

26.3 Problem with both linear and quadratic constraints

Analyzing the problem

Constraints Bounds Variables

lower bd: 40 upper bd: 1 cont: all

upper bd: 121 fixed : 204

fixed : 5480 free : 5600

ranged : 161 ranged : 40

Objective, maximize cx

range: all |c| in {0.00000, 15.4737}
distrib: |c| vars

0 5844

15.4737 1

Constraint matrix A has

5802 rows (constraints)

5845 columns (variables)

6480 (0.0191079%) nonzero entries (coefficients)

Row nonzeros, A i

range: min A i: 0 (0%) max A i: 3 (0.0513259%)

distrib: A i rows rows% acc%

0 80 1.38 1.38

1 5003 86.23 87.61

2 680 11.72 99.33

3 39 0.67 100.00

0/80 empty rows have quadratic terms

Column nonzeros, A|j

range: min A|j: 0 (0%) max A|j: 15 (0.258532%)

distrib: A|j cols cols% acc%

0 204 3.49 3.49

1 5521 94.46 97.95

2 40 0.68 98.63

[3, 7] 40 0.68 99.32

[8, 15] 40 0.68 100.00

0/204 empty columns correspond to variables used in conic

and/or quadratic expressions only

A nonzeros, A(ij)

range: min |A(ij)|: 2.02410e-05 max |A(ij)|: 35.8400

distrib: A(ij) coeffs

[2.02e-05, 0.0001) 40

[0.0001, 0.001) 118

[0.001, 0.01) 305

[0.01, 0.1) 176

[0.1, 1) 40

[1, 10) 5721

[10, 35.8] 80

26.4. PROBLEM WITH BOTH LINEAR AND CONIC CONSTRAINTS 441

Constraint bounds, lb <= Ax <= ub

distrib: |b| lbs ubs

0 5481 5600

[1000, 10000) 1

[10000, 100000) 2 1

[1e+06, 1e+07) 78 40

[1e+08, 1e+09] 120 120

Variable bounds, lb <= x <= ub

distrib: |b| lbs ubs

0 243 203

[0.1, 1) 1 1

[1e+06, 1e+07) 40

[1e+11, 1e+12] 1

Quadratic constraints: 121

Gradient nonzeros, Qx

range: min Qx: 1 (0.0171086%) max Qx: 2720 (46.5355%)

distrib: Qx cons cons% acc%

1 40 33.06 33.06

[64, 127] 80 66.12 99.17

[2048, 2720] 1 0.83 100.00

26.4 Problem with both linear and conic constraints

Analyzing the problem

Constraints Bounds Variables

upper bd: 3600 fixed : 3601 cont: all

fixed : 21760 free : 28802

Objective, minimize cx

range: all |c| in {0.00000, 1.00000}
distrib: |c| vars

0 32402

1 1

Constraint matrix A has

25360 rows (constraints)

32403 columns (variables)

93339 (0.0113587%) nonzero entries (coefficients)

Row nonzeros, A i

range: min A i: 1 (0.00308613%) max A i: 8 (0.0246891%)

442 CHAPTER 26. PROBLEM ANALYZER EXAMPLES

distrib: A i rows rows% acc%

1 3600 14.20 14.20

2 10803 42.60 56.79

[3, 7] 3995 15.75 72.55

8 6962 27.45 100.00

Column nonzeros, A|j

range: min A|j: 0 (0%) max A|j: 61 (0.240536%)

distrib: A|j cols cols% acc%

0 3602 11.12 11.12

1 10800 33.33 44.45

2 7200 22.22 66.67

[3, 7] 7279 22.46 89.13

[8, 15] 3521 10.87 100.00

[32, 61] 1 0.00 100.00

3600/3602 empty columns correspond to variables used in conic

and/or quadratic constraints only

A nonzeros, A(ij)

range: min |A(ij)|: 0.00833333 max |A(ij)|: 1.00000

distrib: A(ij) coeffs

[0.00833, 0.01) 57280

[0.01, 0.1) 59

[0.1, 1] 36000

Constraint bounds, lb <= Ax <= ub

distrib: |b| lbs ubs

0 21760 21760

[0.1, 1] 3600

Variable bounds, lb <= x <= ub

distrib: |b| lbs ubs

[1, 10] 3601 3601

Rotated quadratic cones: 3600

dim RQCs

4 3600

Bibliography

[1] Chvátal, V.. Linear programming, 1983. W.H. Freeman and Company

[2] Nazareth, J. L.. Computer Solution of Linear Programs, 1987. Oxford University Press,
New York

[3] Bazaraa, M. S., Sherali, H. D. and Shetty, C. M.. Nonlinear programming: Theory and
algorithms, 2 edition, 1993. John Wiley and Sons, New York

[4] Williams, H. P.. Model building in mathematical programming, 3 edition, 1993. John
Wiley and Sons

[5] Wolsey, L. A.. Integer programming, 1998. John Wiley and Sons

[6] Ben-Tal, A. and Nemirovski, A.. Robust solutions of Linear Programming problems con-
taminated with uncertain data. Math. Programming 3:411-424

[7] Ben-Tal, A. and Nemirovski, A. Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications, 2001. SIAM

[8] Boyd, S.P., Kim, S.J., Vandenberghe, L. and Hassibi, A.. A Tutorial on Geometric Pro-
gramming., 2004. ISL, Electrical Engineering Department, Stanford University, Stanford,
CA. Available at http://www.stanford.edu/ boyd/gp tutorial.html

[9] Beightler, C. and Phillips, D. T.. Applied geometric programming, 1976. John Wiley and
Sons, New York

[10] Andersen, E. D. and Andersen, K. D.. Presolving in linear programming. Math. Program-
ming 2:221-245

[11] Andersen, E. D., Gondzio, J., Mészáros, Cs. and Xu, X.. Implementation of interior
point methods for large scale linear programming, Interior-point methods of mathematical
programming p. 189-252, 1996. Kluwer Academic Publishers

[12] Erling D. Andersen. The homogeneous and self-dual model and algorithm
for linear optimization. Technical report TR-1-2009, 2009. MOSEK ApS.
http://www.mosek.com/fileadmin/reports/tech/homolo.pdf

[13] Andersen, E. D. and Ye, Y.. Combining interior-point and pivoting algorithms. Manage-
ment Sci. December 12:1719-1731

443

http://www.stanford.edu/${\ }$boyd/gp_tutorial.html
http://www.mosek.com/fileadmin/reports/tech/homolo.pdf

444 BIBLIOGRAPHY

[14] Ahuja, R. K., Magnanti, T. L. and Orlin, J. B.. Network flows, Optimization, vol. 1 p.
211-369, 1989. North Holland, Amsterdam

[15] Andersen, E. D., Roos, C. and Terlaky, T.. On implementing a primal-dual interior-point
method for conic quadratic optimization. Math. Programming February 2

[16] Andersen, E. D. and Ye, Y.. A computational study of the homogeneous algorithm for
large-scale convex optimization. Computational Optimization and Applications 10:243-
269

[17] Andersen, E. D. and Ye, Y.. On a homogeneous algorithm for the monotone complemen-
tarity problem. Math. Programming February 2:375-399

[18] Roos, C., Terlaky, T. and Vial, J. -Ph.. Theory and algorithms for linear optimization:
an interior point approach, 1997. John Wiley and Sons, New York

[19] Wallace, S. W.. Decision making under uncertainty: Is sensitivity of any use. Oper. Res.
January 1:20-25

