The MOSEK optimization toolbox for
MATLAB manual.
Version 5.0 (Revision 138).

WWW.mosek.com

ii

Published by MOSEK ApS, Denmark.
Copyright 1999-2009 MOSEK ApS, Denmark

Disclaimer: MOSEK ApS (the author of MOSEK) accepts no responsibility for damages
resulting from the use of the MOSEK software and makes no warranty, either expressed
or implied, including, but not limited to, any implied warranty of fitness for a particular
purpose. The software is provided as it is, and you, its user, assume all risks when using
it.

Contact information

Phone
Fax

WEB

Email

Mail

+45 3917 9907
+45 3917 9823

http://www.mosek.com

sales@mosek.com
support@mosek.com
info@mosek.com

MOSEK ApS

C/O Symbion Science Park
Fruebjergvej 3, Box 16
2100 Copenhagen O
Denmark

Sales, pricing, and licensing.
Technical support, questions and bug reports.
Everything else.

iii

http://www.mosek.com
mailto:sales@mosek.com
mailto:support@mosek.com
mailto:info@mosek.com

iv

Contents

1 Changes and new features in MOSEK

1.1 File formatso
1.2 Optimizers o e e e e
1.3 APIchanges. e
1.4 License system
1.5 Other changes
1.6 Interfaces e
1.7 Supported platforms

2 Introduction

2.1 What is optimization
2.2 Why you need the MOSEK optimization toolbox
2.2.1 Features of the MOSEK optimization toolbox
2.3 Comparison with the MATLAB optimization toolbox
3 Installation
3.1 Locating the toolbox functions
3.1.1 On Windows . . . o oo e e e e
3.1.2 On Linux/UNIX/MAC OSX
3.1.3 Permanently changing matlabpath
3.2 Verifying MOSEK works
3.3 Troubleshooting L
3.3.1 777 Undefined function or variable 'mosekopt’
3.3.2 1libgcc_s.so.l must be installed for pthread cancel to work . .
3.3.3 Compiling with the MATLAB compiler
3.3.4 Shadows the M-file
3.3.5 Cannot find authentication file

4 Getting support and help
4.1 MOSEK documentation
4.2 Additional reading oL

10
10
10
11
11
12
13
13
13

vi CONTENTS

5 MOSEK / MATLAB integration 17
5.1 MOSEK replacements for MATLAB functions 17
5.2 The license system 17

6 A guided tour 19
6.1 Introduction e e 19
6.2 The tour startso 19
6.3 The MOSEK terminolgy 20
6.4 Linear optimization e 20

6.4.1 Using msk1popt o i e e e e 21
6.4.2 Usingmosekopt 22
6.5 Convex quadratic optimization 23
6.5.1 Two important assumptionso oL, 24
6.5.2 Using mskgpopt 24
6.5.3 Using mosekopt 25
6.6 Conic optimization L Lo 26
6.6.1 The conic optimization problem 26
6.6.2 Solvinganexample. Lo 27
6.6.3 Quadratic and conic optimization 29
6.6.4 Conic duality and the dual solution 31
6.6.5 Setting accuracy parameters for the conic optimizer 32
6.7 Quadratically constrained optimization 33
6.8 Linear least squares and related norm minimization problems 34
6.8.1 Thecaseof the2norm 34
6.8.2 The case of the infinity norm oo 35
6.8.3 The case of theonenorm 36
6.9 More about solving linear least squares problems 38
6.9.1 Using conic optimization linear least squares problems 42
6.10 Entropy optimization 43
6.10.1 Using mskenopt e 43
6.11 Geometric optimizationo 43
6.11.1 Using mskgpopt 44
6.11.2 Comments. v it e e e e e 46
6.12 Separable convex optimization oL L Lo 46
6.12.1 Using mskscopt 48
6.13 Mixed integer optimization L L L oo 50
6.13.1 Solving anexample oL 50
6.13.2 Speeding up the solution of a mixed integer problem 51
6.14 Sensitivity analysis Lo 54
6.15 The solutions e e 55

6.15.1 The constraint and variable status keys 56

CONTENTS vii
6.16 Viewing the task informationo 57
6.17 Inspecting and setting parameters L L oL 58
6.18 Advanced start (warmstart)o o 59

6.18.1 Some examples using warmstart oL 59
6.18.2 Adding anew variable oL oo 60
6.18.3 Fixing a variable 61
6.18.4 Adding a new constraint 61
6.18.5 Using numeric values to represent status key codes 62
6.19 Using names ottt e e e e e e e e e 64
6.19.1 Blanks in names e 64
6.20 MPS files e 64
6.20.1 Readinga MPSfile. 65
6.20.2 Writing a MPS files o o 65
6.21 User call-back functions 66
6.21.1 Controlling log printing via call-back 66
6.21.2 The iteration call-back function 67

7 Command reference 69

7.1 Data structures L e e e 69
T.1.1 prob 69
7.1.2 mnames e e e e 74
T.1.3 comes e e e e 74
T.1.4 80l . L 75
715 prisen ... 76
7.1.6 duasen 76
717 dinfo . ..o L 7
T.1.8 symbcom e 7
7.1.9 callback v vt e e e e e e e e e e e 7

7.2 An example of a command reference L L., 78

7.3 Functions provided by the MOSEK optimization toolbox 78

7.4 MATLAB optimization toolbox compatible functions 83
7.4.1 For linear and quadratic optimization 83
7.4.2 For linear least squares problems 86
7.4.3 The optimization options oL 89

8 Case studies 93

8.1 Robust linear optimization. Lo oL 93
8.1.1 Imtroductory example 93
8.1.2 Data uncertainty and its consequences. 95
8.1.3 Robust linear optimization methodology 96
8.1.4 Random uncertainty and Ellipsoidal Robust Counterpart 100

viii CONTENTS
8.1.5 Further references 109

8.2 Geometric (posynomial) optimization 110
8.2.1 Theproblem 110
8.2.2 Applications 111
8.2.3 Modelling tricks 111
8.2.4 Problematic formulations, 112
8.2.5 Anexample 113
8.2.6 Solving theexample L 114
8.2.7 Exportingtoafile 115
8.2.8 Further information 115

9 Modelling 117
9.1 Linear optimization. 117
9.1.1 Duality for linear optimization 118
9.1.2 Primal and dual infeasible case, 121

9.2 Linear network flow problems L oo oo 121
9.3 Quadratic and quadratically constrained optimization 121
9.3.1 A general recommendation 0L 122
9.3.2 Reformulating as a separable quadratic problem 122

9.4 Conic optimization L 124
9.4.1 Duality for conic optimization oo 125
9.4.2 Thedual ofthedual 125
9.4.3 Infeasibility 125
9.4.4 Examples 125
9.4.5 Potential pitfalls in conic optimization 130

9.5 Nonlinear convex optimizationo 132
9.5.1 Duality e 133

9.6 Recommendations e e 134
9.6.1 Avoid nearly infeasible models 135

9.7 Examples continued L L e 135
9.7.1 The absolute value 135
9.7.2 The Markowitz portfolio model 136

10 The optimizers for continuous problems 139
10.1 How an optimizer works e 139
10.1.1 Presolve e e e e e e 139
10.1.2 Dualizer e e e e 141
10.1.3 Scaling 141
10.1.4 Using multiple CPU’s 142

10.2 Linear optimization. L 142

10.2.1 Optimizer selection oL 142

CONTENTS ix

10.2.2 The interior-point optimizer Lo 142
10.2.3 The simplex based optimizer 143
10.2.4 The interior-point or the simplex optimizer? 145
10.2.5 The primal or the dual simplex variant? 145

10.3 Linear network optimization L L L 145
10.3.1 Network flow problems oo o 145
10.3.2 Embedded network problems, 146

10.4 Conic optimization L L e 146
10.4.1 The interior-point optimizer oL 146

10.5 Nonlinear convex optimization 146
10.5.1 The interior-point optimizer oL 146

10.6 Solving problems in parallelo 147
10.6.1 Thread safety L 147
10.6.2 The parallelized interior-point optimizer 147
10.6.3 The concurrent optimizer 148
10.6.4 A more flexible concurrent optimizer 149

11 The optimizer for mixed integer problems 151
11.1 Some notation 151
11.2 An important fact about integer optimization problems 152
11.3 How the integer optimizer works Lo . 152
11.3.1 Presolve e 153
11.3.2 Heuristic e e e e e e 153
11.3.3 The optimization phase 0. 153

11.4 Termination criterion e 153
11.5 How to speed up the solution process 155
12 Analyzing infeasible problems 157
12.1 Example: Primal infeasibility 157
12.1.1 Locating the cause of primal infeasibility 159
12.1.2 Locating the cause of dual infeasibility 159
12.1.3 The infeasibility report 160

12.2 Theory concerning infeasible problems 164
12.2.1 Certificat of primal infeasibility 164
12.2.2 Certificat of dual infeasibility 165

13 Sensitivity analysis 167
13.1 Introduction L 167
13.2 Restrictions e e e e e e e 167
13.3 References e e 167

13.4 Sensitivity analysis for linear problems o000, 168

CONTENTS

X
13.4.1 The optimal objective value function 168

13.4.2 The basis type sensitivity analysis 169

13.4.3 The optimal partition type sensitivity analysis 170

1344 Anexample oL L 172

13.5 Sensitivity analysis in the MATLAB toolbox 174
13.5.1 On bounds e 174

13.5.2 Selecting analysis typeo 176

13.5.3 Anexample 176

A The MPS file format 181
A.1 The MPS file format e 181
ATl Anexample e 183

A2 NAME o 183

A.1.3 OBJSENSE (optional) it 184

A.1.4 OBJNAME (optional) L 184

ATD ROWS . . o o e e 184

A1.6 COLUMNS oot et e e e e e e e e 185

A.1.7 RHS (optional) 185

A.1.8 RANGES (optional) 186

A.1.9 QSECTION (optional) 187

A.1.10 BOUNDS (optional) o v v it 188

A.1.11 CSECTION (optional) it 189

ALI2 ENDATA . . . o o e e e e e 191

A.2 Integer variables 192
A.3 General limitations 192
A.4 Interpretation of the MPS format, 193
A5 The free MPS format 193

B The LP file format 195
Bl Awarning Lo 195
B.2 The LP file format 195
B.2.1 Thesections 196

B.2.2 LP format peculiarities 0oL 200

B.2.3 The strict LP format o 201

B.2.4 Formattingofan LP file, 201

C Parameters 203
C.1 Parameter groups v i it i e e e e e 203
C.1.1 Logging parameters. i 203

C.1.2 Basis identification parameters. 205

C.1.3 The Interior-point method parameters. 205

CONTENTS xi

C.1.4 Simplex optimizer parameters. 0. .. 208
C.1.5 Primal simplex optimizer parameters. 210
C.1.6 Dual simplex optimizer parameters. 210
C.1.7 Network simplex optimizer parameters. 210
C.1.8 Nonlinear convex method parameters. 211
C.1.9 The conic interior-point method parameters. 211
C.1.10 The mixed integer optimization parameters. 212
C.1.11 Presolve parameters. o e 214
C.1.12 Termination criterion parameters. 215
C.1.13 Progress call-back parameters. 217
C.1.14 Non-convex solver parameters. v ... 217
C.1.15 Feasibility repair parameters. 217
C.1.16 Optimization system parameters. 218
C.1.17 Output information parameters. 218
C.1.18 Extra information about the optimization problem. 220
C.1.19 Overall solver parameters. 220
C.1.20 Behavior of the optimization task. 222
C.1.21 Data input/output parameters. 223
C.1.22 Solution input/output parameters. 229
C.1.23 Infeasibility report parameters. 230
C.1.24 License manager parameters. oo v v v e 230
C.1.25 Data check parameters. 231

C.2 Double parameters e e 232
C.3 Integer parameters e e e e 254
C.4 String parameter types L e e e e 332
D Symbolic constants 341
D.1 Constraint or variable access modes L L oL 341
D.2 Basis identification L 341
D.3 Bound keyso 342
D.4 Specifies the branching direction. L oL L. 342
D.5 Progress call-back codeso 342
D.6 Types of convexity checks. L oo 349
D.7 Compression types oo e e 349
D.8 Cone types o . o 349
D.9 CPUtype . . . o o o e e 350
D.10 Data format types 350
D.11 Double information items L 351
D.12 Double parameters Lo e e 355
D.13Double values L 361

D.14 Feasibility repair typeso 361

xii

CONTENTS
D.15 Integer information items. Lo Lo oL 361
D.16 Information item types 366
D.17 Input/output modes 366
D.18 Integer parameters Lo e 366
D19 Bound keys 384
D.20 Continuous mixed integer solution type 384
D.21 Integer restrictions oL oL Lo 385
D.22 Mixed integer node selection types L Lo 385
D.23 MPS file format type 385
D.24 Message keys oo o e 386
D.25 Network detection method L o 386
D.26 Objective sense types o . o o oo 386
D.270n/off 387
D.28 Optimizer types o e e e 387
D.29 Ordering strategieso 388
D.30 Parameter type 388
D.31 Presolve method. L 388
D.32 Problem data items L 389
D.33 Problem types 389
D.34 Problem status keyso 390
D.35 Interpretation of quadratic terms in MPS files 390
D.36 Response codes e e e e 391
D.37 Response code type o oL Lo 409
D.38 Scaling type o 409
D.39 Sensitivity typeso 410
D.40 Degeneracy strategies L e 410
D.41 Hot-start type employed by the simplex optimizer 410
D.42 Simplex selection strategyo 411
D.43 Solution items 411
D.44 Solution status keyso oL 412
D.45 Solution types o 413
D.46 Solve primal or dual form L Lo Lo 413
D.47 String parameter typeso o e e 413
D48 Status keys oL o 416
D.49 Starting point types oL 416
D.50 Stream typeso oL o 416
D.51 Integer values L oL e 417
D.52 Variable typeso 417

D.53 XML writer output mode Lo Lo 417

License agreement

Before using the MOSEK software, please read the license agreement available in the distri-
bution incd

mosek\5\1license\index.html

CONTENTS

Chapter 1

Changes and new features in
MOSEK

The section presents improvements and new features added to MOSEK in version 5.0.

1.1

1.2

File formats

The 0SiLl. XML format for linear problems is now supported as output-only format.

The new Optimization Problem file Format (OPF) is now available. It incorporates
linear, quadratic, and conic problems in a single format, as well as parameter settings
and solutions.

The 0BJINAME section is now supported in the MPS format.

Optimizers
The interior-point solver is about 20% faster on average for large linear problems, com-
pared to MOSEK 4.0.
The dual simplex solver is about 40% faster on average compared to MOSEK 4.0.

For the primal simplex solver, handling of problems with long slim structure has been
improved.

For both simplex optimizers numerical stability, hot-start efficiency and degeneracy
handling has been improved substantially.

A simplex network flow optimizer is now available. In many cases the specialized simplex
optimizer can solve a pure network flow optimization problem up to 10 times faster than
the standard simplex optimizer.

1.3

1.4

1.5

1.6

CHAPTER 1. CHANGES AND NEW FEATURES IN MOSEK

Presolve is now by default turned on for hot-start with the simplex optimizers.

The mixed integer optimizer now includes the feasibility pump heuristic to find a good
initial feasible solution.

Full support for setting branching priorities on integer constrained variables.

API changes

The function MSK_putobjsense has been introduced. This should be used to define
objective sense instead of the parameter MSK_IPAR_OBJECTIVE_SENSE.
License system

The Flexlm license software has been upgraded to version 11.4.

Dongles are supported in 64 bit Windows.

Other changes

The documentation has been improved. Each interface now have a complete dedicated
manual, and many code examples have been added. The HTML version has been subject
to heavy cosmetical changes.

Interfaces

A complete Python interface is now available.
The MATLAB interface supports the MATLAB versions R2006a, R2006b, and R2007a.
The general convex interface has been disabled in the Java and .NET interfaces.

The Java API provides an interface to the native scopt functionality.

Supported platforms
Mac OSX 32 bit for x86 version has been added.
Solaris 32 bit for x86 version has been added

Solaris 64 bit for x86 version has been added.

Chapter 2

Introduction

This manual describe the features of the MOSEK optimization toolbox for MATLAB. The
toolbox makes it possible to call the highly efficient MOSEK optimization engine from the
MATLAB environment.

2.1 What is optimization

Many decision problems facing individuals and companies can be cast as an optimization
problem i.e. making an optimal decision given some constraints specifying the possible deci-
sions. As an example consider the problem of determining an optimal production plan. This
can be formulated as maximizing a profit function given a set of constraints specifying the
possible production plans.

2.2 Why you need the MOSEK optimization toolbox

Before solving an optimization problem data is gathered and prepared. Subsequently an
optimization problem is formulated based on this data and the problem communicated to the
optimization software. Finally, when the results has been obtained, results are analyzed and
interpreted. A popular software tool for these tasks is MATLAB'. The MOSEK optimization
toolbox provides an industrial strength solver capable of solving huge problems that other
less specialized MATLAB packages can’t solve.

2.2.1 Features of the MOSEK optimization toolbox

Below is a partial list of features in the MOSEK optimization toolbox.

e Solve linear optimization problems.

'MATLAB is made by MathWorks, see http://www.mathworks.com.

CHAPTER 2. INTRODUCTION

— Using either an interior-point or a simplex optimizer.

Solve convex quadratic optimization problems.
Handle convex quadratic constraints.
Solve conic quadratic optimization problems.
Solve mixed integer linear optimization problems
Solve linear least squares problems.

— The problem can have arbitrary linear side constraints.
Solve linear ¢; and ¢/, norm minimization problems.
Solve linearly constrained entropy optimization problems.
Solve geometric programming problems (posynomial case).
Solve separable convex optimization problems.

Read and write industry standard MPS files.

The items in bold above is new possibilities in version of the MOSEK optimization toolbox
for MATLAB.

2.3

Comparison with the MATLAB optimization toolbox

MathWorks the maker of MATLAB also sells an optimization toolbox so an obvious question

is how these two products compares on the following issues

2.

Problem types: In general the MOSEK optimization toolbox can only solve convex opti-

mization problems whereas the MATLAB toolbox also handles nonconvex problems.

On the other hand the MOSEK optimization can solve mixed integer linear optimization
problems which is not possible using the MATLAB optimization toolbox.

Algorithms: The emphasize of the MOSEK optimization toolbox is on large-scale and

sparse problems. Therefore, MOSEK only offers large-scale algorithms. However, these
algorithms also perform very well for small and medium sized problems.

The main computational engine within the MOSEK optimization toolbox is a primal-
dual type interior-point algorithm which has been demonstrated to be very well-suited
for solution of large-scale problems. Particularly when the algorithm is implemented

2This is based on version 2 of the MATLAB optimization toolbox.

2.3. COMPARISON WITH THE MATLAB OPTIMIZATION TOOLBOX 7

using state-of-the-art (sparse) linear algebra as is the case for the MOSEK optimization
toolbox. Readers interested in the details are referred to [7].

However, it should be mentioned a primal simplex optimizer is available for linear prob-
lems.

Compability: The MOSEK optimization toolbox for MATLAB includes the following func-
tions

e linprog

e 1sqlin

e lsgnonneg
e optimget
e optimset

e quadprog

which are also available in the MATLAB optimization toolbox. Moreover, these func-
tions are compatible with the MATLAB function of the same name in the sense they
accept the same arguments and return identical information.

The only differences between the functionality of the MOSEK and MATLAB version
of these functions are that the MOSEK version does not use all the MATLAB options,
does not use an optional starting point®, and the MOSEK version of quadprog is only
intended for convex problems. On the other hand then the large-scale version of the
MATLAB optimization toolbox does not accept arbitrary bounds and linear side con-
straints for quadratic problems whereas MOSEK does.

In general for problems that both the MATLAB optimization toolbox and MOSEK op-
timization toolbox solves, then MOSEK delivers the best reliability and performance but of
course MOSEK cannot solve many problems the MATLAB optimization toolbox deals with.

3The large-scale linear programming optimizer in MATLAB does not use an optional starting point either.

CHAPTER 2. INTRODUCTION

Chapter 3

Installation

In order to use the MOSEK optimization toolbox for MATLAB, you must install the MOSEK
optimization tools. Please see chapter 2. in The MOSEK installation manual for details.
http://www.mosek.com/fileadmin /products/5%5f0/tools/doc/html/toolsinstall /node003.html

3.1 Locating the toolbox functions

By default MATLAB cannot locate the MOSEK optimization toolbox functions. Therefore
you must execute the addpath command within MATLAB to change the so-called matlabpath
appropriately. Indeed matlabpath should include a path to the MOSEK optimization toolbox
functions. The next subsections shows how to use addpath.

3.1.1 On Windows

% If you use MATLAB 7.4 (R2007a) or any later version do
addpath ’c:\Program Files\mosek\5\toolbox\r2007a’

% For MATLAB 7.3 (R2006b)
addpath ’c:\Program Files\mosek\5\toolbox\r2006b’

% For MATLAB 7.2 (R2006a)
addpath ’c:\Program Files\mosek\5\toolbox\r2006a’

This assumes you installed MOSEK at
c:\Program Files\

If that is not the case, then you will have to change the path given to addpath.

9

http://www.mosek.com/fileadmin/products/5%5f0/tools/doc/html/toolsinstall/node003.html

10 CHAPTER 3. INSTALLATION

3.1.2 On Linux/UNIX/MAC OSX
If you are using UNIX or a UNIX like operating system you should do

J» For MATLAB 7.4 (R2007a) or any later version do
addpath ’/home/user/mosek/5/toolbox/r2007a’

% For MATLAB 7.3 (R2006b)
addpath ’/home/user/mosek/5/toolbox/r2006b’

% For MATLAB 7.2 (R2006a)
addpath ’/home/user/mosek/5/toolbox/r2006a’

This assumes MOSEK is installed at

/home/user

3.1.3 Permanently changing matlabpath

Normally you will have to do addpath command every time MATLAB is started. However,
it can be avoided if the addpath command is added to the file

<matlab>toolbox\local\startup.m

where <matlab> is the MATLAB root directory. Alternatively the permanent modification of
the MATLAB path can be performed using the menu item

\File\Set Path

3.2 Verifying MOSEK works

You can verify that MOSEK works by executing the command
mosekopt
inside MATLAB. In case MOSEK you should get something like

MOSEK Version 3.1.1.62 (Build date: Dec 16 2004 11:49:51)
Copyright (c) 1998-2004 MOSEK ApS, Denmark. WWW: http://www.mosek.com
MOSEK command summary.

[r,res]=mosekopt (cmd, prob,param,log)

If you do not get that, then please read Section 3.3.

3.3. TROUBLESHOOTING 11

3.3 Troubleshooting

3.3.1 77?7 Undefined function or variable 'mosekopt’
In the case you get the MATLAB error message
7?77 Undefined function or variable ’mosekopt’

you have not setup the matlabpath correctly as described in Section 3.1.

3.3.1.1 Unable to load mex file

One reason can be you are not adding the correct path to the matlabpath. For instance you
may be trying to use the MOSEK optimization toolbox build for MATLAB 7 in MATLAB 6.
The other possible reason is discussed below.

o Windows:
MATLAB reports something like

DLL load failed for mex file
c:\mosek\3\tools\toolbox\14sp3\mosekopt.dll The
specified procedure could not be found. 777 Invalid MEX-file

This problem is most likely caused by MOSEK cannot load the MOSEK DLL which in
turn is caused by the operating system variable

PATH

is not appropriately setup.

Please consult the “MOSEK optimization tools installation manual” and read about
how to install MOSEK under Windows and how to setup the operating system variable
PATH.

e MAC OSX:

The problem is that operating system variable DYLD_LIBRARY_PATH variable is not ap-
propriately setup. Setting this variable can be tricky. In particularly if you are invoking
MATLAB by clicking on the MATLAB icon. In this case a file named

$HOME/ .MacOSX/environment .plist
with a proper content should exists on your computer. Further details about the file

environment.plist and how to install MOSEK under MAC OSX can be seen in the
“MOSEK optimization tools installation manual”.

12 CHAPTER 3. INSTALLATION

o UNIX:
MATLAB reports something like

Unable to load mex file:
/usr/local/mosek/4/toolbox/14sp3/mosekopt .mexglx.
libmosek.so0.2.5: cannot open shared object file: No such file or
directory 777 Invalid MEX-file

The cause of the problem is that the shared library

libmosek.so0.2.5

cannot be loaded. This problem normally is caused by that the OS environment variable
LD_LIBRARY_PATH

is not appropriately setup. Observe that LD_LIBRARY PATH may have another name
on some UNIX systems. Please consult the “MOSEK optimization tools installation
manual” and read about how to install MOSEK under UNIX.

3.3.2 1libgcc_s.so.1 must be installed for pthread cancel to work

This error is caused by an old version of the library
libgcc_s.so0.1

is included in the MATLAB distribution. One method of solving this is to execute the
command

export LD_PRELOAD=/usr/lib/libgcc_s.so

before running MATLAB.
Another workaround is to remove libgcc_s.so.1 in the MATLAB distribution. We sug-
gest you rename the file

<matlab>sys/os/glnx86/libgcc_s.so.1
to
<matlab>sys/os/glnx86/BACKUP_libgcc_s.so.1l.bak

and the problem should be solved.

3.3. TROUBLESHOOTING 13

3.3.3 Compiling with the MATLAB compiler

MATLAB scripts using MOSEK can be compiled with the MATLAB compiler. Below is a
description of some possible errors and their solution.

3.3.4 Shadows the M-file

If you encounter the error

The file

> /tools/mosek/4/toolbox/r14sp3/mosekopt . mexglx’
appears to be a MEX-file. It shadows the M-file
’/tools/mosek/4/toolbox/r14sp3/mosekopt.m’
but will not execute properly at runtime, as it does not export a function
named ’mexFunction.’
??7? Error executing mcc, return status = 1.

when compiling a MATLAB script using MOSEK then you must delete the file
c:\mosek\5\toolbox\<MATLABVERSION>\mosekopt.m

This should fix the compile error.

3.3.5 Cannot find authentication file

If you encounter the error

Cannot find authentication file
’C:\mosek\4\toolbox\r2006b\mosekopt_mexw32.auth’

7?7 Invalid MEX-file ’C:\mosek\4\toolbox\r2006b\mosekopt.mexw32’:

The try removing any addpath commands from your code when compiling. Instead, specify
the location of the MOSEK files with

-I c:\mosek\4\toolbox\r2006b

in the compile command.

14

CHAPTER 3. INSTALLATION

Chapter 4

Getting support and help

4.1 MOSEK documentation

For an overview of the available MOSEK documentation please see
mosek\5\help\index.html

in the distribution.

4.2 Additional reading

In this manual it is assumed the reader is familiar with mathematics and in particular math-
ematical optimization. Some introduction to linear programming can be found in books such
as “Linear programming” by Chvétal [17] or “Computer Solution of Linear Programs” by
Nazareth [22]. For more theoretical aspects see for example “Nonlinear programming: The-
ory and algorithms” by Bazaraa, Shetty, and Sherali [12]. Finally the book “Model building in
mathematical programming” by Williams [27] provides an excellent introduction to modelling
issues in optimization.

Another useful resource is “Mathematical Programming Glossary” available at

http://glossary.computing.society.informs.org

15

http://glossary.computing.society.informs.org

16

CHAPTER 4. GETTING SUPPORT AND HELP

Chapter 5

MOSEK / MATLAB integration

In this chapter we provide some details concerning the integration of MOSEK in Matlab. The
information in this chapter is not strictly necessary for basic use of MOSEK optimization
toolbox for MATLAB. The novice user can safely skip to the next chapter.

5.1 MOSEK replacements for MATLAB functions

MOSEK provides replacements for the MATLAB functions:
e linprog
e quadprog
e optimget
e optimset
e 1sqglin
e lsgnonneg

The corresponding MATLAB file for each function is located in the toolbox/solvers
directory of the MOSEK distribution. To use the MATLAB version of these functions instead
of the MOSEK version, delete the MATLAB files provided by MOSEK.

5.2 The license system

By default MOSEK caches some information about the license from each call of mosekopt to
the next. This greatly speed up license checkout. License caching can be disabled with the
command ’nokeepenv’ to mosekopt.

17

18

CHAPTER 5. MOSEK / MATLAB INTEGRATION

Chapter 6

A guided tour

6.1 Introduction

One of the big advantages of MATLAB is that it makes it very easy to do experiments and
try out things without doing a lot of programming and read big manuals. The MOSEK
optimization toolbox has been designed with this in mind. Hence, it should be very easy to
solve optimization problems using MOSEK.

Moreover, a guide tour to the optimization toolbox has been designed which introduces
the toolbox using examples. The intention is that after studying these examples, then the
reader should be able to solve his or her own optimization problems without much further
effort. Nevertheless, for the user who is interested in exploiting the toolbox to the limits, then
a detailed discussion and command reference is provided in the subsequent chapters.

6.2 The tour starts

The MOSEK optimization toolbox consists of two layers of functions. The procedures in the
top layer are application specific functions which has an easy to use interface. Currently, there
are four procedures in the top layer and they are:

msklpopt Performs linear optimization.

mskqgpopt Performs quadratic optimization.

mskenopt Performs entropy optimization.

mskgpopt Performs geometric optimization (posynomial case).
mskscopt Performs separable convex optimization.

The bottom layer of MOSEK optimization toolbox consists of one procedure named
mosekopt. This procedure provide a very flexible and powerful interface to the MOSEK

19

20 CHAPTER 6. A GUIDED TOUR

optimization package. However, the price for this flexibility is a more complicated calling
procedure.

For compatibility with the MATLAB optimization toolbox then MOSEK also provides
an implementation of linprog, quadprog and so forth. For details about these functions we
refer the reader to Chapter 7.

In the subsequent sections the use of MOSEK optimization toolbox is demonstrated using
examples. Most of these examples are available in the directory

mosek\5\toolbox\examp\

6.3 The MOSEK terminolgy

First some MOSEK terminology is introduced which will make the subsequent sections easy
to understand.

The MOSEK optimization toolbox can solve different classes of optimization problems
such as linear, quadratic, conic, and mixed integer optimization problems. Each of these
problems are solved by one of the optimizers in MOSEK. Indeed MOSEK includes the fol-
lowing optimizers:

e Interior-point optimizer.

e Conic interior-point optimizer.

e Primal simplex optimizer.

e Mixed integer optimizer.

Depending on the optimizer different solution types may be produced. For example the
interior-point optimizers produces a general interior-point solution whereas the simplex opti-
mizer produces a basic solution.

6.4 Linear optimization

The first example is the linear optimization problem

minimize 1 + 2x9
subject to 4 < r1 + x3 < 6, (6.1)
1 < T + X2, .

0 < Z1,22,T3.

6.4. LINEAR OPTIMIZATION 21

6.4.1 Using msklpopt

A linear optimization problem such as (6.1) can be solved using the msklpopt function which
is designed for solution of the problem

minimize clx
subject to ¢ < Az < (6.2)
r < < Ut

¢ and u° are called constraint bounds whereas {* and u” are variable bounds.
The first step of solving the example (6.1) is to setup the data for problem (6.2) i.e. the
¢, A, etc. Afterwards the problem is solved using an appropriate call to msklpopt.

% lol.m

c = [1 2 0]°;

a = [[1 0 1];[1 1 0]1];

blc = [4 1]7;

buc = [6 inf]’;

blx = sparse(3,1);

bux = [1;

[res] = msklpopt(c,a,blc,buc,blx,bux);
sol = res.sol;

% Ineterior -point solution.

sol.itr.xx’ % x solution.
sol.itr.sux’ % Dual variables corresponding to buc.
sol.itr.slx’ % Dual variables corresponding to blx.

% Basic solution

sol.bas.xx’ % x solution in basic solution.
Note that
e Infinite bounds are specified using -inf and inf. Moreover, the bux = [] means that
all upper bounds u”® are plus infinite.
e The call [res] = msklpopt(c,a,blc,buc) implies that the lower and upper bounds
on z is minus and plus infinity respectively.
e The lines after the msklpopt can of course be omitted, but the purpose of those lines is

to view different parts of the solutions. The field res.sol contains one or more solution.
In this case both the interior-point solution sol.itr and the basic solution sol.bas is
defined.

22 CHAPTER 6. A GUIDED TOUR

6.4.2 Using mosekopt

The function msklpopt is in fact just a wrapper around the real optimization routine mosekopt.
Therefore, an alternative to use the msklpopt is to call mosekopt directly if desired. In general
the syntax for a mosekopt call is

[rcode,res] = mosekopt(cmd,prob,param)
The arguments prob and param are optional. The purpose of the arguments are as follows:

cmd Is a string telling what mosekopt should do. For example *minimize info’
tells mosekopt that the objective should be minimized and information about
the optimization should be returned.

prob A MATLAB structure specifying the problem that should be optimized.

param A MATLAB structure specifying parameters controlling the behaviour of
the MOSEK optimizer. However, in general it should not be necessary to
change the parameters.

The following MATLAB commands demonstrate how to setup the prob structure for the
example (6.1) and solve the problem using mosekopt:

% lo2.m
clear prob;

% Specifies c vector.
prob.c = [1 2 0]’;

% Specify a in sparse format.

subi = [1 2 2 1];

subj = [1 12 3];

valij = [1.0 1.0 1.0 1.0];
prob.a = sparse(subi,subj,valij);

% Specify lower bounds on the constraints.
prob.blc = [4.0 1.0]°;

% Specify upper bounds on the constraints.
prob.buc = [6.0 inf]’;

% Specify lower bounds on the variables.
prob.blx = sparse(3,1);

% Specify upper bounds on the variables.
prob.bux = []; % There are no bounds.

6.5. CONVEX QUADRATIC OPTIMIZATION 23

% Perform the optimization.
[r,res] = mosekopt(’minimize’,prob);

% Show the optimal x solution.
res.sol.bas.xx

Observe that
e A MATLAB structure named prob containing all the relevant problem data is defined.

e All fields of this structure are optional except prob.a which is required to be a sparse
matrix.

e Different parts of the solution can be viewed by inspecting the solution field res.sol.

6.5 Convex quadratic optimization

A frequently occurring problem type is the quadratic optimization problem which consists of
minimizing a quadratic objective function subject to linear constraints. One example of such
a problem is:

minimize x% + O.lx% + x% — T1T3 — X9
subject to 1 < 1+ T9 + 23 (6.3)
x> 0.

In general a quadratic optimization problem has the form

minimize %xTQx +clx
subject to ¢ < Az, <t (6.4)
< T < u”,
which for the example (6.3) implies
2 0 -1 0
Q=0 02 0 |, ¢=|-1], A=[11 1], (6.5)
-1 0 2 0
and
0 00
=1, u=o0c0, I*"=|0| andu®=|
0 o0

Note the explicit % in the objective function of (6.3) which implies diagonal elements must be
doubled in @ i.e. Q11 = 2, whereas the coefficient in (6.4) is 1 in front of x2.

24 CHAPTER 6. A GUIDED TOUR

6.5.1 Two important assumptions

MOSEK assumes that the () matrix is symmetric i.e.
Q=Q"

and @ is positive semi-definite . A matrix is positive semi-definite if the smallest eigenvalue
of the matrix is nonnegative. An alternative statement of positive semi-definite requirement
is

z'Qx >0, V.

If @ is not positive semi-definite, then MOSEK will not produce reliable results or work at
all.

One way of checking whether @ is positive semi-definite is to check whether all the eigen-
values of) are nonnegative. The MATLAB command eig computes all eigenvalues of a
matrix.

6.5.2 Using mskqgpopt

The subsequent MATLAB statements solve the problem (6.3) using the MOSEK function
mskqpopt

% qol.m

% Setup Q.
q = [[2 0 -1];[0 0.2 0];[-1 0 211;

% Setup the linear part of the problem.

c = [0 -1 0]7;

a = ones (1,3);
blc = [1.0];

buc = [inf];

blx = sparse(3,1);
bux = [1;

% Optimize the problem.
[res] = mskqpopt(q,c,a,blc,buc,blx,bux);

% Show the primal solution.
res.sol.itr.xx

It should be clear that the format for calling mskqpopt is very similar to calling msklpopt
except that the) matrix is included as the first argument of the call. Similarly, the solution
can be inspected by viewing the field res.sol.

6.5. CONVEX QUADRATIC OPTIMIZATION 25

6.5.3 Using mosekopt

The following sequence of MATLAB commands solve the quadratic optimization example by
calling mosekopt directly.

% qo2.m
clear prob;

% c vector.
prob.c = [0 -1 0]’;

% Defining the data.

% First the lower triangular part of g in the objective
% is specified in a sparse format. The format is:

yA

% Q(prob.qosubi(t),prob.qosubj(t)) = prob.qoval(t), t=1,...,4
prob.gosubi [1 32 3]°;

prob.qosubj = [1 1 2 3]°;

prob.qoval = [2 -1 0.2 2]°;

% a, the constraint matrix
subi ones (3,1);

subj 1:3;

valij = ones(3,1);

prob.a = sparse(subi,subj,valij);

% Lower bounds on constraints
prob.blc = [1.0]°;

% Upper bounds on constraints
prob.buc = [inf]’;

% Lower bounds on variables
prob.blx = sparse(3,1);

% Upper bounds on variables.
prob.bux = []; % There are no bounds.

[r,res] = mosekopt(’minimize’,prob);

% Display return code
fprintf (’Return code: %d\n’,r);

% Display primal solution for the constraints
res.sol.itr.xc’

% Display primal solution for the variables

26 CHAPTER 6. A GUIDED TOUR

res.sol.itr.xx’

This sequence of commands looks much like the one that was used to solve the linear opti-
mization example using mosekoptexcept for the definition of the () matrix in prob. mosekopt
requires that @) is specified in a sparse format. Indeed the vectors qosubi, gosubj, and qoval
are used to specify the coefficients of @) in the objective using the principle

qusubi (t) .qosubj (t) = qoval(t), fort=1,..., length(qosubi).
An important observation is that due to () is symmetric, then only the lower triangular part
of) should be specified.
6.6 Conic optimization
One way of generalizing a linear optimization problem is to include a constraint of the form
zel

in the problem definition where C is required to be a convexr cone. The resulting class of
problems is known as conic optimization.

MOSEK can solve a subset of all conic problems and subsequently it is demonstrated how
to solve this subset using the toolbox function mosekopt.

6.6.1 The conic optimization problem

To be specific a conic optimization problem has the following form

minimize e+l
subject to ¢ < Ax < S,
< T < u® (6.6)
x €C,

where C must satisfy the following requirements. Let
xtERnt, t=1,...,k

be vectors comprised of parts of the decision variables x such that each decision variable is a
member of exactly one vector x!. For example it could be the case that

Te
1
T
2= | x4 and 12 = 5
€3
7

x2

6.6. CONIC OPTIMIZATION 27

Next define
C .= {xGR": zt e C, t:1,2,...,k}

where C; must have one of the following forms.

e R set:

C,={xeR"}.

e QQuadratic cone:

e Rotated quadratic cone:

t
Ci=<xeR" :2.1‘1:6222.7}?, 21,29 >0
=3

The R set is never specified explicitly, because if a variable is not a member of any other cone,
then it is member of this cone.

Although the cones MOSEK can handle give rise to a limited class of conic problems,
then it includes linear, quadratic, quadratically constrained optimization, and other classes
of nonlinear convex optimization problems. See Section 9.4 for a discussion.

6.6.2 Solving an example

The problem

minimize Ts + xg
subject to x1 +x2+x3+14 = 1,
T1,T2,T3,T4 > 07 (67)

x5 > /2t + 963,
Tg > \/x% + :U?l
is an example of a conic quadratic optimization problem. The problem involves some linear
constraints and two quadratic cones. The linear constraints are specified just as if the problem
where a linear problem whereas the cones are specified using a MATLAB cell array' named
cones. cones must contain one cell per cone, where a cell must contain the two fields type
and sub. type is used to specify the the type of the cone and sub is used to specify the
member variables of the cone.
The following MATLAB code demonstrates how to solve the example (6.7) using MOSEK.

'If you are not familiar with MATLAB cell array, then consult the relevant MATLAB documentation.