[20] MOSEK ApS. MOSEK Modeling manual, 2012. Last revised January 31 2013.
http://docs.mosek.com/generic/modeling-a4.pdf

http://docs.mosek.com/generic/modeling-a4.pdf

Index

basis identification, 136
bintprog, 98
bounds, infinite, 194

certificate
dual, 196, 199, 201, 203
primal, 196, 199, 201

class, 19, 21, 23, 26, 48, 49, 77, 83–86, 88–90, 93
complementarity conditions, 195
concurrent optimization, 143
concurrent solution, 142
conic

optimization, 197
problem, 197

constraint
matrix, 193, 204, 207
quadratic, 202

constraints
lower limit, 193, 204, 207
upper limit, 193, 204, 207

continuous relaxation, 147
copyright, ii

disclaimer, ii
dual certificate, 196, 199, 201, 203
dual feasible, 194
dual infeasible, 194, 196, 199, 201, 203
duality gap, 194
dualizer, 131

eliminator, 131
example

ill-posed, 172
linear dependency, 171

feasibility repair, 171
feasible, dual, 194
feasible, primal, 194

help desk, 17
hot-start, 138

ill-posed
example, 172

infeasible, 161
dual, 196, 199, 201, 203
primal, 196, 199, 201

infeasible problem, 171
infeasible problems, 161
infeasible, dual, 194
infeasible, primal, 194
infinite bounds, 194
integer optimization, 147

relaxation, 147
interior-point optimizer, 133, 140, 141
interior-point or simplex optimizer, 139

linear dependency, 131
example, 171

linear dependency check, 131
linear problem, 193
linearity interval, 180
linprog, 94
LP format, 219

maximization problem, 195
mixed-integer optimization, 147
MPS format, 207

compBOUNDS, 214
compCOLUMNS, 210
free, 218
compNAME, 209
compOBJNAME, 210
compOBJSENSE, 209
compQSECTION, 212
compRANGES, 212
compRHS, 211

445

446 INDEX

compROWS, 210

Network flow problems
optimizing, 140

objective
vector, 193

objective sense
maximize, 195

objective vector, 204
OPF format, 227
optimal solution, 195
optimality gap, 153, 194
optimization

conic, 197
integer, 147
mixed-integer, 147

optimizers
concurrent, 143
conic interior-point, 140
convex interior-point, 141
linear interior-point, 133
parallel, 143
simplex, 138

Optimizing
network flow problems, 140

parallel extensions, 142
parallel interior-point, 132
parallel optimizers

interior point, 132
parallel solution, 142
posynomial, 123
presolve, 130

eliminator, 131
linear dependency check, 131
numerical issues, 130

primal certificate, 196, 199, 201
primal feasible, 194
primal infeasible, 171, 194, 196, 199, 201
primal-dual solution, 194

quadratic constraint, 202
quadratic optimization, 202

relaxation, continuous, 147
Response codes

MSK RES ERR AD INVALID CODELIST, 367
MSK RES ERR AD INVALID OPERAND, 367
MSK RES ERR AD INVALID OPERATOR,

367
MSK RES ERR AD MISSING OPERAND, 367
MSK RES ERR AD MISSING RETURN, 367
MSK RES ERR API ARRAY TOO SMALL,

367
MSK RES ERR API CB CONNECT, 367
MSK RES ERR API FATAL ERROR, 367
MSK RES ERR API INTERNAL, 367
MSK RES ERR ARG IS TOO LARGE, 367
MSK RES ERR ARG IS TOO SMALL, 368
MSK RES ERR ARGUMENT DIMENSION,

368
MSK RES ERR ARGUMENT IS TOO LARGE,

368
MSK RES ERR ARGUMENT LENNEQ, 368
MSK RES ERR ARGUMENT PERM ARRAY,

368
MSK RES ERR ARGUMENT TYPE, 368
MSK RES ERR BAR VAR DIM, 368
MSK RES ERR BASIS, 368
MSK RES ERR BASIS FACTOR, 368
MSK RES ERR BASIS SINGULAR, 368
MSK RES ERR BLANK NAME, 368
MSK RES ERR CANNOT CLONE NL, 368
MSK RES ERR CANNOT HANDLE NL, 368
MSK RES ERR CON Q NOT NSD, 368
MSK RES ERR CON Q NOT PSD, 369
MSK RES ERR CONCURRENT OPTIMIZER,

369
MSK RES ERR CONE INDEX, 369
MSK RES ERR CONE OVERLAP, 369
MSK RES ERR CONE OVERLAP APPEND,

369
MSK RES ERR CONE REP VAR, 369
MSK RES ERR CONE SIZE, 369
MSK RES ERR CONE TYPE, 369
MSK RES ERR CONE TYPE STR, 369
MSK RES ERR DATA FILE EXT, 369
MSK RES ERR DUP NAME, 369
MSK RES ERR DUPLICATE BARVARIABLE NAMES,

369
MSK RES ERR DUPLICATE CONE NAMES,

369

INDEX 447

MSK RES ERR DUPLICATE CONSTRAINT NAMES,
369

MSK RES ERR DUPLICATE VARIABLE NAMES,
369

MSK RES ERR END OF FILE, 370
MSK RES ERR FACTOR, 370
MSK RES ERR FEASREPAIR CANNOT RELAX,

370
MSK RES ERR FEASREPAIR INCONSISTENT BOUND,

370
MSK RES ERR FEASREPAIR SOLVING RELAXED,

370
MSK RES ERR FILE LICENSE, 370
MSK RES ERR FILE OPEN, 370
MSK RES ERR FILE READ, 370
MSK RES ERR FILE WRITE, 370
MSK RES ERR FIRST, 370
MSK RES ERR FIRSTI, 370
MSK RES ERR FIRSTJ, 370
MSK RES ERR FIXED BOUND VALUES, 370
MSK RES ERR FLEXLM, 370
MSK RES ERR GLOBAL INV CONIC PROBLEM,

371
MSK RES ERR HUGE AIJ, 371
MSK RES ERR HUGE C, 371
MSK RES ERR IDENTICAL TASKS, 371
MSK RES ERR IN ARGUMENT, 371
MSK RES ERR INDEX, 371
MSK RES ERR INDEX ARR IS TOO LARGE,

371
MSK RES ERR INDEX ARR IS TOO SMALL,

371
MSK RES ERR INDEX IS TOO LARGE, 371
MSK RES ERR INDEX IS TOO SMALL, 371
MSK RES ERR INF DOU INDEX, 371
MSK RES ERR INF DOU NAME, 371
MSK RES ERR INF INT INDEX, 371
MSK RES ERR INF INT NAME, 371
MSK RES ERR INF LINT INDEX, 371
MSK RES ERR INF LINT NAME, 372
MSK RES ERR INF TYPE, 372
MSK RES ERR INFEAS UNDEFINED, 372
MSK RES ERR INFINITE BOUND, 372
MSK RES ERR INT64 TO INT32 CAST, 372
MSK RES ERR INTERNAL, 372
MSK RES ERR INTERNAL TEST FAILED,