28

CHAPTER 6. A GUIDED TOUR

h

cqol.m

clear prob;

% First the non conic part of the problem is specified.
prob.c = [0 0001 1];
prob.a = sparse([1 1 1 1 0 0]);

prob.blc = 1;

prob.buc = 1;

prob.blx = [0 0 O O -inf -inf];
prob.bux = inf*ones(6,1);

%

h
h
h

Next the cones are specified.

First an empty cell array named
cones is defined. It should contain
one cell per cone.

prob.cones = cell(2,1);

h

The first cone is specified.

prob.cones{1}.type = ’MSK_CT_QUAD’;

prob.cones{1}. sub

prob.cones{2}. type
prob.cones{2}.sub

%

[5 3 1];

The subfield type specifies the cone type
i.e. whether it is quadratic cone

or rotated quadratic cone. The keys

for the two cone types are MSK_CT_QUAD
MSK_CT_RQUAD respectively.

The subfield sub specifies the members
of the cone. I.e. the above definition

implies x(5) >= sqrt(x(3)"2+x(1)"2)

The second cone is specified.

MSK_CT_QUAD ’;
[6 2 4];

Finally, the problem is optimized.

[r,res]=mosekopt (’minimize ’,prob);

h

The primal solution is displayed.

res.sol.itr.xx’

6.6. CONIC OPTIMIZATION 29

A couple of important comments are:

e No variable must be member of more than one cone. This is not serious restriction. See
the subsequent section.

e The R set is not specified explicitly.

6.6.3 Quadratic and conic optimization

The example
minimize x1 + T2 + x3
subject to x? + 23 + 23 < 1,
1+ 0525+ 23 < 0.5

is not a conic quadratic optimization problem but can easily be reformulated as such.
Indeed the first constraint is equivalent to

T4 é Vad + a3 + a3, (6.9)

T4 1

where x4 is a new variable. This is quadratic cone and linear constraint. The second constraint
in (6.8) is equivalent to

r1+x3+ax5 = 0.5
o —x7 = 0,
x5 = 0,
e — 1,
22 < 2z,

because this implies
x5 > 0.522 = 0.523.

and
r1 + 0.5.76% + 23 < x1+ 23+ 25 =0.5.

Observe that no variable can occur in more than one cone and therefore the additional
constraint

Zo = T7
is introduced and x7 has been included in second conic constraint instead of xzo. Using this

“trick” then it is always possible to obtain a formulation where no variable occurs in more
than one cone.

30

CHAPTER 6. A GUIDED TOUR

Therefore, the example (6.8) is equivalent to the conic quadratic optimization problem

minimize
subject to

1+ T2+ 23
1+ x3+ x5
€Ty — X7
X4
x5
Te
x4 > \/23 + 23 + a3,

2
2r576 > T7.

This problem can be solved using MOSEK as follows:

v

o RO o

(6.10)

% cqo2.m

% Setup of the non conic part of the problem.

prob [1;

prob.c =[111000 0]1°;

prob.a = sparse([[1 0 1 0 1 0 0];...
[01 0000 -111);

prob.blc = [0.5 0];

prob.buc = [0.5 0];

prob.blx = [-inf -inf -inf 1 -inf 1 -inf];

prob.bux = [inf inf inf 1 inf 1 inf];

% Setup of cone information.

prob.cones = cell(2,1);

prob.cones{1}.type = >MSK_CT_QUAD ’;

prob.cones{1}.sub = [4 1 2 3];

prob.cones{2}.type = ’MSK_CT_RQUAD ’;

prob.cones{2}.sub = [56 6 7];

[r,res] = mosekopt(’minimize’,prob);

% Display the solution.

res.sol.itr.xx’

6.6. CONIC OPTIMIZATION 31

6.6.4 Conic duality and the dual solution

The dual problem corresponding to the conic optimization problem (6.6) is given by

maximize (197§ — (u)T's¢
+(12)Ts¥ — (u)Ts + ef
subject to —y + 8] — sy = 0,
6.11
ATy + 87 — 5% + s = ¢, (6.11)
S5 S0 ST+ S > 0,
sy eC”

where the dual cone C* is defined as follows. Let (sj;) be partitioned similar to x i.e. if x; is
member of !, then (s?); is a member of (s%)" as well. Now the dual cone is defined by

C* = {sﬁGRnt: (s5)t ey, tzl,...,k:}

where the type of Cf is dependent on the type of C;. For the cone types MOSEK can handle
the relation between the primal and dual cones are given as follows:

o R set:
Ct:{xER”t} & Cf = {SER"t: 3:0}.
e QQuadratic cone:

nt
Ci = xERnt:xlz Zx? & Cf =0C
j=2

e Rotated quadratic cone:

nt
t
Ci:=<Xxe€R" :2x119 > Zx?, x1,22>0p. & Cf =C.
7j=3

For a more detailed discussion about conic duality see Section 9.4.

6.6.4.1 How to obtain the dual solution

When solving a conic optimization problem using MOSEK then the dual solution is of course
available. The following MATLAB code fragment shows where the dual solution is stored.

% cqo3.m

[r,res]=mosekopt (’minimize’,prob);

32 CHAPTER 6. A GUIDED TOUR

% Solution record.
res.sol

% Dual variables for lower
% bounds on constraints.
res.sol.itr.slc’

% Dual variables for upper
% bounds on constraints.
res.sol.itr.suc’

% Dual variables for lower
% bounds on variable.
res.sol.itr.slx’

% Dual variables for upper
% bounds on variables.
res.sol.itr.sux’

% Dual variables with respect
% to the conic constraints.
res.sol.itr.snx’

6.6.5 Setting accuracy parameters for the conic optimizer

Three parameters controls the accuracy of the solution obtained by conic interior-point opti-
mizer. The following example demonstrates which parameters should be reduced to obtain a
more accurate solution if required.

% How to change the parameters that controls
% the accuracy of a solution computed by the conic
% optimizer.

param = [];

% Primal feasibility tolerance for the primal solution
param.MSK_DPAR_INTPNT_CO_TOL_PFEAS = 1.0e-8;

% Dual feasibility tolerance for the dual solution
param.MSK_DPAR_INTPNT_CO_TOL_DFEAS = 1.0e-8;

% Relative primal-dual gap tolerance.
param.MSK_DPAR_INTPNT_CO_TOL_REL_GAP = 1.0e-8;

[r,res]=mosekopt (’minimize’,prob,param) ;

6.7. QUADRATICALLY CONSTRAINED OPTIMIZATION 33

6.7 Quadratically constrained optimization

In the previous section a quadratically constrained optimization problem was solved using the
conic optimizer. It is also possible to solve such a problem directly. One example of such an
optimization problem is

minimize x1 + T2 + x3
subject to % + 23 + 23 < 1, (6.12)
z1+0.123 + 23 < 0.5

Note there are quadratic terms in both constraints. This problem can be solved using
mosekopt as follows:

% qcol.m
clear prob;
% Specifying problem data.

% First c.
prob.c = ones(3,1);

% Next quadratic terms in the constraints.
prob.qgcsubk = [1 1 1 2 1;
prob.qgcsubi [1 2 3 2 17
prob.qgcsubj [1 2 8 2 1

prob.qcval = [2.0 2.0 2.0 0.2]’;

% a

prob.a = [sparse(1,3);sparse([1 0 11)];
prob.buc = [1 0.5];

[r,res] = mosekopt(’minimize’,prob);

% Viewing the solution.

fprintf (’\nx:’);

fprintf (> %-.4e’,res.sol.itr.xx’);

fprintf (’\n||x||: %-.4e’,norm(res.sol.itr.xx));

Note the quadratic terms in the constraints are specified using the fields prob.qcsubk,
prob.qcsubi, prob.qcsubj, and prob.qcval as follows

gcsubk(t)

Qqcsubi (£) qesubj (£) — qcval(t), for t=1,...,length(qcsubk)

where %xTQkx is the quadratic term in the kth constraint. Also observe that only the lower
triangular part of the QFs should be specified.

34 CHAPTER 6. A GUIDED TOUR

6.8 Linear least squares and related norm minimization prob-
lems

A frequently occurring problem in statistics and in many other areas of science is the problem
minimize ||Fz — b (6.13)

where F' and b is a matrix and vector of appropriate dimensions. z is the vector decision
variables.
Typically the norm used is the 1, the 2, or the infinity norm.

6.8.1 The case of the 2 norm

However, initially let us focus on the 2 norm. In this case (6.13) is identical to the quadratic
optimization problem

minimize 1/227 FTFx +1/2b7b — b" Fa (6.14)

in the sense that the set of optimal solutions for the two problems coincide. This fact follows
from
|Fz—b|* = (Fz—bT(Fz—0b)
eTFTFz +bTb 4 20T Fz.
Subsequently, it is demonstrated how the quadratic optimization problem (6.14) is solved

using mosekopt. In the example the problem data is first read from file. Next data for the
problem (6.14) is constructed and finally the problem is solved.

% nrml.m

% Read data form the file afiro.mps.
[r,res] = mosekopt(’read(afiro.mps)’);

% Getting data for the problem

% minimize ||f x - bl|_2
f = res.prob.a’;
b = res.prob.c;

% The problem is solved by solving
% minimize 0.5 xf’fx+0.5%b’*b-(f’*b) ’*x

% Clearing prob
clear prob;

% Compute the fixed term in the objective.
% It is not really needed.
prob.cfix = 0.5%b’*b

6.8. LINEAR LEAST SQUARES AND RELATED NORM MINIMIZATION PROBLEMS35

% Forming c
prob.c = -f’xb;

% Forming q. Note only the lower triangular
% part of f’*f is used.
[prob.qosubi,prob.qosubj ,prob.qoval] = find(sparse (tril(f’*£f)))

% Obtain the matrix dimensions.
[m,n] = size(f);

% a is specified
prob.a = sparse(0,n);

[r,res] = mosekopt(’minimize’,prob);

% The optimality conditions are f’*x(f x - b) = 0.
% Checking if they are satisfied:

fprintf (’\nnorm(£"T(fx-b)): %e’,norm(f’*(f*res.sol.itr.xx-b)));

Quite frequently the x variables must be within some bounds or satisfy some additional
linear constraints. These requirements can easily be incorporated into the problem (6.14).
For example the constraint ||z||,, <1 can be modeled as follows

% nrm2.m. Continuation of nrmil.m.

% Now assume the same objective should be
% minimized subject to -1 <= x <= 1

prob.blx = -ones(n,1);
prob.bux ones(n,1);

[r,res] = mosekopt(’minimize’,prob);

% Checking if the solution is feasible
norm(res.sol.itr.xx,inf)

6.8.2 The case of the infinity norm

In some applications of the norm minimization problem (6.13) it is better to use the infinity
norm than the 2 norm. However, the problem (6.13) stated as an infinity norm problem is
equivalent to the linear optimization problem

minimize T
subject to Fx+71e—b > 0, (6.15)
Fr—71e—-b < 0,

36 CHAPTER 6. A GUIDED TOUR

where e is the vector of all ones of appropriate dimension. This implies

Te > Fx—b
Te > —(Fx—1b)

and hence at optimum
" = [[Fa® = b|

holds.
The problem (6.15) is straightforward to solve.

% nrm3.m. Continuation of nrml.m.

% Let x(n+1) play the role as tau, then the problem is
% solved as follows.

clear prob;

prob.c = sparse(n+1,1,1.0,n+1,1);

prob.a = [[f,ones(m,1)];[f,-ones(m,1)]1];
prob.blc = [b ; —inf*ones(m,1)];
prob.buc = [inf*ones(m,1); b 13
[r,res] = mosekopt(’minimize’,prob);

% The optimal objective value is given by
norm(f*res.sol.itr.xx(1l:n)-b,inf)

6.8.3 The case of the one norm

Finally, in the case of the one norm then by definition we have that
m
|Fa —bll, = |fux — bil
i=1

Therefore, the norm minimization problem can be formulated as follows

m

minimize t;
; ' (6.16)
subject to |fix —b;| = t;, i=1,...,m,
which in turn is equivalent to
m
minimize St
. =1 (6.17)
subject to fi.x — b; < t, i=1,...,m,
—(fi:ac—bi) S ti, 1= 1,...,m.

6.8. LINEAR LEAST SQUARES AND RELATED NORM MINIMIZATION PROBLEMS37

The reader should verify that this is really the case.

In matrix notation this problem can be expressed as follows

minimize el't
subject to Fzx —te < b,
Fx+te > b,
where e = (1,...,1)”. Next this problem is solved.

(6.18)

% nrm4.m. Continuation of nrml.m.

% Let x(n:(m+n)) play the role as t. Now
% the problem can be solved as follows

clear prob;

prob.c = [sparse(n,1) ; ones(m,1)];
prob.a = [[f,-speye(m)] ; [f,speye(m)]];
prob.blc = [-infxones(m,1); bl;

prob.buc = [b ; inf*ones(m,1)];
[r,res] = mosekopt(’minimize’,prob);

% The optimal objective value is given by:
norm(f*res.sol.itr.xx(1:n)-b,1)

6.8.3.1 A better formulation

It is possible to improve upon the formulation of the problem (6.17). Indeed problem (6.17)

is equivalent to

s

minimize t;
1
subject to fi.x —b; — t; + v;

—(fi;.%' — bz) — ti S 0, 7

7

=

v; > 0, 1=

After eliminating the ¢ variables then this problem is equivalent to

m

minimize Y (fi.x — b; + v;)
i=1
subject to —2(fix —b)—v; < 0, 1=
v >0, i=1,...

1,...

7m?
,m.

(6.19)

(6.20)

Note this problem only have the half number of general constraints of problem (6.17). Le. we

have replaced constraints of the general form

fix < b;

38 CHAPTER 6. A GUIDED TOUR

with simpler constraints
V; Z 0

which MOSEK treats in a special and highly efficient way. Also note MOSEK only stores the
non-zeros in the coefficient matrix of the constraints. This implies that the problem (6.20) is
likely to require much less space than the problem (6.19).

It is left as an exercise for the reader to implement this formulation in MATLAB.

6.9 More about solving linear least squares problems

Linear least squares problem with and without linear side constraints appear very frequently
in practice and it is therefore important to know how such problems are solved efficiently
using MOSEK.

Now assume that the problem of interest is the linear least squares problem

minimize § ||Fa — ng
subject to Az = b, (6.21)
* <z <u®,

where F' and A are matrices and the remaining quantities are vectors. z is the vector of
decision variables. The problem (6.21) as stated is a convex quadratic optimization problem
and can be solved as such.

However, if F' has much fewer rows than columns then it will usually be more efficient to
solve the equivalent problem

minimize : 1213
subject to Ax = b
' .22
Fx—z = f, (6:22)
F<zx<u®.

Note a number of new constraints and variables have been introduced which of course seem
to be disadvantageous but on the other hand the Hessian of the objective in problem (6.22)
is much sparser than in problem (6.21). This frequently turns out to be more important for
the computational efficiency and therefore the latter formulation is usually the better one.

In the case F' has many more rows than columns, then formulation (6.22) is not attractive
but the corresponding dual problem is. Using the duality theory outlined in Section 9.5.1 we
obtain the dual problem

maximize vy + fTy
+(12)Ts¥ + (u®)T s
_%HZH% (6 23)
subject to ATy + FTg+sF —s2 = 0, '
z—1 = 0,

57,8, >0

6.9. MORE ABOUT SOLVING LINEAR LEAST SQUARES PROBLEMS 39

which can be simplified to

maximize bly+ 12
+()Tsp + (u)' sy
2
AL (6.24)
subject to ATy + FTz + sf —si = 0,
57,8, >0

after eliminating the § variables. Here we use the convention that

I =—00 = (s7); =0 and uf=o0= (s2); =0.

In practice such fixed variables in sf and s;, should be removed from the problem.

Given our assumptions then the dual problem (6.24) will have much fewer constraints than
the primal problem (6.22). This is important because MOSEK tends to be more efficient the
fewer constraints there are in the problem. One obvious question is what if the dual problem
(6.24) is solved instead of the primal problem (6.22), then how is the optimal x solution
obtained. It turns that the dual variables corresponding to the constraint

ATy + FTo 467 —s2 =0
is the optimal x solution. Therefore, due to MOSEK always reports this information as the
res.sol.itr.y

vector, then the optimal x solution can easily be obtained.

In the subsequent code fragment it is investigated whether it is attractive to solve the
dual problem rather than the primal for a concrete numerical example. This example has no
linear equalities and F' is a 2000 by 400 matrix.

% nrm5.m

% First read data from a file.
[rcode ,res] = mosekopt(’read(lsqpd.mps) echo(0)’);

% The problem data.

F = res.prob.a;

£ = res.prob.blc;
blx = res.prob.blx;
bux = [0l g

% In this case there are no linear constraints
% First we solve the primal problem:

% minimize 0.5 z |]°2
% subject F x - z = f
% 1l <= x <= u

40 CHAPTER 6. A GUIDED TOUR

% Note m>>n
[m,n] = size(F);

prob = 1) g

prob.gosubi = n+(1l:m);
prob.qgosubj = n+(1:m);

prob.gqoval = ones(m,1);

prob.a = [F,-speye(m,m)];
prob.blc = i g

prob.buc = f;

prob.blx = [blx;-inf*ones(m,1)];
prob.bux = bux;

fprintf (’m=%d =n=%d\n’,m,n);

fprintf (’First try\n’);

tic

[rcode ,res] = mosekopt(’minimize echo(0)’,prob);

%#Display the solution time
fprintf (’Time : %-.2f\n’ ,toc);

try
% x solution

X = res.sol.itr.xx;

% objective value
fprintf (’Objective value: %-6e\n’,norm(F*x(1:n)-£f)"2);

% Check feasibility

fprintf (’Feasibility : %-6e\n’,min(x(1:n)-blx(1:n)));
catch

fprintf (’ MSKERROR: Could not get solution’)
end

% Clearing prob again.
prob=1[];

h
% Next we solve the dual problem

% Index of lower bounds that are finite
1fin = find(blx>-inf);

% Index of upper bounds that are finite
ufin = find (bux<inf);

6.9. MORE ABOUT SOLVING LINEAR LEAST SQUARES PROBLEMS

prob.qgosubi
prob.qgosubj

1:m;
1:m;

prob.qoval = -ones(m,1);
prob.c = [f;blx(1fin) ;-bux(ufin)];
prob.a = [F’,...
sparse (1fin,(1:1length(1fin))’,...
ones (length(1lfin) ,1),...
n,length(lfin)), ...
sparse (ufin, (1:1length(ufin))’,...
-ones (length (ufin) ,1),...
n,length(ufin))l;
prob.blc = sparse(n,1);
prob.buc = sparse(n,1);
prob.blx = [-inf*ones(m,1);...
sparse (length(lfin)+length(ufin) ,1)];
prob.bux = [1;

fprintf (’\n\nSecond try\n’);
tic
[rcode ,res] = mosekopt(’maximize echo(0)’,prob);

%Display the solution time
fprintf (’Time : %-.2f\n’ ,toc);

try
% x solution
X = res.sol.itr.y;

% objective value
fprintf (’Objective value: %-6e\n’,...
norm (Fxx(1:n)-£f)"2);

% Check feasibility
fprintf (’Feasibility : %-6e\n’,...
min(x(1:n)-blx(1:n)));
catch
fprintf (’ MSKERROR: Could not get solution’)
end

41

Here is the output produced:

m=2000 n=400

First try

Time 1 2.07
Objective value: 2.257945e+001
Feasibility 1 1.466434e-009

42 CHAPTER 6. A GUIDED TOUR

Second try

Time ¢ 0.47
Objective value: 2.257945e+001
Feasibility 1 2.379134e-009

It can be observed that both formulations produced a strictly feasible solution having the same
objective value. Moreover, using the dual formulation leads to a reduction in the solution time
by about a factor 5. So in this case we can conclude that the dual formulation is far superior
to the primal formulation of the problem.

6.9.1 Using conic optimization linear least squares problems

Linear least squares problems can also be solved using conic optimization because the linear
least squares problem

minimize ||[Fz — f||,
subject to Az = b, (6.25)
I <z <,
is equivalent to
minimize t
subject to Ax = b,
Frx—z = (6.26)
< T < u®,
lell, <t.

This problem is a conic quadratic optimization problem having one quadratic cone and the
corresponding dual problem is

maximize b’y + fTy+ (lm)TSf — (u") st

subject to ATy + FTy + sf — 55, = 0,
_g + Sz - 07
sy _— (6.27)
[[s2]] < st
57,8, >0
which can be reduced to
maximize bTy + fTs, + (1%)Ts? — (u®)Ts2
subject to ATy —FTs, + sf — sy = 0,
St = 1, (6.28)
[s2]] < st,
sy, sy > 0.

Quite frequently the dual problem has much fewer constraints than the primal problem.
In such cases it will be more efficient to solve the dual problem and obtain the primal solution
x from the dual solution of the dual.

6.10. ENTROPY OPTIMIZATION 43

6.10 Entropy optimization

6.10.1 Using mskenopt

An entropy optimization problem has the following form

n
minimize S djziIn(x;) + L
j=1
subject to ¢ < Az < uS, (6.29)
0Lz,

where all the components of d must be nonnegative i.e. d; > 0. One example of an entropy
optimization problem is

minimize 21 In(z1) — 21 + 22 In(x2)
subject to 1 < x1 + T2 < 1, (6.30)
0 <1, 0

This problem can be solved using the mskenopt command as follows

d = [1 1]’
c = [-1 0]’;
a = [1 1];

blc =1;

buc =1;

[res] = mskenopt(d,c,a,blc,buc);
res.sol.itr.xx;

6.11 Geometric optimization

A so-called geometric optimization problem can be stated as follows

n
.. . (lk]'
minimize > ¢ [] ¢;
kedo J=1
n
. ak; .
subject to > ¢k H ;Y < 1, di=1,...,m,
keJ; 7=1
t>0,

(6.31)

where it is assumed that
U"kTL:(]Jk = {1, ceey T}

and if ¢ # j, then
JiﬂJj = (.

44 CHAPTER 6. A GUIDED TOUR

Hence, A is an T' x n matrix and c is a vector of length t. In general the problem (6.31) is
very hard to solve, but the posynomial case where

c>0

is relatively easy. The problem (6.31) is in general not a convex optimization problem, but
using the variable transformation
tj = e%i (6.32)

we obtain the problem

minimize) cpe®:®

keJg
subject to > cpesT < 1, i=1,...,m, (6.33)

kedJ;
Now using that the log function is an increasing function we obtain an equivalent problem

minimize log(> cpe®:T)

keJo
subject to log(> cre®™*) < log(l), i=1,...,m, (6.34)

kedJ;
which is a convex optimization problem. Hence, the problem (6.34) can be solved by MOSEK.
For further details about geometric optimization we refer the reader to [12, pp. 531-538].

6.11.1 Using mskgpopt

MOSEK cannot solve a geometric optimization problem directly. However, after it has been

transformed to the form (6.34), then it can be solved using the MOSEK optimization toolbox

function mskgpopt. Note that the solution to the transformed problem can easily be converted

into a solution to the original geometric optimization problem using relation (6.32).
Subsequently, we will use the example

minimize 40t7 ', /251 + 20t1t5 + 40t Lot
subject to L2052 4 At < 1, (6.35)
0 < tq,ta,ts

to demonstrate how a geometric optimization problem is solved using mskgpopt. Note that
both the objective and the constraint functions consists of a sum of similar type of terms.
These terms and where they belong can be specified completely using the matrix

-1 -05 -1
1 0 1

A= 1 1 1 |,
—2 -2 0

6.11. GEOMETRIC OPTIMIZATION 45

and the vectors

40

and map =

o

|

o)
Wbl =5 S
=0 O O

The interpretation is that each row of A and ¢ describe one term e.g. the first row of A and
the first element of ¢ describe the first term in the objective function. The vector map tells
whether a term belongs to the objective or a constraint. If mapy is equal to zero, then the
kth term belongs to the objective function. Otherwise it belongs to the mapith constraint.

The following MATLAB code demonstrate how the example is solved using mskgpopt.

% gol.m

c = [40 20 40 1/3 4/3]1°;
= sparse([[-1 -0.5 -11;[1 0 11;...
[1 1 1];[-2 -2 0];[0 0.5 -1]11);
map = [0 00 1 1]°;
[res] mskgpopt (c,a,map);

fprintf (’\nPrimal optimal solution to original gp:’);
fprintf (’ %e’,exp(res.sol.itr.xx));
fprintf (’\n\n’);

% Compute the optimal objective wvalue and
% the constraint activities.
v = c.xexp(a*res.sol.itr.xx);

% Add appropriate terms together.
f = sparse(map+1,1:5,ones(size(map)))*v;

% First objective value. Then constraint values.
fprintf (’0Objective value: %e\n’,log(£f(1)));
fprintf (’Constraint values:’);

fprintf (° %e’,log(f(2:end)));

fprintf (’\n\n’);

% Dual multipliers (should be negative)

fprintf (’Dual variables (should be negative):’);
fprintf (’ %e’,res.sol.itr.y);

fprintf (’\n\n’);

The code also computes the objective value and the constraint values at the optimal
solution. Moreover, the optimal dual Lagrange multipliers for the constraints are shown and
the gradient of the Lagrange function at the optimal point is computed.

46 CHAPTER 6. A GUIDED TOUR

6.11.2 Comments
6.11.2.1 Solving large scale problems

If you want to solve a large problem i.e. a problem where A has large dimensions, then A has
to be sparse. Otherwise you will run out of space. Recall a sparse matrix is a matrix that
contains few non zero elements. If A is a sparse matrix, then you should construct it using
the MATLAB function sparse as follows

A = sparse(subi,subj,valij);

where
Asubilk],subj[k] = valij [k]

Please try
help sparse

inside MATLAB for more details about the sparse function.

6.11.2.2 Preprocessing tip

Before solving a geometric optimization problem then it is worthwhile to check if a column of
the A matrix inputted to mskgpopt contains only positive elements. It is easy to verify that
if this is the case then the corresponding variable t; can take the value zero in the optimal
solution. This may cause MOSEK problems and it is better to remove such variables from
the problem.

6.12 Separable convex optimization

In this section we will discuss solution of nonlinear separable convex optimization problems.
A general separable nonlinear optimization problem can be specified as follows:

minimize fx)+clx

subject to g(x)+Ax—2z¢ = 0,
© < @ x¢ < wuc (6.36)
r < T < u”,

where
e m is the number of constraints.
e 1 is the number of decision variables.

e 1 € R" is a vector of decision variables.

6.12. SEPARABLE CONVEX OPTIMIZATION 47

e 2¢ € R™ is a vector of constraint or slack variables.

e ¢ € R" is the part linear objective function.

e A€ R™™ is the constraint matrix.

e [© € R™ is the lower limit on the activity for the constraints.
e u® € R™ is the upper limit on the activity for the constraints.
e [* € R™ is the lower limit on the activity for the variables.

e u* € R™ is the upper limit on the activity for the variables.

e f: R" — R is a nonlinear function.

e g: R" — R™ is a nonlinear vector function.

This implies that the ith constraint essentially has the form
n
I < gi(x) +) airy < u
j=1
when the z{ variable has been eliminated.

The problem (6.36) must satisfy the three important requirements:

1. Separability: This requirement implies that all nonlinear functions can be written on
the form

flz) =" f(x;)
j=1

and
n .
gi(x) = gl(x;).
j=1
Hence, the nonlinear functions can be written as a sum of functions which only depends
on one variable.
2. Differentiability: All functions be twice differentiable for all z; satisfying
xT €T
[<z <uj

if x; occur in at least one nonlinear function. Hence, if |/z2 appears in the problem,
then the lower bound on x5 should be 0.

3. Convexity: The problem should be a convex optimization problem. See Section 9.5 for
a discussion of this requirement.

48 CHAPTER 6. A GUIDED TOUR

6.12.1 Using mskscopt
Subsequently, we will use the following example

minimize x1 — In(z; + 2x9)

subject to z? + 23 <1 (6.37)

to demonstrate the solution of a convex separable optimization problem using the MOSEK
optimization toolbox function mskscopt.

First observe the problem (6.37) is not a separable optimization problem due to the loga-
rithmic term in objective is not a function of a single variable. However, by introducing one
additional constraint and variable then the problem can be made separable as follows

minimize x1 — In(z3)
subject to 23 + 23 < 1, (6.38)
1 +2x9 —x3 = 0, '
T3 > 0.

This problem is obviously separable and equivalent to the previous problem. Moreover, note
all nonlinear functions are well defined for values of = satisfying the variable bounds strictly
i.e.

x3 > 0.
This makes it (almost) sure that function evaluations errors will not occur during the opti-
mization process because MOSEK will only evaluate In(z3) for x3 > 0.

When using the mskscopt function to solve problem (6.38), then the linear part of the
problem such as a ¢ and A are specified as usual using MATLAB vectors and matrices.
However, the nonlinear functions must be specified using five arrays which in the case of
problem (6.38) can have the form

opr = [’log’; ’pow’; ’pow’];
opri = [0; 1; 1 1;
oprj = [3; 1; 2 1;
oprf = [-1; 1; 1 1;
oprg = [0; 2; 2; 1

Hence, opr(k,:) specify the type of a nonlinear function, opri(k) specify in which con-
straint the nonlinear function should be added to (zero means objective), and oprj (k) means
the nonlinear function should be taken of variable x;. Finally, oprf (k) and oprg(k) are
parameters used by the mskscopt function according to the table:

opr(k,:) opri(k) oprj(k) oprf(k) oprg(k) function

ent i j f (not used) fz;In(x;)
exp i] f 9 fedts
log i j f (not used) fln(x;)
pow i j / g fa!

6.12. SEPARABLE CONVEX OPTIMIZATION 49

The ¢ value indicates which constraint the nonlinear function belongs too. However, if ¢ is
identical to zero, then the function belongs to the objective. Using this notation a separable
convex optimization problem can be solved with the function:

mskscopt (opr,
opri,
oprj,
oprf,
oprg,
c,
a,
blc,
buc,
blx,
bux)

All the elements for solving a nonlinear convex separable optimization problem has now
been discussed and therefore we will conclude this section by showing the MATLAB code that
will solve the example problem (6.38).

% scol.m

% First the linear part of the problem
% is specified.

c = [1;0;0];

a = sparse([[0 0 0];[1 2 -111);
blc = [-inf; 0];

buc = [1;0];

blx = [-inf;-inf;0];

% Then the nonlinear part.

opr = [’log’; ’pow’; ’pow’];
opri = [0; g 1 1;
oprj = [3; 1; 2 13
oprf = [-1; 1; 1 e
oprg = [0; 2; 2 13

% Finally, the optimizer is called. Note that bux is an optional
% parameter which should be added if the variables has an upper
% bound.

[res] = mskscopt (opr,opri,oprj,oprf,oprg,c,a,blc,buc,blx);

% Then the solution is printed.
res.sol.itr.xx

50 CHAPTER 6. A GUIDED TOUR

6.13 Mixed integer optimization

Up until now it has been assumed that the variables in an optimization problem are continuous.
Hence, it has been assumed that any value between the bounds of a variable is feasible. In
many case this is not a valid assumption because some variables are integer constrained. For
example a variable may denote number of persons assigned to a given job and it may not be
possible to assign a fractional person.

MOSEK is capable of solving linear and quadratic optimization problems where one or
more of the variables are integer constrained using a mixed integer optimizer?

6.13.1 Solving an example

Using the example

minimize —2x1 — 3x9
subject to 195x; 4+ 273x2 < 1365,
4x1 + 40x5 < 140, (6.39)
1 < 4,
1,22 > 0, and integer

we will demonstrate how to solve an integer optimization problem using MOSEK.

% milol.m
% First specify the linear problem data as if
% the problem is a linear optimization

% problem.

clear prob

prob.c = [-2 -3];

prob.a = sparse ([[195 273];[4 40]11);
prob.blc = -[inf inf];

prob.buc = [1365 140];

prob.blx = [0 0];

prob.bux = [4 inf];

% Specifies indexes of variables that are integer
% constrained.

prob.ints.sub = [1 2];

% Optimize the problem.
[r,res] = mosekopt(’minimize’,prob);

try
% Display the optimal solution.

2The mixed integer optimizer is a separately licensed option.

6.13. MIXED INTEGER OPTIMIZATION 51

res.sol.int

res.sol.int.xx’
catch

fprintf (’MSKERROR: Could not get solution’)
end

Observe that compared to a linear optimization problem with no integer constrained variables
then:

e The field prob.ints.sub is used to specify the indexes of the variables that are integer
constrained.

e The optimal integer solution is returned in the MATLAB structure res.sol.int.

6.13.2 Speeding up the solution of a mixed integer problem

In general a mixed integer optimization problem can be very difficult to solve. Therefore,
in some case it may be necessary to improve upon the problem formulation and “assist” the
mixed integer optimizer.

How to obtain a good problem formulation is beyond the scope of this section and the
reader is referred to [28]. However, two methods for assisting the mixed integer optimizer are
discussed subsequently.

6.13.2.1 Specifying an initial feasible solution

In many cases a good feasible integer solution may be known to the optimization problem. If

that is the case, then it is worthwhile to inform the mixed integer optimizer about it. The

reason is that this reduces the space in which the optimizer has to look for an optimal solution.
Consider the problem:

maximize 7xg+ 10z + x2 + 523
subject to ro+ X1 + 22 + T3 < 2.5
xz3 >0
xg, X1, >0 and integer,

(6.40)

where only some of the variables are integer and the remaining are continuous. A feasible
solution to this problem is:

Tro = 0,([)1 = 2,1‘2 = O,l’3 =0.5 (6.41)

The following example demonstrate how to input this initial solution to MOSEK.

% milo2.m

clear prob
clear param

92 CHAPTER 6. A GUIDED TOUR

[r,res] = mosekopt (’symbcon’);
sc = res.symbcon;

prob.c = [7 10 1 5];

prob.a = sparse([1 1 1 1 1);
prob.blc = -[inf];

prob.buc = [2.5];

prob.blx = [0 0 0 0];

prob.bux = [inf inf inf inf];
prob.ints.sub = [1 2 3];

prob.sol.int.xx [0 2 0 0.5]7;

%#0ptionally also set status keys

%prob.sol.int.skx = [sc.MSK_SK_SUPBAS;sc.MSK_SK_SUPBAS;...
7 sc.MSK_SK_SUPBAS;sc.MSK_SK_BAS]
%prob.sol.int.skc = [sc.MSK_SK_UPR]

[r,res] = mosekopt(’maximize’,prob);

try
% Display the optimal solution.
res.sol.int.xx’
catch
fprintf (’MSKERROR: Could not get solution’)
end

It is also possible to specify only the values of the integer variables and then let MO-
SEK computes values for the remaining continuous variables such that a feasible solution
is obtained. If the parameter MSK_IPAR_MIO_CONSTRUCT_SOL is set to MSK_ON then MOSEK
try to compute a feasible solution from the specified values of the integer variables. MOSEK
generates the feasible solution by temporarily fixing all integer variables to the specified values
and then optimizing the resulting continuous linear optimization problem. Hence, using this
feature it is only necessary to specify the values of prob.sol.int.xx corresponding to the
integer constrained variables.

Suppose it is known that zo = 0,21 = 2,9 = 0 are candidates for good integer values to
our problem, then the following example demonstrates how to optimize the problem (6.40)
using a feasible starting solution generated from the integer values as zg = 0,21 = 2,22 = 0.

% milo3.m

[r,res] = mosekopt (’symbcon’);
sc res.symbcon;

clear prob

prob.c [7 10 1 5];

6.13. MIXED INTEGER OPTIMIZATION 53

prob.a = sparse([1 1 1 1 1);
prob.blc = -[inf];

prob.buc = [2.5];

prob.blx = [0 0 0 0];

prob.bux = [inf inf inf inf];

prob.ints.sub [1 2 3];
% Values for the integer variables are specified.
prob.sol.int.xx = [0 2 0 0]’;

% Tell Mosek to construct a feasible solution from a given integer
% values.
param.MSK_IPAR_MIO_CONSTRUCT_SOL = sc.MSK_ON;

[r,res] = mosekopt(’maximize’,prob,param);

try
% Display the optimal solution.
res.sol.int.xx’
catch
fprintf (’ MSKERROR: Could not get solution’)
end

6.13.2.2 Using branching priorities

The mixed integer optimized in MOSEK employs the so-called branch-and-bound algorithm to
search for the optimal solution. See [28, pp. 91-112] for details about the branch-and-bound
algorithm. The branch-and-bound algorithm can benefit from knowing about priorities of the
integer variables.

For instance in an optimization model some integer variables may denote which factories
to build and other variables which products to make in the factories. It seems natural to
decide upon which factories to build first and then decide upon which products to make in
which factories. Hence, some integer variables are more important than others.

In MOSEK it is possible to assign priorities to all the integer variables. The higher priority
that is assigned to a variable the more important the variable is considered by the branch-
and-bound algorithm. Priorities are specified using the field prob.ints.pri as follows:

[4 12 3]; 7% Integer variables.
[5 10 2 4]; % Priorities.

prob.ints.sub
prob.ints.pri

This implies that variable 4 has been assigned priority 5 and so forth.

An example of the usage of priorities can be seen in [28, pp. 232-235].

54 CHAPTER 6. A GUIDED TOUR

6.14 Sensitivity analysis

Given an optimization problem it is often useful to obtain information about how the optimal
objective value change when a problem parameter is perturbed. For instance the objective
function may reflect the price of a raw material such as oil which may not be known with
certainty. Therefore, it might be interesting to know how the optimal objective value changes
as the oil price change.

Analyzing how the optimal objective value changes when the problem data is changed is
called sensitivity analysis.

Consider the problem:

minimize
lz1r + 2m12 + 5x23 + 2794 + lwzr + 233 + lagy (6.42)
subject to
r11 + 12 < 400,
To3 + To4 < 1200,
r31 + x33 + w34 < 1000,
x11 + w31 = 800,
4
T12 = 100, (6.43)
T2z + 33 = 500,
To4 + x34 = 500,
11, 12, 23, 24, 31, 33, r34 > 0.

The example below demonstrate how sensitivity analysis can answer questions of the type:
“What happens to the optimal solution if we decrease the upper bound on the first constraint
with 1”. For more information on sensitivity analysis see Chapter 13.

% sensitivity2.m

%setup problem data
clear prob

prob.a = sparse([1, 1 0, 0, 0, 0, 0;
0, 0, 1, 1, 0, 0, 0;
0, 0, 0, 0, 1, 1, 1;
1, 0, 0, 0, 1, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 0, i, 0, 0, i, 0;
0, 0, 0, 1, 0, 0, 11);

prob.c = [1,2,5,2,1,2,1];

prob.blc = [-Inf,-Inf,-Inf,800,100,500, 500];
prob.buc =[400,1200,1000,800,100,500,500];
prob.bux (1:7) = Inf;

prob.blx (1:7) 0;

6.15. THE SOLUTIONS 55

% analyse upper bound on constraint 1
prob.prisen.cons.subu = [1];

[r,res] = mosekopt(’minimize echo(0)’,prob);

fprintf (’Optimal objective value: %e\n’,prob.c * res.sol.bas.xx);

fprintf (’Sensitivity results for constraint 1:’);

res.prisen.cons

%1f we change the upper bound on constraint 1 with a

%value v in [res.prisen.cons.lr_bu(l),res.prisen.cons.rr_bu(1l)]

%then the optimal objective changes with - v * 1s_bu(0)

% e,g changing prob.buc(1l) with -1

prob.buc (1) = prob.buc(l) - 1;

new_sol_predicted = prob.c * res.sol.bas.xx + 1 * res.prisen.cons.ls_bu(l);

fprintf (’New optimal objective after changing bound predicted to:%e\n’,
new_sol_predicted);

[r,res] = mosekopt(’minimize echo(0)’,prob);

fprintf (’New optimal objective value: %e\n’,prob.c * res.sol.bas.xx);

The output from running the example is given below:

Optimal objective value: 3.000000e+03
Sensitivity results for constraint 1:

ans =
1r_bl: []
rr_bl: []
1s_bl: []
rs_bl: []
1lr_bu: -300
rr_bu: O
1s_bu: 3
rs_bu: 3

New optimal objective after changing bound predicted to:3.003000e+03
New optimal objective value: 3.003000e+03

6.15 The solutions

Whenever an optimization problem is solved using MOSEK, then one or more optimal solu-
tions are reported depending on which optimizer is used. These solutions are available in the
structure

res.sol

26 CHAPTER 6. A GUIDED TOUR

which have one or more of the subfields

res.sol.itr % Interior solution.
res.sol.bas Y% Basis solution
res.sol.int 7% Integer solution

The interior (point) solution is an arbitrary optimal solution which is computed using
the interior-point optimizer. The basis solution is only available for linear problems and is
produced by the simplex optimizer or the basis identification process which is an add-on to
the interior-point optimizer. Finally, the integer solution is only available for problems having
integer constrained variables and is computed using integer optimizer.