372
MSK RES ERR INV APTRE, 372
MSK RES ERR INV BK, 372
MSK RES ERR INV BKC, 372
MSK RES ERR INV BKX, 372
MSK RES ERR INV CONE TYPE, 372
MSK RES ERR INV CONE TYPE STR, 372
MSK RES ERR INV CONIC PROBLEM, 372
MSK RES ERR INV MARKI, 372
MSK RES ERR INV MARKJ, 373
MSK RES ERR INV NAME ITEM, 373
MSK RES ERR INV NUMI, 373
MSK RES ERR INV NUMJ, 373
MSK RES ERR INV OPTIMIZER, 373
MSK RES ERR INV PROBLEM, 373
MSK RES ERR INV QCON SUBI, 373
MSK RES ERR INV QCON SUBJ, 373
MSK RES ERR INV QCON SUBK, 373
MSK RES ERR INV QCON VAL, 373
MSK RES ERR INV QOBJ SUBI, 373
MSK RES ERR INV QOBJ SUBJ, 373
MSK RES ERR INV QOBJ VAL, 373
MSK RES ERR INV SK, 373
MSK RES ERR INV SK STR, 373
MSK RES ERR INV SKC, 374
MSK RES ERR INV SKN, 374
MSK RES ERR INV SKX, 374
MSK RES ERR INV VAR TYPE, 374
MSK RES ERR INVALID ACCMODE, 374
MSK RES ERR INVALID AMPL STUB, 374
MSK RES ERR INVALID BARVAR NAME,

374
MSK RES ERR INVALID BRANCH DIRECTION,

374
MSK RES ERR INVALID BRANCH PRIORITY,

374
MSK RES ERR INVALID COMPRESSION,

374
MSK RES ERR INVALID CON NAME, 374
MSK RES ERR INVALID CONE NAME, 374
MSK RES ERR INVALID FILE FORMAT FOR CONES,

374
MSK RES ERR INVALID FILE FORMAT FOR GENERAL NL,

374
MSK RES ERR INVALID FILE FORMAT FOR SYM MAT,

374

448 INDEX

MSK RES ERR INVALID FILE NAME, 374
MSK RES ERR INVALID FORMAT TYPE,

375
MSK RES ERR INVALID IDX, 375
MSK RES ERR INVALID IOMODE, 375
MSK RES ERR INVALID MAX NUM, 375
MSK RES ERR INVALID NAME IN SOL FILE,

375
MSK RES ERR INVALID NETWORK PROBLEM,

375
MSK RES ERR INVALID OBJ NAME, 375
MSK RES ERR INVALID OBJECTIVE SENSE,

375
MSK RES ERR INVALID PROBLEM TYPE,

375
MSK RES ERR INVALID SOL FILE NAME,

375
MSK RES ERR INVALID STREAM, 375
MSK RES ERR INVALID SURPLUS, 375
MSK RES ERR INVALID SYM MAT DIM, 375
MSK RES ERR INVALID TASK, 375
MSK RES ERR INVALID UTF8, 375
MSK RES ERR INVALID VAR NAME, 376
MSK RES ERR INVALID WCHAR, 376
MSK RES ERR INVALID WHICHSOL, 376
MSK RES ERR LAST, 376
MSK RES ERR LASTI, 376
MSK RES ERR LASTJ, 376
MSK RES ERR LICENSE, 376
MSK RES ERR LICENSE CANNOT ALLOCATE,

376
MSK RES ERR LICENSE CANNOT CONNECT,

376
MSK RES ERR LICENSE EXPIRED, 376
MSK RES ERR LICENSE FEATURE, 376
MSK RES ERR LICENSE INVALID HOSTID,

376
MSK RES ERR LICENSE MAX, 376
MSK RES ERR LICENSE MOSEKLM DAEMON,

376
MSK RES ERR LICENSE NO SERVER LINE,

376
MSK RES ERR LICENSE NO SERVER SUPPORT,

377
MSK RES ERR LICENSE SERVER, 377
MSK RES ERR LICENSE SERVER VERSION,

377
MSK RES ERR LICENSE VERSION, 377
MSK RES ERR LINK FILE DLL, 377
MSK RES ERR LIVING TASKS, 377
MSK RES ERR LOWER BOUND IS A NAN,

377
MSK RES ERR LP DUP SLACK NAME, 377
MSK RES ERR LP EMPTY, 377
MSK RES ERR LP FILE FORMAT, 377
MSK RES ERR LP FORMAT, 377
MSK RES ERR LP FREE CONSTRAINT, 377
MSK RES ERR LP INCOMPATIBLE, 377
MSK RES ERR LP INVALID CON NAME,

378
MSK RES ERR LP INVALID VAR NAME, 378
MSK RES ERR LP WRITE CONIC PROBLEM,

378
MSK RES ERR LP WRITE GECO PROBLEM,

378
MSK RES ERR LU MAX NUM TRIES, 378
MSK RES ERR MAX LEN IS TOO SMALL,

378
MSK RES ERR MAXNUMBARVAR, 378
MSK RES ERR MAXNUMCON, 378
MSK RES ERR MAXNUMCONE, 378
MSK RES ERR MAXNUMQNZ, 378
MSK RES ERR MAXNUMVAR, 378
MSK RES ERR MBT INCOMPATIBLE, 378
MSK RES ERR MBT INVALID, 378
MSK RES ERR MIO INTERNAL, 378
MSK RES ERR MIO NO OPTIMIZER, 379
MSK RES ERR MIO NOT LOADED, 379
MSK RES ERR MISSING LICENSE FILE, 379
MSK RES ERR MIXED PROBLEM, 379
MSK RES ERR MPS CONE OVERLAP, 379
MSK RES ERR MPS CONE REPEAT, 379
MSK RES ERR MPS CONE TYPE, 379
MSK RES ERR MPS FILE, 379
MSK RES ERR MPS INV BOUND KEY, 379
MSK RES ERR MPS INV CON KEY, 379
MSK RES ERR MPS INV FIELD, 379
MSK RES ERR MPS INV MARKER, 379
MSK RES ERR MPS INV SEC NAME, 379
MSK RES ERR MPS INV SEC ORDER, 379
MSK RES ERR MPS INVALID OBJ NAME,

379

INDEX 449

MSK RES ERR MPS INVALID OBJSENSE,
379

MSK RES ERR MPS MUL CON NAME, 380
MSK RES ERR MPS MUL CSEC, 380
MSK RES ERR MPS MUL QOBJ, 380
MSK RES ERR MPS MUL QSEC, 380
MSK RES ERR MPS NO OBJECTIVE, 380
MSK RES ERR MPS NULL CON NAME, 380
MSK RES ERR MPS NULL VAR NAME, 380
MSK RES ERR MPS SPLITTED VAR, 380
MSK RES ERR MPS TAB IN FIELD2, 380
MSK RES ERR MPS TAB IN FIELD3, 380
MSK RES ERR MPS TAB IN FIELD5, 380
MSK RES ERR MPS UNDEF CON NAME,

380
MSK RES ERR MPS UNDEF VAR NAME,

380
MSK RES ERR MUL A ELEMENT, 380
MSK RES ERR NAME IS NULL, 380
MSK RES ERR NAME MAX LEN, 381
MSK RES ERR NAN IN AIJ, 381
MSK RES ERR NAN IN BLC, 381
MSK RES ERR NAN IN BLX, 381
MSK RES ERR NAN IN BUC, 381
MSK RES ERR NAN IN BUX, 381
MSK RES ERR NAN IN C, 381
MSK RES ERR NAN IN DOUBLE DATA, 381
MSK RES ERR NEGATIVE APPEND, 381
MSK RES ERR NEGATIVE SURPLUS, 381
MSK RES ERR NEWER DLL, 381
MSK RES ERR NO BARS FOR SOLUTION,

381
MSK RES ERR NO BARX FOR SOLUTION,

381
MSK RES ERR NO BASIS SOL, 381
MSK RES ERR NO DUAL FOR ITG SOL, 381
MSK RES ERR NO DUAL INFEAS CER, 382
MSK RES ERR NO DUAL INFO FOR ITG SOL,