Each of three solutions may contain one or more of the following subfields:

.prosta Problem status. See Section D.34.

.solsta Solution status. See Section D.44.

.skc Constraint status keys. See Section 6.1 below.

.skx Variable status keys. See Section 6.1 below.

.XC Constraint activities.

LXX Variable activities.

.y Identical to -.slc+.suc.

.slc Dual variables corresponding to lower constraint bounds.
.suc Dual variables corresponding to upper constraint bounds.
.slx Dual variables corresponding to lower variable bounds.
.sux Dual variables corresponding to upper variable bounds.
.Snx Dual variables corresponding to the conic constraints.

6.15.1 The constraint and variable status keys

In a solution both constraints and variables are assigned a status key which indicates whether
the constraint or variable is at its lower limit, its upper limit, is super basic and so forth in
the optimal solution. For interior-point solutions these status keys are only indicators which
the optimizer produces.

In Table 6.1 the possible values for the status keys are shown accompanied with an inter-
pretation of the key.

By default the constraint and variable status keys are reported using string codes but it
is easy to have MOSEK report the numeric codes instead. Indeed in the example

6.16. VIEWING THE TASK INFORMATION o7

Symbolic Numeric String Interpretation

constant constant code
MSK_SK_UNK 0 UN Unknown status
MSK_SK_BAS 1 BS Is basic

MSK_SK_SUPBAS 2 SB Is superbasic

MSK_SK_LOW 3 LL Is at the lower limit (bound)
MSK_SK_UPR 4 UL Is at the upper limit (bound)
MSK_SK_FIX 5 EQ Lower limit is identical to upper limit
MSK_SK_INF 6 *x Is infeasible i.e. the lower limit is

greater than the upper limit.

Table 6.1: Constraint and variable status keys.

% Status keys in string format
[rcode,res]=mosekopt (’minimize statuskeys(0)’,prob);
res.sol.skc(1)
res.sol.prosta

the status keys are represented using string codes whereas in the example

% Status keys in string format

[rcode,res]=mosekopt (’minimize statuskeys(l)’,prob);
res.sol.skc(1)

res.sol.prosta

the status keys are represented using numeric codes.

6.16 Viewing the task information

In MOSEK the optimization problem and the related instructions with respect to the op-
timization process is called an optimization task or for short a task. Whenever MOSEK
performs operations on a task then it stores information in task information database. Ex-
amples of information that is stored is the number of interior-point iterations performed to
solve the problem and time taken to do the optimization.

All the items stored in the task information database are listed in Sections D.15 and D.11.
It is of course possible to see the whole or part of information task database within MATLAB.

% Solve a problem and obtain
% the task information database.
[r,res]=mosekopt (’minimize info’,prob);

o8 CHAPTER 6. A GUIDED TOUR

% View one item
res.info.MSK_IINF_INTPNT_ITER

% View the whole database
res.info

6.17 Inspecting and setting parameters

A large number of parameters controls the behavior of MOSEK. For example there is a param-
eter controlling which optimizer is used, one that limits the maximum number of iterations
allowed, and several parameters specifying the termination tolerance. All these parameters
are stored in a database internally in MOSEK. The complete parameter database can be
obtained and viewed using the commands:

[r,res]=mosekopt (’param’);
res.param

We will not describe the purpose of each parameter here but instead refer the reader to
Appendix C where all the parameters are presented in details.

In general it should not be necessary to change any of the parameters but if it is required,
then it is easy to do so. In the subsequent example code it is demonstrated how to modify a
few parameters and afterwards performing the optimization using these parameters.

% Obtain all symbolic constants
% defined by MOSEK.

[r,res] = mosekopt(’symbcon’);
sc res.symbcon;

(1;

param

% Basis identification is unnecessary.
param.MSK_IPAR_INTPNT_BASIS = sc.MSK_OFF;

% Alternatively you can use

/A

% param.MSK_IPAR_INTPNT_BASIS = ’MSK_OFF’;
b

% Use another termination tolerance.
param.MSK_DPAR_INTPNT_TOLRGAP = 1.0e-9;

6.18. ADVANCED START (WARMSTART) 59

% Perform optimization using the
% modified parameters.

[r,res] = mosekopt(’minimize’,prob,param);

6.18 Advanced start (warmstart)

In practice it frequently occurs that when an optimization problem has been solved, then
the same problem slightly modified should be reoptimized. Moreover, if the modification is
only small, then it can be expected that the optimal solution to the original problem is a
good approximation to the modified problem. Therefore, it should be efficient to start the
optimization of the modified problem from the previous optimal solution.

Currently, the interior-point optimizer in MOSEK cannot take advantage of a previous
optimal solution. Indeed this is important topic for research. However, the simplex optimizer
can exploit any basic solution.

6.18.1 Some examples using warmstart

Using the example

minimize x1 + 229
subject to 4 < r1 + T3 < 6,
1 < 1 + T2, (6.44)

0 < x1,22,73.

the warmstart facility using the simplex optimizer will be demonstrated. A quick inspection
of the problem indicates that x1 = 1 and x3 = 3 is an optimal solution. Hence, it seems to
be a good idea to let the initial basis consists of ;1 and x3 and the all the other variables be
at their lower bound. This idea is used in the example code:

% advsl.m
clear prob param bas

% Specify an initial basic solution.
bas . skc = [’LL’;°LL’];

bas.skx = [’BS’;’LL’;’BS’];
bas . xc = [4 1]°;
bas.xx = [1 3 0]°;

prob.sol.bas bas;

% Specify the problem data.
prob.c =[12 0]
subi = [1 2 2 1];

60 CHAPTER 6. A GUIDED TOUR

subj = [11 2 3];

valij = [1.0 1.0 1.0 1.0];
prob.a = sparse (subi,subj,valij);
prob.blc = [4.0 1.0]";

prob.buc = [6.0 inf]’;

prob.blx = sparse(3,1);

prob.bux = [];

% Use the primal simplex optimizer.

param.MSK_IPAR_OPTIMIZER = ’MSK_OPTIMIZER_PRIMAL_SIMPLEX ’;

[r,res] = mosekopt(’minimize’,prob,param)

Some comments are:

e In the example the dual solution is defined. This is acceptable because the primal
simplex optimizer is used for the re optimization and it does not exploit a dual solution.
In the future MOSEK will also contain a dual simplex optimizer and if that optimizer
is used, then it will be important that a “good” dual solution is specified.

e The status keys bas.skc and bas.skx must only contain the entries BS, EQ, LL, UL, and
SB. Moreover, for example EQ must only be specified for a fixed constraint or variable.
LL and UL can only be used for a variable that has a finite lower and upper bound

respectively.

e The number of constraints and variables defined to be basic must correspond exactly to

the number of constraints i.e. the row dimension of A.

6.18.2 Adding a new variable

Next assume that the problem

minimize T1 4 210 — x4
subject to 4 < T1+ a3+ x4
1 < x1 + X2,

0 < zy,x9, 23, 24.

< 6,

(6.45)

should be solved which is identical to the problem (6.44) except a new variable x4 has been
added. In continuation to the previous example this problem can be solved as follows (using

warmstart):

% advs2.m. Continuation of advsl.m.

prob.c = [prob.c;-1.0];
prob.a = [prob.a,sparse([1.0 0.0]1°)];
prob.blx = sparse(4,1);

% Reuse o0ld optimal basis solution.

6.18. ADVANCED START (WARMSTART) 61

bas = res.sol.bas;

% Add to status key.
bas.skx = [res.sol.bas.skx;’LL’];

% New variable is at the lower limit

bas . xx = [res.sol.bas.xx;0.0];

bas.slx = [res.sol.bas.slx;0.0];

bas . sux = [res.sol.bas.sux;0.0];
prob.sol.bas = bas;

[rcode ,res] = mosekopt(’minimize’,prob,param);

% New primal optimal solution
res.sol.bas.xx’

6.18.3 Fixing a variable

In for example branch and bound methods for integer programming problems it is necessary to
reoptimize the problem after a variable has been fixed to a value. This can easily be achieved
as follows:

% advs3.m. Continuation of advs2.m.

prob.blx (4)
prob.bux

1;
[inf inf inf 1]°;

% Reuse the basis.
prob.sol.bas = res.sol.bas;

[rcode ,res] = mosekopt(’minimize’,prob,param);

% Display the optimal solution.
res.sol.bas.xx’

The variable x4 is simply fixed at the value 1 and the problem is re optimized. Note the
basis from the previous optimization can immediately be reused.

6.18.4 Adding a new constraint

Now assume that the constraint
1+ x9 > 2 (646)

should be added to the problem and the problem should be reoptimized. The following
example demonstrates how to do this.

62 CHAPTER 6. A GUIDED TOUR

% advs4.m. A continuation of advs3.m.

% Modify the problem.

prob.a = [prob.a;sparse([1.0 1.0 0.0 0.0]1)];
prob.blc [prob.blc;2.0];

prob.buc [prob.buc;inf];

% Obtain the previous optimal basis.
bas = res.sol.bas;

% Setting of the solution to modified problem.

bas . skc = [bas.skc;’BS’];

bas . xc = [bas.xc;bas.xx(1)+bas.xx(2)];
bas.y = [bas.y;0.0];

bas.slc = [bas.slc;0.0];

bas . suc [bas.suc;0.0];

% Reuse the basis.
prob.sol.bas = bas;

% Reoptimize.
[rcode ,res] = mosekopt(’minimize’,prob,param);

res.sol.bas.xx’

Note the slack variable corresponding to the new constraint are declared basic. This
implies that the new basis is nonsingular and can be reused.

6.18.5 Using numeric values to represent status key codes

In the previous examples the constraint and variable status keys are represented using string
codes. Although the status keys are easy to read then they are sometimes difficult to work
with in a program. Therefore, the status keys can also be represented using numeric values
as demonstrated in the example:

% ski.m

% Obtain all symbolic constants
% defined in MOSEK.

clear prob bas;

[r,res] = mosekopt(’symbcon’);
sc res.symbcon;

% Specify an initial basic solution.
% Note symbolic constants are used.
% I.e. sc.MSK_SK_LOW instead of 4.

6.18. ADVANCED START (WARMSTART) 63

bas . skc = [sc.MSK_SK_LOW;sc.MSK_SK_LOW];

bas.skx = [sc.MSK_SK_BAS;sc.MSK_SK_LOW;sc.MSK_SK_BAS];
bas . xc = [4 1],

bas.xx = [1 3 0]°;

prob.sol.bas = bas;

% Specify the problem data.

prob.c = [12 0];

subi = [1 2 2 1];

subj = [1 12 3];

valij = [1.0 1.0 1.0 1.0];
prob.a = sparse (subi,subj,valij);

prob.blc = [4.0 1.0]°;

prob.buc = [6.0 inf]’;

prob.blx = sparse(3,1);

prob.bux = [];

% Use the primal simplex optimizer.

clear param;

param.MSK_IPAR_OPTIMIZER = sc.MSK_OPTIMIZER_PRIMAL_SIMPLEX;
[r,res] = mosekopt(’minimize statuskeys(1l)’,prob,param)

% Status keys will be numeric now i.e.

res.sol.bas.skc’

% is vector of numeric values.

Note using the command

[r,res] = mosekopt(’symbcon’);
res.symbcon;

SC

then all the symbolic constants defined within MOSEK are obtained and those constants are
then used in the lines

bas.skc = [sc.MSK_SK_LOW;sc.MSK_SK_LOW];
bas.skx = [sc.MSK_SK_BAS;sc.MSK_SK_LOW;sc.MSK_SK_BAS];

These two lines are in fact equivalent to

bas.skc = [1;1];
bas.skx = [3;1;3];

However, it is not recommended to specify the constraint and variable status keys this way
because it is less readable and portable. Indeed if for example MOSEK later change the
definition that 1 is equivalent ‘LL’, then all programs using numerical keys are incorrect
whereas using the symbolic constants the programs remain correct.

64 CHAPTER 6. A GUIDED TOUR

6.19 Using names

In MOSEK it possible to give the objective, each constraint, each variable, and each cone a
name. In general there is not much use for such names except in connection with reading and
writing MPS files. See Section 6.20 for details.

All the names are specified in the prob.names structure.

% The problem is given a name.
prob.names.name = ’CQO0 example’;

% Objective name.
prob.names.ob]j = ’cost’;

% The two constraints are given a name.
prob.names.con{1} = ’constraint_1’;
prob.names.con{2} ’constraint_2’;

% The six variables are given a name.

prob.names.var = cell(6,1);
for j=1:6

prob.names.var{j} = sprintf(’x%d’,j);
end

% Finally the two cones are given a name.
prob.names.cone{l} = ’cone_a’;
prob.names.cone{2} = ’cone_b’;

6.19.1 Blanks in names

Although legal then is strongly advised not to use blanks in names except for the problem
name. For instance ’x 1’ should be avoided if possible.

6.20 MPS files

An industry standard format for storing linear optimization problems in a ASCII file is the
so-called MPS format. For readers not familiar with the MPS format then a specification of
the MPS format supported by MOSEK can be seen in Appendix A.

The advantage of the MPS format is that problems stored in this format can be read by
any commercial optimization software, so it facilitates easy communication of optimization
problems.

6.20. MPS FILES 65

6.20.1 Reading a MPS file

It is possible to use mosekopt to read a MPS file containing the problem data. In that case
mosekopt reads data from a MPS file and returns both the problem data and the optimal
solution if required. Assume afiro.mps is the MPS file that mosekopt should read the
problem data from, then this task is performed using the command

[r,res] = mosekopt(’read(afiro.mps’));

In this case res.prob will contain several fields which contains the problem data as read from
the MPS file. For example the MATLAB command

res.prob.c’

will display ¢ on the screen.
The names used in the MPS file is also available in the prob.names structure.

% All names.

prob.names

% Constraint names.
prob.names.con

It is of course also possible to read problems having quadratic terms in the objective
function or the constraints. The following set of MATLAB commands demonstrates how to
read such a problem and viewing the data.

% mpsrd.m

% Read data from the file wpl12-20.mps.
[r,res] = mosekopt(’read(wpl2-20.mps) ’);
% Looking at the problem data

prob = res.prob;

clear res;

% Form the quadratic term in the objective.
q = sparse(prob.qosubi,prob.qosubj,prob.qoval);

% Get a graphical picture.
spy(q) % Notice only the lower triangular part is defined.

6.20.2 Writing a MPS files

It is also possible to write an MPS file using MOSEK. Indeed assume that a problem defined by
the MATLAB structure prob should be written to a MPS file. This happens in the example:

66 CHAPTER 6. A GUIDED TOUR

% Write the data defined by prob to an MPS file
% named datafile.mps
mosekopt (’write(datafile.mps)’,prob);

If the field prob.names is defined, then MOSEK will use those names when writing the
MPS file. Otherwise MOSEK will use generic names.

6.21 User call-back functions

A call-back function is a user defined MATLAB function, to be called by MOSEK on a given
event. The optimization toolbox supports two types of call-back functions which are presented
below.

6.21.1 Controlling log printing via call-back

When using mosekopt it is possible to control the amount of information that mosekopt prints
to the screen. For instance the command

[r,res] = mosekopt(’minimize echo(0)’,prob)

forces mosekopt to print no log information because echo (0) has been added to the command
string. A high number in the commandecho(n) i.e. for instance echo(3) forces MOSEK
prints more log information to the screen.

It is possible to redirect the MOSEK log printing almost anywhere using a user defined
log call-back function. It works as follows. First create an m-file with a function looking like

function myprint (handle,str)

%» handle: Is user defined data structure
% str : Is a log string.

yA

fprintf (handle, ’%s’,str);

It is not important what the function is called and it is not important what the function
does. However, it is important it accepts two input arguments. The first argument is handle
which is user defined MATLAB structure and the second argument is str which is a line of
MOSEK log. (Note myprint prints the log line to the screen and to a file.)

The following code fragment shows how to inform MOSEK about the function myprint.

b

% In this example the MOSEK log info

% should be printed to the screen and to a file named
% mosek.log.

b

6.21. USER CALL-BACK FUNCTIONS 67

fid
callback.log
callback.loghandle

fopen(’mosek.log’,’wt’);
‘myprint’;
fid;

b

% The argument handle in myprint() will be identical to
% callback.loghandle when called.

b

mosekopt (*minimize’,prob, [],callback);

6.21.2 The iteration call-back function

It is possible to specify an iteration callback function to be called frequently during the
optimization. A typically use for this call-back function is to displays information about the
optimization process or to terminate it.

The iteration call-back function takes the following form:

function [r] myiter (handle ,where,info)
% handle: Is a user defined data structure

% where : Is an integer indicating from where in the optimization

7 process the callback was invoked

% info : A MATLAB structure containing information about the state of the
VA optimization.

r = 0; % r should always be assigned a value.

if handle.symbcon.MSK_CALLBACK_BEGIN_INTPNT==where
fprintf (’ Interior point optimizer started\n’);
end

if handle.symbcon. MSK_CALLBACK_INTPNT==where
% print primal objective
fprintf (’Interior-point primal obj.: %e\n’,info.MSK_DINF_INTPNT_PRIMAL_O0BJ);

% terminate when cputime > handle.maxtime
if info.MSK_DINF_INTPNT_CPUTIME > handle.maxtime

r = 1;
else

r = 0;
end

end

if handle.symbcon. MSK_CALLBACK_END_INTPNT==where
fprintf (’Interior point optimizer terminated\n’);
end

68 CHAPTER 6. A GUIDED TOUR

The function takes three arguments. The first argument handle is a user defined MATLAB
structure, the second argument where indicates from where in the optimization process the
callback was invoked and the third argument info is a structure containing information about
the process. For details about info see Section 7.1.7. If the functions return argument which
is nonzero, then optimization process is terminated immediately.

In order to inform MOSEK about the iteration call-back function the fields iter and
iterhandle are initialized as shown in the following example.

[r,res] = mosekopt (’symbcon’) ;
data.maxtime = 100.0;

data.symbcon = res.symbcon;
callback.iter = ’‘myiter’;

callback.iterhandle

data;

mosekopt (*minimize’ ,prob, []1,callback);

Chapter 7

Command reference

After studying the examples presented in the previous chapter, then it should be possible
to use most of facilities in the MOSEK optimization toolbox. Nevertheless a specification of
the main data structures employed by MOSEK and a command reference is provided in the
present chapter.

7.1 Data structures

In each of the subsequent sections the most important data structures employed by MOSEK
are discussed.

7.1.1 prob

Description:

The prob data structure is used to communicate an optimization problem to MOSEK
or for MOSEK to return an optimization problem to the user. This structure is used to
represent an optimization problem using a number of subfields.

Subfields:
.names Is a MATLAB structure which contain the problem name, the name
of the objective, and so forth. See Section7.1.2.

.qosubi 1 subscript for element g7; in Q°. See (7.6).

.qosubj J subscript for element ¢7; in Q°. See (7.6).

.qoval Numerical value for element gf; in Q°. See (7.6).

.qcsubk k subscript for element qu in QP. See (7.7).

.qcsubi i subscript for element g;; in QP. See (7.7).

.qcsubj j subscript for element qu in QP. See (7.7).

69

70

.qcval

.blc

.buc

.blx

.bux

.ints

.cones

.sol

.prisen

CHAPTER 7. COMMAND REFERENCE

Numerical value for element gj; in Q. See (7.7).
Liner term in the objective.

Is the constraint matrix and it must be a sparse matrix having the
same number of rows and columns as there are constraints and vari-
ables in the problem. This field should always be defined. Even in
the case the problem does not have any constraints. In that case a
sparse matrix having zero rows and the correct number of columns is
the appropriate definition of the field.

Lower bounds on the constraints. —oo denotes an infinite lower bound.
If the field is not defined or blc==[], then all the lower bounds are
assumed to be equal to —oo.

Upper bounds on the constraints. oo denotes an infinite upper bound.
If the field is not defined or buc==[], then all the upper bounds are
assumed to be equal to co.

Lower bounds on the variables. —oo denotes an infinite lower bound.
If the field is not defined or blx==[], then all the lower bounds are
assumed to be equal to —oo.

Upper bounds on the variables. co denotes an infinite upper bound.
If the field is not defined or bux==[], then all the upper bounds are
assumed to be equal to oco.

A MATLAB structure which has the subfields

.sub; % Required.
.pri; % Subfields.

ints.sub is a one dimensional which contains the indexes of the in-
teger constrained variables. Hence, ints.sub is identical to the set
J in (7.5). ints.pri is also a one dimensional array of the length as
ints.pri. The ints.pri(k) is the branching priority assigned to the
variable ints.sub(k).

A MATLAB cell array which used to define the conic constraint (7.4).
See Section 7.1.3 for a details about this structure.

A MATLAB structure which contains a guess for the optimal solution
which some of the optimizers in MOSEK may exploit. See Section
7.1.4 for datails about this structure.

A MATLAB structure which has the subfields:

.cons.subu Indexes of constraints, where upper bounds are ana-
lyzed for sensitivity.

7.1. DATA STRUCTURES 71

.cons.subl Indexes of constraints, where lower bounds are ana-
lyzed for sensitivity.

.vars.subu Indexes of variables, where upper bounds are ana-
lyzed for sensitivity.

.vars.subl Indexes of variables, where lower bounds are analyzed
for sensitivity.

.sub Index of variables where coefficients are analysed for
sensitivity.

Comments:

MOSEK solves an optimization problem which has the form of minimizing or maximizing

1 n n
3 Z Z 47 TiTj + ¢ (7.1)

i=1 j=1

an objective function

subject to the functional constraints

n n

1 n
lg§522q%xixj+2aijj§ui, k=1,...,m, (7.2)
i=1 j=1 j=1
the variable bound constraints

[<wz;<uj, j=1,...,n (7.3)

and the conic constraint
xeC. (7.4)

Finally, some variables may be integer constrained i.e.

x; integer constrained for all j € J. (7.5)

x is the decision variables and all the other quantities are the parameters of the problem
and they are presented below:

Q°: The quadratic terms ¢j;z;z; in the objective are stored in the matrix ° as follows
a1 4
QO — . .
0
in e q’?ln
In MOSEK it is assumed that Q° is symmetric i.e.
ij = qjo'i

and therefore only the lower triangular part in QQ° should be specified.

72

C:

QP

CONES:

CHAPTER 7. COMMAND REFERENCE

It is the linear part of the objective specifying the c; in the linear term c;x;.

The quadratic terms quxixj in the kth constraint are stored in the matrix QP as
follows

g din

Qp — . .
Gy dnn

MOSEK assumes that QP is symmetric i.e.

a; = a5

and therefore only the lower triangular part in QP should be specified.

: The constraint matrix A is given by

ailp -+ Qin
A =

am1 *°° Gmn

In MOSEK it is assumed that A is a sparse matrix i.e. most of the coefficients in
A are zero. Therefore, only nonzeros elements in A are stored and worked with.
This usually saves a lot of storage and speeds up the computations.

: Specifies the lower bounds on the constraints.
: Specifies the upper bounds on the constraints.
: Specifies the lower bounds on the variables.

: Specifies the upper bounds on the variables.

Specifies the conic constraint. Let
z! eR"t, t=1,...,k

be vectors comprised of parts of the decision variables x such that each decision
variable is a member of exactly one vector ‘. For example we could have

T6
1
T
b= 24 and 22 = 5
€3
7
€2

Next define
C .= {xER": zt e, t:1,...,k}

where C; must have one of the following forms

7.1. DATA STRUCTURES 73

— R set:

— Quadratic cone:

— Rotated quadratic cone:

Ct EREAS Rnt 1 2x1x9 >

All the parameters of the optimization problem are stored using one or more subfields
of the prob structure using the naming convention in Table 7.1.

Field name Type Dimen- Optio- Problem
sion nal parameter

gosubi int length(qoval) Yes a5

qosubj int length(qoval) Yes 45;

qoval double length(qoval) Yes a5;

c double n Yes c;j

qcsubk int length(qcval) Yes qipj

qgcsubi int length(qcval) Yes qu

qcsubj int length(qcval) Yes i

qcval double length(qcval) Yes i

a Sparse matrix mXxXn No ai;

blc double m Yes Ig

buc double m Yes ug,

blx double n Yes g

bux double n Yes uy,

ints MATLAB structure | 7| Yes J

cones MATLAB cell array &k Yes C

Table 7.1: The relation between fields and problem parameters.

In Table 7.1 all the parameters is assigned a type where the type int means that all the
values in this particular field must be integer. Whereas the type double means that the
values in the field can be any real number. The relationship between QQ° and QP and
the subfields of the prob structure is as follows:

e The quadratic terms in the objective:

gosubi(t),qoval(c) = d0val(t), t =1,2,... length(qoval). (7.6)

74 CHAPTER 7. COMMAND REFERENCE

Due to @Q° by assumption is symmetric, then all elements are assumed to belong
to the lower triangular part. If the an element is specified multiple times, then the
different elements are added together.

e The quadratic terms in the constraints:

qcsubk(t)

qcsubi(t) qesubi(t) = qcval(t), t =1,2,...,1length(qcval). (7.7)

Due to QP by assumption is symmetric, then all elements are assumed to belong
to the lower triangular part. If the an element is specified multiple times, then the
different elements are added together.

7.1.2 names

This structure is used to store all the names on individual items in the optimization problem
such as the constraints and the variables. The structure contains the subfields:

.name Contains the problem name.

.obj Contains the name of the objective.

.con Is a MATLAB cell array where names.con{i} contains the name of the ith
constraint.

.var Is a MATLAB cell array where names.var{j} contains the name of the jth
constraint.

.cone Is a MATLAB cell array where names. cone{t} contains the name of the tth

conic constraint.

7.1.3 cones

cones is a MATLARB cell array containing one structure per cone in the optimization problem
i.e. cones{t} is used to specify the tth cone in the optimization problem.
The structure contains the subfields:

.type cones{t}.type contains the cone type for the ¢tth cone. The type subfield
can have either value >MSK_CT_QUAD’ or *MSK_CT_RQUAD’ which implies the
cone is quadratic or rotated quadratic cone respectively.

.sub cones{t}.sub is list of variables indexes specifying which variables are mem-
ber of the cone.

7.1. DATA STRUCTURES 75

7.1.4 sol

Description:

A MATLAB structure which is used store one or more solution to an optimization
problem. The structure has subfield for possible solution type.

Subfields:

Litr

.bas

.int

Comments

Interior (point) solution which is computed by the interior-point opti-
mizer.

Basis solution which computed by the simplex optimizers and basis
identification procedure.

Integer solution which is computed by the mixed integer optimizer.

Each of the solutions sol.itr, sol.bas, and sol.int may contain one or more the

fields:

.prosta
.solsta
.skc
.skx
.skn
.XC

.XX

-y

.slc
.suc
.slx
.sux

. Snx

Problem status. See Section D.34.

Solution status. See Section D.44.

Constraint status keys. See Section 6.1.

Variable status keys. See Section 6.1.

Conic status keys. See Section 6.1.

Constraint activities i.e. . = Ax where x is the optimal solution.
Variable activities i.e. the optimal x solution.

Identical sol.slc-sol.suc.

Dual solution corresponding to the lower constraint bounds.
Dual solution corresponding to the upper constraint bounds.
Dual solution corresponding to the lower variable bounds.
Dual solution corresponding to the upper variable bounds.

Dual solution corresponding to the conic constraint.

The fields .skn and .snx cannot occur in the .bas .int solutions. In addition the

fields .y, .slc,

.suc, .slx, and .sux cannot occur in the int solution because integer

problems does not have a well-defined dual and hence cannot have a dual solution.

76 CHAPTER 7. COMMAND REFERENCE
7.1.5 prisen
Description:
Results of primal sensitivity analysis.
Subfields:
.cons MATLAB structure with subfields:
.1r bl Left value 1 in the linearity interval for a lower bound.
.rr bl Right value (s in the linearity interval for a lower
bound.
.1s bl Left shadow price s; for a lower bound.
.rs_bl Right shadow price s, for a lower bound.
.1r bu Left value f; in the linearity interval for an upper
bound.
.rr_bu Right value (2 in the linearity interval for an upper
bound.
.1s_bu Left shadow price s; for an upper bound.
.rs_bu Right shadow price s, for an upper bound.
.var MATLAB structure with subfields:
.1r bl Left value g in the linearity interval for a lower bound
on a varable.
.rr bl Right value (2 in the linearity interval for a lower
bound on a varable.
.1s bl Left shadow price s; for a lower bound on a varable.
.rs bl Right shadow price s, for lower bound on a varable.
.1r_bu Left value (7 in the linearity interval for an upper
bound on a varable.
.rr_bu Right value (5 in the linearity interval for an upper
bound on a varable.
.1s_bu Left shadow price s; for an upper bound on a varables.
.rs_bu Right shadow price s, for an upper bound on a varables.

7.1.6 duasen

Description:

Results of dual sensitivity analysis.

Subfields:

7.1. DATA STRUCTURES 7

1r c Left value ;1 of linearity interval for an objective coeflicient.
.IT_C Right value 2 of linearity interval for an objective coefficient.
.1sc Left shadow price s; for an objective coefficients .
.rs_c Right shadow price s, for an objective coefficients.

7.1.7 info

info is a MATLAB structure containing a subfield for each item in the MOSEK optimization
task database. For instance the field info.MSK_DINF_BI_CPUTIME specifies the amount of time
spend in the basis identification in the last optimization. In Sections D.15 and D.11 are all
the items in the task information database shown.

7.1.8 symbcon

symbcon is a MATLAB structure containing a subfield for each item MOSEK symbolic con-
stant. For instance the field symbcon.MSK_DINF_BI_CPUTIME specifies the value of the symbolic
constant MSK_DINF_BI_CPUTIME. In Section D are all the symbolic constants shown.

7.1.9 callback

callback is a MATLAB structure containing which contains the subfields (all are optional):
.loghandle A MATLAB data structure or just [].

.log Is the name of a user defined function which must accept two input argu-
ments i.e. for instance

function myfunc(handle,str)

handle will be identical to callback.handle when myfunc is called and str
is a line of the log file.

.iterhandle @A MATLAB data structure or just [].

.iter Is the name of a user defined function which must accept three input argu-
ments i.e. for instance

function myfunc(handle,where,info)
handle will be identical to callback.iterhandle when myfunc is called and

str is a line of the log file. info is the current information database. See
7.1.7 for further details about info data structure.

78

CHAPTER 7. COMMAND REFERENCE

7.2 An example of a command reference

All functions are documented using the format:

e somefunction

7.3

Description:
The purpose of the function is presented.

Syntax:

[retl,ret2] = somefunction(argl,arg?2)

Arguments:
argl A description of this argument.
arg?2 (optional) A description of this argument which is optional. How-
ever, if argument number 3 is specified, then this argument must
be specified too.
arg3 Another useful argument.
Returns:
retl A description of the first return retl.
ret?2 (optional) A description of the second return ret?2.
Comments:

Potentially some comments about the function.
Examples:

Some examples about the use of the function is presented.

Functions provided by the MOSEK optimization toolbox

e mosekopt

Description

Solves an optimization problem. Data specifying the optimization problem can
either be read from a MPS file or be imputed directly from MATLAB. It is also
possible to write a MPS file using mosekopt.

Syntax:

[rcode,res] = mosekopt(cmd,prob,param,callback)

Arguments:

7.3. FUNCTIONS PROVIDED BY THE MOSEK OPTIMIZATION TOOLBOX 79

cmd

cmd is a string containing commands to MOSEK about what it
should be doing. For example the string ‘minimize info’ means
that the objective should be minimized, and information about
the optimization process should be returned in res.info. The
following commands are recognized by mosekopt:

aformat In the case the problem data are read from a
MPS file, then this command controls in which
format prob.a is returned. (prob is the problem
structure returned by mosekopt.) If aformat (0)
is used, then prob.a is a sparse matrix. In the
case aformat(1l) is used, then the constraint
matrix is given by
m = % number of constraints

% number of variables

sparse(prob.a.subi,...

prob.a.subj,...
prob.a.val,...
m,n);

n

a

Hence, aformat (1) means prob.a is returned in
a simple coordinate wise format.

echo() Controls how much information is echoed to the
screen. Formally, the command is used as
echo(level)
where level is a nonnegative integer. If level is
identical to 0 nothing is echoed. If 1evel is equal
to 3, then all messages and errors are echoed to
the screen.

read() Data is read from a file. If
read(name)
is used, then data are read from the file name.
Otherwise the data file name in the MOSEK pa-
rameter database is used.

statuskeys() The command statuskeys(0) means that all
the status keys such as the problem status in the
solution is reported using string codes. Whereas
the command statuskeys (1) means that all the
status keys are reported using numeric codes.

minimize The objective is minimized.

maximize The objective is maximized.

80

prob

param

callback

Returns:

rcode

res

CHAPTER 7. COMMAND REFERENCE

write() The problem data is written to a MPS file. In
the case
write(name)
is used, then the problem data is written to the
file name. Otherwise if only write is used, then
the data is written to the file specified by the
MOSEK parameter database.

param When this command is present, then the param-
eter database is returned in res.param.

info When this command is present, then the task
information database is returned in res.info.
This database contains various task specific in-
formation. See Section 7.1.7 for details about
the info data structure.

symbcon When this command is present, then then the

data structure symbcon is returned in res. symbcon.

See Section 7.1.8 for details about the symbcon
data structure.
nokeepenv Delete the MOSEK environment after each run.
This can dramaticly increase license checkout
overhead and is therefor only intended as a de-
bug feature.
(optional) A MATLAB structure containing the problem data.
See Section 7.1 for details.
(optional) A MATLAB structure which is used to specify algo-
rithmic parameters to MOSEK. The fields of param must be valid
MOSEK parameter names. Moreover, the values corresponding
to the field must be of a valid type. For example the value of an
string parameter must be a string.
(optional) A MATLAB structure defining call back data and func-
tions. See Sections 6.21 and 7.1.9 for details.

Return code. The interpretation of the value of the return code
is listed in Chapter D.

(optional) Solution obtained by the interior-point algorithm.

.sol The data structure of the type sol is discussed
in Section 7.1.
.info A MATLAB structure containing the task in-

formation database which contains various task

7.3. FUNCTIONS PROVIDED BY THE MOSEK OPTIMIZATION TOOLBOX 81

.param

.prob

Examples:

related information such as about the number
of iterations is used to solve the problem. How-
ever, this field is only defined if the string info
is present in the cmd command when mosekopt
is invoked.

A MATLAB structure which contain the com-
plete MOSEK parameter database. However,
this field is only defined if the command param
is present in the cmd string when mosekopt is
invoked.

Contains the problem data if the problem data
was read from a MPS file.

In the follow example it is demonstrated how to list the whole MOSEK parameter
database and change the default optimizer to the primal simplex optimizer when

the problem is optimized.

% Obtains the parameter database.
[rcode,res] = mosekopt(’param’);

% View the parameter database.

res.param
param = res.param,

% Modifying a parameter.
param.MSK_IPAR_OPTIMIZER = 3

% Optimizing a problem.

[rcode,res]=mosekopt (*minimize info’,prob,param);

% View the info record.
res.info

e msklpopt
e mskqgpopt
e mskenopt
e mskgpopt

e mskscopt

82

CHAPTER 7. COMMAND REFERENCE

Description

These functions provides an easy to use but less flexible interface than the mosekopt
function. In fact these procedures is just a wrapper around the mosekopt interface
and they consists of MATLAB m files.

Syntax:
res = msklpopt(c,a,blc,buc,blx,bux,param,cmd) ;
res = mskqpopt(q,c,a,blc,buc,blx,bux,param,cnd);
res = mskenopt(d,c,a,blc,buc,blx,bux,param,cnd);
res = mskgpopt(d,a,map,param,cmd) ;
res = mskscopt (opr,opri,oprj,oprf,oprg,...
c,a,blc,buc,blx,bux,param,cmd)

Arguments:

For a description of the arguments we refer the reader to the actual m files stored
in

<root>mosek\matlab\solvers

Note for example the command

help msklpopt

will produce some information about how to use msklpopt.

Returns:

Identical to the res structure returned by mosekopt.

e mskgpwri

Description This functions provides an the means of writing gp problem data to a
file format compatible with the command line tool mskexpopt.

Syntax:

res = mskgpwri(c,a,map,filename)

Arguments:

c,a,map is data accepted by mskgpopt. filename is the output file name.

Returns:
Nothing.

e mskgpread

7.4. MATLAB OPTIMIZATION TOOLBOX COMPATIBLE FUNCTIONS 83

Description This functions provides an the means of reading gp problem data from
a file format compatible with the command line tool mskexpopt.

Syntax:

[c,a,map] = mskgpread (filename)

Arguments:

c,a,map is data accepted by mskgpopt. filename is the input file name.

Returns:

Data c,a,map as accepted by mskgpopt.

7.4 MATLAB optimization toolbox compatible functions

The functions presented in this section are provided as a part of both the MOSEK and
MATLAB optimization toolboxes. The MOSEK versions are intended to be highly compatible
with MATLAB versions and in practice the small differences should not cause any problems.

7.4.1 For linear and quadratic optimization
e linprog

Description

Solves the linear optimization problem:

minimize ffx
subject to Ax < b,
Bz = ¢,
[<z <u.
Syntax:
[x,fval,exitflag,output,lambdal
= linprog(f,A,b,B,c,1,u,x0,options)
Arguments:
f The objective function.
A Constraint matrix for the less-than equal inequalities. Use A = []
if there are no inequalities.
b Right-hand side for the less-than equal inequalities. Use b = [] if

there are no inequalities.

84

x0

options

Returns:

X
fval
exitflag

output

lambda

Examples:

CHAPTER 7. COMMAND REFERENCE

(optional) Constraint matrix for the equalities. Use B = || if there
are no equalities.

(optional) Right-hand side for the equalities. Use ¢ = [] if there
are no inequalities.

(optional) Lower bounds for the variables. Please use —oo to
represent infinite lower bounds.

(optional) Upper bounds for the variables. Please use oo to rep-
resent infinite lower bounds.

(optional) An initial guess for the starting point. This information
is ignored by MOSEK.

(optional) An optimization options structure. See the function
optionset for the definition of the optimizations options struc-
ture. linprog uses the options.

.Diagnostics
.Display
.MaxIter

The optimal x solution.
Optimal objective value i.e. f7z.

Is a number which has the interpretation:

<0 The problem is likely to be either primal or dual
infeasible.

=0 The maximum number of iterations was reached.

>0 x is an optimal solution.

.iterations Number of iterations spend to reach the opti-

mum.
.algorithm Always defined to be ’large-scale: interior-point’.
.lower Lagrange multipliers for lower bounds (.
.upper Lagrange multipliers for upper bounds wu.
.ineqlin Lagrange multipliers for the inequalities.
.eqlin Lagrange multipliers for the equalities.

% Optimizes problem only
% having linear inequalities.
x = linprog(f,A,b);

e quadprog

7.4. MATLAB OPTIMIZATION TOOLBOX COMPATIBLE FUNCTIONS 85

Description

Solves the quadratic optimization problem:

Syntax:

minimize 1z"Hz + fT2
subject to Ax
Bzx c,
[<zxz<u.

I IA

[x,fval,exitflag,output,lambdal
= quadprog(H,f,A,b,B,c,1,u,x0,0options)

Arguments:

H

x0

options

Hessian of the objective function. H must be a symmetric matrix.
Contrary to MATLAB optimization toolbox, then MOSEK only
handles the case where H is positive semidefinite. On the hand
MOSEK always computes a global optimum i.e. the objective
function does have to be strictly convex.

See (7.8) for the definition.

Constraint matrix for the less-than equal inequalities. Use A = []
if there are no inequalities.

Right-hand side for the less-than equal inequalities. Use b = [] if
there are no inequalities.

(optional) Constraint matrix for the equalities. Use B = [] if there
are no inequalities.

(optional) Right-hand side for the equalities. Use ¢ = [] if there
are no inequalities.

(optional) Lower bounds for the variables. Please use —oo to
represent infinite lower bounds.

(optional) Upper bounds for the variables. Please use oo to rep-
resent infinite lower bounds.

(optional) An initial guess for the starting point. This information
is ignored by MOSEK.

(optional) An optimization options structure. See the function
optimset for the definition of the optimizations options structure.
quadprog uses the options.

.Diagnostics

.Display

MaxIter

86 CHAPTER 7. COMMAND REFERENCE

Returns:
X x solution.
fval Optimal objective value i.e. %ITHI + fTa.
exitflag Is a scalar which has the interpretation:
<0 The problem is likely to be either primal or dual
infeasible.
=0 The maximum number of iterations was reached.
>0 x is optimal solution.
output .iterations Number of iterations spend to reach the opti-
mum.
.algorithm Always defined to be "large-scale: interior-point’.
lambda .lower Lagrange multipliers for lower bounds I.
.upper Lagrange multipliers for upper bounds u.
.ineqlin Lagrange multipliers for inequalities.
.eqlin Lagrange multipliers for equalities.
Examples:

% Optimizes problem only
% having linear inequalities.
x = quadprog(H,f,A,b);

7.4.2 For linear least squares problems
e Isqlin
Description

Solves the linear linear least squares problem:

minimize 3 ||Cz — d|3
subject to Ax
Bx
[<zxz<u.

IHIA

Syntax:

[x,resnorm,residual,exitflag,output,lambdal
= 1sqlin(C,d,A,b,B,c,1,u,x0,0options,options)

Arguments:

C A matrix. See problem (7.9) for the purpose of the argument.

7.4. MATLAB OPTIMIZATION TOOLBOX COMPATIBLE FUNCTIONS 87

x0

x0

options

Returns:

X

resnorm

residual

exitflag

output

lambda

A vector. See problem (7.9) for the purpose of the argument.

Constraint matrix for the less-than equal inequalities. Use A = []
if there are no inequalities.

Right-hand side for the less-than equal inequalities. Use b = [] if
there are no inequalities.

(optional) Constraint matrix for the equalities. Use B = || if there
are no equalities.

(optional) Right-hand side for the equalities. Use ¢ = [] if there
are no equalities.

(optional) Lower bounds for the variables. Please use —oo to
represent infinite lower bounds.

(optional) Upper bounds for the variables. Please use —oco to
represent infinite lower bounds.

(optional) An initial guess for the starting point. This information
is ignored by MOSEK.

(optional) An initial guess for the starting point. This information
is ignored by MOSEK.

(optional) An optimization options structure. See the function
optionset for the definition of the optimizations options struc-
ture. 1sgprog uses the options.

.Diagnostics
.Display

MaxIter

The optimal x solution.

The squared norm of the residuals i.e. ||Cz —d||* evaluated at
the optimal solution.

Is the residual Cz — d.

Is a scalar which has the interpretation:

<0 The problem is likely to be either primal or dual
infeasible.

=0 The maximum number of iterations was reached.

>0 x is optimal solution.

.iterations Number of iterations spend to reach the opti-
mum.

.algorithm Always defined to be ’large-scale: interior-point’.

.lower Lagrange multipliers for lower bounds .

88

Comments:

Examples:

CHAPTER 7. COMMAND REFERENCE

.upper Lagrange multipliers for upper bounds w.
.ineqlin Lagrange multipliers for inequalities.
.eqlin Lagrange multipliers for equalities.

% Solves a linear least
% squares problem.
x = 1lsqlin(C,d,A,b);

e lsgqnonneg

Description

Solves the linear least squares problem:

Syntax:

minimize 3 ||Cz — dl3

subject to x> 0. (7.10)

[x,resnorm,residual,exitflag,output,lambdal
= 1sqnonneg(C,d,x0,options,options)

Arguments:

C
d
x0

options

Returns:

X

resnorm

See problem (7.10).

See problem (7.10).

(optional) An initial guess for the starting point. This information
is ignored by MOSEK.

(optional) An optimizations options structure. See the function
optionset for the definition of the optimizations options struc-
ture. 1sqlin uses the options.

.Diagnostics
.Display
.MaxIter

x solution.
Squared of the optimal residuals i.e.

ICz — d||*

evaluated at the optimal solution.

7.4. MATLAB OPTIMIZATION TOOLBOX COMPATIBLE FUNCTIONS 89

residual Is the residual Cx — d.
exitflag Is a number which has the interpretation:
<0 The problem is likely to be either primal or dual
infeasible.
=0 The maximum number of iterations was reached.
>0 x is optimal solution.
output .iterations Number of iterations spend to reach the opti-
mum.
.algorithm Always defined to be "large-scale: interior-point’.
lambda .lower Lagrange multipliers for lower bounds I.
.upper Lagrange multipliers for upper bounds w.
.ineqlin Lagrange multipliers for inequalities.
.eqlin Lagrange multipliers for equalities.
Comments:

This procedure just provides an easy interface to 1sqlin. Indeed all the procedure
does is to call 1sqlin with the appropriate arguments.

Examples:

% Solves the problem
x = lsqnonneg(C,d);

7.4.3 The optimization options

The procedures in the optimization toolbox is in general dependent on some options which
for example control the amount of information displayed and the stopping criteria.

In general due to the MOSEK and MATLAB optimization toolboxes employs different
algorithms then the toolboxes uses different options. Therefore, the MOSEK optimization
toolbox ignores most of the options recognized by the MATLAB toolbox. In the description
of the procedure optimset it is shown which MATLAB options MOSEK recoginize.

7.4.3.1 Viewing and modifying the optimization options
e optimget

Description

Obtains a value of an optimization parameter.

Syntax:

val = optimget(options,param,default)

90

Arguments:
options

param

default

Returns:

val

Comments:

CHAPTER 7. COMMAND REFERENCE

The optimization options structure.

Name of the optimization parameter for which the value should
be obtained.

(optional) If param is not defined, then the value default is re-
turned.

Value of the required option. If the option does not exists, then
[] is returned unless the value >default’ is defined in which case
the default value is returned.

See the procedure optimset for which parameters that can be set.

Examples:

% Obtain the value of the diagnostics

% option

val = optimget(options,’Diagnostics’);

% val is equal to the default value.
val = optimget(options, ’Nopar’,1.0e-1);

e optimset

Description

Obtains and modifies the optimization options structure. Only a subset of the fields
in the optimization structure recognized by the MATLAB optimization toolbox is
recognized by MOSEK.

However, the optimization option structure can be used to modify all the MOSEK
parameters. For a discussion of the MOSEK parameters see Section 6.17.

.Diagnostics

.Display

MaxIter

Used to control how much diagnostic information which is print.
It can take the following values:

off No diagnostic information is printed.

on Diagnostic information is printed.

Is a string which can take the following values.

off No output is displayed.

iter Some output is displayed for each iteration.
final Only the final output is displayed.

Maximum number of iterations allowed.

7.4. MATLAB OPTIMIZATION TOOLBOX COMPATIBLE FUNCTIONS 91

Syntax:

options = optionset(argl,arg?2,
paraml,valuel,

param2,value?2,...)
Arguments:
argl (optional) Is allowed to be any of the following two things:

Any string Is the same as using no argument.

A structure The argument is assumed to be a structure con-
taining options. These options are copied to the
return options.

paraml (optional) Is a string containing the name of a parameter that
should be modified.
valuel (optional) New value assigned to the parameter with the name
paraml.
param?2 (optional) Has the same interpretation as parami.
value2 (optional) Has the same interpretation as valuel.
Returns:
options The updated optimization options structure.
Examples:

% Obtain the default options.
opt = optimset

% Modifies the value of parameter

% display in the optimization

% options structure

opt = optionset(opt,’display,’off’);

/» Returns default options
opt = optimset(’whatever’)

% Modify a MOSEK parameter.
opt = [1;
opt = optionset(opt, ’MSK_DPAR_INTPNT_TOLMURED’,1.0e-14);

92

CHAPTER 7. COMMAND REFERENCE

Chapter 8

Case studies

8.1 Robust linear optimization

In most linear optimization examples discussed in this manual it is implicitly assumed that
the problem data such as ¢ and A are known with certainty. However, in practice this is
seldom the case. For example data may just be roughly estimated, affect by measurement
errors, or be affected by random events.

In this section a robust linear optimization methodology is presented which removes the
assumption that the problem data is known exactly. Rather it is assumed that the data
belongs to some set i.e. a box or an ellipsoid.

The computations are performed using the MOSEK optimization toolbox for MATLAB
but could equally well have been implemented using the MOSEK API.

This Section is co-authored with A. Ben-Tal and A. Nemirovski.

8.1.1 Introductory example

Consider a toy linear optimization problem as follows:

A company produces two kinds of drugs, Drugl and Drugll, containing a specific
active agent A, which is extracted from raw materials which should be purchased
on the market. The drug production data are as follows:

Drug Selling price, Content of agent A, Production expenses per 1000 packs
manpower, equipment, operational
$ per 1000 packs g per 1000 packs hours hours costs, $
Drugl 6,200 0.500 90.0 40.0 700
Drugll 6,900 0.600 100.0 50.0 800

There are two kinds of raw materials, Rawl and Rawll, which can be used as
sources of the active agent. The related data are as follows:

93

94

CHAPTER 8. CASE STUDIES

Raw material

Purchasing price,

Content of agent A,

$ per kg g per kg
Rawl 100.00 0.01
Rawll 199.90 0.02

Finally, the per month resources dedicated to producing the drugs are as follows:

Budget, $

Manpower, hours

Equipment, hours

Capacity of raw materials storage, kg

100,000

2,000

800

1,000

The problem is to find the production plan which maximizes the profit of the

company.

The problem can be immediately posed as the following linear programming program:

(Drug) :

maximize

purchasing and operational costs

—[100 - RawI + 199.90 - RawII + 700 - DrugI + 800 - DrugII]

subject to

0.01 -RawI + 0.02 - RawII — 0.500 - DrugI — 0.600 - DrugII
RawI + RawII
90.0 - DrugI + 100.0 - DruglI

40.0 - DrugI + 50.0 - DrugII
100.0 - RawI + 199.90 - RawII + 700 - DrugI + 800 - DrugII
RawI,RawII,Drugl,DruglI

+ [6200 - DrugI + 6900 - DrugII]

income from selling the drugs

0
1000
2000
800

IV AN INININ IV

0

100000

[total profit]

[balance of active agent]
[storage restriction]
[manpower restriction]
[equipment restriction]
[budget restriction]

where the variables are the amounts RawI, RawII (in kg) of raw materials to be purchased
and the amounts DrugI, DrugII (in 1000 of packs) of drugs to be produced.

Here is the MATLAB script which specifies the problem and solves it using the MOSEK
optimization toolbox:

% rlol.m

clear prob;

prob.c
prob.a

prob.blc =
prob.buc

[-100;-199.9;6200-700;6900-800] ;
sparse([0.01,0.02,-0.500,-0.600;1,1,0,0;

0,0,90.0,100.0;0,0,40.0,50.0;100.0,199.9,700,800]) ;

[0;-inf;-inf;-inf;-inf];
[inf;1000;2000;800;100000] ;

8.1. ROBUST LINEAR OPTIMIZATION 95

prob.blx = [0;0;0;0];

prob.bux = [inf;inf;inf;inf];

[r,res] = mosekopt(’maximize’,prob);
XX = res.sol.itr.xx;

Rawl = xx(1);

RawII = xx(2);

DrugI = xx(3);

DrugII = xx(4);

disp(sprintf (’*** Optimal value: %8.3f’,prob.c’*xx));
disp(’*** Optimal solution:’);

disp(sprintf (’Rawl: %8.3f’,Rawl));

disp(sprintf (’RawIIl: %8.3f’,Rawll));

disp(sprintf (’Drugl: %8.3f’,Drugl));

disp(sprintf (’DrugIIl: %8.3f’,Drugll));

When executing this script, this is what is displayed:

**x*x Optimal value: 8819.658
***x Optimal solution:

RawI: 0.000

RawII: 438.789

Drugl: 17.5562

DruglII: 0.000

We see that the optimal solution promises the company modest, but quite respectful profit
8.8%. Note that at the optimal solution, as it could be guessed in advance, the balance
constraint is active: the production process utilizes the full amount of active agent contained
in the raw materials.

8.1.2 Data uncertainty and its consequences.

Now note that not all data of the problem could be thought of to be “absolutely reliable”;
e.g., one can hardly believe that the contents the active agent in the raw materials are exactly
the “nominal data” 0.01 g/kg for Rawl and 0.02 g/kg for Rawll. In reality, these contents
definitely vary around the indicated values. A natural assumption here is that the actual
contents of active agent a; in Rawl and aj; in Rawll are realizations of random variables
somehow distributed around the “nominal contents” a}j = 0.01 and a}; = 0.02. To be more
specific, assume that ay drifts in the 0.5%-margin of a}, specifically, takes with probabilities
0.5 the values af(1 £0.005) = {0.00995;0.01005}. Similarly, assume that a;; drifts in the 2%
margin of a;, taking with probabilities 0.5 the values a};(1 4+ 0.02) = {0.0196;0.0204}. How
do the perturbations of the contents of the active agent affect the production process?

96 CHAPTER 8. CASE STUDIES

The optimal solution prescribes to purchase 438.8 kg of Rawll and to produce 17552 packs
of Drugl. With the above random fluctuations in the content of the active agent in Rawll,
this production plan, with probability 0.5, will be infeasible — with this probability, the actual
content of active agent in raw materials will be less than the one required to produce the
planned amount of Drugl. For the sake of simplicity, assume that this difficulty is resolved in
the simplest way: when the actual content of active agent in raw materials is insufficient, the
output of the drug is reduced accordingly. With this policy, the actual production of Drugl
becomes random variable which takes, with probabilities 0.5, the nominal value of 17552 packs
and the 2% less value of 17201 packs. These 2% fluctuations in the production affect the profit
as well; the latter becomes a random variable taking, with probabilities 0.5, the nominal value
8,820 and the 21% (!) less value 6,929. The expected profit is 7,843, which is by 11% less than
the nominal profit 8,820 promised by the optimal solution of the problem.

We see that in our toy example pretty small (and unavoidable in reality) perturbations of
the data may make the optimal solution infeasible, and a straightforward adjustment to the
actual solution values may heavily affect the solution quality.

It turns out that the outlined phenomenon can be met in many linear programs of practi-
cal origin. Usually, in these programs at least part of the data are not known exactly and can
vary around their nominal values, and these data perturbations can make the nominal optimal
solution — the one corresponding to the nominal data — infeasible. It turns out that the conse-
quences of data uncertainty can be much more severe than in our toy example. The analysis
of linear optimization problems from the NETLIB collection ' reported in [14] demonstrates
that for 13 of 94 NETLIB problems, already 0.01%-perturbations of “clearly uncertain” data
can make the nominal optimal solution severely infeasible: with these perturbations, the solu-
tion, with a non-negligible probability, violates some of the constraints by 50% and more. It
should be added that in the general case, in contrast to the toy example we have considered,
there is no evident way to adjust the optimal solution, by a small modification, to the actual
values of the data, and there are cases when such an adjustment is impossible — in order to
become feasible for the perturbed data, the nominal optimal solution should be “completely
reshaped”.

8.1.3 Robust linear optimization methodology

A natural approach to handling data uncertainty in optimization is offered by robust opti-
mization methodology which, as applied to linear optimization, is as follows.

INETLIB is a collection of LP’s, mainly of the real world origin, which is a standard benchmark for
evaluating LP algorithms

8.1. ROBUST LINEAR OPTIMIZATION 97

8.1.3.1 Uncertain linear programs and their robust counterparts.

Consider a linear optimization problem

minimize T
subject to [, < Az < ., (8.1)
. < x < Uy,

with the data (c, A, [, uc, I, uy), and assume that this data is not known exactly; all we know
is that the data vary in a given uncertainty set Y. The simplest example is the one of interval
uncertainty, where every data entry can run through a given interval:

u = {(CAlcauw :mu:v):

(" —de, A" —dA, 12 — dle,ul — due, 15 — dly,ul — duy) < (¢, A, le, e, Ly, uy)
< (" +de, A" + dA I} + dle,ul + due, U + dly,ul + dux)}
(8.2)
Here (", A", I, u?, [2,u2) is the nominal data, (dc,dA,dl., duc,dl;, du,) > 0 is the data per-

turbation bounds, and the inequality > is understood in the entry-wise sense. Note that some
of the entries in the data perturbation bounds can be zero, which means that the correspond-
ing data entries are known exactly — are certain.

e The family of instances (8.1) with data running through a given uncertainty set U is
called an uncertain linear optimization problem.

e A vector x is called a robust feasible solution of an uncertain linear optimization problem,
if it remains feasible for all realizations of the data from the uncertainty set, i.e., if

le <Az < wu, ly <z <wuy, for all (e, A, le, e, ly,uz) €U. (8.3)

e We say that the robust value of the objective at x does not exceed a real t, if ¢’z <t
for all realizations of the objective from the uncertainty set.

e The Robust Optimization methodology proposes to associate with an uncertain linear
program its Robust Counterpart (RC) which is the problem of minimizing the robust
optimal value over the set of all robust feasible solutions, i.e., the problem

ntlin {t sl <t 1, < Az < ug, Iy < x < uy for all (¢, Ay leyue, Ly ug) € L{} . (84)

The optimal solution to (8.4) is treated as the “uncertainty-immuned” solution to the
original uncertain linear programming program.

98 CHAPTER 8. CASE STUDIES

8.1.3.2 Robust counterpart of uncertain of a linear optimization problem with
interval uncertainty.

In general, the RC (8.4) of an uncertain linear optimization problem is not a linear optimiza-
tion problem (since(8.4) has infinitely many linear constraints). There are, however, cases
when (8.4) can be rewritten equivalently as a linear programming program; in particular, this
is the case for interval uncertainty (8.2). Specifically, in the case of (8.2), the Robust Coun-
terpart of uncertain linear program is equivalent to the following linear program in variables
z,y,t:

minimize t
subject to (eTz+ (de)Ty —t < 0, (a)
Bd, < (AN (dA)y, (v
ANz + (dA)y < up —due, (¢ (8.5)
0 < x+y, (d)
0 < -+, (e)
B+d, < x < uh —dug, (f)

The origin of (8.5) is quite transparent: the constraints (8.5.d — e) linking x and y merely say
that y; > |x;| for all i. With this in mind, it is evident that at every feasible solution to (8.5)
the entries in the vector (A")z — (dA)y are lower bounds on the entries of Az with A from the
uncertainty set (8.2), so that (8.5.b) ensures that [, < Az for all data from the uncertainty
set. Similarly, (8.5.c) and (8.5.a), (8.5.f) ensure, for all data from the uncertainty set, that
that Az < u., ¢’'2 < t, and the entries in x satisfy the required lower and upper bounds,
respectively.

Note that at the optimal solution to (8.5), one clearly has y; = |z;|. It follows that when
the bounds on the entries of x impose nonnegativity (nonpositivity) of an entry x;, then there
is no necessity to introduce the corresponding additional variable y; — it can be from the very
beginning replaced with x;, if z; is nonnegative, or with —x;, if 2; is nonpositive.

Another possible formulation of problem (8.5) is as follows. Let

2+ dl, = (A"a — (dA)y — f. f20

then this equation is equivalent to (a) in (8.5.b). If (I.); is identical to —oo, then that
equation should just be dropped from the computations. Similarly,

—z+y=92=>0
is equivalent to (8.5.d). This implies
lg +dl.— (AM)z + f = —(dA)y

and
y=g+z

8.1. ROBUST LINEAR OPTIMIZATION 99

Substituting these values into (8.5) gives

minimize t
subject to (x4 (de)T (g +x) —t < 0,
0 < [
204"z 4+ (dA) (g +z) + f+ 12 +dl. < ul—du,, (8.6)
0 < 9
0 < 2 +g,
B+d, < x < up — duy,
which after some simplifications leads to
minimize t
subject to (" +dc)'z + (de)Tg —t < 0, (a)
0 < /i (b)
2A" + dA)x + (dA)g+ f — (12 +dl.) < ul—du., (¢
0 < g, (d)
0 < 2z + g, (e)
B+d, < x < ul —duy, (f)
(8.7)
and
minimize t
subject to (c®+dc)lz + (de)Tg—t < 0, (a)
204" +dA)x + (dA)g+ f < ul —duc+ 12 +dl., (b)
0 < 2z + g, () (8.8)
0 < £ (d)
0 < 9, (e)
B+dl, < T < ul — dug. (f)

Observe this problem has more variables but much fewer constraints than (8.5). Therefore,
(8.8) is likely to solver faster than (8.5). Also note (8.8.b) is trivially redundant if 2 +dl, > 0.

Introductory example (continued). Let us apply the robust optimization methodol-
ogy to our drug production example presented in Section 8.1.1, assume that the only uncertain
data in (Drug) are the contents of the active agent in the raw materials, and that these con-
tents vary in 0.5%- and 2%-neighborhoods of the respective nominal values 0.01 and 0.02.
With this assumption, (Drug) becomes an uncertain LP affected by interval uncertainty; the

100 CHAPTER 8. CASE STUDIES

Robust Counterpart (8.5) of this uncertain LP is the linear program

(Drug_RC) :
maximize
t
subject to
t < —100 - RawI — 199.9 - RawII + 5500 - DrugI + 6100 - DrugII
0.01-0.995 - RawI 4 0.02 - 0.98 - RawII — 0.500 - DrugI — 0.600 - DrugII > 0
RawI 4+ RawII < 1000
90.0 - DrugI + 100.0 - DrugII < 2000
40.0 - DrugI 4 50.0 - DrugII < 800
100.0 - RawI + 199.90 - RawII + 700 - DrugI 4 800 - DrugII < 100000
RawI,RawII,Drugl,DrugII > 0

Solving this problem with MOSEK and we get the following output:

**xx Optimal value: 8294.567
***x Optimal solution:

RawI: 877.732
RawII: 0.000
Drugl: 17.467
DruglII: 0.000

We see that the robust optimal solution we have built “costs money” — it promises a profit of
just $ 8,295 (cf. with the profit of $ 8,820 promised by the nominal optimal solution). Note,
however, that the robust optimal solution remains feasible whatever are the realizations of
the uncertain data from the uncertainty set in question, while the nominal optimal solution
requires adjusting to these data and, with this adjusting, results in the average profit of $
7,843, which is by 5.4% less than the profit $ 8,295 guaranteed by the robust optimal solution.
Note also that the robust optimal solution is significantly different from the nominal one: both
solutions prescribe to produce the same drug Drugl (in the amounts 17,467 and 17,552 packs,
respectively), but from different raw materials, Rawl in the case of the robust solution and
RawlI in the case of the nominal one. The reason is that although the price per unit of the
active agent for Rawll is sligthly less than for Rawl, the content of the agent in Rawl is more
stable, so that when possible fluctuations of the contents are taken into the account, Rawl
turns out to be more profitable than Rawll.

8.1.4 Random uncertainty and Ellipsoidal Robust Counterpart

In some cases, it is natural to assume that the perturbations affecting different uncertain data
entries are random and independent of each other. In these cases, the Robust Counterpart
based on the interval model of uncertainty seems to be “too conservative”: why should we
expect that all the data will be simultaneously driven to their “most unfavorable” values and

8.1. ROBUST LINEAR OPTIMIZATION 101

immune the solution against this highly unlikely situation? A less conservative approach is
offered by the ellipsoidal model of uncertainty. To motivate this model, let us look what
happens with a particular linear constraint

ale <b (8.9)

at a given candidate solution x in the case when the vector a of coefficients of the constraint
is affected by random perturbations:

a=a"+(, (8.10)

where a" is the vector of nominal coefficients and (is a random perturbation vector with zero
mean and covariance matrix V,. In this case, the value of the left hand side of (8.9), evaluated
at a given z, becomes a random variable with the expected value (a™)”x and the standard
deviation \/xTV,z. Now let us act as an engineer which believes that the value of a random
variable never exceeds its mean plus 3 times the standard deviation; we do not intend to be
that specific and replace “3” in the above rule by a safety parameter {2 which will be in our
control. Believing that the value of a random variable “never” exceeds its mean plus 2 times
the standard deviation, we conclude that a “safe” version of (8.9) is the inequality

(@™ Tz + Q2T Vyx < b. (8.11)

The word “safe” above admits a quantitative interpretation: if x satisfies 8.11, then one can
bound from above the probability of the event that random perturbations (8.10) result in
violating the constraint (8.9) evaluated at xz. The bound in question depends on what we
know about the distribution of ¢. For example,

1. We always have the bound given by the Tschebyshev inequality:

1
x satisfies (8.11) = Prob {a’z > b} < TR (8.12)

2. When (is Gaussian, then the Tschebyshev bound can be improved to

1 oo
x satisfies (8.11) = Prob {CLT£U >b} < — /exp{—t2/2}dt < 0.5exp{—0?/2}.
V2m 2

(8.13)

3. Assume that ¢ = D¢, where A is certain n x m matrix, and £ = (¢1, ..., &,)7 is a random
vector with independent coordinates &1, ..., &, symmetrically distributed in the segment
[—1,1]. Setting V = DD?T (V is a natural “upper bound” on the covariance matrix of
(), one has

z satisfies (8.11) = Prob {a’z > b} < 0.5exp{—0Q?/2}. (8.14)

102 CHAPTER 8. CASE STUDIES

Note that in order to ensure the bounds in (8.13) and (8.14) to be < 1079, it suffices to set
Q =5.13.
Now assume that we are given a linear program affected by random perturbations:

minimize [+dc]Tx
subject to (I.); < [af +da)Tz < (ue)i, i=1,...,m, (8.15)
Iz < z < Uy,

where (c*,{a}'}7" 1, l¢, Uc, Iz, uy) are the nominal data, and de, da; are random perturbations
with zero means 2. Assume, for the sake of definiteness, that every one of the random
perturbations dc, daq, ..., da,, satisfies either the assumption of item 2, or the assumption of
item 3, and let V., V4, ..., V},, be the corresponding (upper bounds on the) covariance matrices of
the perturbations. Choosing a safety parameter 2 and replacing the objective and the bodies
of all the constraints by their safe bounds as explained above, we arrive at the following
optimization problem:

minimize t
subject to [e+QvzTVer <t
()i < [af]"z — Q\/aTV,z, (8.16)
[Tz + Q/aTVyz < (ue)i, i =1,...,m,
l, < x < ug.

The relation between problems (8.16) and (8.15) is as follows:

If (x,t) is a feasible solution of (8.16), then with probability at least
p=1—(m+1)exp{—0?/2}

x is feasible for randomly perturbed problem (8.15), and t is an upper bound on
the objective of (8.15) evaluated at x.

We see that if Q is not too small, (8.16) can be treated as a “safe version” of (8.15).

On the other hand, it is easily seen that (8.16) is nothing but the Robust Counterpart of the
uncertain linear optimization problem with the nominal data (c¢*, {a}}[", lc, u¢, Iz, uz) and the
row-wise ellipsoidal uncertainty given by the matrices V;,V,,,..., Vg, . In the corresponding
uncertainty set, the uncertainty affects the coefficients of the objective and the constraint
matrix only, and the perturbation vectors affecting the objective and the vectors of coefficients
of the linear constraints run, independently of each other, through the respective ellipsoids

E. = dc:QVCI/2u:uTu§1},

E, = qda;=9Q ali/Qu:uTugl},izl,...,m.

2For the sake of simplicity, we assume that the bounds I, u., I, uz are not affected by uncertainty; extensions
to the case when it is not so are evident.

8.1. ROBUST LINEAR OPTIMIZATION 103

It turns out that in many cases the ellipsoidal model of uncertainty is significantly less con-
servative, and thus — better suited for practice, than the interval model of uncertainty.

Last, but not least, it should be mentioned that problem (8.16) is equivalent to a conic
quadratic program, specifically, to the program

minimize t
subject to () Tx+Qz <t
(lo)i < [aMTz —Qa,
[Tz +Qz < (ue)i, i=1,...m,
0 = w — D (8.17)
0 = w' — Dy, x, 1=1,..,m,
0 < z — Vwlw,
0 < zi—+/(w)Twi, i=1,..,m,
l < x < Ug

where D, and D, are matrices satisfying the relations

V.=D!D., Voy =D} Dy, i=1,...m.

8.1.4.1 Example: Interval and Ellipsoidal Robust counterparts of uncertain lin-
ear constraint with independent random perturbations of coefficients.

Consider a linear constraint

1< Zajxj <u (8.18)

and assume that the coefficients a; of the body of the constraint are uncertain and vary
in intervals aj & 0;. The worst-case-oriented model of uncertainty here is the interval one,
and the corresponding robust counterpart of the constraint is given by the system of linear

inequalities

n
[< Z a; G L5 — Z 05Y5,

Jj=1]

n

>, ajTj + ZUJ?JJ < (8.19)

j=1
0 < x]+y]7
0 < —; + Yj, j=1..n.

Now assume that we have reasons to believe that the true values of the coefficients a; are
obtained from their nominal values a;-l by random perturbations, independent for different j
and symmetrically distributed in the segments [—o;,0;]. With this assumption, we are in
the situation of item 3 and can replace uncertain constraint (8.18) with its ellipsoidal robust

104 CHAPTER 8. CASE STUDIES

counterpart

n
Ela rj+Qz < u, (8.20)
2 22
0 < 2—,/> gjz;
7j=1

Note that with the model of random perturbations, a vector x satisfying (8.20) satisfies a
realization of (8.18) with probability at least 1 — exp{Q?/2}; for Q = 6, this probability is
> 1—1.5-10"%, which, for all practical purposes, is the same as to say that x satisfies all
realizations of (8.18). On the other hand, the uncertainty set associated with (8.19) is the
box

B = {a = (a1, ...,an)" : aj —oj<aj<aj+oj,j= 1,...,n},

while the uncertainty set associated with (8.20) is the ellipsoid

EQ)={a=(a1,..,a,)": Z <02

Jj=1

For a moderate value of 2, say, = 6, and n > 40, the ellipsoid F(2) in its diameter, typical
linear sizes, volume, etc., is incomparably less than the box B, the difference becoming the
more dramatic the larger is the dimension n of the box and the ellipsoid. It follows that the
ellipsoidal robust counterpart (8.20) of the randomly perturbed uncertain constraint (8.18) is
much less conservative than the interval robust counterpart (8.19), while ensuring basically
the same “robustness guarantees”. To illustrate this important point, consider a numerical
example as follows:

There are n different assets on the market. The return on $ 1 invested in asset j
is a random variable distributed symmetrically in the segment [6; — o;,d; + 0],
and the returns for different assets are independent of each other. The problem is
to distribute $ 1 among the assets in order to get the largest possible total return
on the resulting portfolio.

A natural model of the problem is an uncertain linear optimization problem

n
maximize > ajx;
j=1
n
subject to > = 1, (8.21)
]:
0 < j=1,..n

where a; are the uncertain returns of the assets. Both the nominal optimal solution (set all
returns a; equal to their nominal values d;) and the risk-neutral Stochastic Programming

8.1. ROBUST LINEAR OPTIMIZATION 105

approach (maximize the expected total return) result in the same solution: our $ 1 should be
invested in the most promising asset(s) — the one(s) with the maximal nominal return. This
solution, however, can be very “unreliable” if, as it typically is the case in reality, the most
promising asset has the largest volatility ¢ and is in this sense the most risky. To reduce risk,
one can use the Robust Counterpart approach which results in the optimization problems

maximize t

n
subject to 0 < —t+ > (0; — 0j)zy,
j=1

o (8.22)
2 T = L
j=1
0 < Zj, j=1..n
(the interval model of uncertainty) and
maximize t
n
subject to 0 < —t+ > (d;)z; — Qz,
j=1

n
0 < z— Zloj?sz», (8.23)
J:
n
D
j=1

0 < ;, j=1,..n.

(the ellipsoidal model of uncertainty; note that (8.23) is, essentially, the risk-averted portfolio
model proposed in mid-50’s by Markowitz).

The solution of (8.22) is evident — our $ 1 should be invested into the asset(s) with the
largest possible guaranteed return §; — o;. In contrast to this very conservative policy (which
in reality prescribes to keep the initial capital in a bank or in the most reliable, and thus low
profit, assets), the optimal solution to (8.23) prescribes a quite reasonable diversification of
investments which allows to get much better total return than (8.22), with, basically, zero
risk?). To get an illustration, assume that there are n = 300 assets with the nominal returns
(per year) varying from 1.04 (bank savings) to 2.00:

-1
§;=1.0440.962—— j=1,2 ..n=300

n—1

and volatilities varying from 0 for the bank savings to 1.2 for the most promising asset:

i1
oj = 1.152%, j=1,..,n=300.

$)Recall that in our discussion we have assumed the returns of different assets to be independent of each
other. In reality, this is not so, this is why diversification of investments, although reducing the risk, never
eliminates it completely

106 CHAPTER 8. CASE STUDIES

Here is a MATLAB script which builds the associated problem (8.23), solves it via the MO-
SEK optimization toolbox, displays the resulting robust optimal value of the total return and
the distribution of investments, and, finally, runs 10,000 simulations to get the distribution of
the total return for the resulting portfolio (in these simulations, the returns of all assets are
uniformly distributed in the corresponding intervals):

% File: rlo2.m

% Problem:

/A

% maximize t subject to

% t <= sum(delta(j)*x(j)) -Omegaxz,
% y(j) = sigma(j)*x(j), j=1,...,n,
% sum(x(j)) = 1,

% norm(y) <= z,

%h 0 <= x.

clear prob;
n = 300;
Omega = 6;

% setting nominal returns and volatilities
delta (0.96/(n-1))*[0:1:n-1]1+1.04;
sigma = (1.152/(n-1))*[0:1:n-1];

% setting mosekopt description of the problem

prob.c = -[1;zeros(2*n+1,1)];

A = [-1,ones(1,n)+delta,-Omega,zeros(1l,n);zeros(n+1,2%n+2)];
for j=1:m,
% body of the constraint y(j) - sigma(j)*x(j) = O:
A(j+1,j+1) = -sigma(j);
A(j+1,2+n+j) = 1;
end;
A(n+2,2:n+1) = ones(1,n);
prob.a = sparse(A);
prob.blc = [zeros(n+1,1);1];
prob.buc = [inf;zeros(n,1);1];
prob.blx = [-inf;zeros(n,1);0;zeros(n,1)];
prob.bux = inf*ones(2*n+2,1);

prob.cones = cell(1,1);

8.1. ROBUST LINEAR OPTIMIZATION 107

"MSK_CT_QUAD’;
[n+2; [n+3:1:2*%n+2]°];

prob.cones{1}.type
prob.cones{1}.sub

% running mosekopt
[r,res]=mosekopt (’minimize echo(1)’,prob);

% displaying the solution
res.sol.itr.xx;
xx(1);

XX
t

disp(sprintf (’Robust optimal value: %5.4f’,t));
x = max(xx(2:1+n) ,zeros(n,1));
plot([1:1:n],x,’-m’);

grid on;

disp(’Press <Enter> to run simulations’);
pause

% running simulations

Nsim = 10000;

out = zeros(Nsim,1);

for i=1:Nsim,
returns = delta+(2*rand(1,n)-1).*sigma;
out (i) = returns*x;

end;

disp(sprintf (’Actual returns over %d simulations:’,Nsim));

disp(sprintf (’Min=%5.4f Mean=%5.4f Max=),6.4f StD=)5.2f’,...
min(out) ,mean(out) ,max(out) ,std(out)));

hist(out);

Here are the results displayed by the script:

Robust optimal value: 1.3428
Actual returns over 10000 simulations:
Min=1.5724 Mean=1.6965 Max=1.8245 StD= 0.03

Note that with our setup, there is exactly one asset with guaranteed return greater than
1 — asset # 1 (bank savings, return 1.04, zero volatility). Consequently, the interval robust
counterpart (8.22) prescribes to put our $ 1 to bank, thus getting 4%-profit. In contrast to
this, the diversified portfolio given by the optimal solution of (8.23) never yields profit less than
57.2 %, and yields at average 69.67%-profit with pretty low (0.03) standard deviation. We

108 CHAPTER 8. CASE STUDIES

Figure 8.1: Distribution of investments among the assets in the optimal solution of.

see that in favorable circumstances the ellipsoidal robust counterpart of an uncertain linear
program indeed is less conservative than, although is basically as reliable as, the interval
robust counterpart.

Finally, let us compare our results with those given by the nominal optimal solution. The
latter prescribes to invest everything we have in the most promising asset (in our example this
is the asset # 300 with nominal return 2.00 and volatility 1.152). Assuming that the actual
return is uniformly distributed in the corresponding interval and running 10,000 simulations,
we get the results as follows:

Nominal optimal value: 2.0000
Actual returns over 10000 simulations:
Min=0.8483 Mean=1.9918 Max=3.1519 StD= 0.66

We see that the nominal solution results in a portfolio which is much more risky, although
better at average, than the portfolio given by the robust solution.

8.1.4.1.1 Combined Interval-Ellipsoidal Robust Counterpart. We have considered
the case when the coefficients a; of uncertain linear constraint (8.18) are affected by indepen-
dent of each other random perturbations symmetrically distributed in given intervals [—o;, o]
and have discussed two ways to model the uncertainty:

e interval uncertainty model (the uncertainty set I is the box B), where we ignore the
stochastic nature of the perturbations and their independence; this model yields the
interval RC (8.19);

o ellipsoidal uncertainty model (U is the ellipsoid E(€?)), which does take into account the
stochastic nature of data perturbations and yields the ellipsoidal RC (8.20).

8.1. ROBUST LINEAR OPTIMIZATION 109

Note that although for large n the ellipsoid F(f2) in its diameter, volume and average linear
sizes is incomparably smaller than the box B, in the case of Q > 1 the ellipsoid E(f2) in
certain directions goes beyond the box. For example, the ellipsoid F(6), although much more
“narrow” than B in most of the directions, is 6 times “thicker” than B in the directions of
the coordinate axes. Intuition says that it hardly makes sense to keep in the uncertainty
set realizations of the data which are outside of B and thus are forbidden by our model of
perturbations, so that in the situation under consideration the intersection of E(£2) and B
is a better model of the uncertainty set than the ellipsoid E(Q) itself. What happens when
the model of the uncertainty set is the “combined interval-ellipsoidal” uncertainty U(2) =
EQ)NB?

First, it turns out that the RC of (8.18) corresponding to the uncertainty set U(2) is still
given by a system of linear and conic quadratic inequalities, specifically, the system

n n n

2,,2

Lo X ajej—)0 ogy; = [) ojuj,
j=1 j=1 Jj=1

2

J

doajmi+ Y05z + Q[Y osvs < (8.24)
J=1 J=1 J=1
—Zj < Tj — Uy < Zj, j = 1,...,n.

Second, it turns out that our intuition is correct: as a model of uncertainty, U(Q) is as
reliable as the ellipsoid E(2). Specifically, if x can be extended to a feasible solution of (8.24),
then the probability for x to satisfy a realization of (8.18) is > 1 — exp{—Q?/2}.

The conclusion is that if we have reasons to assume that the perturbations of uncertain
coefficients in a constraint of an uncertain linear optimization problem are (a) random, (b)
independent of each other, and (c) symmetrically distributed in given intervals, then it makes
sense to associate with this constraint an interval-ellipsoidal model of uncertainty and use, as
the robust version of the constraint, system of linear and conic quadratic inequalities (8.24).
Note that when building the Robust Counterpart of an uncertain linear optimization problem,
one can use different models of the uncertainty (e.g., interval, ellipsoidal, combined interval-
ellipsoidal) for different uncertain constraints, and, consequently, use in the RC different
“robust versions” of different original uncertain constraints.

8.1.5 Further references

For further information about robust linear optimization consult [14, 15].

110 CHAPTER 8. CASE STUDIES

8.2 Geometric (posynomial) optimization

8.2.1 The problem

A geometric optimization problem can be stated as follows
n—1 s
minimize > ¢ [] tj'”
keJo 7=0
n—1 s
subject to > ¢ [] tj’CJ < 1, i=1,...,m,

keJ; j=0 n
t>0,

where it is assumed that
Uitodry = {1,...,T}

and if ¢ # j, then
JinJ;=0.