382
MSK RES ERR NO INIT ENV, 382
MSK RES ERR NO OPTIMIZER VAR TYPE,

382
MSK RES ERR NO PRIMAL INFEAS CER,

382
MSK RES ERR NO SNX FOR BAS SOL, 382
MSK RES ERR NO SOLUTION IN CALLBACK,

382
MSK RES ERR NON UNIQUE ARRAY, 382
MSK RES ERR NONCONVEX, 382
MSK RES ERR NONLINEAR EQUALITY,

382
MSK RES ERR NONLINEAR FUNCTIONS NOT ALLOWED,

382
MSK RES ERR NONLINEAR RANGED, 382
MSK RES ERR NR ARGUMENTS, 382
MSK RES ERR NULL ENV, 382
MSK RES ERR NULL POINTER, 382
MSK RES ERR NULL TASK, 382
MSK RES ERR NUMCONLIM, 383
MSK RES ERR NUMVARLIM, 383
MSK RES ERR OBJ Q NOT NSD, 383
MSK RES ERR OBJ Q NOT PSD, 383
MSK RES ERR OBJECTIVE RANGE, 383
MSK RES ERR OLDER DLL, 383
MSK RES ERR OPEN DL, 383
MSK RES ERR OPF FORMAT, 383
MSK RES ERR OPF NEW VARIABLE, 383
MSK RES ERR OPF PREMATURE EOF, 383
MSK RES ERR OPTIMIZER LICENSE, 383
MSK RES ERR ORD INVALID, 383
MSK RES ERR ORD INVALID BRANCH DIR,

383
MSK RES ERR OVERFLOW, 383
MSK RES ERR PARAM INDEX, 384
MSK RES ERR PARAM IS TOO LARGE, 384
MSK RES ERR PARAM IS TOO SMALL, 384
MSK RES ERR PARAM NAME, 384
MSK RES ERR PARAM NAME DOU, 384
MSK RES ERR PARAM NAME INT, 384
MSK RES ERR PARAM NAME STR, 384
MSK RES ERR PARAM TYPE, 384
MSK RES ERR PARAM VALUE STR, 384
MSK RES ERR PLATFORM NOT LICENSED,

384
MSK RES ERR POSTSOLVE, 384
MSK RES ERR PRO ITEM, 384
MSK RES ERR PROB LICENSE, 384
MSK RES ERR QCON SUBI TOO LARGE,

384
MSK RES ERR QCON SUBI TOO SMALL,

384
MSK RES ERR QCON UPPER TRIANGLE,

450 INDEX

385
MSK RES ERR QOBJ UPPER TRIANGLE,

385
MSK RES ERR READ FORMAT, 385
MSK RES ERR READ LP MISSING END TAG,

385
MSK RES ERR READ LP NONEXISTING NAME,

385
MSK RES ERR REMOVE CONE VARIABLE,

385
MSK RES ERR REPAIR INVALID PROBLEM,

385
MSK RES ERR REPAIR OPTIMIZATION FAILED,

385
MSK RES ERR SEN BOUND INVALID LO,

385
MSK RES ERR SEN BOUND INVALID UP,

385
MSK RES ERR SEN FORMAT, 385
MSK RES ERR SEN INDEX INVALID, 385
MSK RES ERR SEN INDEX RANGE, 385
MSK RES ERR SEN INVALID REGEXP, 385
MSK RES ERR SEN NUMERICAL, 385
MSK RES ERR SEN SOLUTION STATUS, 386
MSK RES ERR SEN UNDEF NAME, 386
MSK RES ERR SEN UNHANDLED PROBLEM TYPE,

386
MSK RES ERR SIZE LICENSE, 386
MSK RES ERR SIZE LICENSE CON, 386
MSK RES ERR SIZE LICENSE INTVAR, 386
MSK RES ERR SIZE LICENSE NUMCORES,

386
MSK RES ERR SIZE LICENSE VAR, 386
MSK RES ERR SOL FILE INVALID NUMBER,

386
MSK RES ERR SOLITEM, 386
MSK RES ERR SOLVER PROBTYPE, 386
MSK RES ERR SPACE, 386
MSK RES ERR SPACE LEAKING, 386
MSK RES ERR SPACE NO INFO, 386
MSK RES ERR SYM MAT DUPLICATE, 386
MSK RES ERR SYM MAT INVALID COL INDEX,

387
MSK RES ERR SYM MAT INVALID ROW INDEX,

387
MSK RES ERR SYM MAT INVALID VALUE,

387
MSK RES ERR SYM MAT NOT LOWER TRINGULAR,

387
MSK RES ERR TASK INCOMPATIBLE, 387
MSK RES ERR TASK INVALID, 387
MSK RES ERR THREAD COND INIT, 387
MSK RES ERR THREAD CREATE, 387
MSK RES ERR THREAD MUTEX INIT, 387
MSK RES ERR THREAD MUTEX LOCK, 387
MSK RES ERR THREAD MUTEX UNLOCK,

387
MSK RES ERR TOO MANY CONCURRENT TASKS,

387
MSK RES ERR TOO SMALL MAX NUM NZ,

387
MSK RES ERR TOO SMALL MAXNUMANZ,

387
MSK RES ERR UNB STEP SIZE, 388
MSK RES ERR UNDEF SOLUTION, 388
MSK RES ERR UNDEFINED OBJECTIVE SENSE,

388
MSK RES ERR UNHANDLED SOLUTION STATUS,

388
MSK RES ERR UNKNOWN, 388
MSK RES ERR UPPER BOUND IS A NAN,

388
MSK RES ERR UPPER TRIANGLE, 388
MSK RES ERR USER FUNC RET, 388
MSK RES ERR USER FUNC RET DATA, 388
MSK RES ERR USER NLO EVAL, 388
MSK RES ERR USER NLO EVAL HESSUBI,

388
MSK RES ERR USER NLO EVAL HESSUBJ,

388
MSK RES ERR USER NLO FUNC, 389
MSK RES ERR WHICHITEM NOT ALLOWED,

389
MSK RES ERR WHICHSOL, 389
MSK RES ERR WRITE LP FORMAT, 389
MSK RES ERR WRITE LP NON UNIQUE NAME,

389
MSK RES ERR WRITE MPS INVALID NAME,

389
MSK RES ERR WRITE OPF INVALID VAR NAME,

389
MSK RES ERR WRITING FILE, 389

INDEX 451

MSK RES ERR XML INVALID PROBLEM TYPE,
389

MSK RES ERR Y IS UNDEFINED, 389
MSK RES OK, 389
MSK RES TRM INTERNAL, 389
MSK RES TRM INTERNAL STOP, 389
MSK RES TRM MAX ITERATIONS, 389
MSK RES TRM MAX NUM SETBACKS, 389
MSK RES TRM MAX TIME, 390
MSK RES TRM MIO NEAR ABS GAP, 390
MSK RES TRM MIO NEAR REL GAP, 390
MSK RES TRM MIO NUM BRANCHES, 390
MSK RES TRM MIO NUM RELAXS, 390
MSK RES TRM NUM MAX NUM INT SOLUTIONS,

390
MSK RES TRM NUMERICAL PROBLEM,

390
MSK RES TRM OBJECTIVE RANGE, 390
MSK RES TRM STALL, 390
MSK RES TRM USER CALLBACK, 390
MSK RES WRN ANA ALMOST INT BOUNDS,