Hence, A is a T' x n matrix and c is a vector of length T". Given ¢; > 0 then

n—1
ak]'
e []1
j=0
is called a monomial . A sum of monomials i.e.

n—1
S l4

keJ; 7=0

=

(8.25)

is called a posynomial. In general, the problem (8.25) is very hard to solve. However, the

posynomial case where it is required that

c>0

is relatively easy. The reason is that using a simple variable transformation a convex opti-

mization problem can be obtained. Indeed using the variable transformation

L — T
tj=e
we obtain the problem
n—1
N 2 kv
minimize) cpe’=°
keJo
n—1
2 akjz;

subject to > c¢pe’=°
keJ;

(8.26)

(8.27)

8.2. GEOMETRIC (POSYNOMIAL) OPTIMIZATION

111

which is a convex optimization problem that can be solved using MOSEK. We will call

n—1 n—1
> agx; log(ce)+ X agjz;
cpe \I=0 =e =0

for a term and hence the number of terms is 7.
As stated, the problem (8.27) is non-separable. However, using

n—1
vy = log(cy) + Z atj;
j=0
we obtain the separable problem
minimize > e
tedo
subject to > el < 1, i=1,...
ted;
n—1
agjry —vy = —log(c), t=0,...
§=0

which is a separable convex optimization problem.
One warning about this approach is that the function

(8.28)

is only well-defined for small values of x in absolute value. Indeed e* grows very rapidly as
x becomes larger. Therefore numerical problems may arise when solving the problem on this

form.

8.2.2 Applications

A large number of practical applications, particularly in electrical circuit design, can be cast
as a geometric optimization problem. We will not review those applications here but rather

we refer the reader to [16] and the references therein.

8.2.3 Modelling tricks

A lot of tricks that can be used modelling posynomial optimization problems are described in

[16]. Therefore, in this section we cover only one important case.

112 CHAPTER 8. CASE STUDIES

8.2.3.1 Equalities

In general equalities are not allowed in (8.25), i.e.
n—1
Sl =1
keJ; j=0
is not allowed. However, a monomial equality is not a problem. Indeed consider the example
zyz =1
of a monomial equality. The equality is identical to
1< a;yzil <1
which in turn is identical to the two inequalities

ryz !
1 _ -1,—-1
xyz—l T ry oz

)

1
1.

IAIA

Hence, it is possible to model a monomial equality using two inequalities.

8.2.4 Problematic formulations

Certain formulations of geometric optimization problems may cause problems for the algo-
rithms implemented in MOSEK. Basically there are two kinds of problems that may occur:

e The solution vector is finite, but an optimal objective value can only be a approximated.

e The optimal objective value is finite but implies that a variable in the solution is infinite.

8.2.4.1 Finite unattainable solution

The following problem illustrates an unattainable solution:

minimize z2y
subject to xy < 1,
z,y > 0.

Clearly, the optimal objective value is 0, but because of the constraint the constraint z,y > 0
this value can never be attained: To see why this is a problem, remember that MOSEK
substitutes = e’ and y = e'» and solves the problem as

minimize eteely
subject to eleely < 1
te ty € R.

Y

8.2. GEOMETRIC (POSYNOMIAL) OPTIMIZATION 113

We now see that the optimal solution implies that ¢, = —oo or ¢, = —o0, which is unattainable.

It should now be clear what the issue is: If a variable x appears only with nonnegative
exponents, then fixing £ = 0 will minimize all terms in which it appears — but such a solution
cannot be attained.

8.2.4.2 Infinite solution

A similar problem will occur if a finite optimal objective value requires a variable to be infinite.
This can be illustrated by the following example:

minimize x 2
subject to 7! < 1,
z >0,

which is a valid geometric programming problem. In this case the optimal objective is 0, but
this requires x = oo, which is unattainable.

Again, this specific case will appear if a variable z appears only with negative exponents
in the problem, implying that each term in which it appears can be minimized for x — oc.

8.2.5 An example

Consider the example

minimize r 1y
subject to :c2y’% + 3y%z_1 < 1,
- < -3,
x < 3
z,y,2 >0,

which is not a geometric optimization problem. However, using the obvious transformations

we obtain the problem
minimize z 1y
subject to $2y_% + 3y%z_1
ry 122
x_1y22
—1

(8.29)

1
Tolx
g.’l?

9572J72>0a

—_ = =

VA VAN VAN VANRPAN

which is a geometric optimization problem.

114 CHAPTER 8. CASE STUDIES

8.2.6 Solving the example

The problem 8.29 can be defined and solved in the MOSEK toolbox as shown below.

% go2.m

c =[113110.11/3];

a = sparse([[-1 1 0];
[2 -0.5 0];
[0 0.5 -1];
[1 -1 -2];
[-1 1 2];
[-1 0 01;
[1 001D);

map = [0112345];

[res] = mskgpopt(c,a,map);

fprintf (’\nPrimal optimal solution to original gp:’);
fprintf(’ %e’,exp(res.sol.itr.xx));
fprintf (’\n\n’);

% Compute the optimal objective value and
% the constraint activities.
v = c.xexp(a*res.sol.itr.xx);

% Add appropriate terms together.
f = sparse(map+1,1:7,ones(size(map)))*v;

% First objective value. Then constraint values.
fprintf (’Objective value: %e\n’,log(£(1)));
fprintf (’Constraint values:’);

fprintf(’ %e’,log(f(2:end)));

fprintf (’\n\n’);

% Dual multipliers (should be negative)

fprintf (’Dual variables (should be negative):’);
fprintf(’ %e’,res.sol.itr.y);

fprintf (’\n\n’);

8.2. GEOMETRIC (POSYNOMIAL) OPTIMIZATION 115

8.2.7 Exporting to a file

It’s possible to write a geometric optimization problem to a file with the command:
mskgpwri(c,a,map,filename)

This file format is compatible with the command line tool mskexpopt. See the MOSEK
Tools User’s manual for details on mskexpopt. This file format can be useful for sending
debug information to MOSEK or testing. It’s also possible to read the above format with the
command:

[c,a,map] = mskgpread(filename)

8.2.8 Further information

More information about geometric optimization problems is located in [12, 13, 16].

116 CHAPTER 8. CASE STUDIES

Chapter 9

Modelling

In this chapter we will discuss the following issues:

e The formal definitions of the problem types that MOSEK can solve.

The solution information produced by MOSEK.

The information produced by MOSEK if the problem is infeasible.

A set of examples showing different ways of formulating commonly occurring problems
so that they can be solved by MOSEK.

Recommendations for formulating optimization problems.

9.1 Linear optimization

A linear optimization problem can be written as

minimize e+ el
subject to ¢ < Az < (9.1)
r < €T < u”,

where
e m is the number of constraints.
e 7 is the number of decision variables.
e x € R" is a vector of decision variables.
e c € R" is the linear part of the objective function.

o A c R™*™ is the constraint matrix.

117

118 CHAPTER 9. MODELLING

e [€ R™ is the lower limit' on the activity for the constraints.
e u® € R™ is the upper limit on the activity for the constraints.
e [* € R™ is the lower limit on the activity for the variables.

e u* € R™ is the upper limit on the activity for the variables.

A primal solution (x) is (primal) feasible if it satisfies all constraints in (9.1). If (9.1) has
at least one primal feasible solution, then (9.1) is said to be (primal) feasible.
In case (9.1) does not have a feasible solution, the problem is said to be (primal) infeasible.

9.1.1 Duality for linear optimization

Corresponding to the primal problem (9.1), there is a dual problem

maximize (197 s — (u)T's¢
—I—(lx)Tsf — (u®)Ts® +¢f
subject to ATy + s7 — 5% = ¢ (9.2)
-y + 57 — sy, = 0,

C C X x
87y 8y 8758y = 0.

If a bound in the primal problem is plus or minus infinity, the corresponding dual vari-
able is fixed at 0, and we use the convention that the product of the bound value and the
corresponding dual variable is 0. For example

I =—00 = (s);=0and (] (s7); =0.

This is equivalent to removing variable (sf); from the dual problem.
A solution

(Y, 575 80> 575 5)

to the dual problem is feasible if it satisfies all the constraints in (9.2). If (9.2) has at least
one feasible solution, then (9.2) is (dual) feasible, otherwise the problem is (dual) infeasible.
We will denote a solution
(2., 55,55, o7 55)

so that z is a solution to the primal problem (9.1), and
(Y5 87> S0 575 54)

is a solution to the corresponding dual problem (9.2). A solution which is both primal and
dual feasible is denoted a primal-dual feasible primal-dual solution.

"We will use the words “bound” and “limit” interchangeably.

9.1. LINEAR OPTIMIZATION 119

9.1.1.1 A primal-dual feasible solution

Let
(@, 5% (7)™ (50)7 ()7 (s))

be a primal-dual feasible solution, and let

()" = Ax™.

For a primal-dual feasible solution we define the optimality gap as the difference between the
primal and the dual objective value,

el — (1) 57— (

u)tsg + (lx) (x)TSiJrcf)
—Z((Sz) () —17) + (s0)7 (uf = (29)") +
0

where the first relation can be obtained by multiplying the dual constraints (9.2) by = and
x¢ respectively, and the second relation comes from the fact that each term in each sum is
nonnegative. It follows that the primal objective will always be greater than or equal to the
dual objective.

We then define the duality gap as the difference between the primal objective value and
the dual objective value, i.e.

ot ¢ —((197s§ — (u)Ts¢ + (15Tt — (u)Ts¥ 4 ¢f)

Please note that the duality gap will always be nonnegative.

9.1.1.2 An optimal solution

It is well-known that a linear optimization problem has an optimal solution if and only if there
exist feasible primal and dual solutions such that the duality gap is zero, or, equivalently, that
the complementarity conditions

()i (@) =17) = 0, i=1,...,m,
(su)i(uf —(25)") = 0, i=1,....m,
(s7)j(@; —17) = 0, j=1,...,n,
(si)}‘(ui—m}k) 0, j=1,....,n

are satisfied.
If (9.1) has an optimal solution and MOSEK solves the problem successfully, both the

primal and dual solution are reported, including a status indicating the exact state of the
solution.

120 CHAPTER 9. MODELLING

9.1.1.3 Primal infeasible problems

If the problem (9.1) is infeasible (has no feasible solution), MOSEK will report a primal
certificate of the infeasibility: The dual solution reported is a certificate of infeasibility, and
the primal solution is undefined.

A primal certificate (certificate of primal infeasibility) is a feasible solution to the modified
dual problem

maximize (1°)7sf — (u®)Ts¢ + (1%)Ts7 — (u”)T's

subject to ATy + sf — sy = 0,

—y + 8] — s, = 0,

87, 84, 57,8y > 0.

u

so that the objective is strictly positive, i.e. a solution
(", (s1)", ()", (s7)", (s0)")
to (9.3) so that
)T (s7)* = (@) (s5)" + ()T (s7)" = ()T (s3)" > 0.

Such a solution implies that (9.3) is unbounded, and that its dual is infeasible.

We note that the dual of (9.3) is a problem whose constraints are identical to the con-
straints of the original primal problem (9.1): If the dual of (9.3) is infeasible, so is the original
primal problem.

9.1.1.4 Dual infeasible problems

If the problem (9.2) is infeasible (has no feasible solution), MOSEK will report a dual certifi-
cate of the infeasibility: The primal solution reported is a certificate of infeasibility, and the
dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the problem

minimize '
subject to Ar —x2¢ = 0,
- A T (54)
< x <
where
- 0 if l¢ > —oc0 0, ifuf<oo
I§ = ’ oo and = ’ v
v { —oo otherwise v { oo otherwise
and
2 0, if l;‘? > —00, and @ 0, if u;” < 00,
[— . u,: = .
J —oo otherwise J oo otherwise

9.2. LINEAR NETWORK FLOW PROBLEMS 121

so that the objective value ¢!z is negative. Such a solution implies that (9.4) is unbounded,
and that dual of (9.4) is infeasible.

We note that the dual of (9.4) is a problem whose constraints are identical to the con-
straints of the original dual problem (9.2): If the dual of (9.4) is infeasible, so is the original
dual problem.

9.1.2 Primal and dual infeasible case

In case that both the primal problem (9.1) and the dual problem (9.2) are infeasible, MOSEK
will report only one of the two possible certificates — which one is not defined (MOSEK
returns the first certificate found).

9.2 Linear network flow problems

Network flow problems are a special class of linear optimization problems which has many
applications. The class of network flow problems can be specified as follows. Let G = (N, A)
be a directed network. Associated with every arc (i,5) € A is a cost ¢;; and a capacity
[lfj, ufj] Moreover, associated with each node i € N in the network is a lower limit [§ and an
upper limit u$ on the demand(supply) of the node. Now the minimum cost of a network flow
problem can be stated as follows

minimize Yo CijTij
(3,5)€A
subject to 1§ < Ti;— >, oz < ouf YielN, (9.5)
{5:(3,5) €A} {5:(4,0)€ A}
I < Tj < wuj V(i j) €A

A classical example of a network flow problem is the transportation problem, where the
objective is to distribute goods from warehouses to customers at lowest possible total cost,
see [2] for a detailed application reference.

It is well-known that problems with network flow structure can be solved efficiently with a
specialized version of the simplex method. MOSEK includes a highly tuned network simplex
implementation, see Section 10.3.1 for further details on how to invoke the network optimizer.

9.3 Quadratic and quadratically constrained optimization
A convex quadratic optimization problem is an optimization problem of the form

minimize %xTQOa: +cTx+¢f

VAN
<
>0
o
I
=
|
\.)—‘
~—~
Ne
D
S~—

n—1
subject to If < 3aTQFx+ Y ap,w;
i=0

l$

IN

x

IA
<
\.H
o,
I
=
=
\
l—‘

122 CHAPTER 9. MODELLING

where the convexity requirement implies that

e ()° is a symmetric positive semi-definite matrix.

o If [¢ = —00, then QF is a symmetric positive semi-definite matrix.

o If uj = oo, then QF is a symmetric negative semi-definite matrix.

o If [, > —o0 and uﬁ < 00, then QF is a zero matrix.

The convexity requirement is very important and it is strongly recommended that MOSEK
is applied to convex problems only.

9.3.1 A general recommendation

Any convex quadratic optimization problem can be reformulated as a conic optimization
problem. It is our experience that for the majority of practical applications it is better to
cast them as conic problems because

e the resulting problem is convex by construction, and
e the conic optimizer is more efficient than the optimizer for general quadratic problems.

See Section 9.4.4.1 for further details.

9.3.2 Reformulating as a separable quadratic problem

The simplest quadratic optimization problem is
minimize 1/227Qx + ’x

subject to Az = b, (9.7)
x> 0.

The problem (9.7) is said to be a separable problem if @ is a diagonal matrix or, in other
words, that the quadratic terms in the objective all have this form

2
T

instead of this form
ZjT5.

The separable form has the following advantages:

e It is very easy to check the convexity assumption, and

e the simpler structure in a separable problem usually makes it easier to solve.

9.3. QUADRATIC AND QUADRATICALLY CONSTRAINED OPTIMIZATION 123

It is well-known that a positive semi-definite matrix () can always be factorized, i.e. a
matrix F' exists so that
Q=FTF (9.8)

In many practical applications of quadratic optimization F' is known explicitly; for example
if @ is a covariance matrix, F' would be the set of observations producing it.
Using (9.8), the problem (9.7) can be reformulated as

minimize 1/2y” Iy 4 cTx

subject to Ax = b,
Fu—y — 0 (9.9)
x > 0.

The problem (9.9) is also a quadratic optimization problem and has more constraints and
variables than (9.7). However, the problem is separable. Normally, if F' has fewer rows than
columns, it is worthwhile to reformulate as a separable problem. Indeed consider the extreme
case where F' has one dense row and hence @) will be dense matrix.

The idea presented above is applicable to quadratic constraints too. Now consider the
constraint

1/22T7(FTF)z <b (9.10)

where F' is a matrix and b is a scalar. (9.10) can be reformulated as

1/2y" Iy
Fx—y

b,
0.

A

It should be obvious how to generalize this idea to make any convex quadratic problem
separable.
Next, consider the constraint

1/225(D+ FTF)z <b

where D is a positive semi-definite matrix, F' is a matrix, and b is a scalar. We assume that
D has a simple structure, i.e. D is for instance a diagonal or a block diagonal matrix. If this
is the case, then it may be worthwhile performing the reformulation

1/2((z"Dz) + y"Iy) < b,
Fe—y = 0.

Now the question may arise: When should a quadratic problem be reformulated to make
it separable or near separable? The simplest rule of thumb is that it should be reformulated
if the number of non-zeros used to represent the problem decreases when reformulating the
problem.

124 CHAPTER 9. MODELLING

9.4 Conic optimization

Conic optimization can be seen as a generalization of linear optimization. Indeed a conic
optimization problem is a linear optimization problem plus a constraint of the form

zel

where C is a convex cone. A complete conic problem has the form

minimize e+
i c < A < s
subject to p ; x:n ; ;Lx: (9.11)
x eC.
The cone C can be a Cartesian product of p convex cones, i.e.
C=Cix---xC
in which case = € C can be written as
x=(x1,...,2p), 1 €C1,...,2p €Cp

where each x; € R™. Please note that the n-dimensional Euclidean space R" is a cone itself,
so simple linear variables are still allowed.
MOSEK supports only a limited number of cones, specifically

C=Cx-xC
where each C; has one of the following forms

o R set:

C, = {z e R"}.

e (Quadratic cone:

e Rotated quadratic cone:

t
Ci=<KxeR" 12561332221)?, r1,20 >0
=3

Although these cones may seem to provide only limited expressive power they can be used
to model a large range of problems as demonstrated in Section 9.4.4.

9.4. CONIC OPTIMIZATION 125

9.4.1 Duality for conic optimization
The dual problem corresponding to the conic optimization problem (9.11) is given by

maximize (197§ — (u)T's¢
+(17) sf = (u*) sl + o
subject to ATy + 87 — 5% + s

Il
o

9.12
—y+ 87 — sy = 0, (9.12)
Sy, 84,57, 8y, > 0,
st ecC*

where the dual cone C* is a product of cones
C*=Ci x--C,

where each Cj is the dual cone of C;. For the cone types MOSEK can handle, the relation
between the primal and dual cone is given as follows:

o R set:
Ct:{:ceR"t} & C;‘::{seR”t: s:O}.

e Quadratic cone:

Ci = xeR”t:xlz Zl’? & Cf =0Ch

e Rotated quadratic cone:

Ci=<(zx¢c R" . 21129 & Cf =0Cy.

v
8
SN
8
i
=
N
\
[a)

9.4.2 The dual of the dual

The dual problem corresponding to the dual problem is the primal problem.

9.4.3 Infeasibility

In case MOSEK finds a problem to be infeasible it will report a certificate of the infeasibility.
This works exactly as for linear problems (see sections 9.1.1.3 and 9.1.1.4).

9.4.4 Examples

This section contains several examples of inequalities and problems that can be cast as conic
optimization problems.

126 CHAPTER 9. MODELLING

9.4.4.1 Quadratic objective and constraints
From Section 9.3.2 we know that any convex quadratic problem can be stated on the form

minimize 0.5 | Fz|? + Tz,

9.13
subject to 0.5]|Gz|* + T2z < b, (9.13)

where F' and GG are matrices and ¢ and a are vectors. For simplicity we assume that there is
only one constraint, but it should be obvious how to generalize the methods to an arbitrary
number of constraints.

Problem (9.13) can be reformulated as

minimize 0.5 |[¢]|* + Tz,
subject to 0.5z +aTz < b,
Fz—t =
Gx — z

(9.14)

I
o

after the introduction of the new variables ¢t and z. It is easy to convert this problem to a
conic quadratic optimization problem, i.e.

minimize v+ ¢’ x,

subject to p+alz = b,
Fr—t = 0,
Gx—2z = 0,
w - (9.15)
q = 1
1t < 2vw, wv,w >0,
Iz < 2pg, pg>0.

In this case we can model the last two inequalities using rotated quadratic cones.
If we assume that F' is a non-singular matrix — for instance a diagonal matrix — then

r=F"1t
and hence we can eliminate x from the problem to obtain:

minimize v+ ¢ F~1¢,

subject to p+alF~ = b,
VF~t—2 = 0,
w = 1, (9.16)
q = 1
[< 2vw, v,w >0,
1212 < 2pq, p,q=>0.

In most cases MOSEK will perform this reduction automatically during the presolve phase
before the optimization is performed.

9.4. CONIC OPTIMIZATION 127

9.4.4.2 Minimizing a sum of norms

The next example is the problem of minimizing a sum of norms i.e. the problem

k
minimize Y ||2¢|
i=1

(9.17)
subject to Az = b,
where
7l
€T =
zF
This problem is equivalent to
k
minimize Y z;
i=1 A
subject to Ax = b, (9-18)
Hle < Ziy /L:]-u 7k7
which in turn is equivalent to
k
minimize >z
i=1 9.19
subject to Ax = b, ()
(zi,mi)eCi, 1=1,...,k
where all C? are of the quadratic type, i.e.
Ci = {(zi,:ri) Doz > Hle}
The dual problem corresponding to (9.19) is
maximize by
subject to ATy+s = ¢,
t; =1, i=1,...,k, (9-20)
(ti,si)Eci, 1=1,...,k
where
sl
S = :
Sk
This problem is equivalent to
maximize by
subject to ATy +s = ¢, (9.21)

5711

IN
=
~.
I
=
o

128 CHAPTER 9. MODELLING

Please note that the dual problem can be reduced to an “ordinary” convex quadratically
constrained optimization problem in this case due to the special structure of the primal
problem. In some cases it turns out that it is much better to solve the dual problem (9.20)
rather than the primal problem (9.19).

9.4.4.3 Modelling polynomial terms using conic optimization

Generally an arbitrary polynomial term of the form

fad

cannot be represented with conic quadratic constraints, however in the following we will
demonstrate some special cases where it is possible.
A particular simple polynomial term is the reciprocal, i.e.

8|

Now, a constraint of the form

<y

8|

where it is required that x > 0 is equivalent to
1<zyandz >0

which in turn is equivalent to
z V2,
2

¢ < 2xy.

The last formulation is a conic constraint plus a simple linear equality.
For example, consider the problem

T

minimize ctx
n

subject to > CJ:—J < b,
g=1"
x>0,

where it is assumed that f; > 0 and b > 0. This problem is equivalent to

minimize '
n
subject to > z; = b,
Jj=1
.22
vj \@, j=1...,n, (9-22)

2
Y
z,z >0,

9.4. CONIC OPTIMIZATION 129

because
2 _ o
Vi = 2 < 2zjx;

implies that
— < z; and Z—JSijzj:b.
i =t 3

The problem (9.22) is a conic quadratic optimization problem having n 3 dimensional
rotated quadratic cones.
The next example is the constraint

tl;
0,

-

IV IV

where both ¢ and x are variables. This set is identical to the set

2 < 2zz,
= 0.5, (9.23)
z,z, > 0.

Occasionallay when modelling the market impact term in portfolio optimization, the poly-
nomial term x2 occurs. Therefore, consider the set defined by the inequalities

P <t

0 < = (9.24)
We will exploit that 2% = 22/y/x . First define the set
2
¢ < 2st,
st > 0. (9.25)
Now, if we can make sure that
2s <z,
then we have the desired result since this implies that
2 2
15 x
Ve T 2s T
Please note that s can be chosen freely and that \/z = 2s is a valid choice.
Let
2 < 2st,
w? < 2vr,
xr = v
’ 2
s = w, (9.26)
_ 1
r = 3
s,t,v,r > 0

130 CHAPTER 9. MODELLING

then
2 — 2
< 2vur
v
S g
—z
= £
Moreover,
x? 2st,

<

< 2%
leading to the conclusion

215 < ¢

(9.26) is a conic reformulation which is equivalent to (9.24). Please note that the z > 0
constraint does not appear explicitly in (9.25) and (9.26), but implicitly since x = v > 0.

Finally, it should be mentioned that any polynomial term of form x¢ where g is a positive
rational number can be represented using conic quadratic constraints [3, pp. 12-13]

9.4.4.4 Further reading

If you want to know more about what can be modelled as a conic optimization problem we
recommend the references [20, 15, 3].

9.4.5 Potential pitfalls in conic optimization

While a linear optimization problem either has a bounded optimal solution or is infeasible,
the conic case is not as simple as that.

9.4.5.1 Non-attainment in the primal problem

Consider the example

minimize z
subject to 2yz > 2,
2
: - 2 (9.27)
Y,z > 0.
which corresponds to the problem
e . 1
minimize =
y 9.28
subject to y > 0. ()

Clearly, the optimal objective value is zero but it is never attained because implicitly we
assume that the optimal y should be finite.

9.4. CONIC OPTIMIZATION 131

9.4.5.2 Non-attainment in the dual problem

Next, consider the example

minimize T4
subject to z34+x4 = 1,
I =0
’ 2
xT9 = 1, (9 9)
2rizy > a3,
T1x9 Z 0.
which has the optimal solution
x1=0,25=1, 23 =0and zj =1
implying that the optimal primal objective value is 1.
Now, the dual problem corresponding to (9.29) is
maximize Y1 + Y3
subject to yo+s1 = 0,
Y3 +s2 = 07
y1+s3 = 0, (9.30)
Y1 = 17
25152 > 3,
S$152 Z 0.
Therefore,
yi =1
and
s5=—1

This implies that
2stsh > (s5)2 =1

and hence s5 > 0. Given this fact we can conclude that
yi+ys = 155

< 1

implying that the optimal dual objective value is 1, however this is never attained. Hence,
there no primal and dual bounded optimal solution that has zero duality gap exists. Of course
it is possible to find a primal and dual feasible solution such that the duality gap is close to
zero, however, s} will be very large (unless a large duality gap is allowed). This is likely to
make the problem (9.29) hard to solve.

132 CHAPTER 9. MODELLING

An inspection of problem (9.29) reveals the constraint x; = 0, which implies that x3 = 0.
If we either add the redundant constraint

1’3:0

to the problem (9.29) or eliminate z; and x3 from the problem it becomes easy to solve.

9.5 Nonlinear convex optimization

MOSEK is capable of solving smooth convex nonlinear optimization problems of the form

minimize f(x)+clz

subject to g(x)+ Az —z¢ = 0,
lC < xc < uC (9'31)
r < x < u”,

where

e m is the number of constraints.

n 1s the number of decision variables.

e 1 € R" is a vector of decision variables.

z¢ € R™ is a vector of constraints or slack variables.

e ¢ € R™ is the linear part objective function.
e A€ R™™ is the constraint matrix.

I € R™ is the lower limit? on the activity for the constraints.

u® € R™ is the upper limit on the activity for the constraints.

I” € R™ is the lower limit on the activity for the variables.

u® € R™ is the upper limit on the activity for the variables.

f+ R™ — R is a nonlinear function.

e g: R" — R™ is a nonlinear vector function.

2We will use the words “bound” and “limit” interchangeably.

9.5. NONLINEAR CONVEX OPTIMIZATION 133

This means that the ¢th constraint has the form

n

I < gi(z)+) aijwy <uf
j=1

when the z{ variable has been eliminated.

The linear term Az is not included in g(z) since it can be handled much more efficiently
as a separate entity when optimizing.

The nonlinear functions f and g must be smooth (twice differentiable) in all x € [I%; u®].
Moreover, f(x) must be a convex function and g;(z) must satisfy

lf =—0c0 = gi(z) Iis convex,
uf =00 = g;(x) Iis concave,
—oo <l <uf <oo = gi(z)=0.

(2

9.5.1 Duality

So far, we have not discussed what happens when MOSEK is used to solve a primal or dual
infeasible problem. In the subsequent section these issues are addressed.

Similar to the linear case, MOSEK reports dual information in the general nonlinear case.
Indeed in this case the Lagrange function is defined by

L(z® 2.y, s, 85,57, 5%) = fla)+cla+cf
yT'(Az + g(x) — z°)
si) " (2¢ = 1°) = (s5)" (u® — z°)

(i
(s7)T (2 = 17) = (s3) " (u” — 2).

u

and the dual problem is given by

maximize L(x x,y,sf, s, s7,st)
subject to V(mL-’x)L(:cC,x,y,sf,sﬁ,sf, sty = 0,
S?’ Slcu S?:a Si Z 0

which is equivalent to

maximize f(x) —y"g(z) — 2T (Vf(2)" = Vg(2)y)
() — ()T, + (10)Tsf = (u?) sy + ¢
subject to ~Vf()' + ATy +Vg(z)Ty + sF — 5% = ¢ (9.32)
—y + 8] — s, = 0,
sy, 84, 57,8y > 0.

134 CHAPTER 9. MODELLING

9.6 Recommendations

Often an optimization problem can be formulated in several different ways, and the exact
formulation used may have a significant impact on the solution time and the quality of the
solution. In some cases the difference between a “good” and a “bad” formulation means the
ability to solve the problem or not.

Below is a list of several issues that you should be aware of when developing a good
formulation.

1. Sparsity is very important. The constraint matrix A is assumed to be a sparse matrix,
where sparse means that it contains many zeros (typically less than 10% non-zeros).
Normally, when A is sparser, less memory is required to store the problem and it can
be solved faster.

2. Avoid large bounds as these can introduce all sorts of numerical problems. Assume that
a variable x; has the bounds

0.0 < z; < 1.0el6.

The number 1.0el6 is large and it is very likely that the constraint z; < 1.0el6 is
non-binding at optimum, and therefore that the bound 1.0el6 will not cause problems.
Unfortunately, this is a naive assumption because the bound 1.0e16 may actually affect
the presolve, the scaling, the computation of the dual objective value, etc. In this case
the constraint x; > 0 is likely to be sufficient, i.e. 1.0el6 is just a way of representing
infinity.

3. Avoid large penalty terms in the objective, i.e. do not have large terms in the linear
part of the objective function. They will most likely cause numerical problems.

4. On a computer all computations are performed in finite precision, which implies that
1=1+¢

where ¢ is about 1076, This means that the results of all computations are truncated
leading to the introduction of rounding errors. The upshot is that very small numbers
and very large numbers should be avoided, e.g. it is recommended that all elements in
A are either zero or belong to the interval [107¢,106]. The same holds for the bounds
and the linear objective.

5. Decreasing the number of variables or constraints does not necessarily make it easier to
solve a problem. In certain cases, i.e. in nonlinear optimization, it might be a good idea
to introduce more constraints and variables if it makes the model separable. Also a big
but sparse problem might be advantageous compared to a smaller but denser problem.

9.7. EXAMPLES CONTINUED 135

6. Try to avoid linearly dependent rows among the linear constraints. Network flow prob-
lems and multi-commodity network flow problems, for example, often contain one or
more linearly dependent rows.

7. Finally, it is recommended to consult some of the papers about preprocessing to get
some ideas about efficient formulations. See e.g. [1, 6, 18, 19].

9.6.1 Avoid nearly infeasible models

Consider the linear optimization problem

minimize
subject to T+y < 10710 4 q,
6 (9.33)
1.0edx 4+ 2.0edy > 107°,
x,y > 0.
Clearly, the problem is feasible for a = 0. However, for « = —1.0e — 10 the problem is

infeasible. This implies that an insignificant change in the right side of the constraints makes
the problem status switch from feasible to infeasible. Such a model should be avoided.

9.7 Examples continued

9.7.1 The absolute value

Assume we have a constraint for the form
[fTz+gl <b (9.34)

where x € R" is a vector of variables, and f € R™ and ¢g,b € R are constants.
It is easy to verify that the constraint (9.34) is equivalent to

—b<fle+g—t<b (9.35)

which is a set of ordinary linear inequality constraints.
Please note that equalities involving and absolute value such as

|z =1

cannot be formulated as a linear or even a convex optimization problem. It requires integer
optimization.

136 CHAPTER 9. MODELLING

9.7.2 The Markowitz portfolio model

In this section we will show how to model several versions of the Markowitz portfolio model
using conic optimization.

The Markowitz portfolio model deals with the problem of selecting a portfolio of assets
i.e. stocks, bonds, etc. The goal is to find a portfolio such that for a given return the risk is
minimized. The assumptions are:

e A portfolio can consist of n traded assets numbered 1,2,... held over a period of time.

. w? is the initial holding of asset j where w? > 0.

e r; is the return on asset j and is assumed to be a random variable. has known mean
7 and covariance .

The variable z; denotes the amount of asset j traded in the given period of time and has the
following meaning;:

e If 2; > 0, then the amount of asset j is increased (by purchasing).
e If 2; <0, then the amount of asset j is decreased (by selling).
The model deals with two central quantities:

e Expected return:
Efrt(w® +z)] = 7" (w® + z).

e Variance (Risk):
VirT(w® +)] = (w° +)78 (W’ + z).

By definition ¥ is positive semi-definite and

Std. dev. = |[X2(w’+)
= [|[LT(w + 2)
where L is any matrix such that
Y=LL"

A low rank of ¥ is advantageous from a computational point of view. A valid L can always
be computed as the Cholesky factorization of X.

9.7. EXAMPLES CONTINUED 137

9.7.2.1 Minimizing variance for a given return

In our first model we want to minimize the variance while selecting a portfolio with a specified
expected target return ¢. Additionally the portfolio must satisfy the budget (self-financing)
constraint asserting that the total amount of assets sold must equal the total amount of assets
purchased. This is expressed in the model

minimize V[r? (w® +)]
subject to E[rT(w® +2)] = t, (9.36)
el = 0,
where e := (1,...,1)7. Using the definitions above this may be formulated as a quadratic

optimization problem:
minimize (w® + 2)T X (w® + z)
subject to 7 (w? +) = t, (9.37)
el = 0,
9.7.2.2 Conic quadratic reformulation.

An equivalent conic quadratic reformulation is given by:

minimize f
subject to E%(wo +z)—g = 0,
Pl (w’ +2) = t, (9.38)
el = 0,
f=lgll-

Here we minimize the standard deviation instead of the variance. Please note that E% can be
replaced by any matrix L where ¥ = LLT. A low rank L is computationally advantageous.

9.7.2.3 Transaction costs with market impact term

We will now expand our model to include transaction costs as a fraction of the traded volume.
[1, pp. 445-475] argues that transaction costs can be modelled as follows

bid trade vol
commission + —— — spread + 6 w, (9.39)
ask daily volume

and that these are important to incorporate into the model.
In the following we deal with the last of these terms denoted the market impact term. If
you sell (buy) a lot of assets the price is likely to go down (up). This can be captured in the

market impact term
trade volume
Oy | ————— = mj\/|zjl.
daily volume

138 CHAPTER 9. MODELLING

The 6 and “daily volume” have to be estimated in some way, i.e.
0
vdaily volume

has to be estimated. The market impact term gives the cost as a fraction of daily traded
volume (|z]). Therefore, the total cost when trading an amount z; of asset j is given by

m; =

1
|z 5| (mylas]2).

This leads us to the model:

minimize f
subject to E%(wo +z)—g = 0,
T (.0
7 (w” + x) = t
’ 4
ez +ely = 0, (9.-40)
1
il (mgles]2) <y
f=lgll-
Now, defining the variable transformation
Yj = myy;
we obtain
minimize f
subject to E%(wo +x)—g = 0,
“T (.0
™ (w” +) =t
’ 9.41
ez +mly = 0, ()
;> < U
f=1gl-
As shown in Section 9.4.4.3 the set
;% < g
can be modelled by
xj S Zj,
—CC%' S Zj,
z]2 < 2s;¥;,
2 < o
US04 (9.42)
z5 = Uy,
Sj 11‘33
QJ = 3
455,955, q5 = 0.
9.7.2.4 Further reading
For further reading please see the reader to [21] in particular, and [24] and [!], which also

contain relevant material.

Chapter 10

The optimizers for continuous
problems

The most essential part of MOSEK is the optimizers. Each optimizer is designed to solve a
particular class of problems i.e. linear, conic, or general nonlinear problems. The purpose of
the present chapter is to discuss which optimizers are available for the continuous problem
classes and how the performance of an optimizer can be tuned, if needed.

This chapter deals with the optimizers for continuous problems with no integer variables.

10.1 How an optimizer works

When the optimizer is called, it roughly performs the following steps:

Presolve: Preprocessing to reduce the size of the problem.

Dualizer: Choosing whether to solve the primal or the dual form of the problem.
Scaling: Scaling the problem for better numerical stability.

Optimize: Solving the actual optimization.

The first three preprocessing steps are transparent to the user, but useful to know about for
tuning purposes. In general, the purpose of the preprocessing steps is to make the actual
optimization more efficient and robust.

10.1.1 Presolve

Before an optimizer actually performs the optimization the problem is normally preprocessed
using the so-called presolve. The purpose of the presolve is to

e remove redundant constraints,

139

140 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

e climinate fixed variables,

e remove linear dependencies,

e substitute out free variables, and

e reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so
that the returned solution is valid for the original problem. Hence, the presolve is completely
transparent. For further details about the presolve phase, please see [1, 0].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If the
presolve is known to be unable to reduce the size of a problem significantly, then turning off
the presolve is beneficial. This is done by setting the parameter MSK_IPAR_PRESOLVE_USE to
MSK_PRESOLVE_MODE_QOFF.

The two most time-consuming steps of the presolve are usually

e the eliminator, and

e the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.
The purpose of the eliminator is to eliminate free and implied free variables from the
problem using substitution. For instance, given the constraints

y = ijjv

y,x = 0

y is an implied free variable that can be substituted out of the problem, if deemed worthwhile.
By implied free variable is meant that the constraint y > 0 is redundant and hence y can be
treated as a free variable.

For large scale problems the eliminator usually removes many constraints and variables.
However, in some cases few or no eliminations can be performed and moreover, the eliminator
may consume a lot of memory and time. If this is the case it is worthwhile to disable the
eliminator by setting the parameter MSK_IPAR PRESOLVE ELIMINATOR USE to MSK_OFF.

The purpose of the linear dependency check is to remove linear dependencies among the
linear equalities. For instance, the three linear equalities

1+ +x3 = 1,
1 +0.529 = 0.5,
0.529+23 = 0.5

contain exactly one linear dependency. This implies that one of the constraints can be dropped
without changing the set of feasible solutions, i.e. one of the constraints is redundant. Remov-
ing linear dependencies is in general a good idea since it reduces the size of the problem. More-
over, the linear dependencies are likely to introduce numerical problems in the optimization

10.1. HOW AN OPTIMIZER WORKS 141

phase, and therefore it is strongly recommended to build models without linear dependencies.
In case the linear dependencies are removed at the modelling stage, the linear dependency
check can safely be disabled by setting the parameter MSK_IPAR PRESOLVE_LINDEP USE to
MSK_QOFF.

10.1.2 Dualizer

It is well-known that all linear, conic, and convex optimization problems have an associated
dual problem. Moreover, even if the dual instead of the primal problem is solved, it is possible
to recover the solution to the original primal problem.

In general, it is very hard to say whether it is easier to solve the primal or the dual problem
but MOSEK has some heuristics for deciding which of the two problems to solve. Which form
of the problem (primal or dual) that is solved is displayed in the MOSEK log. Please note
that the dualizer is transparent, and all solution values returned by the optimizer refer to the
original primal problem.

The dualizer can be controlled manually by setting the parameters:

e MSK_IPAR_INTPNT_SOLVE_FORM: In case of the interior-point optimizer.
e MSK_TPAR_SIM_SOLVE_FORM: In case of the simplex optimizer.

Finally, please note that currently only linear problems may be dualized.

10.1.3 Scaling

Problems containing data with large and/or small coefficients, say 1.0e+9 or 1.0e-7, are often
hard to solve. Significant digits might be truncated in calculations with finite precision, which
can result in the optimizer relying on inaccurate calculations. Since computers work in finite
precision, extreme coefficients should be avoided. In general, data around the same “order
of magnitude” is preferred, and we will refer to a problem, satisfying this loose property,
as being well-scaled. If the problem is not well scaled, MOSEK will try to scale (multiply)
constraints and variables by suitable constants. MOSEK solves the scaled problem to improve
the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported.
It is important to be aware that the optimizer terminates when the termination criterion is
met on the scaled problem, therefore significant primal or dual infeasibilities may occur after
unscaling for badly scaled problems. The best solution to this problem is to reformulate it,
making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point
and simplex optimizers can be controlled with the parameters

MSK_IPAR_INTPNT_SCALING and MSK_IPAR_SIM SCALING

respectively.

142 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

10.1.4 Using multiple CPU’s

The interior-point optimizers in MOSEK have been parallelized. This means that if you
solve linear, quadratic, conic, or general convex optimization problem using the interior-point
optimizer, you can take advantage of multiple CPU’s.

By default MOSEK uses one thread to solve the problem, but the number of threads (and
thereby CPUs) employed can be changed by setting the parameter MSK_IPAR_INTPNT_NUM_THREADS
This should never exceed the number of CPU’s on the machine.

The speed-up obtained when using multiple CPUs is highly problem and hardware de-
pendent, and consequently, it is advisable to compare single threaded and multi threaded
performance for the given problem type to determine the optimal settings.

For small problems, using multiple threads will probably not be worthwhile.

10.2 Linear optimization

10.2.1 Optimizer selection

For linear optimization problems two different types of optimizers are available. The default
for linear problems is an interior-point optimizer, however, as an alternative the simplex
optimizer can be employed.

The curious reader can consult [25] for a discussion about interior-point and simplex
algorithms.

10.2.2 The interior-point optimizer

The MOSEK interior-point optimizer is an implementation of the homogeneous and self-dual
algorithm. For a detailed description of the algorithm, please see [11].

10.2.2.1 Basis identification

It is well-known that an interior-point optimizer does not return an optimal basic solution un-
less the problem has a unique primal and dual optimal solution. Therefore, the interior-point
optimizer has an optional post-processing step that computes an optimal basic solution start-
ing from the optimal interior-point solution. More information about the basis identification
procedure is found in [3].

Please note that a basic solution is often more accurate than an interior-point solution.

By default MOSEK performs a basis identification, however, if a basic solution is not
needed, the basis identification procedure can be turned off. The parameters

e MSK_IPAR_INTPNT_BASIS,

e MSK_IPAR BI IGNORE MAX_ITER, and

10.2. LINEAR OPTIMIZATION 143

Parameter name Purpose

MSK _DPAR_INTPNT_TOL_PFEAS Controls primal feasibility.

MSK_DPAR_INTPNT_TOL_DFEAS Controls dual feasibility.

MSK DPAR_INTPNT_TOL_REL_GAP Controls relative gap.

MSK_DPAR_INTPNT_TOL_INFEAS Controls when the problem is declared primal or dual infeasible.
MSK DPAR_INTPNT TOL MU RED Controls when the complementarity is reduced enough.

Table 10.1: Parameters employed in termination criterion.

e MSK_TPAR _BI_TGNORE_NUM_ERROR

controls when basis identification is performed.

10.2.2.2 Interior-point termination criterion

The parameters in Table 10.1 control when the interior-point optimizer terminates.

10.2.3 The simplex based optimizer

An alternative to the interior-point optimizer is the simplex optimizer. The simplex optimizer
employs a different approach than the interior-point optimizer when solving a problem. Con-
trary to the interior-point optimizer the simplex optimizer can exploit a guess for the optimal
solution to reduce solution time. Depending on the problem it may be faster or slower to
exploit a guess for the optimal solution. See Section 10.2.4 for a discussion.

MOSEK provides both a primal and a dual variant of the simplex optimizer — we will
return to this later.

10.2.3.1 Simplex termination criterion

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility
certificate. A basic solution is optimal when it is primal and dual feasible, see (9.1) and
(9.2) for a definition of the primal and dual problem. Due the fact that to computations are
performed in finite precision MOSEK allows violation of primal and dual feasibility within
certain tolerances. The user can control the allowed primal and dual infeasibility with the
parameters MSK _DPAR_BASIS _TOL_X and MSK_DPAR_BASIS_TOL_S.

10.2.3.2 Starting from an existing solution

When using the simplex optimizer it may be possible to reuse an existing solution and thereby
reduce the solution time significantly. When a simplex optimizer starts from an existing
solution it is said to perform a “hot-start”. If the user is solving a sequence of optimization
problems by solving the problem, making modifications, and solving again, MOSEK will
hot-start automatically.

144 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Setting the parameter MSK_IPAR_OPTIMIZER to MSK_OPTIMIZER FREE SIMPLEX instructs
MOSEK to select automatically between the primal and the dual simplex optimizers. Hence,
MOSEK tries to choose the best optimizer given the problem and the available solution.

By default MOSEK uses presolve when performing a hot-start. If the optimizer only needs
very few iterations to find the optimal solution it may be better to turn off the presolve.

10.2.3.3 Numerical difficulties in the simplex optimizers

MOSEK is designed to minimize numerical difficulties, however, in rate cases the optimizer
may have a hard time solving a problem. MOSEK counts a numerical unexpected behavior
inside the optimizer as a “set-back”. The user can define how many set-backs the optimizer
accepts, and if that number is exceeded, the optimization will be aborted. Set-Backs are
implemented to avoid long sequences where the optimizer tries to recover from an unstable
situation.

What counts as a set-back? It is hard to say without getting very technical but obvious
cases are repeated singularities when factorizing the basis matrix, repeated loss of feasibility,
degeneracy problems (no progress in objective) or other events indicating numerical difficul-
ties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled.
In such a situation try to reformulate into a better scaled problem. If a lot of set-backs still
occur, then trying one or more of the following suggestions may be worthwhile.

e Raise tolerances for allowed primal or dual feasibility: Hence, increase the value of

— MSK_DPAR_BASIS_TOL X, and
— MSK_DPAR_BASIS_TOL_S.

e Raise or lower pivot tolerance: Change the MSK_DPAR_SIMPLEX ABS _TOL _PIV parameter.
e Switch optimizer: Try another optimizer.

e Switch off crash: Set both MSK_TIPAR_SIM PRIMAL_CRASH and MSK_IPAR_SIM DUAL_CRASH
to 0.

e Experiment with other pricing strategies: Try different values for the parameters

— MSK_IPAR_SIM PRIMAL_SELECTION and
— MSK_IPAR_SIM_DUAL_SELECTION.

e If you are using hot-starts, in rare cases switching off this feature may improve stability.
This is controlled by the MSK_IPAR_SIM HOTSTART parameter.

e Increase maximum set-backs allowed controlled by MSK_IPAR_SIM MAX NUM_SETBACKS.

e If the problem repeatedly becomes infeasible try switching off the special degeneracy
handling. See the parameter MSK_IPAR_SIM DEGEN for details.

10.3. LINEAR NETWORK OPTIMIZATION 145

10.2.4 The interior-point or the simplex optimizer?

Given a linear optimization problem, which optimizer is the best: The primal simplex, the
dual simplex or the interior-point optimizer?

It is impossible to provide a general answer to this question, however, the interior-point
optimizer behaves more predictably — it tends to use between 20 and 100 iterations, almost
independently of problem size — but cannot perform hot-start, while simplex can take advan-
tage of an initial solution, but is less predictable for cold-start. The interior-point optimizer
is used by default.

10.2.5 The primal or the dual simplex variant?

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex
optimizer is faster is simply impossible, however, in recent years the dual optimizer has expe-
rienced several algorithmic and computational improvements, which, in our experience, makes
it faster on average than the primal simplex optimizer. Still, it depends much on the problem
structure and size.

Setting the MSK_IPAR_OPTIMIZER parameter to MSK_OPTIMIZER FREE SIMPLEX instructs
MOSEK to choose which simplex optimizer to use automatically.

To summarize, if you want to know which optimizer is faster for a given problem type,
you should try all the optimizers.

10.3 Linear network optimization

10.3.1 Network flow problems

Linear optimization problems with the network flow structure specified in Section 9.2 can in
most cases be solved significantly faster with a specialized version of the simplex method [2],
rather than with the general solvers.

MOSEK includes a network simplex solver, which usually solves network problems 10 to
100 times faster than the standard simplex optimizers implemented by MOSEK.

To use the network simplex optimizer, do the following

e Input the network flow problem as an ordinary linear optimization problem.
e Set

— the MSK_TPAR_SIM NETWORK_DETECT parameter to 0, and
— the MSK_IPAR_OPTIMIZER parameter to MSK_OPTIMIZER FREE_SIMPLEX.

e Optimize the problem.

MOSEK will automatically detect the network structure and apply the specialized simplex
optimizer.

146 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Parameter name Purpose

MSK_DPAR_INTPNT_CO_TOL_PFEAS Controls primal feasibility
MSK_DPAR_INTPNT_CO_TOL_DFEAS Controls dual feasibility

MSK_DPAR_INTPNT CO_TOL_REL_GAP Controls relative gap

MSK_DPAR_INTPNT_TOL_INFEAS Controls when the problem is declared infeasible
MSK_DPAR_INTPNT _CO_TOL MU RED Controls when the complementarity is reduced enough

Table 10.2: Parameters employed in termination criterion.

10.3.2 Embedded network problems

Often problems contains both large parts with network structure and some non-network con-
straints or variables — such problems are said to have embedded network structure. If the
procedure described above is applied, MOSEK will try to exploit this structure to speed up
the optimization.

This is done by heuristically detecting the largest network embedded in the problem,
solving this using the network simplex optimizer, and using this solution to hot-start a normal
simplex optimizer.

The MSK_IPAR_SIM NETWORK DETECT parameter defines how large a percentage of the prob-
lem should be a network before the specialized solver is applied. In general, it is recommended
to use the network optimizer only on problems containing a substantial embedded network.

10.4 Conic optimization

10.4.1 The interior-point optimizer

For conic optimization problems only an interior-point type optimizer is available. The
interior-point optimizer is an implementation of the so-called homogeneous and self-dual al-
gorithm. For a detailed description of the algorithm, please see [7].

10.4.1.1 Interior-point termination criteria

The parameters controlling when the conic interior-point optimizer terminates are shown in
Table 10.2.

10.5 Nonlinear convex optimization

10.5.1 The interior-point optimizer

For quadratic, quadratically constrained, and general convex optimization problems only an
interior-point type optimizer is available. The interior-point optimizer is an implementation of

10.6. SOLVING PROBLEMS IN PARALLEL 147

Parameter name Purpose

MSK_DPAR_INTPNT_NL_TOL_PFEAS Controls primal feasibility
MSK_DPAR_INTPNT_NL_TOL_DFEAS Controls dual feasibility
MSK_DPAR_INTPNT NL_TOL REL_GAP Controls relative gap

MSK_DPAR_INTPNT_TOL_INFEAS Controls when the problem is declared infeasible

MSK DPAR_INTPNT NL_TOL MU RED Controls when the complementarity is reduced enough

Table 10.3: Parameters employed in termination criteria.

the homogeneous and self-dual algorithm. For a detailed description of the algorithm, please
see [9, 10].

10.5.1.1 Interior-point termination criteria

The parameters controlling when the general convex interior-point optimizer terminates are
shown in Table 10.3.

10.6 Solving problems in parallel

If a computer has multiple CPUs, or has a CPU with multiple cores, it is possible for MOSEK
to take advantage of this to speed up solution times.

10.6.1 Thread safety

The MOSEK API is thread-safe provided that a task is only modified or accessed from one
thread at any given time — accessing two separate tasks from two separate threads at the
same time is safe. Sharing an environment between threads is safe.

10.6.2 The parallelized interior-point optimizer

The interior-point optimizer is capable of using multiple CPUs or cores. This implies that
whenever the MOSEK interior-point optimizer solves an optimization problem, it will try to
divide the work so that each CPU gets a share of the work. The user decides how many CPUs
MOSEK should exploit.

It is not always possible to divide the work equally, and often parts of the computations
and the coordination of the work is processed sequentially, even if several CPUs are present.
Therefore, the speed-up obtained when using multiple CPUs is highly problem dependent.
However, as a rule of thumb, if the problem solves very quickly, i.e. in less than 60 seconds,
it is not advantageous to use the parallel option.

The MSK_IPAR_INTPNT _NUM_THREADS parameter sets the number of threads (and therefore
the number of CPUs) that the interior point optimizer will use.

148 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Optimizer Associated Default

parameter priority
MSK_OPTIMIZER_INTPNT MSK_TPAR_CONCURRENT_PRIORITY_INTPNT 4
MSK_OPTIMIZER _FREE_SIMPLEX MSK_TPAR_CONCURRENT_PRIORITY FREE_SIMPLEX 3
MSK_OPTIMIZER_PRIMAL _STIMPLEX | MSK_IPAR_CONCURRENT _PRIORITY _PRIMAL_SIMPLEX 2
MSK_OPTIMIZER_DUAL_SIMPLEX MSK_TIPAR_CONCURRENT_PRIORITY DUAL_SIMPLEX 1

Table 10.4: Default priorities for optimizer selection in concurrent optimization.

10.6.3 The concurrent optimizer

An alternative to the parallel interior-point optimizer is the concurrent optimizer. The idea of
the concurrent optimizer is to run multiple optimizers on the same problem concurrently, for
instance, it allows you to apply the interior-point and the dual simplex optimizers to a linear
optimization problem concurrently. The concurrent optimizer terminates when the first of
the applied optimizers has terminated successfully, and it reports the solution of the fastest
optimizer. In that way a new optimizer has been created which essentially performs as the
fastest of the interior-point and the dual simplex optimizers.Hence, the concurrent optimizer
is the best one to use if there are multiple optimizers available in MOSEK for the problem
and you cannot say beforehand which one will be faster.

Note in particular that any solution present in the task will also be used for hot-starting
the simplex algorithms. One possible scenario would therefore be running a hot-start dual
simplex in parallel with interior point, taking advantage of both the stability of the interior-
point method and the ability of the simplex method to use an initial solution.

By setting the

MSK_IPAR_OPTIMIZER
parameter to
MSK_OPTIMIZER_CONCURRENT

the concurrent optimizer chosen.
The number of optimizers used in parallel is determined by the

MSK_TIPAR_CONCURRENT _NUM_OPTIMIZERS.

parameter. Moreover, the optimizers are selected according to a preassigned priority with opti-
mizers having the highest priority being selected first. The default priority for each optimizer
is shown in Table 10.6.3. For example, setting the MSK_IPAR_CONCURRENT _NUM_OPTIMIZERS
parameter to 2 tells the concurrent optimizer to the apply the two optimizers with highest
priorities: In the default case that means the interior-point optimizer and one of the simplex
optimizers.

10.6. SOLVING PROBLEMS IN PARALLEL 149

10.6.3.1 Concurrent optimization through the API

The following example shows how to call the concurrent optimizer through the API.

10.6.4 A more flexible concurrent optimizer

MOSEK also provides a more flexible method of concurrent optimization by using the func-
tion MSK optimizeconcurrent. The main advantages of this function are that it allows the
calling application to assign arbitrary values to the parameters of each tasks, and that call-
back functions can be attached to each task. This may be useful in the following situation:
Assume that you know the primal simplex optimizer to be the best optimizer for your prob-
lem, but that you do not know which of the available selection strategies (as defined by the
MSK_IPAR_SIM PRIMAL_SELECTION parameter) is the best. In this case you can solve the prob-
lem with the primal simplex optimizer using several different selection strategies concurrently.

An example demonstrating the usage of the MSK_optimizeconcurrent function is included
below. The example solves a single problem using the interior-point and primal simplex
optimizers in parallel.

150 CHAPTER 10. THE OPTIMIZERS FOR CONTINUOUS PROBLEMS

Chapter 11

The optimizer for mixed integer
problems

A problem is a mixed integer optimization problem when one or more of the variables are
constrained to be integers. The integer optimizer available in MOSEK can solve integer
optimization problems involving

e linear,
e quadratic and

e conic

constraints. However, a problem is not allowed to have both conic constraints and quadratic
objective or constraints.

Readers unfamiliar with integer optimization are strongly recommended to consult some
relevant literature, e.g. the book [28] by Wolsey is a good introduction to integer optimization.

11.1 Some notation

In general, an integer optimization problem has the form

z* = minimize T
subject to ¢ < Az <
r < Ax < u‘”’ (11.1)
T; € Z, VieJd,

where J is an index set specifying which variables are integer constrained. Frequently we talk
about the continuous relaxation of an integer optimization problem defined as

z = minimize A
subject to ¢ < Az < S (11.2)
I < Az < u*

151

152 CHAPTER 11. THE OPTIMIZER FOR MIXED INTEGER PROBLEMS

i.e. we ignore the constraint
i€ Z, VjeJ.

Moreover, let & be any feasible solution to (11.1) and define

z:=cl'z.
It should be obvious that
2<z2"<z

holds. This is an important observation since if we assume that it is not possible to solve
the mixed integer optimization problem within a reasonable time frame, but that a feasible
solution can be found, then the natural question is: How far is the obtained solution from the
optimal solution? The answer is that no feasible solution can have an objective value smaller
than z, which implies that the obtained solution is no further away from the optimum than
zZ— 2.

11.2 An important fact about integer optimization problems

It is important to understand that in a worst-case scenario, the time required to solve integer
optimization problems grows exponentially with the size of the problem. For instance, assume
that a problem contains n binary variables, then the time required to solve the problem in
the worst case may be proportional to 2™. It is a simple exercise to verify that 2" is huge even
for moderate values of n.

In practice this implies that the focus should be on computing a near optimal solution
quickly rather than at locating an optimal solution.

11.3 How the integer optimizer works
The process of solving an integer optimization problem can be split in three phases:

Presolve: In this phase the optimizer tries to reduce the size of the problem using prepro-
cessing techniques. Moreover, it strengthens the continuous relaxation, if possible.

Heuristic: Using heuristics the optimizer tries to guess a good feasible solution.
Optimization: The optimal solution is located using a variant of the branch-and-cut method.

In some cases the integer optimizer may locate an optimal solution in the preprocessing
stage or conclude that the problem is infeasible. Therefore, the heuristic and optimization
stages may never be performed.

11.4. TERMINATION CRITERION 153

11.3.1 Presolve

In the preprocessing stage redundant variables and constraints are removed. The presolve
stage can be turned off using the MSK_TPAR MIO PRESOLVE_ USE parameter .

11.3.2 Heuristic

Initially, the integer optimizer tries to guess a good feasible solution using different heuristics:
e First a very simple rounding heuristic is employed.
e Next, if deemed worthwhile, the feasibility pump heuristic is used.

e Finally, if the two previous stages did not produce a good initial solution, more sophis-
ticated heuristics are used.

The following parameters can be used to control the effort made by the integer optimizer
to find an initial feasible solution.

e MSK_IPAR_MIO_HEURISTIC_LEVEL: Controls how sophisticated and computationally ex-
pensive a heuristic to employ.

e MSK_DPAR_MIO_HEURISTIC_TIME: The minimum amount of time to spend in the heuristic
search.

e MSK _IPAR MIO FEASPUMP LEVEL: Controls how aggressively the feasibility pump heuristic
is used.

11.3.3 The optimization phase

This phase solves the problem using the branch and cut algorithm.

11.4 Termination criterion

In general, it is impossible to find an exact feasible and optimal solution to an integer op-
timization problem in a reasonable amount of time, though in many practical cases it may
be possible. Therefore, the integer optimizer employs a relaxed feasibility and optimality
criterion to determine when a satisfactory solution is located.
A candidate solution, i.e. a solution to (11.2), is said to be an integer feasible solution if
the criterion
min(|z;| — |2;], [2;] = [;]) < max(d1, 02]2;5]) Vj € T

is satisfied. Hence, such a solution is defined as a feasible solution to (11.1).

154 CHAPTER 11. THE OPTIMIZER FOR MIXED INTEGER PROBLEMS

Tolerance Parameter name

01 MSK_DPAR_MIO_TOL_ABS_RELAX_INT
09 MSK_DPAR_MIO_TOL_REL_RELAX_INT
03 MSK_DPAR_MIO_TOL_ABS_GAP

04 MSK_DPAR_MIO_TOL_REL_GAP

05 MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
d6 MSK_DPAR_MIO_NEAR_TOL_REL_GAP

Table 11.1: Integer optimizer tolerances.

Parameter name Delayed Explanation
MSK_IPAR_MIO_MAX_NUM_BRANCHES Yes Maximum number of branches allowed.
MSK_TPAR_MIO_MAX_NUM_RELAXS Yes Maximum number of relaxations allowed.

Table 11.2: Parameters affecting the termination of the integer optimizer.

Whenever the integer optimizer locates an integer feasible solution it will check if the
criterion

Z — z < max(63, 04 max(1, |Z]))

is satisfied. If this is the case, the integer optimizer terminates and reports the integer feasible
solution as an optimal solution. Please note that z is a valid lower bound determined by the
integer optimizer during the solution process, i.e.

z <z

The lower bound z normally increases during the solution process.

The § tolerances can are specified using parameters — see Table 11.1. If an optimal
solution cannot be located within a reasonable time, it may be advantageous to employ
a relaxed termination criterion after some time. Whenever the integer optimizer locates
an integer feasible solution and has spent at least the number of seconds defined by the
MSK_DPAR_MIO_DISABLE_TERM_TIME parameter on solving the problem, it will check whether
the criterion

Z — z < max(d5, 6 max(1, [Z]))

is satisfied. If it is satisfied, the optimizer will report that the candidate solution is near
optimal and then terminate. All § tolerances can be adjusted using suitable parame-
ters — see Table 11.1. In Table 11.2 some other parameters affecting the integer opti-
mizer termination criterion are shown. Please note that if the effect of a parameter is de-
layed, the associated termination criterion is applied only after some time, specified by the
MSK_DPAR_MIO DISABLE TERM_TIME parameter.

11.5. HOW TO SPEED UP THE SOLUTION PROCESS 155

11.5 How to speed up the solution process

As mentioned previously, in many cases it is not possible to find an optimal solution to an
integer optimization problem in a reasonable amount of time. Some suggestions to reduce the
solution time are:

e Relax the termination criterion: In case the run time is not acceptable, the first thing
to do is to relax the termination criterion — see Section 11.4 for details.

e Specify a good initial solution: In many cases a good feasible solution is either known or
easily computed using problem specific knowledge. If a good feasible solution is known,
it is usually worthwhile to use this as a starting point for the integer optimizer.

e Improve the formulation: A mixed integer optimization problem may be impossible to
solve in one form and quite easy in another form. However, it is beyond the scope of
this manual to discuss good formulations for mixed integer problems. For discussions
on this topic see for example [28].

156 CHAPTER 11. THE OPTIMIZER FOR MIXED INTEGER PROBLEMS

Chapter 12

Analyzing infeasible problems

When developing and implementing a new optimization model, the first attempts will often be
either infeasible, due to specification of inconsistent constraints, or unbounded, if important
constraints have been left out.

In this chapter we will

e go over an example demonstrating how to locate infeasible constraints using the MOSEK
infeasibility report tool,

e discuss in more general terms which properties that may cause infeasibilities, and

e present the more formal theory of infeasible and unbounded problems.

12.1 Example: Primal infeasibility

A problem is said to be primal infeasible if no solution exists that satisfy all the constraints
of the problem.

As an example of a primal infeasible problem consider the problem of minimizing the cost
of transportation between a number of production plants and stores: Each plant produces a
fixed number of goods, and each store has a fixed demand that must be met. Supply, demand
and cost of transportation per unit are given in figure 12.1.

The problem represented in figure 12.1 is infeasible, since the total demand

2300 = 1100 + 200 + 500 + 500 (12.1)

exceeds the total supply
2200 = 200 + 1000 + 1000 (12.2)

157

158 CHAPTER 12. ANALYZING INFEASIBLE PROBLEMS

Supply Demand
1100
200
200
1000
500
1000
500

Figure 12.1: Supply, demand and cost of transportation.

If we denote the number of transported goods from plant ¢ to store j by z;;, the problem can
be formulated as the LP:

minimize 11 + 2712 + OSwo3 + 2woq4 + w31 + 2733 + T34
subject to T11 + T2 < 200,
T23 + T4 < 1000,
r31 + w33 + w34 < 1000,
r11 + x31 = 1100,
T12 = 200,
T3 + 33 = 500,
Toq4 + xr34 = 500,
(12.3)

Solving the problem (12.3) using MOSEK will result in a solution, a solution status and a
problem status. Among the log output from the execution of MOSEK on the above problem
are the lines:

Basic solution
Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER

The first line indicates that the problem status is primal infeasible. The second line says that

12.1. EXAMPLE: PRIMAL INFEASIBILITY 159

a certificate of the infeasibility was found. The certificate is returned in place of the solution
to the problem.

12.1.1 Locating the cause of primal infeasibility

Usually a primal infeasible problem status is caused by a mistake in formulating the problem
and therefore the question arises: “What is the cause of the infeasible status?” When trying
to answer this question, it is often advantageous to follow these steps:

e Remove the objective function. This does not change the infeasible status but simplifies
the problem, eliminating any possibility of problems related to the objective function.

e Consider whether your problem has some necessary conditions for feasibility and ex-
amine if these are satisfied, e.g. total supply should be greater than or equal to total
demand.

e Verify that coefficients and bounds are reasonably sized in your problem.

If the problem is still primal infeasible, some of the constraints must be relaxed or removed
completely. The MOSEK infeasibility report (Section 12.1.3) may assist you in finding the
constraints causing the infeasibility.

Possible ways of relaxing your problem include:

e Increasing (decreasing) upper (lower) bounds on variables and constraints.

e Removing suspected constraints from the problem.

Returning to the transportation example, we discover that removing the fifth constraint
12 = 200 (12.4)

makes the problem feasible.

12.1.2 Locating the cause of dual infeasibility

A problem may also be dual infeasible. In this case the primal problem is often unbounded,
mening that feasbile solutions exists such that the objective tends towards infinity. An exam-
ple of a dual infeasible and primal unbounded problem is:

minimize T

subject to 1 <5 (12.5)

To resolve a dual infeasibility the primal problem must be made more restricted by

e Adding upper or lower bounds on variables or constraints.
o Removing variables.

e Changing the objective.

160 CHAPTER 12. ANALYZING INFEASIBLE PROBLEMS

12.1.2.1 A cautious note

The problem

minimize 0

subject to 0 <z, (12.6)
1‘j§$j+1, j:1,...,n—1, '
Ty < —1

is clearly infeasible. Moreover, if any one of the constraints are dropped, then the problem
becomes feasible.

This illustrates the worst case scenario that all, or at least a significant portion, of the
constraints are involved in the infeasibility. Hence, it may not always be easy or possible to
pinpoint a few constraints which are causing the infeasibility.

12.1.3 The infeasibility report

MOSEK includes functionality for diagnosing the cause of a primal or a dual infeasibility.
It can be turned on by setting the MSK_IPAR INFEAS REPORT AUTO to MSK_ON. This causes
MOSEK to print a report on variables and constraints involved in the infeasibility.

The MSK_IPAR_INFEAS REPORT_LEVEL parameter controls the amount of information pre-
sented in the infeasibility report. The default value is 1.

12.1.3.1 Example: Primal infeasibility

We will reuse the example (12.3) located in infeas.lp:

\
\ An example of an infeasible linear problem.
\
minimize
obj: + 1 x11 + 2 x12 + 1 x13
+ 4 x21 + 2 x22 + 5 x23
+ 4 x31 + 1 x32 + 2 x33

st
sO: + x11 + x12 <= 200
sl: + x23 + x24 <= 1000
s2: + x31 +x33 + x34 <= 1000
di: + x11 + x31 = 1100
d2: + x12 = 200
d3: + x23 + x33 = 500
dd: + x24 + x34 = 500

bounds

end

12.1. EXAMPLE: PRIMAL INFEASIBILITY

Using the command line

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp

MOSEK produces the following infeasibility report

MOSEK PRIMAL INFEASIBILITY REPORT.

Problem status: The problem is primal infeasible

The following constraints are involved in the primal infeasibility.

Index Name
0 sO
2 s2
3 di
4 d2

The following bound constraints are

Index Name
8 x33
10 x34

Lower bound
NONE

NONE
1.100000e+003
2.000000e+002

Lower bound
0.000000e+000
0.000000e+000

Upper bound

2.000000e+002
1.000000e+003
1.100000e+003
2.000000e+002

Dual lower

0.000000e+000
0.000000e+000
1.000000e+000
1.000000e+000

involved in the infeasibility.

Upper bound
NONE
NONE

Dual lower
1.000000e+000
1.000000e+000

161

Dual upper

1.000000e+000
1.000000e+000
0.000000e+000
0.000000e+000

Dual upper
0.000000e+000
0.000000e+000

The infeasibility report is divided into two sections where the first section shows which con-
straints that are important for the infeasibility. In this case the important constraints are the
ones named s0, s2, d1, and d2. The values in the columns “Dual lower” and “Dual upper”
are also useful,since a non-zero dual lower value for a constraint implies that the lower bound
on the constraint is important for the infeasibility. Similarly, a non-zero dual upper value

implies that the upper bound on the constraint is important for the infeasibility.

It is also possible to obtain the infeasible subproblem. The executing the command

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp

produces the files rinfeas.bas.inf.1p. In this case the content of the file rinfeas.bas.inf.1lp

1S

minimize

Obj: + CFIXVAR

st

sO: + x11 + x12 <= 200
s2: + x31 + x33 + x34 <= 1e+003

162

di:

+ x11 + x31

CHAPTER 12. ANALYZING INFEASIBLE PROBLEMS

= 1.1e+003

d2: + x12 = 200
bounds

x11
x12
x13
x21
x22
x23
x31
x32
x24

free
free
free
free
free
free
free
free
free

CFIXVAR = 0e+000

end

which is an optimization problem. Please note that this optimization problem is identical to
(12.3), except that the objective and some of the constraints and bounds have been removed.
Executing the command

mosek -d MSK_TIPAR_INFEAS_REPORT_AUTO MSK_ON rinfeas.bas.inf.lp

demonstrates that the reduced problem is primal infeasible. However, since the reduced
problem is usually smaller, it should be easier to locate the cause of the infeasibility in this
rather than in the original problem (12.3).

12.1.3.2 Example: Dual infeasibility

The example problem

minimize -

200

- 1100
- 500
subject to
x11: yl+y4
x12: yl+y5
x23: y2+y6
x24: y2+y7
x31: y3+y4
x33: y3+y6
x44: y3+y7
bounds
yl <0
y2 <0

AN NN AN AN AN A

yl - 1000 y2 - 1000 y3
y4 - 200 y5 - 500 y6
y7

1

2

5

2

1

2

1

12.1. EXAMPLE: PRIMAL INFEASIBILITY

y3 <0

y4 free

y5 free

y6 free

y7 free
end

is dual infeasible. This can be verified by proving that

yi=-1, y2=-1, y3=0, y4=1, yb5=1

163

is a certificate of dual infeasibility. In this example the following infeasibility report is produced

(slightly edited):

he following constraints are involved in the infeasibility.

Index Name Activity Objective Lower bound
0 x11 -1.000000e+00 NONE
4 x31 -1.000000e+00 NONE

The following variables are involved in the infeasibility.

Index Name Activity Objective Lower bound
3 y4 -1.000000e+00 -1.100000e+03 NONE
Interior-point solution

Problem status : DUAL_INFEASIBLE

Solution status : DUAL_INFEASIBLE_CER

Primal - objective: 1.1000000000e+03 eq. infeas.: 0.00e+00 max bound infeas.:
Dual - objective: 0.0000000000e+00 eq. infeas.: 0.00e+00 max bound infeas.:

Let z* denote the reported primal solution. MOSEK states
e that the problem is dual infeasible,
e that the reported solution is a certificate of dual infeasibility, and
e that the infeasibility measure for z* is approximately zero.

Since it was an maximization problem, this implies that

cdz* > 0.

Upper bound
1.000000e+00
1.000000e+00

Upper bound
NONE

0.00e+00 cone infeas.:
0.00e+00 cone infeas.:

(12.7)

For a minimization problem this inequality would have been reversed — see (12.19).
From the infeasibility report we see that the variable y4, and the constraints x11 and x33
are involved in the infeasibility since these appear with non-zero values in the “Activity”

column.

One possible strategy to “fix” the infeasibility is to modify the problem so that the cer-
tificate of infeasibility becomes invalid. In this case we might do one the the following things:

0.00e+00
0.00e+00

164 CHAPTER 12. ANALYZING INFEASIBLE PROBLEMS

e Put a lower bound in y3. This will directly invalidate the certificate of dual infeasibility.

e Increase the object coefficient of y3. Changing the coefficients sufficiently will invalidate
the inequality (12.7) and thus the certificate.

e Put lower bounds on x11 or x31. This will directly invalidate the certificate of infeasi-
bility.

Please note that modifying the problem to invalidate the reported certificate does not imply
that the problem becomes dual feasible — the infeasibility may simply “move”, resulting in
a new infeasibility.

More often, the reported certificate can be used to give a hint about errors or inconsisten-
cies in the model that produced the problem.

12.2 Theory concerning infeasible problems

This section discusses the theory of infeasibility certificates and how MOSEK uses a certificate
to produce an infeasibility report. In general, MOSEK solves the problem

minimize o+ cf
subject to ¢ < Ax < (12.8)
r < x < u*
where the corresponding dual problem is
maximize (197§ — (u®)T's¢
+(1%) st — (u®)Ts% 4 ¢f
subject to ATy + sf — si = ¢, (12.9)
—y + 8] — s, = 0,

c c €T T
87,85, 8158y = 0.

We use the convension that for any bound that is not finite, the corresponding dual variable
is fixed at zero (and thus will have no influence on the dual problem). For example

l[j=-00 = (sf);=0 (12.10)

12.2.1 Certificat of primal infeasibility
A certificate of primal infeasibility is any solution to the homogenized dual problem

maximize (1¢)7s¢ — (u®)Ts¢
+() st — (u)'s]
subject to ATy + sF — 5% = 0, (12.11)
—y + 8] — s, = 0,

C C T X
sl,su,sl,suZO.

12.2. THEORY CONCERNING INFEASIBLE PROBLEMS 165

Z*x

%) is a certificat of primal infeasibility

with a positive objective value. That is, (sj*, 55", s7*, s

if
(lc)Tslc* — (uC)TSfL* + (lI)Tsf* - (ug”)Tsi* >0 (12.12)
and
ATy + 57 — s = 0,
—y+ 87— sy = 0, (12.13)

Ck SOk LTX LIk
s7 8y, 81,8y 2> 0.

The well-known Farkas Lemma tells us that (12.8) is infeasible if and only if a certificat of
primal infeasibility exists.
Let (sf*,s%%, s7*, s2*) be a certificate of primal infeasibility then

(si")i >0 ((s")i >0) (12.14)
implies that the lower (upper) bound on the ith constraint is important for the infeasibility.
Furthermore,

(s77); >0 ((s37)i > 0) (12.15)
implies that the lower (upper) bound on the jth variable is important for the infeasibility.

12.2.2 Certificat of dual infeasibility

A certificate of dual infeasibility is any solution to the problem

minimize ctx
subject to ¢ < Az < @f, (12.16)
F < oz < @
with negative objective value, where we use the definitions
= 0 ¢ > —o0 0, uf<oo
g = ’ 7 ’ 7? -— ? (2 ?
i { —o00, otherwise, i { oo, otherwise, (12.17)
and
= 0 IF > —o0 0, uf<oo
z — I 7 Y 7T — 9 1 9
s { —o0, otherwise, and @ ; { oo, otherwise. (12.18)
Stated differently, a certificate of dual infeasibility is any z* such that
e < 0,
I < Ax* < af (12.19)
F < 2t < af

The well-known Farkas Lemma tells us that (12.9) is infeasible if and only if a certificat of
dual infeasibility exists.
Observe that if z* is a certificate of dual infeasibility then for any j such that

x} # 0, (12.20)

variable j is involved in the dual infeasibility.

166 CHAPTER 12. ANALYZING INFEASIBLE PROBLEMS

Chapter 13

Sensitivity analysis

13.1 Introduction

Given an optimization problem it is often useful to obtain information about how the optimal
objective value change when the problem parameters are perturbed. For instance assume that
a bound represents a capacity of a machine. Now it might be possible to expand the capacity
for a certain cost and hence it worthwhile to know what the value of additional capacity is.
This is precisely the type of questions sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is
called sensitivity analysis.

13.2 Restrictions

Currently, sensitivity analysis is only available for continuous linear optimization problems.
Moreover, MOSEK can only deal with perturbations in bounds or objective coefficients.

13.3 References

The book [17] discusses the classical sensitivity analysis in Chapter 10 whereas the book [23,
Chapter 19] presents a modern introduction to sensitivity analysis. Finally, it is recommended
to read the short paper [20] to avoid some of the pitfalls associated with sensitivity analysis.

167

168 CHAPTER 13. SENSITIVITY ANALYSIS

13.4 Sensitivity analysis for linear problems

13.4.1 The optimal objective value function

Assume we are given the problem

z(1%u 1", u¥ c) = minimize L
subject to ¢ < Az < (13.1)
F <z <u®,

and we want to know how the optimal objective value changes as [{ is perturbed. In order to
answer this question then define the perturbed problem for [§ as follows

fiz(8) = minimize cl'z
subject to [°+ fBe; < Az < uf, (13.2)
F <z <u®,

where e; is the ith column of the identity matrix. The function

fie(B) (13.3)

shows the optimal objective value as a function of 3. Note a change in § corresponds to a
perturbation in I§ and hence (13.3) shows the optimal objective value as a function of [{.

It is possible to prove that the function (13.3) is a piecewise linear and convex function
i.e. the function may look like the illustration in Figure 13.1.

f(B) f(p)

Figure 13.1: The optimal value function fje (B). Left: 8 = 0 is in the interior of linearity
interval. Right: 8 = 0 is a breakpoint.

Clearly, if the function flg(ﬁ) does not change much when (is changed, then we can
conclude that the optimal objective value is insensitive to changes in [{. Therefore, we are
interested in how fic(3) changes for small changes in 3. Now define

fi:(0) (13.4)

13.4. SENSITIVITY ANALYSIS FOR LINEAR PROBLEMS 169

to be the so called shadow price related to [f. The shadow price specifies how the objective
value changes for small changes in § around zero. Moreover, we are interested in the so called
linearity interval

B € [B1, 5] (13.5)

for which
fllf(/@) = fz/g(o)- (13.6)

To summarize the sensitivity analysis provides a shadow price and the linearity interval
in which the shadow price is constant.

The reader may have noticed that we are sloppy in the definition of the shadow price. The
reason is that the shadow price is not defined in the right example in Figure 13.1 because the
function fe (8) is not differentiable for 5 = 0. However, in that case we can define a left and
a right shadow price and a left and a right linearity interval.

In the above discussion we only discussed changes in I§. We define the other optimal
objective value functions as follows

fuf(ﬁ) = Z(lcauc+ﬁeile>uxvc)7 = 17"'7m>

flf(ﬂ) = Z(lc7uc7lx+/86j7umvc)7 jzlv"'7n7 (13 7)
fur(B) = 2(1%u 1%, u® + Bej,c), j=1,...,n, '
fe; (B) z(16us, 1P u”, e+ Bej), j=1,...,n.

Given these definitions it should be clear how linearity intervals and shadow prices are defined
for the parameters u etc.

13.4.1.1 Equality constraints

In MOSEK a constraint can be specified as either an equality constraints or a ranged con-
straints. Suppose constraint ¢ is an equality constraint. We then define the optimal value
function for constraint ¢ by

fee(B) = 2(I° + Bei, u® + Be;, 1", u”, ¢) (13.8)

Thus for a equality constraint the upper and lower bound (which are equal) are perturbed
simultaneously. From the point of view of MOSEK sensitivity analysis a ranged constrain
with [= u$ therefore differs from an equality constraint.

13.4.2 The basis type sensitivity analysis

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g.
[17, Chapter 10], is based on an optimal basic solution or equivalently on an optimal ba-
sis. This method may produce misleading results [23, Chapter 19] but is computationally
cheap. Therefore, and for historical reasons this method is available in MOSEK.