391
MSK RES WRN ANA C ZERO, 391
MSK RES WRN ANA CLOSE BOUNDS, 391
MSK RES WRN ANA EMPTY COLS, 391
MSK RES WRN ANA LARGE BOUNDS, 391
MSK RES WRN CONSTRUCT INVALID SOL ITG,

391
MSK RES WRN CONSTRUCT NO SOL ITG,

391
MSK RES WRN CONSTRUCT SOLUTION INFEAS,

391
MSK RES WRN DROPPED NZ QOBJ, 391
MSK RES WRN DUPLICATE BARVARIABLE NAMES,

391
MSK RES WRN DUPLICATE CONE NAMES,

391
MSK RES WRN DUPLICATE CONSTRAINT NAMES,

391
MSK RES WRN DUPLICATE VARIABLE NAMES,

391
MSK RES WRN ELIMINATOR SPACE, 391
MSK RES WRN EMPTY NAME, 392
MSK RES WRN IGNORE INTEGER, 392
MSK RES WRN INCOMPLETE LINEAR DEPENDENCY CHECK,

392

MSK RES WRN LARGE AIJ, 392
MSK RES WRN LARGE BOUND, 392
MSK RES WRN LARGE CJ, 392
MSK RES WRN LARGE CON FX, 392
MSK RES WRN LARGE LO BOUND, 392
MSK RES WRN LARGE UP BOUND, 392
MSK RES WRN LICENSE EXPIRE, 392
MSK RES WRN LICENSE FEATURE EXPIRE,

392
MSK RES WRN LICENSE SERVER, 392
MSK RES WRN LP DROP VARIABLE, 392
MSK RES WRN LP OLD QUAD FORMAT,

392
MSK RES WRN MIO INFEASIBLE FINAL,

393
MSK RES WRN MPS SPLIT BOU VECTOR,

393
MSK RES WRN MPS SPLIT RAN VECTOR,

393
MSK RES WRN MPS SPLIT RHS VECTOR,

393
MSK RES WRN NAME MAX LEN, 393
MSK RES WRN NO DUALIZER, 393
MSK RES WRN NO GLOBAL OPTIMIZER,

393
MSK RES WRN NO NONLINEAR FUNCTION WRITE,

393
MSK RES WRN NZ IN UPR TRI, 393
MSK RES WRN OPEN PARAM FILE, 393
MSK RES WRN PARAM IGNORED CMIO,

393
MSK RES WRN PARAM NAME DOU, 393
MSK RES WRN PARAM NAME INT, 393
MSK RES WRN PARAM NAME STR, 393
MSK RES WRN PARAM STR VALUE, 393
MSK RES WRN PRESOLVE OUTOFSPACE,

394
MSK RES WRN QUAD CONES WITH ROOT FIXED AT ZERO,

394
MSK RES WRN RQUAD CONES WITH ROOT FIXED AT ZERO,

394
MSK RES WRN SOL FILE IGNORED CON,

394
MSK RES WRN SOL FILE IGNORED VAR,

394
MSK RES WRN SOL FILTER, 394

452 INDEX

MSK RES WRN SPAR MAX LEN, 394
MSK RES WRN TOO FEW BASIS VARS, 394
MSK RES WRN TOO MANY BASIS VARS,

394
MSK RES WRN TOO MANY THREADS CONCURRENT,

394
MSK RES WRN UNDEF SOL FILE NAME,

394
MSK RES WRN USING GENERIC NAMES,

394
MSK RES WRN WRITE CHANGED NAMES,

394
MSK RES WRN WRITE DISCARDED CFIX,

395
MSK RES WRN ZERO AIJ, 395
MSK RES WRN ZEROS IN SPARSE COL, 395
MSK RES WRN ZEROS IN SPARSE ROW,

395

scaling, 132
sensitivity analysis, 179

basis type, 181
optimal partition type, 182

shadow price, 180
simplex optimizer, 138
solution

optimal, 195
primal-dual, 194

solution summary, 145, 155

variables
decision, 193, 204, 207
lower limit, 194, 204, 207
upper limit, 194, 204, 207

xml format, 241

	Changes and new features in MOSEK
	Platform support
	General changes
	Optimizers
	Interior point optimizer
	The simplex optimizers
	Mixed-integer optimizer

	API changes
	Optimization toolbox for MATLAB
	License system
	Other changes
	Interfaces
	Platform changes

	Introduction
	What is optimization?
	Why you need the MOSEK optimization toolbox
	Features of the MOSEK optimization toolbox

	Supported MATLAB versions
	Installation
	Locating the toolbox functions
	On Windows
	On Linux/UNIX/MAC OS X
	Permanently changing matlabpath

	Verifying that MOSEK works
	Troubleshooting
	Undefined function or variable 'mosekopt'
	Invalid MEX-file
	Output arguments not assigned

	Getting support and help
	MOSEK documentation
	Additional reading

	MOSEK / MATLAB integration
	MOSEK replacements for MATLAB functions
	The license system
	Waiting for a free license
	Using MOSEK with the Parallel Computing Toolbox

	A guided tour
	Introduction
	The tour starts
	The MOSEK terminology
	Linear optimization
	Using msklpopt
	Using mosekopt
	Using linprog

	Convex quadratic optimization
	Two important assumptions
	Using mskqpopt
	Using mosekopt

	Conic optimization
	The conic optimization problem
	Solving an example
	Quadratic and conic optimization
	Conic duality and the dual solution
	Setting accuracy parameters for the conic optimizer

	Semidefinite optimization
	The semidefinite optimization problem
	Solving an example
	Linear matrix inequalities

	Quadratically constrained optimization
	Linear least squares and related norm minimization problems
	The case of the 2 norm
	The case of the infinity norm
	The case of the 1-norm

	Compatibility with MATLAB Optimization Toolbox
	More about solving linear least squares problems
	Using conic optimization on linear least squares problems

	Entropy optimization
	Using mskenopt

	Geometric optimization
	Using mskgpopt
	Comments

	Separable convex optimization
	Using mskscopt

	Mixed-integer optimization
	A linear mixed-integer example
	A conic quadratic mixed-integer example
	Speeding up the solution of a mixed-integer problem

	Sensitivity analysis
	Inspecting a problem
	The solutions
	The constraint and variable status keys

	Viewing the task information
	Inspecting and setting parameters
	Advanced start (hot-start)
	Some examples using hot-start
	Adding a new variable
	Fixing a variable
	Adding a new constraint
	Removing a constraint
	Removing a variable
	Using numeric values to represent status key codes

	Using names
	Blanks in names

	MPS and other file formats
	Reading an MPS file
	Writing a MPS files
	Other file formats

	User call-back functions
	Log printing via call-back function
	The iteration call-back function

	The license system
	Caveats using the MATLAB compiler

	Command reference
	Data structures
	prob
	names
	cones
	barc
	bara
	sol
	prisen
	duasen
	info
	symbcon
	callback

	An example of a command reference
	Functions provided by the MOSEK optimization toolbox
	MATLAB optimization toolbox compatible functions
	Linear and quadratic optimization
	Linear optimization with binary variables
	For linear least squares problems
	The optimization options

	Case studies
	Robust linear optimization
	Introductory example
	Data uncertainty and its consequences.
	Robust linear optimization methodology
	Random uncertainty and ellipsoidal robust counterpart
	Further references

	Geometric (posynomial) optimization
	The problem
	Applications
	Modeling tricks
	Problematic formulations
	An example
	Solving the example
	Exporting to a file
	Further information

	The optimizers for continuous problems
	How an optimizer works
	Presolve
	Dualizer
	Scaling
	Using multiple threads

	Linear optimization
	Optimizer selection
	The interior-point optimizer
	The simplex based optimizer
	The interior-point or the simplex optimizer?
	The primal or the dual simplex variant?