170 CHAPTER 13. SENSITIVITY ANALYSIS

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic
solution which provides a partition of variables into basic and non-basic variables then the
basis type sensitivity analysis computes the linearity interval [(1, 2] such that the basis
remains optimal for the perturbed problem. A shadow price associated with the linearity
interval is also computed. However, it is well known that an optimal basic solution may not
be unique and therefore the result depends on the optimal basic solution employed in the
sensitivity analysis. This implies the computed interval is only a subset of the largest interval
for which the shadow price is constant. Furthermore, the optimal objective value function
might have a breakpoint for # = 0. In this case the basis type sensitivity method will only
provide a subset of either the left or the right linearity interval.

In summary the basis type sensitivity analysis is computationally cheap but does not
provide complete information. Hence, the results of the basis type sensitivity analysis should
be used with care.

13.4.3 The optimal partition type sensitivity analysis

Another method for computing the complete linearity interval is called the optimal partition
type sensitivity analysis. The main drawback to the optimal partition type sensitivity analysis
is it is computationally expensive. This type of sensitivity analysis is currently provided as
an experimental feature in MOSEK.

Given optimal primal and dual solutions to (13.1) i.e. «* and ((sf)*, (s5)*, (sf)*, (s5)*)
then the optimal objective value is given by

2% = cTa*, (13.9)
The left and right shadow prices o1 and o9 for [is given by the pair of optimization
problems
01 = minimize eiTle
subject to AT (8¢ — s5) + 57 — % = ¢, (13.10)
<ZC)T(SZC) — (ue)"(s5) + ZI)T(S?:) —(u)"(s5) = 27,
Slc’ Sfm S?v 55 2 0
and
0y = maximize eZTle
subject to AT (8¢ — 5) + 57 — 5% = ¢, (13.11)
(L) (s7) = (ue) " (s5) + (L)' (s7) — (ua) " (s3) = 2%,
sy, 84, 57,8, > 0.

The above two optimization problems makes it easy to interpret-ate the shadow price. Indeed

assume that ((sf)*, (s5)*, (s7)*, (si)*) is an arbitrary optimal solution then it must hold

(s7); € o1, 02]. (13.12)

13.4. SENSITIVITY ANALYSIS FOR LINEAR PROBLEMS 171

Next the linearity interval [31, B2] for [is computed by solving the two optimization problems

£1 = minimize J6]
subject to ¢+ fBe; < Ax < uf,
To—of = o (13.13)
F<z<u®,
and
B2 = maximize 16}
subject to ¢+ fe; < Ax <
- - ’ 13.14
CTSL‘ _ O'Qﬁ —_ Z*, (3)
I <x<u®.

The linearity intervals and shadow prices for uf, [7, and uj can be computed in a similar
way to how it is computed for [5.

The left and right shadow price for ¢; denoted o1 and o2 respectively is given by the pair
optimization problems

01 = minimize GJTI'
subject to 1+ Be; < f‘;x < u:’ (13.15)
c T = Zz,
F<z < ou”
and
o9 = maximize €?$
subject to I°+fe; < Ae < (13.16)
cCx = Z,
F<x< u”

Once again the above two optimization problems makes it easy to interpret-ate the shadow
prices. Indeed assume that x* is an arbitrary primal optimal solution then it must hold

iL';k € [01,02]. (13.17)
The linearity interval [31, 32| for a ¢; is computed as follows
($1 = minimize I}
subject to AT (8¢ — s8) + 57 — % = c+ fej,
(L) () = (ue) " (55) + (1) (s7) = (ua) " (s]) —n B < 2%,
57,85,87,8, >0
(13.18)
and
B2 = maximize 16}
subject to AT (86 — s5) + 87 — 8% = ¢+ Pej,
(L) (57) = (ue) () + (1) (s7) — (uz)T(s5) — 028 < 27,
57,845,878, = 0.

(13.19)

172 CHAPTER 13. SENSITIVITY ANALYSIS
13.4.4 An example

As an example we will use the following transportation problem. Consider the problem of
minimizing the transportation cost between a number of production plants and stores. Each
plant supplies a number of goods and each store has a given demand that must be met.
Supply, demand and cost of transportation per unit are shown in Figure 13.2.

Supply Demand

800

400
100

1200 ‘ DN

500
1000

500

Figure 13.2: Supply, demand and cost of transportation.

If we denote the number of transported goods from location i to location j by w;;, the
problem can be formulated as the linear optimization problem

minimize

lz1r + 2x12 + Owo3 + 2w24 + lwgr + 2w33 + lzgy (13.20)

13.4. SENSITIVITY ANALYSIS FOR LINEAR PROBLEMS 173

subject to

r11 + 212 < 400,
To3 + T4 < 1200,
r31 + x33 + w3 < 1000,

11 + w31 = 800,

1o — 100, (13.21)

To3 + 33 = 500,

Tog + x34 = 9500,

T11, 12, To3, 24, 31, 33, r34 > 0.

The basis type and the optimal partition type sensitivity results for the transportation problem
is shown in Table 13.1 and 13.2 respectively.

Basis type Optimal partition type

Con. b1 B2 oy 03 Con. B1 B2 o1 P

1 —300.00 0.00 3.00 3.00 1 —300.00 500.00 3.00 1.00
2 —700.00 +oo 0.00 0.00 2 —700.00 +oo —0.00 -0.00
3 —500.00 0.00 3.00 3.00 3 —500.00 500.00 3.00 1.00
4 —0.00 500.00 4.00 4.00 4 —500.00 500.00 2.00 4.00
5 —0.00 300.00 5.00 5.00 5 —100.00 300.00 3.00 5.00
6 —0.00 700.00 5.00 5.00 6 —500.00 700.00 3.00 5.00
7 —500.00 700.00 2.00 2.00 7 —500.00 700.00 2.00 2.00
Var. B B2 o1 02 Var. B1 B2 o1 02

11 —00 300.00 0.00 0.00 11 —00 300.00 0.00 0.00
T12 —00 100.00 0.00 0.00 19 —00 100.00 0.00 0.00
To3 —00 0.00 0.00 0.00 To3 —0 500.00 0.00 2.00
To4 —00 500.00 0.00 0.00 To4 —00 500.00 0.00 0.00
31 —00 500.00 0.00 0.00 31 —0 500.00 0.00 0.00
T33 —00 500.00 0.00 0.00 33 —00 500.00 0.00 0.00
T34 —0.000000 500.00 2.00 2.00 T34 —00 500.00 0.00 2.00

Table 13.1: Ranges and shadow prices related to bounds on constraints and variables. Left:
Results for basis type sensitivity analysis. Right: Results for the optimal partition type
sensitivity analysis.

Looking at the results from the optimal partition type sensitivity analysis we see that for
the constraint number 1 we have o1 # o2 and 1 # (2. Therefore, we have a left linearity
interval of [—-300, 0] and a right interval of [0,500]. The corresponding left and right shadow
price is 3 and 1 respectively. This implies if the upper bound on constraint 1 increases by

B € 0,81 = [0,500] (13.22)

174 CHAPTER 13. SENSITIVITY ANALYSIS

Basis type Optimal partition type
Var. | [B2 o1 o) Var. | (i B2 o1 P
c1 —oo 3.00 300.00 300.00 c1 —oo 3.00 300.00 300.00
c2 —00 co 100.00 100.00 c2 —00 oo 100.00 100.00
c3 —2.00 o0 0.00 0.00 c3 —-2.00 o0 0.00 0.00
c4 —oo 2.00 500.00 500.00 c4 —oo 2.00 500.00 500.00
Ccs —-3.00 oo 500.00 500.00 Ccs —3.00 oo 500.00 500.00
c6 —oo 2.00 500.00 500.00 C6 —oo 2.00 500.00 500.00
cr —2.00 o0 0.00 0.00 cr —-2.00 o0 0.00 0.00

Table 13.2: Ranges and shadow prices related to the objective coefficients. Left: Results
for basis type sensitivity analysis. Right: Results for the optimal partition type sensitivity
analysis.

then the optimal objective value will decrease by the value

oo = 1p. (13.23)
Correspondingly, if the upper bound on constraint 1 is decreased by

G € [0,300] (13.24)
then the optimal objective value will increased by the value

013 = 30. (13.25)

13.5 Sensitivity analysis in the MATLAB toolbox

The following describe sensitivity analysis from the MATLAB toolbox.

13.5.1 On bounds

The index of bounds/variables to analyzed for sensitivity are specified in the following subfields
of the matlab structure prob:

.prisen.cons.subu Indexes of constraints, where upper bounds are analyzed for sensitivity.
.prisen.cons.subl Indexes of constraints, where lower bounds are analyzed for sensitivity.
.prisen.vars.subu Indexes of variables, where upper bounds are analyzed for sensitivity.

.prisen.vars.subl Indexes of variables, where lower bounds are analyzed for sensitivity.

13.5. SENSITIVITY ANALYSIS IN THE MATLAB TOOLBOX 175

.duasen.sub Index of variables where coeflicients are analysed for sensitivity.

For an equality constraint, the index can be specified in either subu or subl. After calling

[r,res] = mosekopt(’minimize’,prob)

the results are returned in the subfields prisen and duasen of res.

13.5.1.1 prisen

The field prisen is structured as follows:

.cons MATLAB structure with subfields:

.1r bl Left value (1 in the linearity interval for a lower bound.

.rr bl Right value (32 in the linearity interval for a lower bound.

.1s bl Left shadow price s; for a lower bound.

.rs_bl Right shadow price s, for a lower bound.

.1r bu Left value (31 in the linearity interval for an upper bound.

.rr_bu Right value (s in the linearity interval for an upper bound.

.1s_bu Left shadow price s; for an upper bound.

.rs_bu Right shadow price s, for an upper bound.

.var MATLAB structure with subfields:

.1r bl Left value 1 in the linearity interval for a lower bound on
a varable.

.rr bl Right value (33 in the linearity interval for a lower bound
on a varable.

.1s bl Left shadow price s; for a lower bound on a varable.

.rs_bl Right shadow price s, for lower bound on a varable.

.1r_bu Left value (31 in the linearity interval for an upper bound
on a varable.

.rr_bu Right value (2 in the linearity interval for an upper bound
on a varable.

.1s_bu Left shadow price s; for an upper bound on a varables.

.rs_bu Right shadow price s, for an upper bound on a varables.

176 CHAPTER 13. SENSITIVITY ANALYSIS

13.5.1.2 duasen

The field duasen is structured as follows:

1rc Left value (31 of linearity interval for an objective coefficient.
.IT_C Right value (32 of linearity interval for an objective coeflicient.
.1s.c Left shadow price s; for an objective coefficients .

.rs_c Right shadow price s, for an objective coefficients.

13.5.2 Selecting analysis type

The type (basis or optimal partition) of analysis to be performed can be selected by setting
the parameter

MSK_IPAR_SENSITIVITY_TYPE
to one of the values:

MSK_SENSITIVITY_TYPE_BASIS = O
MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION = 1

as seen in the following example.

13.5.3 An example

Consider the problem defined in (13.21). Suppose we wish to perform sensitivity analysis on
all bounds and coefficients. The following example demonstrates this as well as the method
for changing between basic and full sensitivity analysis.

% sensitivity.m

% Obtain all symbolic constants

% defined by MOSEK.

[r,res] = mosekopt(’symbcon’);

sc = res.symbcon;

[r,res] = mosekopt(’read(transport.lp) echo(0)’);
prob = res.prob;

% analyse upper bound 1:7
prob.prisen.cons.subl = [];
prob.prisen.cons.subu = [1:7];

% analyse lower bound on variables 1:7
prob.prisen.vars.subl = [1:7];

13.5. SENSITIVITY ANALYSIS IN THE MATLAB TOOLBOX

prob.prisen.vars.subu = [];
% analyse coeficient 1:7
prob.duasen.sub = [1:7];
%Select basis sensitivity analysis and optimize.
param.MSK_IPAR_SENSITIVITY_TYPE=sc.MSK_SENSITIVITY_TYPE_BASIS;
[r,res] = mosekopt(’minimize debug(100) echo(0)’,prob,param);
results(l) = res;
% Select optimal partition sensitivity analysis and optimize.
param.MSK_IPAR_SENSITIVITY_TYPE=sc.MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION;
[r,res] = mosekopt(’minimize debug(100) echo(0)’,prob,param);
results(2) = res;
%Print results
for m = [1:2]
if m ==
fprintf (’\nBasis sensitivity results:\n’)
else
fprintf (’\nOptimal partition sensitivity results:\n’)
end
fprintf (’\nSensitivity for bounds on constraints:\n’)
for i = 1:length(prob.prisen.cons.subl)
fprintf (...

177

con = %d, beta_1l = %.1f, beta_2 = %.1f, delta_1l = %.1f,delta_2 = %.1f\n’,

prob.prisen.cons.subu(i) ,results(m).prisen.cons.lr_bu(i),
results(m) .prisen.cons.rr_bu(i),...
results(m) .prisen.cons.1ls_bu(i),...
results(m) .prisen.cons.rs_bu(i));
end

for i = 1:length(prob.prisen.cons.subu)
fprintf (...

con = %d, beta_1l = %.1f, beta_2 = %.1f, delta_1l = %.1f,delta_2 = %.1f\n’,

prob.prisen.cons.subu(i) ,results(m).prisen.cons.lr_bu(i),
results(m) .prisen.cons.rr_bu(i),...
results(m) .prisen.cons.ls_bu(i),...
results(m) .prisen.cons.rs_bu(i));
end
fprintf (’Sensitivity for bounds on variables:\n’)
for i = 1:length(prob.prisen.vars.subl)
fprintf (...

var = %d, beta_1l = %.1f, beta_2 = %.1f, delta_1l = %.1f,delta_2 = %.1f\n’,

prob.prisen.vars.subl(i),results(m) .prisen.vars.lr_bl(i),

178

CHAPTER 13.

results(m) .prisen.vars.rr_bl(i),...
results(m) .prisen.vars.ls_bl(i),...
results(m) .prisen.vars.rs_bl(i));

end

for

fprintf (...

i = 1:length(prob.prisen.vars.subu)

var = %d, beta_1l = %.1f, beta_2 = %.1f, delta_1l = %.1f,delta_2
prob.prisen.vars.subu(i),results(m) .prisen.vars.lr_bu(i),
results(m) .prisen.vars.rr_bu(i),...
results(m) .prisen.vars.ls_bu(i),...
results(m) .prisen.vars.rs_bu(i));

end

fprintf(’Sensitivity for coefficients in objective:\n’)
i = 1:length(prob.duasen.sub)

for

fprintf (...

SENSITIVITY ANALYSIS

%.1f\n’,

’var = %d, beta_1 = %.1f, beta_2 = %.1f, delta_1l = %.1f,delta_2 = %.1f\n’,
prob.duasen.sub(i),results(m) .duasen.lr_c(i),
results(m) .duasen.rr_c(i),...
results(m) .duasen.ls_c(i),...
results(m) .duasen.rs_c(i));

end
end

The output from running the example sensitivity.m is shown below.

Basis sensitivity results:

Sensitivity for

con = 1, beta_1
con = 2, beta_1
con = 3, beta_1
con = 4, beta_1
con = 5, beta_1
con = 6, beta_1
con = 7, beta_1
Sensitivity for
var = 1, beta_1
var = 2, beta_1
var = 3, beta_l

bounds on constraints:
= -300.0, beta_2
-700.0, beta_2
-500.0, beta_2

-0.0, beta_2
-0.0, beta_2
-0.0, beta_2

-500.0, beta_
bounds on variables:

Inf, beta_2
Inf, beta_2
Inf, beta_2

2

0.0, delta_1
Inf, delta_1
0.0, delta_1
500.0, delta_1
300.0, delta_1
700.0, delta_1

= 700.0, delta_

300.0, delta_1
100.0, delta_1
0.0, delta_1 =

0

Il
g o W o Ww

-
I

.0,delta_2
.0,delta_2
.0,delta_2
.0,delta_2
.0,delta_2
.0,delta_2

0.0,delta_2
0.0,delta_2
.0,delta_2 =

2.0,delta_

o O O

g o WO Ww
N O O O O O O

o O

13.5. SENSITIVITY ANALYSIS IN THE MATLAB TOOLBOX 179

var = 4, beta_1 = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 5, beta_1l = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 6, beta_1l = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0

var = 7, beta_1 -0.0, beta_2 = 500.0, delta_1 = 2.0,delta_2 = 2.0
Sensitivity for coefficients in objective:
Inf, beta_2 = 3.0, delta_1

var = 1, beta_1 300.0,delta_2 = 300.0

var = 2, beta_1 = Inf, beta_2 = Inf, delta_1 = 100.0,delta_2 = 100.0
var = 3, beta_1l = -2.0, beta_2 = Inf, delta_1 = 0.0,delta_2 = 0.0
var = 4, beta_1l = Inf, beta_2 = 2.0, delta_1 = 500.0,delta_2 = 500.0
var = 5, beta_1l = -3.0, beta_2 = Inf, delta_1 = 500.0,delta_2 = 500.0
var = 6, beta_l = Inf, beta_2 = 2.0, delta_1l = 500.0,delta_2 = 500.0
var = 7, beta_1l = -2.0, beta_2 = Inf, delta_1 = 0.0,delta_2 = 0.0

Optimal partition sensitivity results:

Sensitivity for bounds on constraints:

con = 1, beta_1l = -300.0, beta_2 = 500.0, delta_1 = 3.0,delta_2 = 1.0
con = 2, beta_1l = -700.0, beta_2 = Inf, delta_1l = -0.0,delta_2 = -0.0
con = 3, beta_1l = -500.0, beta_2 = 500.0, delta_1 = 3.0,delta_2 = 1.0
con = 4, beta_1l = -500.0, beta_2 = 500.0, delta_1 = 2.0,delta_2 = 4.0
con = 5, beta_1 = -100.0, beta_2 = 300.0, delta_1 = 3.0,delta_2 = 5.0
con = 6, beta_1l = -500.0, beta_2 = 700.0, delta_1 = 3.0,delta_2 = 5.0
con = 7, beta_1 = -500.0, beta_2 = 700.0, delta_1 = 2.0,delta_2 = 2.0
Sensitivity for bounds on variables:

var = 1, beta_1 = Inf, beta_2 = 300.0, delta_1 = 0.0,delta_2 = 0.0
var = 2, beta_1l = Inf, beta_2 = 100.0, delta_1 = 0.0,delta_2 = 0.0
var = 3, beta_1l = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 2.0
var = 4, beta_1l = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 5, beta_1l = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 6, beta_1l = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 0.0
var = 7, beta_1l = Inf, beta_2 = 500.0, delta_1 = 0.0,delta_2 = 2.0
Sensitivity for coefficients in objective:

var = 1, beta_l = Inf, beta_2 = 3.0, delta_1l = 300.0,delta_2 = 300.0
var = 2, beta_1 = Inf, beta_2 = Inf, delta_1l = 100.0,delta_2 = 100.0
var = 3, beta_1l = -2.0, beta_2 = Inf, delta_1 = 0.0,delta_2 = 0.0

var = 4, beta_1 = Inf, beta_2 = 2.0, delta_1 = 500.0,delta_2 = 500.0
var = 5, beta_1l = -3.0, beta_2 = Inf, delta_1 = 500.0,delta_2 = 500.0
var = 6, beta_1l = Inf, beta_2 = 2.0, delta_1 = 500.0,delta_2 = 500.0
var = 7, beta_1l = -2.0, beta_2 = Inf, delta_1l = 0.0,delta_2 = 0.0

180 CHAPTER 13. SENSITIVITY ANALYSIS

Appendix A

The MPS file format

MOSEK supports the standard MPS format with some extensions. For a detailed description
of the MPS format the book by Nazareth [22] is a good reference.

A.1 The MPS file format

The version of the MPS format supported by MOSEK allows specification of an optimization
problem on the form
lC
lCC

Az + q(x)
x
x e,
T 7 integer,

IA A
IAIN
<

Y

: (A1)

where
e 1 € R" is the vector of decision variables.
o A € R™*™ is the constraint matrix.

e [© € R™ is the lower limit on the activity for the constraints.

u€ € R™ is the upper limit on the activity for the constraints.

I* € R™ is the lower limit on the activity for the variables.

u® € R™ is the upper limit on the activity for the variables.

q: R" — R is a vector of quadratic functions. Hence,
gi(z) = 1/227 Q'

where it is assumed that

Q' =(@Q")" (A.2)

181

182 APPENDIX A. THE MPS FILE FORMAT
Please note the explicit 1/2 in the quadratic term and that Q' is required to be sym-
metric.

e C is a convex cone.

e 7 C{1,2,...,n} is an index set of the integer constrained variables.

An MPS file with one row and one column can be illustrated like this:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
NAME [name]
OBJSENSE

[objsense]
OBJNAME

[objname]
ROWS

? [cname1l]

COLUMNS

[vnamel] [cnamel] [valuel] [vname3] [value2]
RHS

[name] [cname1l] [valueil] [cname2] [value2]
RANGES

[name] [cname1] [valuel] [cname2] [value2]
QSECTION [cnamel]

[vnamel] [vname2] [valuel] [vname3] [value2]
BOUNDS

7?7 [name] [vname1] [valuel]

CSECTION [kname1] [valuel] [ktypel

[vname1]
ENDATA

Here the names in capitals are keywords of the MPS format and names in brackets are custom
defined names or values. A couple of notes on the structure:

Fields: All items surrounded by brackets appear in fields. The fields named “valueN” are
numerical values. Hence, they must have the format

[+ -] XXXXXXX.XXXXXX[[e|E] [+]-]XXX]
where
X = [0l112]3l4|5]6]718]9].

Sections: The MPS file consists of several sections where the names in capitals indicate the
beginning of a new section. For example, COLUMNS denotes the beginning of the columns
section.

A.1. THE MPS FILE FORMAT 183

Comments: Lines starting with an “*”

are comment lines and are ignored by MOSEK.
Keys: The question marks represent keys to be specified later.

Extensions: The sections QSECTION and CSECTION are MOSEK specific extensions of the
MPS format.

The standard MPS format is a fixed format, i.e. everything in the MPS file must be within
certain fixed positions. MOSEK also supports a free format. See Section A.5 for details.

A.1.1 An example

A concrete example of a MPS file is presented below:

NAME EXAMPLE
OBJSENSE
MIN
ROWS
N obj
L ci
L c2
L c3
L c4
COLUMNS
x1 obj -10.0 cl 0.7
x1 c2 0.5 c3 1.0
x1 cd 0.1
x2 obj -9.0 cl 1.0
x2 c2 0.8333333333 c3 0.66666667
x2 c4 0.25
RHS
rhs cl 630.0 c2 600.0
rhs c3 708.0 cd 135.0
ENDATA

Subsequently each individual section in the MPS format is discussed.

A.1.2 NAME

In this section a name ([name]) is assigned to the problem.

184 APPENDIX A. THE MPS FILE FORMAT

A.1.3 O0BJSENSE (optional)

This is an optional section that can be used to specify the sense of the objective function.
The 0OBJSENSE section contains one line at most which can be one of the following

MIN
MINIMIZE
MAX
MAXIMIZE

It should be obvious what the implication is of each of these four lines.

A.1.4 O0OBJNAME (optional)

This is an optional section that can be used to specify the name of the row that is used as
objective function. The OBJNAME section contains one line at most which has the form

objname

objname should be a valid row name.

A.1.5 ROWS

A record in the ROWS section has the form

? [cname1l]

where the requirements for the fields are as follows:

Field Starting Maximum Re- Description
position width quired

? 2 1 Yes Constraint key

[cnamel] 5 8 Yes Constraint name

Hence, in this section each constraint is assigned an unique name denoted by [cnamel]. Please
note that [cnamel] starts in position 5 and the field can be at most 8 characters wide. An
initial key (?) must be present to specify the type of the constraint. The key can have the
values E, G, L, or N whith ther following interpretation:

Constraint 5 ug
type

E finite s
G finite 00
L —oo finite
N —00 00

A.1. THE MPS FILE FORMAT 185

In the MPS format an objective vector is not specified explicitly, but one of the constraints
having the key N will be used as the objective vector c. In general, if multiple N type constraints
are specified, then the first will be used as the objective vector c.

A.1.6 COLUMNS

In this section the elements of A are specified using one or more records having the form

[vnamel] [cnamell] [valuel] [cname2] [value2]

where the requirements for each field are as follows:

Field Starting Maximum Re- Description
position width quired

[vname1] 5 8 Yes Variable name

[cname1] 15 8 Yes Constraint name

[valuel] 25 12 Yes Numerical value

[cname?2] 40 8 No Constraint name

[value2] 50 12 No Numerical value

Hence, a record specifies one or two elements a;; of A using the principle that [vname1] and
[cnamel] determines j and 7 respectively. Please note that [cnamel] must be a constraint
name specified in the ROWS section. Finally, [valuel] denotes the numerical value of a;;.
Another optional element is specified by [cname2], and [value2] for the variable specified
by [vnamel]. Some important comments are:

e All elements belonging to one variable must be grouped together.

e Zero elements of A should not be specified.

e At least one element for each variable should be specified.

A.1.7 RHS (optional)

A record in this section has the format

[name] [cname1l] [valuell] [cname2] [value2]

where the requirements for each field are as follows:

186 APPENDIX A. THE MPS FILE FORMAT

Field Starting Maximum Re- Description
position width quired

[name] 5 8 Yes Name of the RHS vector

[cname1] 15 8 Yes Constraint name

[valuel] 25 12 Yes Numerical value

[cname2] 40 8 No Constraint name

[value2] 50 12 No Numerical value

The interpretation of a record is that [name] is the name of the RHS vector to be specified.
In general, several vectors can be specified. [cnamel] denotes a constraint name previously
specified in the ROWS section. Now, assume that this name has been assigned to the ith
constraint and vy denotes the value specified by [valuell, then the interpretation of vy is:

Constraint [§ uf

type

E vl V1
G U1

L U1
N

An optional second element is specified by [cname2] and [value2] and is interpreted in the
same way. Please note that it is not necessary to specify zero elements, because elements are
assumed to be zero.

A.1.8 RANGES (optional)

A record in this section has the form
[name] [cname1l] [valuel] [cname2] [value2]

where the requirements for each fields are as follows:

Field Starting Maximum Re- Description
position width quired

[name] 5 8 Yes Name of the RANGE vector

[cname1] 15 8 Yes Constraint name

[valueil] 25 12 Yes Numerical value

[cname2] 40 8 No Constraint name

[value2] 50 12 No Numerical value

The records in this section are used to modify the bound vectors for the constraints, i.e. the
values in [¢ and u®. A record has the following interpretation: [name] is the name of the

A.1. THE MPS FILE FORMAT 187

RANGE vector anhd [cnamel] is a valid constraint name. Assume that [cnamel] is assigned
to the ith constraint and let v; be the value specified by [valuel], then a record has the
interpretation:

Constraint Sign of v; Iy ug
type

E - ’U,ZC + v

E + llc + U1
G -or + 1§ + ||
L -or + uf — |v1]

N

A.1.9 QSECTION (optional)

Within the QSECTION the label [cnamel] must be a constraint name previously specified in
the ROWS section. The label [cnamel] denotes the constraint to which the quadratic term
belongs. A record in the QSECTION has the form

[vhnamel] [vname2] [valuel] [vname3] [value2]

where the requirements for each field are:

Field Starting Maximum Re- Description
position width quired

[vname1] 5 8 Yes Variable name

[vname2] 15 8 Yes Variable name

[valuel] 25 12 Yes Numerical value

[vname3] 40 8 No Variable name

[value2] 50 12 No Numerical value

A record specifies one or two elements in the lower triangular part of the Q' matrix where

[cnamel] specifies the i. Hence, if the names [vnamel] and [vname2] have been assigned

to the kth and jth variable, then Q};j is assigned the value given by [valuel] An optional

second element is specified in the same way by the fields [vhamel], [vname3], and [value2].
The example

minimize —xy + 0.5(22% — 2z123 + 0.223 + 2x§)
subject to T1 4+ X2 + x3 > 1,
x>0

has the following MPS file representation

188

NAME
ROWS
N obj
G ci
COLUMNS
x1
X2
x2
x3
RHS
rhs
QSECTION
x1
x1
x2
x3
ENDATA

goexp

cl
obj
cl
cl

cl
obj
x1
x3
x2
x3

APPENDIX A.

Regarding the QSECTIONs please note that:

Only one QSECTION is allowed for each constraint.

of the quadratic term of Q).

A.1.10 BOUNDS (optional)

THE MPS FILE FORMAT

The QSECTIONs can appear in an arbitrary order after the COLUMNS section.

All variable names occurring in the QSECTION must already be specified in the COLUMNS
section.

All entries specified in a QSECTION are assumed to belong to the lower triangular part

In the BOUNDS section changes to the default bounds vectors [* and u® are specified. The
default bounds vectors are [* = 0 and u* = co. Moreover, it is possible to specify several sets
of bound vectors. A record in this section has the form

7?7 [name]

[vhamel] [valuel]

where the requirements for each field are:

A.1. THE MPS FILE FORMAT 189

Field Starting Maximum Re- Description
position width quired

7?7 2 2 Yes Bound key

[name] 5 8 Yes Name of the BOUNDS vector

[vname1] 15 8 Yes Variable name

[valuel] 25 12 No Variable name

Hence, a record in the BOUNDS section has the following interpretation: [name] is the name of

the bound vector and [vname1] is the name of the variable which bounds are modified by the
record. 7?7 and [valuel] are used to modify the bound vectors according to the following

table:

?? I uj Made integer

(added to J)
FR —00 00 No
FX V1 V1 No
L0 vy unchanged No
MI —oo0 unchanged No
PL unchanged 00 No
UP unchanged V1 No
BV 0 1 Yes
LI [v1] 00 Yes
UI unchanged |v1] Yes

v1 is the value specified by [valuel].

A.1.11 CSECTION (optional)

The purpose of the CSECTION is to specify the constraint

in (A.1).

z eC.

It is assumed that C satisfies the following requirements. Let

xtGR”t, t=1,...

K

be vectors comprised of parts of the decision variables x so that each decision variable is a
member of exactly one vector x!, for example

T6

T3
T2

190 APPENDIX A. THE MPS FILE FORMAT
Next define

C .= {xER": zt e g, t:1,...,/€}
where C; must have one of the following forms

o R set:

C; = {l‘ € Rnt}

e QQuadratic cone:

e Rotated quadratic cone:

CG={_ze€e R™ . 2r1219 > Zx?, x1,29 >0 . (A4)
=3

In general, only quadratic and rotated quadratic cones are specified in the MPS file whereas
membership of the R set is not. If a variable is not a member of any other cone then it is
assumed to be a member of an R cone.

Next, let us study an example. Assume that the quadratic cone

ry > (/o + a3 (A.5)

and the rotated quadratic cone
2a3w7 > x} + 2§, 23,27 > 0, (A.6)

should be specified in the MPS file. One CSECTION is required for each cone and they are
specified as follows:

* 1 2 3 4 5 6
*23456789012345678901234567890123456789012345678901234567890
CSECTION konea 0.0 QUAD

x4

x5

x8
CSECTION koneb 0.0 RQUAD

x7

x3

x1

x0

A.1. THE MPS FILE FORMAT 191

This first CSECTION specifies the cone (A.5) which is given the name konea. This is a quadratic
cone which is specified by the keyword QUAD in the CSECTION header. The 0.0 value in the
CSECTION header is not used by the QUAD cone.

The second CSECTION specifies the rotated quadratic cone (A.6). Please note the keyword
RQUAD in the CSECTION which is used to specify that the cone is a rotated quadratic cone
instead of a quadratic cone. The 0.0 value in the CSECTION header is not used by the RQUAD
cone.

In general, a CSECTION header has the format

CSECTION [kname1] [valuell [ktypel

where the requirement for each field are as follows:

Field Starting Maximum Re- Description
position width quired

[kname1] 5 8 Yes Name of the cone

[valuel] 15 12 No Cone parameter

[ktypel 25 Yes Type of the cone.

The possible cone type keys are:

Cone type key Members Interpretation.
QUAD >1 Quadratic cone i.e. (A.3).
RQUAD > 2 Rotated quadratic cone i.e. (A.4).

Please note that a quadratic cone must have at least one member whereas a rotated quadratic
cone must have at least two members. A record in the CSECTION has the format

[vname1]

where the requirements for each field are

Field Starting Maximum Re- Description
position width quired
[vname1] 2 8 Yes A valid variable name

The most important restriction with respect to the CSECTION is that a variable must occur
in only one CSECTION.

A.1.12 ENDATA
This keyword denotes the end of the MPS file.

192 APPENDIX A. THE MPS FILE FORMAT

A.2 Integer variables

Using special bound keys in the BOUNDS section it is possible to specify that some or all of
the variables should be integer constrained i.e. be members of 7. However, an alternative
method is available.

This method is available only for backward compability and we recommend that it is not
used. This method requires that markers are placed in the COLUMNS section as in the example:

COLUMNS
x1 obj -10.0 cl 0.7
x1 c2 0.5 c3 1.0
x1 cd 0.1

* Start of integer constrained variables.
MARKOOO ’MARKER’ > INTORG’
x2 obj -9.0 cl 1.0
x2 c2 0.8333333333 ¢33 0.66666667
x2 cd 0.25
x3 obj 1.0 c6 2.0
MARKOO1 ’MARKER’ > INTEND’

* End of integer constrained variables.

Please note that special marker lines are used to indicate the start and the end of the
integer variables. Furthermore be aware of the following

e IMPORTANT: All variables between the markers are assigned a default lower bound
of 0 and a default upper bound of 1. This may not be what is intended. If it is
not intended, the correct bounds should be defined in the BOUNDS section of the MPS
formatted file.

e MOSEK ignores field 1, i.e. MARKOOO1 and MARKOO1, however, other optimization sys-
tems require them.

e Field 2, i.e. ’MARKER’, must be specified including the single quotes. This implies that
no row can be assigned the name >MARKER’.

e Field 3 is ignored and should be left blank.
e Field 4, i.e. INTORG’ and ’INTEND’, must be specified.

e [t is possible to specify several such integer marker sections within the COLUMNS section.

A.3 General limitations

e An MPS file should be an ASCII file.

A.4. INTERPRETATION OF THE MPS FORMAT 193

A.4 Interpretation of the MPS format

Several issues related to the MPS format are not well-defined by the industry standard.
However, MOSEK uses the following interpretation:

e If a matrix element in the COLUMNS section is specified multiple times, then the multiple
entries are added together.

e If a matrix element in a QSECTION section is specified multiple times, then the multiple
entries are added together.

A.5 The free MPS format

MOSEK supports a free format variation of the MPS format. The free format is similar to
the MPS file format but less restrictive, e.g. it allows longer names. However, it also presents
two main limitations:

e By default a line in the MPS file must not contain more than 1024 characters. However,
by modifying the parameter MSK_IPAR_READ_MPS_WIDTH an arbitrary large line width will
be accepted.

e A name must not contain any blanks.

To use the free MPS format instead of the default MPS format the MOSEK parameter
MSK_IPAR_READ MPS_FORMAT should be changed.

194 APPENDIX A. THE MPS FILE FORMAT

Appendix B

The LP file format

MOSEK supports the LP file format with some extensions i.e. MOSEK can read and write
LP formatted files.

B.1 A warning

The LP format is not a well-defined standard and hence different optimization packages may
interpretate a specific LP formatted file differently.

B.2 The LP file format

The LP file format can specify problems on the form

minimize /maximize e+ 1¢°(x)
subject to © < Ax+ %q(m) <
r < T < Ut
x 7 integer,
where
e x € R" is the vector of decision variables.
e ¢ € R" is the linear term in the objective.
e ¢°:€ R" — R is the quadratic term in the objective where
¢°(z) = 2" Q%
and it is assumed that
Q° = (Q")T. (B.1)

195

196 APPENDIX B. THE LP FILE FORMAT

e A€ R™™ is the constraint matrix.
e [© € R™ is the lower limit on the activity for the constraints.
e u® € R™ is the upper limit on the activity for the constraints.
e [* € R™ is the lower limit on the activity for the variables.
e u” € R is the upper limit on the activity for the variables.
e ¢: R" — R is a vector of quadratic functions. Hence,

gi(zr) = 2" Q'x

where it is assumed that

Q' = ()" (B.2)

J CH{1,2,...,n} is an index set of the integer constrained variables.

B.2.1 The sections

An LP formatted file contains a number of sections specifying the objective, constraints,
variable bounds, and variable types. The section keywords may be any mix of upper and
lower case letters.

B.2.1.1 The objective

The first section beginning with one of the keywords

max
maximum
maximize
min
minimum
minimize
defines the objective sense and the objective function, i.e.
1
lx+ 5:1:TQ037.

The objective may be given a name by writing

myname :

B.2. THE LP FILE FORMAT 197

before the expressions. If no name is given, then the objective is named obj.
The objective function contains linear and quadratic terms. The linear terms are written
as in the example

4 x1 + x2 - 0.1 x3

and so forth. The quadratic terms are written in square brackets ([1) and are either squared
or multiplied as in the examples

x1 © 2
and
x1 * x2

There may be zero or more pairs of brackets containing quadratic expressions.
An example of an objective section is:

minimize
myobj: 4 x1 + x2 - 0.1 x3 + [x1 = 2 + 2.1 x1 * x2]/2

Please note that the quadratic expressions are multiplied with %, so that the above expression
means

1
minimize 4x1 + 9 — 0.1 - 23 + 5(13% +2.1-x1 - x9)

If the same variable occurs more than once in the linear part, the coefficients are added, so
that 4 x1 + 2 x1 is equivalent to 6 x1. In the quadratic expressions x1 * x2 is equivalent
to x2 * x1 and as in the linear part , if the same variables multiplied or squared occur several
times their coefficients are added.

B.2.1.2 The constraints

The second section beginning with one of the keywords

subj to
subject to
s.t.

st

defines the linear constraint matrix (A) and the quadratic matrices (Q").
A constraint contains a name (optional), expressions adhering to the same rules as in the
objective and a bound:

subject to
conl: x1 + x2 + [x3 -~ 21]/2<=5.1

198 APPENDIX B. THE LP FILE FORMAT

The bound type (here <=) may be any of <, <=, =, > >= (< and <= mean the same), and the
bound may be any number.

In the standard LP format it is not possible to define more than one bound, but MOSEK
supports defining ranged constraints by using double-colon (¢ ¢::?”) instead of a single-colon
(“:7) after the constraint name, i.e.

—5<214+22<5 (B.3)
may be written as
con:: -5 <x_1+x_2<5

By default MOSEK writes ranged constraints this way.

If the files must adhere to the LP standard, ranged constraints must either be split into
upper bounded and lower bounded constraints or be written as en equality with a slack
variable. For example the expression (B.3) may be written as

1+ 20— sl =0, =5 < sl; <5.

B.2.1.3 Bounds

Bounds on the variables can be specified in the bound section beginning with one of the
keywords

bound
bounds

The bounds section is optional but should, if present, follow the subject to section. All
variables listed in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and +o0o. A variable may be declared free with
the keyword free, which means that the lower bound is —oco and the upper bound is +oc.
Furthermore it may be assigned a finite lower and upper bound. The bound definitions for
a given variable may be written in one or two lines, and bounds can be any number or +oo
(written as +inf/-inf/+infinity/-infinity) as in the example

bounds
x1 free
x2 <= 5
0.1 <= x2
x3 = 42
2 <= x4 < +inf

B.2. THE LP FILE FORMAT 199

B.2.1.4 Variable types

The final two sections are optional and must begin with one of the keywords

bin
binaries
binary

and

gen
general

Under general all integer variables are listed, and under binary all binary (integer variables
with bounds 0 and 1) are listed:

general
x1 x2
binary
x3 x4

Again, all variables listed in the binary or general sections must occur in either the objective
or a constraint.

B.2.1.5 Terminating section

Finally, an LP formatted file must be terminated with the keyword

end

B.2.1.6 An example

A simple example of an LP file with two variables, four constraints and one integer variable
is:

minimize
-10 x1 -9 x2
subject to
0.7 x1 + x2 <= 630
0.5 x1 + 0.833 x2 <= 600
x1 + 0.667 x2 <= 708
0.1 x1 + 0.025 x2 <= 135
bounds
10 <= x1
x1 <= +inf

200 APPENDIX B. THE LP FILE FORMAT

20 <= x2 <= 500
general

x1
end

B.2.2 LP format peculiarities
B.2.2.1 Comments

Anything on a line after a “\” is ignored and is treated as a comment.