	Linear network optimization
	Network flow problems

	Conic optimization
	The interior-point optimizer

	Nonlinear convex optimization
	The interior-point optimizer

	Solving problems in parallel
	Thread safety
	The parallelized interior-point optimizer
	The concurrent optimizer

	The solution summary
	The optimizers for mixed-integer problems
	Some concepts and facts related to mixed-integer optimization
	The mixed-integer optimizers
	The mixed-integer conic optimizer
	Presolve
	Heuristic
	The optimization phase
	Caveats

	The mixed-integer optimizer
	Presolve
	Heuristic
	The optimization phase

	Termination criterion
	Relaxed termination
	Important parameters

	How to speed up the solution process
	Understanding solution quality

	The solution summary for mixed integer problems
	The analyzers
	The problem analyzer
	General characteristics
	Objective
	Linear constraints
	Constraint and variable bounds
	Quadratic constraints
	Conic constraints

	Analyzing infeasible problems
	Example: Primal infeasibility
	Locating the cause of primal infeasibility
	Locating the cause of dual infeasibility
	The infeasibility report
	Theory concerning infeasible problems
	The certificate of primal infeasibility
	The certificate of dual infeasibility

	Primal feasibility repair
	Manual repair
	Automatic repair
	Caveats

	Feasibility repair in MOSEK
	An example using feasibility repair

	Sensitivity analysis
	Introduction
	Restrictions
	References
	Sensitivity analysis for linear problems
	The optimal objective value function
	The basis type sensitivity analysis
	The optimal partition type sensitivity analysis
	Example: Sensitivity analysis

	Sensitivity analysis in the MATLAB toolbox
	On bounds
	Selecting analysis type
	An example

	Problem formulation and solutions
	Linear optimization
	Duality for linear optimization
	Infeasibility for linear optimization

	Conic quadratic optimization
	Duality for conic quadratic optimization
	Infeasibility for conic quadratic optimization

	Semidefinite optimization
	Duality for semidefinite optimization
	Infeasibility for semidefinite optimization

	Quadratic and quadratically constrained optimization
	Duality for quadratic and quadratically constrained optimization
	Infeasibility for quadratic and quadratically constrained optimization

	General convex optimization
	Duality for general convex optimization

	The MPS file format
	MPS file structure
	Linear example lo1.mps
	NAME
	OBJSENSE (optional)
	OBJNAME (optional)
	ROWS
	COLUMNS
	RHS (optional)
	RANGES (optional)
	QSECTION (optional)
	BOUNDS (optional)
	CSECTION (optional)
	ENDATA

	Integer variables
	General limitations
	Interpretation of the MPS format
	The free MPS format

	The LP file format
	The sections
	The objective
	The constraints
	Bounds
	Variable types
	Terminating section
	Linear example lo1.lp
	Mixed integer example milo1.lp

	LP format peculiarities
	Comments
	Names
	Variable bounds
	MOSEK specific extensions to the LP format

	The strict LP format
	Formatting of an LP file
	Speeding up file reading
	Unnamed constraints

	The OPF format
	Intended use
	The file format
	Sections
	Numbers
	Names

	Parameters section
	Writing OPF files from MOSEK
	Examples
	Linear example lo1.opf
	Quadratic example qo1.opf
	Conic quadratic example cqo1.opf
	Mixed integer example milo1.opf

	The Task format
	The XML (OSiL) format
	Parameters
	MSKdparame: Double parameters
	MSK_DPAR_ANA_SOL_INFEAS_TOL
	MSK_DPAR_BASIS_REL_TOL_S
	MSK_DPAR_BASIS_TOL_S
	MSK_DPAR_BASIS_TOL_X
	MSK_DPAR_CHECK_CONVEXITY_REL_TOL
	MSK_DPAR_DATA_TOL_AIJ
	MSK_DPAR_DATA_TOL_AIJ_HUGE
	MSK_DPAR_DATA_TOL_AIJ_LARGE
	MSK_DPAR_DATA_TOL_BOUND_INF
	MSK_DPAR_DATA_TOL_BOUND_WRN
	MSK_DPAR_DATA_TOL_C_HUGE
	MSK_DPAR_DATA_TOL_CJ_LARGE
	MSK_DPAR_DATA_TOL_QIJ
	MSK_DPAR_DATA_TOL_X
	MSK_DPAR_FEASREPAIR_TOL
	MSK_DPAR_INTPNT_CO_TOL_DFEAS
	MSK_DPAR_INTPNT_CO_TOL_INFEAS
	MSK_DPAR_INTPNT_CO_TOL_MU_RED
	MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
	MSK_DPAR_INTPNT_CO_TOL_PFEAS
	MSK_DPAR_INTPNT_CO_TOL_REL_GAP
	MSK_DPAR_INTPNT_NL_MERIT_BAL
	MSK_DPAR_INTPNT_NL_TOL_DFEAS
	MSK_DPAR_INTPNT_NL_TOL_MU_RED
	MSK_DPAR_INTPNT_NL_TOL_NEAR_REL
	MSK_DPAR_INTPNT_NL_TOL_PFEAS
	MSK_DPAR_INTPNT_NL_TOL_REL_GAP
	MSK_DPAR_INTPNT_NL_TOL_REL_STEP
	MSK_DPAR_INTPNT_TOL_DFEAS
	MSK_DPAR_INTPNT_TOL_DSAFE
	MSK_DPAR_INTPNT_TOL_INFEAS
	MSK_DPAR_INTPNT_TOL_MU_RED
	MSK_DPAR_INTPNT_TOL_PATH
	MSK_DPAR_INTPNT_TOL_PFEAS
	MSK_DPAR_INTPNT_TOL_PSAFE
	MSK_DPAR_INTPNT_TOL_REL_GAP
	MSK_DPAR_INTPNT_TOL_REL_STEP
	MSK_DPAR_INTPNT_TOL_STEP_SIZE
	MSK_DPAR_LOWER_OBJ_CUT
	MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH
	MSK_DPAR_MIO_DISABLE_TERM_TIME
	MSK_DPAR_MIO_HEURISTIC_TIME
	MSK_DPAR_MIO_MAX_TIME
	MSK_DPAR_MIO_MAX_TIME_APRX_OPT
	MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
	MSK_DPAR_MIO_NEAR_TOL_REL_GAP
	MSK_DPAR_MIO_REL_ADD_CUT_LIMITED
	MSK_DPAR_MIO_REL_GAP_CONST
	MSK_DPAR_MIO_TOL_ABS_GAP
	MSK_DPAR_MIO_TOL_ABS_RELAX_INT
	MSK_DPAR_MIO_TOL_FEAS
	MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT
	MSK_DPAR_MIO_TOL_REL_GAP
	MSK_DPAR_MIO_TOL_REL_RELAX_INT
	MSK_DPAR_MIO_TOL_X
	MSK_DPAR_NONCONVEX_TOL_FEAS
	MSK_DPAR_NONCONVEX_TOL_OPT
	MSK_DPAR_OPTIMIZER_MAX_TIME
	MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP
	MSK_DPAR_PRESOLVE_TOL_AIJ
	MSK_DPAR_PRESOLVE_TOL_REL_LINDEP
	MSK_DPAR_PRESOLVE_TOL_S
	MSK_DPAR_PRESOLVE_TOL_X
	MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL
	MSK_DPAR_SIM_LU_TOL_REL_PIV
	MSK_DPAR_SIMPLEX_ABS_TOL_PIV
	MSK_DPAR_UPPER_OBJ_CUT
	MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH

	MSKiparame: Integer parameters
	MSK_IPAR_ALLOC_ADD_QNZ
	MSK_IPAR_ANA_SOL_BASIS
	MSK_IPAR_ANA_SOL_PRINT_VIOLATED
	MSK_IPAR_AUTO_SORT_A_BEFORE_OPT
	MSK_IPAR_AUTO_UPDATE_SOL_INFO
	MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE
	MSK_IPAR_BI_CLEAN_OPTIMIZER
	MSK_IPAR_BI_IGNORE_MAX_ITER
	MSK_IPAR_BI_IGNORE_NUM_ERROR
	MSK_IPAR_BI_MAX_ITERATIONS
	MSK_IPAR_CACHE_LICENSE
	MSK_IPAR_CHECK_CONVEXITY
	MSK_IPAR_COMPRESS_STATFILE
	MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS
	MSK_IPAR_CONCURRENT_PRIORITY_DUAL_SIMPLEX
	MSK_IPAR_CONCURRENT_PRIORITY_FREE_SIMPLEX
	MSK_IPAR_CONCURRENT_PRIORITY_INTPNT
	MSK_IPAR_CONCURRENT_PRIORITY_PRIMAL_SIMPLEX
	MSK_IPAR_FEASREPAIR_OPTIMIZE
	MSK_IPAR_INFEAS_GENERIC_NAMES
	MSK_IPAR_INFEAS_PREFER_PRIMAL
	MSK_IPAR_INFEAS_REPORT_AUTO
	MSK_IPAR_INFEAS_REPORT_LEVEL
	MSK_IPAR_INTPNT_BASIS
	MSK_IPAR_INTPNT_DIFF_STEP
	MSK_IPAR_INTPNT_FACTOR_DEBUG_LVL
	MSK_IPAR_INTPNT_FACTOR_METHOD
	MSK_IPAR_INTPNT_HOTSTART
	MSK_IPAR_INTPNT_MAX_ITERATIONS
	MSK_IPAR_INTPNT_MAX_NUM_COR
	MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS
	MSK_IPAR_INTPNT_OFF_COL_TRH
	MSK_IPAR_INTPNT_ORDER_METHOD
	MSK_IPAR_INTPNT_REGULARIZATION_USE
	MSK_IPAR_INTPNT_SCALING
	MSK_IPAR_INTPNT_SOLVE_FORM
	MSK_IPAR_INTPNT_STARTING_POINT
	MSK_IPAR_LIC_TRH_EXPIRY_WRN
	MSK_IPAR_LICENSE_ALLOW_OVERUSE
	MSK_IPAR_LICENSE_DEBUG
	MSK_IPAR_LICENSE_PAUSE_TIME
	MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS
	MSK_IPAR_LICENSE_WAIT
	MSK_IPAR_LOG
	MSK_IPAR_LOG_BI
	MSK_IPAR_LOG_BI_FREQ
	MSK_IPAR_LOG_CHECK_CONVEXITY
	MSK_IPAR_LOG_CONCURRENT
	MSK_IPAR_LOG_CUT_SECOND_OPT
	MSK_IPAR_LOG_EXPAND
	MSK_IPAR_LOG_FACTOR
	MSK_IPAR_LOG_FEAS_REPAIR
	MSK_IPAR_LOG_FILE
	MSK_IPAR_LOG_HEAD
	MSK_IPAR_LOG_INFEAS_ANA
	MSK_IPAR_LOG_INTPNT
	MSK_IPAR_LOG_MIO
	MSK_IPAR_LOG_MIO_FREQ
	MSK_IPAR_LOG_NONCONVEX
	MSK_IPAR_LOG_OPTIMIZER
	MSK_IPAR_LOG_ORDER
	MSK_IPAR_LOG_PARAM
	MSK_IPAR_LOG_PRESOLVE
	MSK_IPAR_LOG_RESPONSE
	MSK_IPAR_LOG_SENSITIVITY
	MSK_IPAR_LOG_SENSITIVITY_OPT
	MSK_IPAR_LOG_SIM
	MSK_IPAR_LOG_SIM_FREQ
	MSK_IPAR_LOG_SIM_MINOR
	MSK_IPAR_LOG_SIM_NETWORK_FREQ
	MSK_IPAR_LOG_STORAGE
	MSK_IPAR_MAX_NUM_WARNINGS
	MSK_IPAR_MIO_BRANCH_DIR
	MSK_IPAR_MIO_BRANCH_PRIORITIES_USE
	MSK_IPAR_MIO_CONSTRUCT_SOL
	MSK_IPAR_MIO_CONT_SOL
	MSK_IPAR_MIO_CUT_LEVEL_ROOT
	MSK_IPAR_MIO_CUT_LEVEL_TREE
	MSK_IPAR_MIO_FEASPUMP_LEVEL
	MSK_IPAR_MIO_HEURISTIC_LEVEL
	MSK_IPAR_MIO_HOTSTART
	MSK_IPAR_MIO_KEEP_BASIS
	MSK_IPAR_MIO_LOCAL_BRANCH_NUMBER
	MSK_IPAR_MIO_MAX_NUM_BRANCHES
	MSK_IPAR_MIO_MAX_NUM_RELAXS
	MSK_IPAR_MIO_MAX_NUM_SOLUTIONS
	MSK_IPAR_MIO_MODE
	MSK_IPAR_MIO_MT_USER_CB
	MSK_IPAR_MIO_NODE_OPTIMIZER
	MSK_IPAR_MIO_NODE_SELECTION
	MSK_IPAR_MIO_OPTIMIZER_MODE
	MSK_IPAR_MIO_PRESOLVE_AGGREGATE
	MSK_IPAR_MIO_PRESOLVE_PROBING
	MSK_IPAR_MIO_PRESOLVE_USE
	MSK_IPAR_MIO_ROOT_OPTIMIZER
	MSK_IPAR_MIO_STRONG_BRANCH
	MSK_IPAR_MIO_USE_MULTITHREADED_OPTIMIZER
	MSK_IPAR_MT_SPINCOUNT
	MSK_IPAR_NONCONVEX_MAX_ITERATIONS
	MSK_IPAR_NUM_THREADS
	MSK_IPAR_OPF_MAX_TERMS_PER_LINE
	MSK_IPAR_OPF_WRITE_HEADER
	MSK_IPAR_OPF_WRITE_HINTS
	MSK_IPAR_OPF_WRITE_PARAMETERS
	MSK_IPAR_OPF_WRITE_PROBLEM
	MSK_IPAR_OPF_WRITE_SOL_BAS
	MSK_IPAR_OPF_WRITE_SOL_ITG
	MSK_IPAR_OPF_WRITE_SOL_ITR
	MSK_IPAR_OPF_WRITE_SOLUTIONS
	MSK_IPAR_OPTIMIZER
	MSK_IPAR_PARAM_READ_CASE_NAME
	MSK_IPAR_PARAM_READ_IGN_ERROR
	MSK_IPAR_PRESOLVE_ELIM_FILL
	MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
	MSK_IPAR_PRESOLVE_ELIMINATOR_USE
	MSK_IPAR_PRESOLVE_LEVEL
	MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH
	MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH
	MSK_IPAR_PRESOLVE_LINDEP_USE
	MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS
	MSK_IPAR_PRESOLVE_USE
	MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER
	MSK_IPAR_QO_SEPARABLE_REFORMULATION
	MSK_IPAR_READ_ANZ
	MSK_IPAR_READ_CON
	MSK_IPAR_READ_CONE
	MSK_IPAR_READ_DATA_COMPRESSED
	MSK_IPAR_READ_DATA_FORMAT
	MSK_IPAR_READ_KEEP_FREE_CON
	MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU
	MSK_IPAR_READ_LP_QUOTED_NAMES
	MSK_IPAR_READ_MPS_FORMAT
	MSK_IPAR_READ_MPS_KEEP_INT
	MSK_IPAR_READ_MPS_OBJ_SENSE
	MSK_IPAR_READ_MPS_RELAX
	MSK_IPAR_READ_MPS_WIDTH
	MSK_IPAR_READ_QNZ
	MSK_IPAR_READ_TASK_IGNORE_PARAM
	MSK_IPAR_READ_VAR
	MSK_IPAR_SENSITIVITY_ALL
	MSK_IPAR_SENSITIVITY_OPTIMIZER
	MSK_IPAR_SENSITIVITY_TYPE
	MSK_IPAR_SIM_BASIS_FACTOR_USE
	MSK_IPAR_SIM_DEGEN
	MSK_IPAR_SIM_DUAL_CRASH
	MSK_IPAR_SIM_DUAL_PHASEONE_METHOD
	MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION
	MSK_IPAR_SIM_DUAL_SELECTION
	MSK_IPAR_SIM_EXPLOIT_DUPVEC
	MSK_IPAR_SIM_HOTSTART
	MSK_IPAR_SIM_HOTSTART_LU
	MSK_IPAR_SIM_INTEGER
	MSK_IPAR_SIM_MAX_ITERATIONS
	MSK_IPAR_SIM_MAX_NUM_SETBACKS
	MSK_IPAR_SIM_NON_SINGULAR
	MSK_IPAR_SIM_PRIMAL_CRASH
	MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD
	MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION
	MSK_IPAR_SIM_PRIMAL_SELECTION
	MSK_IPAR_SIM_REFACTOR_FREQ
	MSK_IPAR_SIM_REFORMULATION
	MSK_IPAR_SIM_SAVE_LU
	MSK_IPAR_SIM_SCALING
	MSK_IPAR_SIM_SCALING_METHOD
	MSK_IPAR_SIM_SOLVE_FORM
	MSK_IPAR_SIM_STABILITY_PRIORITY
	MSK_IPAR_SIM_SWITCH_OPTIMIZER
	MSK_IPAR_SOL_FILTER_KEEP_BASIC
	MSK_IPAR_SOL_FILTER_KEEP_RANGED
	MSK_IPAR_SOL_READ_NAME_WIDTH
	MSK_IPAR_SOL_READ_WIDTH
	MSK_IPAR_SOLUTION_CALLBACK
	MSK_IPAR_TIMING_LEVEL
	MSK_IPAR_WARNING_LEVEL
	MSK_IPAR_WRITE_BAS_CONSTRAINTS
	MSK_IPAR_WRITE_BAS_HEAD
	MSK_IPAR_WRITE_BAS_VARIABLES
	MSK_IPAR_WRITE_DATA_COMPRESSED
	MSK_IPAR_WRITE_DATA_FORMAT
	MSK_IPAR_WRITE_DATA_PARAM
	MSK_IPAR_WRITE_FREE_CON
	MSK_IPAR_WRITE_GENERIC_NAMES
	MSK_IPAR_WRITE_GENERIC_NAMES_IO
	MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_CONIC_ITEMS
	MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS
	MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_NL_ITEMS
	MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_PSD_ITEMS
	MSK_IPAR_WRITE_INT_CONSTRAINTS
	MSK_IPAR_WRITE_INT_HEAD
	MSK_IPAR_WRITE_INT_VARIABLES
	MSK_IPAR_WRITE_LP_LINE_WIDTH
	MSK_IPAR_WRITE_LP_QUOTED_NAMES
	MSK_IPAR_WRITE_LP_STRICT_FORMAT
	MSK_IPAR_WRITE_LP_TERMS_PER_LINE
	MSK_IPAR_WRITE_MPS_INT
	MSK_IPAR_WRITE_PRECISION
	MSK_IPAR_WRITE_SOL_BARVARIABLES
	MSK_IPAR_WRITE_SOL_CONSTRAINTS
	MSK_IPAR_WRITE_SOL_HEAD
	MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES
	MSK_IPAR_WRITE_SOL_VARIABLES
	MSK_IPAR_WRITE_TASK_INC_SOL
	MSK_IPAR_WRITE_XML_MODE

	MSKsparame: String parameter types
	MSK_SPAR_BAS_SOL_FILE_NAME
	MSK_SPAR_DATA_FILE_NAME
	MSK_SPAR_DEBUG_FILE_NAME
	MSK_SPAR_FEASREPAIR_NAME_PREFIX
	MSK_SPAR_FEASREPAIR_NAME_SEPARATOR
	MSK_SPAR_FEASREPAIR_NAME_WSUMVIOL
	MSK_SPAR_INT_SOL_FILE_NAME
	MSK_SPAR_ITR_SOL_FILE_NAME
	MSK_SPAR_MIO_DEBUG_STRING
	MSK_SPAR_PARAM_COMMENT_SIGN
	MSK_SPAR_PARAM_READ_FILE_NAME
	MSK_SPAR_PARAM_WRITE_FILE_NAME
	MSK_SPAR_READ_MPS_BOU_NAME
	MSK_SPAR_READ_MPS_OBJ_NAME
	MSK_SPAR_READ_MPS_RAN_NAME
	MSK_SPAR_READ_MPS_RHS_NAME
	MSK_SPAR_SENSITIVITY_FILE_NAME
	MSK_SPAR_SENSITIVITY_RES_FILE_NAME
	MSK_SPAR_SOL_FILTER_XC_LOW
	MSK_SPAR_SOL_FILTER_XC_UPR
	MSK_SPAR_SOL_FILTER_XX_LOW
	MSK_SPAR_SOL_FILTER_XX_UPR
	MSK_SPAR_STAT_FILE_NAME
	MSK_SPAR_STAT_KEY
	MSK_SPAR_STAT_NAME
	MSK_SPAR_WRITE_LP_GEN_VAR_NAME

	Response codes
	API constants
	Constraint or variable access modes
	Basis identification
	Bound keys
	Specifies the branching direction.
	Progress call-back codes
	Types of convexity checks.
	Compression types
	Cone types
	Data format types
	Double information items
	Feasibility repair types
	License feature
	Integer information items.
	Information item types
	Hot-start type employed by the interior-point optimizers.
	Input/output modes
	Language selection constants
	Long integer information items.
	Mark
	Continuous mixed-integer solution type
	Integer restrictions
	Mixed-integer node selection types
	MPS file format type
	Message keys
	Cone types
	Objective sense types
	On/off
	Optimizer types
	Ordering strategies
	Parameter type
	Presolve method.
	Problem data items
	Problem types
	Problem status keys
	Response code type
	Scaling type
	Scaling type
	Sensitivity types
	Degeneracy strategies
	Exploit duplicate columns.
	Hot-start type employed by the simplex optimizer
	Problem reformulation.
	Simplex selection strategy
	Solution items
	Solution status keys
	Solution types
	Solve primal or dual form
	Status keys
	Starting point types
	Stream types
	Cone types
	Integer values
	Variable types
	XML writer output mode

	Problem analyzer examples
	air04
	arki001
	Problem with both linear and quadratic constraints
	Problem with both linear and conic constraints