B.2.2.2 Names

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits
0-9 and the characters

P#3%& O/, . 570 T

The first character in a name must not be a number, a period or the letter e’ or 'E’. Keywords
must not be used as names.
It is strongly recommended not to use double quotes (") in names.

B.2.2.3 Variable bounds

Specifying several upper or lower bounds on one variable is possible but MOSEK uses only
the tightest bounds. If a variable is fixed (with =), then it is considered the tightest bound.

B.2.2.4 MOSEK specific extensions to the LP format

Some optimization software packages employ a more strict definition of the LP format that
the one used by MOSEK. The limitations imposed by the strict LP format are the following:

e QQuadratic terms in the constraints are not allowed.
e Names can be only 16 characters long.
e Lines must not exceed 255 characters in length.

If an LP formatted file created by MOSEK should satisfies the strict definition, then the
parameter

MSK_TIPAR_WRITE_LP_STRICT_FORMAT

B.2. THE LP FILE FORMAT 201

should be set; note, however, that some problems cannot be written correctly as a strict LP
formatted file. For instance, all names are truncated to 16 characters and hence they may
loose their uniqueness and change the problem.

To get around some of the inconveniences converting from other problem formats, MO-
SEK allows lines to contain 1024 characters and names may have any length (shorter than
the 1024 characters).

Internally in MOSEK names may contain any (printable) character, many of which cannot
be used in LP names. Setting the parameters

MSK_IPAR_READ_LP_QUOTED_NAMES
and
MSK_IPAR_WRITE_LP_QUOTED_NAMES

allows MOSEK to use quoted names. The first parameter tells MOSEK to remove quotes
from quoted names e.g, "x1", when reading LP formatted files. The second parameter tells
MOSEK to put quotes around any semi-illegal name (names beginning with a number or
a period) and fully illegal name (containing illegal characters). As double quote is a legal
character in the LP format, quoting semi-illegal names makes them legal in the pure LP
format as long as they are still shorter than 16 characters. Fully illegal names are still illegal
in a pure LP file.

B.2.3 The strict LP format

The LP format is not a formal standard and different vendors have slightly different interpre-
tations of the LP format. To make MOSEK’s definition of the LP format more compatible
whith the definitions of other vendors use the paramter setting

MSK_IPAR_WRITE_LP_STRICT_FORMAT MSK_ON

This setting may lead to truncation of some names and hence to an invalid LP file. The
simple solution to this problem is to use the paramter setting

MSK_IPAR_WRITE_GENERIC_NAMES MSK_ON

which will cause all names to be renamed systematically in the output file.

B.2.4 Formatting of an LP file

A few parameters control the visual formatting of LP files written by MOSEK in order to
make it easier to read the files. These parameters are

MSK_IPAR_WRITE_LP_LINE_WIDTH
MSK_TIPAR_WRITE_LP_TERMS_PER_LINE

202 APPENDIX B. THE LP FILE FORMAT

The first parameter sets the maximum number of characters on a single line. The default
value is 80 corresponding roughly to the width of a standard text document.

The second parameter sets the maximum number of terms per line; a term means a sign,
a coefficient, and a name (for example “+ 42 elephants”). The default value is 0, meaning
that there is no maximum.

B.2.4.1 Speeding up file reading

If the input file should be read as fast as possible using the least amount of memory, then
it is important to tell MOSEK how many non-zeros, variables and constraints the problem
contains. These values can be set using the parameters

MSK_IPAR_READ_CON
MSK_IPAR_READ_VAR
MSK_IPAR_READ_ANZ
MSK_IPAR_READ_QNZ

B.2.4.2 Unnamed constraints

Reading and writing an LP file with MOSEK may change it superficially. If an LP file contains
unnamed constraints or objective these are given their generic names when the file is read
(however unnamed constraints in MOSEK are written without names).

Appendix C

Parameters

Subsequently all parameters that are in MOSEK parameter database is presented. For each
parameter their name, purpose, type, default value etc. are presented.

C.1 Parameter groups

Parameters grouped by meaning and functionality.

C.1.1 Logging parameters.

MSK_TPAR LOG . . oottt ettt et et et e e e e e e e e e et e it e 282
Controls the amount of log information.

MSK _TPAR LOG B . ..t e e e e e e e et et e i 282
Controls the amount of output printed by the basis identification procedure. A higher
level implies that more information is logged.

MSK_TPAR LOG BI FREQ . ..ottt ettt ettt ettt e e e et et ettt e et i 282
Controls the logging frequency.

MSK_IPAR_LOG_CONCURRENTo e e e e e e e e 283
Controls amount of output printed by the concurrent optimizer.

MSK_IPAR_LOG_CUT_SECOND_OPT ettt e e e e 283
Controls the reduction in the log levels for the second and any subsequent optimizations.

MSK _TIPAR LOG FACTOR . ettt ettt e e e e e et et et e et e e e i e s 283
If turned on, then the factor log lines are added to the log.

MSK_TPAR LOG FEASREPATR .. .ottt e e et e e ettt e et 284
Controls the amount of output printed when performing feasibility repair.

203

204

APPENDIX C. PARAMETERS

MSK_TIPAR LOG FILE ...ttt e e e et e et e 284
If turned on, then some log info is printed when a file is written or read.

MSK _TPAR LOG HEAD .. e e e e e e e et e e e e e e e e 284
If turned on, then a header line is added to the log.

MSK_IPAR LOG _INFEAS ANA .. e e e e e e e 285
Controls log level for the infeasibility analyzer.

MSK_TPAR LOG INT PN ...ttt et et et et et e e e e e e e e e e eeeens 285
Controls the amount of log information from the interior-point optimizers.

MSK _TPAR LOG MIO .ttt ettt ettt e e e e e e it e e e ettt et et ettt e 285
Controls the amount of log information from the mixed-integer optimizers.

MSK_IPAR_LOG MIO_FREQ.ttt e e e e e e e 285
The mixed integer solver logging frequency.

MSK_TPAR LOG NONCONVEX . .ttt ettt e e et e ettt e 286
Controls amount of output printed by the nonconvex optimizer.

MSK_IPAR LOG_OPTIMIZERttt ittt ettt et et e e 286
Controls the amount of general optimizer information that is logged.

MSK_IPAR_LOG_ORDERottt e e e e e e e e e e 286
If turned on, then factor lines are added to the log.

MK TP AR LOG P AR AM .. e e e e e e e e et e e e 287
Controls the amount of information printed out about parameter changes.

MSK_TPAR LOG PRESOLVE . .ttt e e et e e et et ettt e e et 287
Controls amount of output printed by the presolve procedure. A higher level implies
that more information is logged.

MSK_TIPAR LOG RESPONSE . .ttt e e et et ettt et et e ittt 287
Controls amount of output printed when response codes are reported. A higher level
implies that more information is logged.

MSK TP AR LOG SEN ST T IV T Y ittt et et et e ettt e et et et ettt e 287
Control logging in sensitivity analyzer.

MSK_IPAR_LOG_SENSITIVITY OPT i e e e 288
Control logging in sensitivity analyzer.

MSK _TPAR LOG S TN .ttt ettt et et e e e e e e e e e e e e et e et 288
Controls the amount of log information from the simplex optimizers.

C.1. PARAMETER GROUPS 205

o MSK_IPAR LOG_SIM FREQ.ttt e et et e 288
Controls simplex logging frequency.

e MSK_IPAR LOG_SIM_NETWORK_FREQ.couiunii e e 289
Controls the network simplex logging frequency.

o MSK TPAR LOG _STORAGEttt e e e e e et e ettt e et et e e 289
Controls the memory related log information.

C.1.2 Basis identification parameters.

e MSK_IPAR BI CLEAN OPTIMIZER.ttt ittt 267
Controls which simplex optimizer is used in the clean-up phase.

o MSK_TPAR BT _IGNORE MAX TTER ...ttt ittt et et ettt e e ia e 267
Turns on basis identification in case the interior-point optimizer is terminated due to
maximum number of iterations.

o MSK TPAR BT _IGNORE NUM ERROR.ttt it et ettt et e et 268
Turns on basis identification in case the interior-point optimizer is terminated due to a
numerical problem.

o MSK DPAR BT LU TOL_ REL PIV ...ttt e e et i 236
Relative pivot tolerance used in the LU factorization in the basis identification proce-
dure.

o MSK TPAR BT MAX TTERATION S . .ottt e et et et ettt e et et ia e 268

Maximum number of iterations after basis identification.

® MSK TP AR INT PN BAS TS .ttt e et e e et e et e et e e 274
Controls whether basis identification is performed.

@ MK TPAR LOG Bl . ..ttt ettt et e e e e e e et et 282
Controls the amount of output printed by the basis identification procedure. A higher
level implies that more information is logged.

® MSK IPAR LOG BI FREQttt ettt e e e e et et enns 282
Controls the logging frequency.

C.1.3 The Interior-point method parameters.

Parameters defining the behavior of the interior-point method for linear, conic and convex
problems.

206

APPENDIX C. PARAMETERS

MSK_TPAR BT TIGNORE MAX TITER ...ttt ettt ittt e 267
Turns on basis identification in case the interior-point optimizer is terminated due to
maximum number of iterations.

MSK_TPAR BI_IGNORE_NUM_ERROR.ttt ettt et e ettt 268
Turns on basis identification in case the interior-point optimizer is terminated due to a
numerical problem.

MSK_IPAR INTPNT BASTS ..ttt e e e e ettt e et e 274
Controls whether basis identification is performed.

MSK_DPAR _INTPNT CO_TOL DEEAS . .t e e e e e e 240
Dual feasibility tolerance used by the conic interior-point optimizer.

MSK_DPAR_INTPNT_CO_TOL_INFEAS. i e e e e e 240
Infeasibility tolerance for the conic solver.

MSK_DPAR_INTPNT _CO_TOL MU RED . ..ttt ittt ittt e ettt 240
Optimality tolerance for the conic solver.

MSK_DPAR_INTPNT _CO_TOL_NEAR REL ...ttt ittt et et ie e 241
Optimality tolerance for the conic solver.

MSK DPAR _INTPNT CO_TOL PEEAS . .ottt e et e et e et e et 241
Primal feasibility tolerance used by the conic interior-point optimizer.

MSK DPAR _INTPNT CO_TOL REL _GAP . ..ttt e e e et et ettt e e 241
Relative gap termination tolerance used by the conic interior-point optimizer.

MSK_TIPAR INTPNT DIFE ST ..ottt e e ettt e et et ee e eaeann 275
Controls whether different step sizes are allowed in the primal and dual space.

MSK_TPAR _INTPNT MAX TTERATIONS . ittt et e et ettt e et 276
Controls the maximum number of iterations allowed in the interior-point optimizer.

MSK_TPAR_INTPNT MAX NUM_CORttt e e et et e e e et 276
Maximum number of correction steps.

MSK_TIPAR_INTPNT MAX NUM REFINEMENT STEPS. ...ttt 277
Maximum number of steps to be used by the iterative search direction refinement.

MSK_DPAR_INTPNT NL MERIT BALttt e 242
Controls if the complementarity and infeasibility is converging to zero at about equal
rates.

C.1.

PARAMETER GROUPS 207

MSK_DPAR_INTPNT NL_TOL DEEAS . ..ttt e e e e e 242
Dual feasibility tolerance used when a nonlinear model is solved.

MSK_DPAR_INTPNT NL_TOL MU REDottt i i e 242
Relative complementarity gap tolerance.

MSK DPAR_INTPNT NL_TOL NEAR RELt e e ettt e i 242
Nonlinear solver optimality tolerance parameter.

MSK DPAR _INTPNT NL TOL PEEAS . .ttt e et et et e ettt 243
Primal feasibility tolerance used when a nonlinear model is solved.

MSK _DPAR _INTPNT NL _TOL REL _GAPttt e e et et et ettt e 243
Relative gap termination tolerance for nonlinear problems.

MSK_DPAR_INTPNT_NL_TOL REL_STEPttt e e e 243
Relative step size to the boundary for general nonlinear optimization problems.

MSK_TPAR _INTPNT OFF _COL_TRH.ttt e e e e ettt et e e e 277
Controls the aggressiveness of the offending column detection.

MSK_IPAR_INTPNT ORDER METHODcntit i e e e 277
Controls the ordering strategy.

MSK_TIPAR_INTPNT REGULARIZATION USE ...ttt ittt e 278
Controls whether regularization is allowed.

MSK _TIPAR _INTPNT SCALTING . vttt ettt ettt et ettt e et et ettt e e eaenns 278
Controls how the problem is scaled before the interior-point optimizer is used.

MSK_TPAR _INTPNT SOLVE FORM. ...ttt et et ettt e e 279
Controls whether the primal or the dual problem is solved.

MSK_IPAR_INTPNT_STARTING_POINTo i i it 279
Starting point used by the interior-point optimizer.

MSK_DPAR _INTPNT TOL DEEAS ..ottt et e e e et i 244
Dual feasibility tolerance used for linear and quadratic optimization problems.

MSK DPAR _INTPNT TOL DS AFE . .ottt e e et e et et et ettt e 244
Controls the interior-point dual starting point.

MSK DPAR _INTPNT TOL _INEFE A S . .ottt e e et e ettt e et 244
Nonlinear solver infeasibility tolerance parameter.

MSK_DPAR_INTPNT TOL MU RED ...ttt ettt ettt ettt e e 244
Relative complementarity gap tolerance.

208 APPENDIX C. PARAMETERS

o MSK DPAR _INTPNT _TOL_PATHttt e e e e 245
interior-point centering aggressiveness.

o MSK DPAR TINTPNT TOL PEEAS . . et e e e e et et it e e 245
Primal feasibility tolerance used for linear and quadratic optimization problems.

o MSK DPAR _INTPNT TOL PO AFE . .ottt et e e ettt et et e e 245
Controls the interior-point primal starting point.

e MSK DPAR_INTPNT_TOL_REL _GAP e e e e 246
Relative gap termination tolerance.

o MSK DPAR INTPNT TOL REL _STEPttt i et ettt et et 246
Relative step size to the boundary for linear and quadratic optimization problems.

o MSK DPAR _INTPNT TOL_STEP SIZE.ttt ettt et et i 246
If the step size falls below the value of this parameter, then the interior-point optimizer
assumes it is stalled. It it does not not make any progress.

o MSK TPAR LOG_CONCURRENTttt e e et e ettt et et e it 283
Controls amount of output printed by the concurrent optimizer.

@ MSK TPAR LOG INT PN T ..ttt e e e ettt et et ettt ettt i e 285
Controls the amount of log information from the interior-point optimizers.

o MSK TPAR LOG PRESOLVE . .ttt e e et e ettt e et e ettt 287
Controls amount of output printed by the presolve procedure. A higher level implies
that more information is logged.

C.1.4 Simplex optimizer parameters.

Parameters defining the behavior of the simplex optimizer for linear problems.

o MSK DPAR BASTS REL TOL S, ..ttt ittt et et ettt e et et ettt et ieiannns 236
Maximum relative dual bound violation allowed in an optimal basic solution.

® MSK DP AR BAST S T L S .ttt ettt ettt e e e e ettt e ettt et ettt 236
Maximum absolute dual bound violation in an optimal basic solution.

® MSK DPAR BAST S TOL X ..ttt ettt e e e e e e ettt 236
Maximum absolute primal bound violation allowed in an optimal basic solution.

® MSK TP AR LOG ST .ottt ittt et e et e e e e e e e e e e e e e e e 288
Controls the amount of log information from the simplex optimizers.

C.1.

PARAMETER GROUPS 209

MSK_TIPAR LOG_SIM_FREQ.ttt e e e e e e et 288
Controls simplex logging frequency.

MSK_TPAR LOG_STIM MINOR. .\ttt ettt ettt e et ettt et e e et e et 289
Currently not in use.

MSK_TPAR_SENSITIVITY OPTIMIZER.ttt it 313
Controls which optimizer is used for optimal partition sensitivity analysis.

MSK_TPAR_STIM DEGENottt e e e e et i i ens 314
Controls how aggressive degeneration is approached.

MSK_TPAR STM HOT ST ART ..ottt ettt e e e e e et et et et 315
Controls the type of hot-start that the simplex optimizer perform.

MSK_TIPAR SIM MAX ITERATIONS. . .ttt e e et e e 316
Maximum number of iterations that can be used by a simplex optimizer.

MSK_TIPAR_SIM MAX _NUM_SETBACKS . . .ottt e e e e 316
Controls how many setbacks that are allowed within a simplex optimizer.

MSK_TPAR_SIM_NETWORK_DETECT _METHOD.couuitt ittt 317
Controls which type of detection method the network extraction should use.

MSK_TPAR_SIM_NON_SINGULARttt e e e et i en 317
Controls if the simplex optimizer ensures a non-singular basis, if possible.

MSK _TPAR STM SAVE LU .ttt ettt e e e et e et e e et ittt 319
Controls if the LU factorization stored should be replaced with the LU factorization
corresponding to the initial basis.

MSK_IPAR STM SCALTING. . ¢ttt ittt et et e ettt e ettt ettt 320
Controls how the problem is scaled before a simplex optimizer is used.

MSK_TPAR _SIM SOLVE FORM . .ttt ettt e e et et et e et ettt e e 320
Controls whether the primal or the dual problem is solved by the primal-/dual- simplex
optimizer.

MSK_TPAR_SIM_STABILITY PRIORITY ...ttt ittt et e 320
Controls how high priority the numerical stability should be given.

MSK_IPAR_SIM SWITCH_OPTIMIZERttt ittt ettt eens 321
Controls the simplex behavior.

MSK_DPAR_SIMPLEX _ABS TOL PIV ...t e e e et 253
Absolute pivot tolerance employed by the simplex optimizers.

210 APPENDIX C. PARAMETERS

C.1.5 Primal simplex optimizer parameters.

Parameters defining the behavior of the primal simplex optimizer for linear problems.

o MSK IPAR STM PRIMAL CRASH . .ttt e e e e e 318
Controls the simplex crash.

e MSK_IPAR_SIM PRIMAL RESTRICT SELECTION....... oottt 318
Controls how aggressively restricted selection is used.

o MSK_IPAR SIM PRIMAL SELECTIONttt ittt e 318
Controls the primal simplex strategy.

C.1.6 Dual simplex optimizer parameters.

Parameters defining the behavior of the dual simplex optimizer for linear problems.

e MSK_IPAR SIM DUAL _CRASH ...ttt e e e e e e e et 314
Controls whether crashing is performed in the dual simplex optimizer.

o MSK_TPAR_SIM DUAL RESTRICT SELECTIONttt ittt iaeeen 314
Controls how aggressively restricted selection is used.

e MSK_IPAR_SIM DUAL SELECTION.ottt et e 315
Controls the dual simplex strategy.

C.1.7 Network simplex optimizer parameters.

Parameters defining the behavior of the network simplex optimizer for linear problems.

e MSK_IPAR LOG_SIM_NETWORK_FREQ.ottt it e 289
Controls the network simplex logging frequency.

o MSK_IPAR SIM NETWORK DETECTttt ittt i et e 316
Level of aggressiveness of network detection.

e MSK_IPAR SIM NETWORK DETECT HOTSTARTccnii i i i 317
Level of aggressiveness of network detection in a simplex hot-start.

e MSK_IPAR_SIM REFACTOR_FREQ.ttt e et 319
Controls the basis refactoring frequency.

C.1. PARAMETER GROUPS 211
C.1.8 Nonlinear convex method parameters.
Parameters defining the behavior of the interior-point method for nonlinear convex problems.

o MSK TPAR CHECK CONVEX I Y .ttt ettt e e ettt e e et ettt e e 269
Specify the level of convexity check on quadratic problems

e MSK DPAR_INTPNT NL MERIT BAL oot e e e e 242
Controls if the complementarity and infeasibility is converging to zero at about equal
rates.

o MSK DPAR _INTPNT NL TOL DEEAS . .ttt e ettt et et ettt e 242

Dual feasibility tolerance used when a nonlinear model is solved.

o MSK DPAR_INTPNT NL _TOL MU REDttt ettt ittt ittt e 242
Relative complementarity gap tolerance.

o MSK DPAR_INTPNT NL_TOL NEAR REL ...ttt ettt et e e et i i 242
Nonlinear solver optimality tolerance parameter.

o MSK DPAR _INTPNT NL TOL PEEAS . .. e e et et 243
Primal feasibility tolerance used when a nonlinear model is solved.

e MSK DPAR_INTPNT_NL_TOL_REL_GAPt e et e 243
Relative gap termination tolerance for nonlinear problems.

e MSK DPAR_INTPNT_NL_TOL_REL_STEPttt e 243
Relative step size to the boundary for general nonlinear optimization problems.

o MSK DPAR TINTPNT TOL _TINEEAS . .ot e e e e et e et et i 244
Nonlinear solver infeasibility tolerance parameter.
C.1.9 The conic interior-point method parameters.

Parameters defining the behavior of the interior-point method for conic problems.

o MSK DPAR _INTPNT CO_TOL DEEAS . . ittt e e e ettt et et ettt e 240
Dual feasibility tolerance used by the conic interior-point optimizer.

o MSK DPAR _INTPNT CO_TOL _INEFEAS. ..ttt e ettt et et ettt e 240
Infeasibility tolerance for the conic solver.

o MSK DPAR_INTPNT CO_TOL MU REDttt ittt ittt et ettt et ieiaenns 240
Optimality tolerance for the conic solver.

212 APPENDIX C. PARAMETERS

o MSK DPAR_INTPNT _CO_TOL NEAR REL ...\ttt et ittt et et ettt 241
Optimality tolerance for the conic solver.

o MSK DPAR _INTPNT CO_TOL PEEAS . ..ttt ettt et et ettt iaens 241
Primal feasibility tolerance used by the conic interior-point optimizer.

o MSK DPAR _INTPNT CO_TOL REL _GAPottt e e ettt ettt e e 241
Relative gap termination tolerance used by the conic interior-point optimizer.

C.1.10 The mixed integer optimization parameters.

® MSK TPAR LOG MIO ...ttt ettt ettt e e e e e e e e e e e e ettt et i 285
Controls the amount of log information from the mixed-integer optimizers.

o MSK_ TIPAR LOG MIO FREQ.ttt ittt et ettt e et et et ettt et 285
The mixed integer solver logging frequency.

o MSK_TPAR MIO BRANCH DIR ...ttt ettt et ettt ettt et ettt e 290
Controls whether the mixed integer optimizer is branching up or down by default.

o MSK_TPAR MIO BRANCH PRIORITIES USE. ...ttt ittt ettt e e ieieeaenn 291
Controls whether branching priorities are used by the mixed integer optimizer.

o MSK_TPAR MIO _CONSTRUCT SOL . .ttt ettt et e et et et ettt et et 291
Controls if initial MIP solution should be constructed from value of integer variables.

® MSK_IPAR MIO _CONT SOL . .ttt ittt ettt e e e e e e e e e e e e et 291
Controls the meaning of interior-point and basic solutions in MIP problems.

o MSK_ TPAR MIO CUT _LEVEL RODT . ..ottt ittt et et ettt et e i 292
Controls the cut level employed by the mixed integer optimizer at the root node.

o MSK_ TPAR MIO CUT LEVEL TREEottt et ettt e e e i 293
Controls the cut level employed by the mixed integer optimizer in the tree.

o MSK DPAR MIO DISABLE TERM TIMEttt ettt et et et et eeeeeeennn 247
Certain termination criterias is disabled within the mixed integer optimizer for period
time specified by the parameter.

o MSK IPAR MIO FEASPUMP LEVEL.ttt ittt ittt ee e i 293
Controls the feasibility pump heuristic which is used to construct a good initial feasible
solution.

o MSK TPAR MIO HEURISTIC LEVEL ...ttt it et et et ettt e 293

Controls the heuristic employed by the mixed integer optimizer to locate an initial
integer feasible solution.

C.1.

PARAMETER GROUPS 213

MSK_DPAR MIO HEURISTIC TIME.ttt ettt 248
Time limit for the mixed integer heuristics.

MSK _IPAR MIO KEEP BAS TS ittt e e e et ettt e et et e e 294
Controls whether the integer presolve keeps bases in memory.

MSK_IPAR MIO _MAX_NUM_BRANCHES. e e e e e 294
Maximum number of branches allowed during the branch and bound search.

MSK_IPAR MIO MAX NUM REL A XS .ottt e e e e e e e e 295
Maximum number of relaxations in branch and bound search.

MSK_TPAR MIO MAX NUM_ SOLUTIONS ..ttt ittt ettt et e et et e e 295
Controls how many feasible solutions the mixed-integer optimizer investigates.

MSK DPAR MIO MAX TIME . ..ttt e e e e e e e e e e 248
Time limit for the mixed integer optimizer.

MSK_DPAR_MIO MAX_TIME APRX OPTttt e e e i e 248
Time limit for the mixed integer optimizer.

MSK_DPAR MIO NEAR TOL _ABS GAP ..ottt e e e et et et ettt e e 249
Relaxed absolute optimality tolerance employed by the mixed integer optimizer.

MSK_DPAR MIO NEAR_TOL REL GAPttt e e e e et et 249
The mixed integer optimizer is terminated when this tolerance is satisfied.

MSK_TIPAR_MIO_NODE_OPTIMIZER.ttt ittt 296
Controls which optimizer is employed at the non-root nodes in the mixed integer opti-
mizer.

MSK_IPAR MIO _NODE _SELECTION.ttt e it et 296
Controls the node selection strategy employed by the mixed integer optimizer.

MSK_IPAR MIO PRESOLVE AGGREGATEot it ettt i e 297
Controls whether problem aggregation is performed in the mixed integer presolve.

MSK_IPAR MIO PRESOLVE PROBINGottt it e 297
Controls whether probing is employed by the mixed integer presolve.

MSK_IPAR MIO PRESOLVE USE ittt e e e e i 298
Controls whether presolve is performed by the mixed integer optimizer.

MSK_DPAR MIO REL_ADD CUT _LIMITEDttt it it ettt et e ieiaann 249
Controls cut generation for MIP solver.

214

APPENDIX C. PARAMETERS

MSK_TPAR MIO ROOT _OPTIMIZER. ...ttt ettt ettt ettt et ettt ettt ea s 298
Controls which optimizer is employed at the root node in the mixed integer optimizer.

MSK_TPAR MIO_STRONG BRANCH . ..ttt e e et et ettt et et et et i e 298
The depth from the root in which strong branching is employed.

MSK_DPAR MIO_TOL_ABS_GAP. .. i e e e e e i e 250
Absolute optimality tolerance employed by the mixed integer optimizer.

MSK DPAR MIO TOL_ABS RELAX INT ..ottt e e e ettt et e et it e e 250
Integer constraint tolerance.

MSK_DPAR MIO_TOL_REL _GAP. ...t e e e e e e e e 250
Relative optimality tolerance employed by the mixed integer optimizer.

MSK DPAR MIO TOL REL RELAX INT ...ttt ettt et et et ettt e 251
Integer constraint tolerance.

MSK DPAR MIO TOL X oottt ettt e e e e e e e e et e e 251
Absolute solution tolerance used in mixed-integer optimizer.

C.1.11 Presolve parameters.

MSK_TIPAR PRESOLVE ELTIM FILL . ..ttt ettt ittt te e et ettt e e 303
Maximum amount of fill-in in the elimination phase.

MSK_IPAR PRESOLVE ELIMINATOR USE.ottt 304
Controls whether free or implied free variables are eliminated from the problem.

MSK_IPAR_PRESOLVE_LEVEL i e e e e e 304
Currently not used.

MSK_TIPAR PRESOLVE _LINDEP USE ittt ittt et et et ettt e 304
Controls whether the linear constraints are checked for linear dependencies.

MSK_IPAR_PRESOLVE _LINDEP WORK _LIM.ttt 305
Controls linear dependency check in presolve.

MSK DPAR PRESOLVE TOL AL ..ttt et e e et et et ettt et et et ettt 252
Absolute zero tolerance employed for constraint coefficients in the presolve.

MSK_DPAR _PRESOLVE TOL_LIN DEP.t e e 252
Controls when a constraint is determined to be linearly dependent.

MSK DPAR PRESOLVE TOL S ..ottt et e ettt ettt ettt e et ettt e 253
Absolute zero tolerance employed for slack variables in the presolve.

C.1. PARAMETER GROUPS 215

® MSK DPAR PRESOLVE TOL X .ttt ettt et e ettt ettt et et 253
Absolute zero tolerance employed for variables in the presolve.

@ MSK TPAR PRESOLVE USE ..ottt ittt et et ettt et et et ettt e 305
Controls whether the presolve is applied to a problem before it is optimized.
C.1.12 Termination criterion parameters.

Parameters which define termination and optimality criteria and related information.

® MSK DPAR BAST S REL TOL S, . ittt ettt ittt ettt e et 236
Maximum relative dual bound violation allowed in an optimal basic solution.

@ MOK DP AR BAST S T S .ttt ettt et e e e ettt et ettt e e e et 236
Maximum absolute dual bound violation in an optimal basic solution.

® MSK DPAR BAST S TOL X .ttt ettt ettt e et e e e et e et e 236
Maximum absolute primal bound violation allowed in an optimal basic solution.

o MSK_TIPAR BT MAX TTERATTIONS . .ottt e e e e e e e e e e e e 268
Maximum number of iterations after basis identification.

e MSK_DPAR_INTPNT_CO_TOL_DFEAS. e e e e e 240
Dual feasibility tolerance used by the conic interior-point optimizer.

o MSK DPAR _INTPNT CO_TOL _INEFEAS. .ottt e et et et et ettt e 240
Infeasibility tolerance for the conic solver.

o MSK DPAR _INTPNT CO_TOL MU REDttt ettt et et ettt e e e eeeaenn 240
Optimality tolerance for the conic solver.

o MSK DPAR_INTPNT _CO_TOL NEAR REL ...\ttt ittt it et et et it 241
Optimality tolerance for the conic solver.

e MSK DPAR TINTPNT CO_TOL PEEAS . .ttt e e e e ettt e e eaens 241
Primal feasibility tolerance used by the conic interior-point optimizer.

e MSK DPAR_INTPNT CO_TOL REL GAP. ...ttt e e e e e e e 241
Relative gap termination tolerance used by the conic interior-point optimizer.

o MSK TPAR INTPNT MAX TTERATIONS ..ttt e e ettt et ettt e e eaens 276
Controls the maximum number of iterations allowed in the interior-point optimizer.

o MSK DPAR _INTPNT NL TOL DEEAS . .ttt e ittt e ettt e e iaeas 242
Dual feasibility tolerance used when a nonlinear model is solved.

216

APPENDIX C. PARAMETERS

MSK_DPAR_INTPNT_NL_TOL MU RED.ttt e e e 242
Relative complementarity gap tolerance.

MSK_DPAR_INTPNT NL_TOL NEAR RELttt ittt ettt et e ie e 242
Nonlinear solver optimality tolerance parameter.

MSK_DPAR _INTPNT NL _TOL PEEAS . . e e e e e 243
Primal feasibility tolerance used when a nonlinear model is solved.

MSK_DPAR_INTPNT NL_TOL REL_GAPt e e e e e 243
Relative gap termination tolerance for nonlinear problems.

MSK DPAR _INTPNT TOL DEEAS . .ottt e e e e ettt et et it e 244
Dual feasibility tolerance used for linear and quadratic optimization problems.

MSK DPAR _INTPNT TOL _INEEAS . . . e e e e e e e en 244
Nonlinear solver infeasibility tolerance parameter.

MSK_DPAR_INTPNT_TOL MU REDttt et 244
Relative complementarity gap tolerance.

MSK DPAR _INTPNT TOL PEEAS .ottt e e e et et et ettt 245
Primal feasibility tolerance used for linear and quadratic optimization problems.

MSK_DPAR_INTPNT _TOL REL _GAPot e e e et e e 246
Relative gap termination tolerance.

MSK DPAR _LOWER OB CUT . .ttt ettt e e e e e e e ettt 246
Objective bound.

MSK_DPAR_LOWER_OBJ CUT _FINITE TRHcoinii it it et e ie e e 247
Objective bound.

MSK DPAR MIO DISABLE TERM TIMEttt e et et e ettt eaeaen 247
Certain termination criterias is disabled within the mixed integer optimizer for period
time specified by the parameter.

MSK_IPAR MIO _MAX _NUM BRANCHES.ottt e e et e e 294
Maximum number of branches allowed during the branch and bound search.

MSK_TPAR MIO_MAX _NUM_SOLUTIONS ...ttt e e e e ettt e 295
Controls how many feasible solutions the mixed-integer optimizer investigates.

MSK DPAR MIO MAX TIME . ..ttt e e e e ettt et et et ettt ettt 248
Time limit for the mixed integer optimizer.

C.1. PARAMETER GROUPS 217

o MSK DPAR MIO_NEAR TOL REL _GAPttt e e e i e en 249
The mixed integer optimizer is terminated when this tolerance is satisfied.

e MSK DPAR MIO_TOL_ REL _GAP. ... e e e e e e 250
Relative optimality tolerance employed by the mixed integer optimizer.

e MSK DPAR _OPTIMIZER MAX TIME. ... @@t e e e e e e e i 252
Solver time limit.

e MSK_IPAR SIM MAX ITERATIONS.o e e et et 316
Maximum number of iterations that can be used by a simplex optimizer.

o MSK DPAR UPPER OBJ CUT . ..ttt e e e e e et et e ettt e e 253
Objective bound.

e MSK DPAR UPPER OBJ CUT FINITE TRH........cooniinii i 254
Objective bound.

C.1.13 Progress call-back parameters.

o MSK DPAR CALLBACK FREQ .ttt ittt e e et et ettt et et et et et e 237
Controls progress call-back frequency.

o MSK_TPAR SOLUTION CALLBACK ..ttt e et et ettt 323
Indicates whether solution call-backs will be performed during the optimization.

C.1.14 Non-convex solver parameters.

o MSK TPAR LOG NONCONVE X & .ttt et e e et et e et e et et ettt e 286
Controls amount of output printed by the nonconvex optimizer.

e MSK_IPAR NONCONVEX MAX_TITERATIONScoir it 299
Maximum number of iterations that can be used by the nonconvex optimizer.

o MSK DPAR NONCONVEX TOL FEAS . .ottt e e et et et ettt e e 251
Feasibility tolerance used by the nonconvex optimizer.

o MSK DPAR _NONCONVEX TOL OPT . .ttt ettt e et et et ettt ettt 251
Optimality tolerance used by the nonconvex optimizer.

C.1.15 Feasibility repair parameters.

o MSK DPAR FEASREP AT R TOL ..ottt e et e e ettt et et et it 239
Tolerance for constraint enforcing upper bound on sum of weighted violations in feasi-
bility repair.

218 APPENDIX C. PARAMETERS

C.1.16 Optimization system parameters.

Parameters defining the overall solver system environment. This includes system and platform
related information and behavior.

@ MSK TPAR CACHE ST ZE L. ..t e et e e et et ettt 268
Specifies the size of the level 1 cache of the processor.

@ MSK TPAR CACHE ST ZE 2. . ittt et et et ettt et e ettt e 269
Specifies the size of the level 2 cache of the processor.

@ MSK_TPAR CHECK CTRL _C .ttt e e e e e e e e e e e e e e e 269
Turns ctrl-c check on or off.

@ MK TP AR CPU T PE . .t e e e e e e et en 272
Specifies the CPU type.

o MSK TPAR INTPNT NUM THREADS. ...ttt et et ettt e et 277
Controls the number of threads employed by the interior-point optimizer.

e MSK_ IPAR LICENSE CACHE TIME. (.t i ittt 280
Controls the license manager client behavior.

o MSK IPAR LICENSE CHECK TIME.ttt ittt it 280
Controls the license manager client behavior.

@ MSK TPAR LICENSE WAL ittt ettt et et e ettt et ettt e i 281
Controls if MOSEK should queue for a license if none is available.

o MSK IPAR LOG_STORAGE. . ..ottt e e e et et et et e e 289
Controls the memory related log information.

C.1.17 Output information parameters.

o MSK TPAR FLUSH STREAM FREQttt e et ettt et et et i 273
Controls the stream flushing frequency.

o MSK_TPAR _INFEAS REPORT LEVEL ...ttt ittt ittt et et ettt e 274
Controls the contents of the infeasibility report.

e MSK_IPAR LICENSE SUPPRESS EXPIRE WRNSttt 281
Controls license manager client behavior.

@ MSK TPAR LG . ..ttt e et e e e e e e e e e et et e e e 282
Controls the amount of log information.

C.1.

PARAMETER GROUPS 219

MK TP AR LOG Bl ..ottt e e e e e e e e e 282
Controls the amount of output printed by the basis identification procedure. A higher
level implies that more information is logged.

MSK_IPAR_LOG BI_FREQttt e e e e et 282
Controls the logging frequency.

MSK_TIPAR _LOG_CUT _SECOND _OPT ..ttt ittt it it et e ettt et et ettt e et 283
Controls the reduction in the log levels for the second and any subsequent optimizations.

MSK_IPAR LOG FACTOR . . . oottt e e e e e e e e e 283
If turned on, then the factor log lines are added to the log.

MSK_IPAR_LOG_FEASREPATR i e e e e e e 284
Controls the amount of output printed when performing feasibility repair.

MSK_TPAR LOG FILE . ..ttt ettt et et et e e e ettt et ens 284
If turned on, then some log info is printed when a file is written or read.

MSK_IPAR LOG HEAD . ..ottt e e e e ettt ettt e e 284
If turned on, then a header line is added to the log.

MSK_IPAR _LOG_INFEAS ANA .. e e e e e e 285
Controls log level for the infeasibility analyzer.

MSK_TPAR LOG INTPNT ...ttt et et et e e e e e e e ettt e e 285
Controls the amount of log information from the interior-point optimizers.

MSK_IPAR LOG MIO . .ottt ettt et e e e e e e e e e e e ettt 285
Controls the amount of log information from the mixed-integer optimizers.

MSK_IPAR_LOG MIO_FREQ.ttt e e e e e e et e 285
The mixed integer solver logging frequency.

MSK_TPAR _LOG NONCONVEX . .ttt ettt e ettt et et e e et e e 286
Controls amount of output printed by the nonconvex optimizer.

MSK_IPAR LOG_OPTIMIZERttt ettt e e ettt ettt e e e 286
Controls the amount of general optimizer information that is logged.

MSK_IPAR_LOG_ORDERttt e e e e e e e e i 286
If turned on, then factor lines are added to the log.

MK TP AR LOG P AR A .« e e e e e e e e e e e 287
Controls the amount of information printed out about parameter changes.

220

APPENDIX C. PARAMETERS

MSK_TPAR LOG RESPONSE . .ttt et e e e et et e e e 287
Controls amount of output printed when response codes are reported. A higher level
implies that more information is logged.

MSK_TIPAR LOG SENSTITIVITY ..\ttt e e e e e e e e e 287
Control logging in sensitivity analyzer.

MSK_IPAR_LOG_SENSITIVITY_OPT e e e i 288
Control logging in sensitivity analyzer.

MSK TP AR LOG ST M ittt ettt et et et et e e e e e e e et et e 288
Controls the amount of log information from the simplex optimizers.

MSK_IPAR LOG STIM FREQ\ttt ittt ettt et et et ittt 288
Controls simplex logging frequency.

MSK_TIPAR LOG _STIM MINOR. ..\ttt ettt e et et ettt et et ettt e e 289
Currently not in use.

MSK_IPAR_LOG_SIM_NETWORK_FREQ.ttt et e 289
Controls the network simplex logging frequency.

MSK_IPAR LOG_STORAGEottt e e e e e e e e 289
Controls the memory related log information.

MSK_IPAR MAX NUM_WARNINGSttt i e e e e e et 290
Waning level. A higher value results in more warnings.

MSK_IPAR_WARNING_LEVEL e e 323
Warning level.

C.1.18 Extra information about the optimization problem.

o MSK_IPAR OBJECTIVE _SENSEttt ittt 299

If the objective sense for the task is undefined, then the value of this parameter is used
as the default objective sense.

C.1.19 Overall solver parameters.

o MSK_IPAR BI_CLEAN_OPTIMIZER.ttt e e 267

Controls which simplex optimizer is used in the clean-up phase.

e MSK_TPAR_CONCURRENT_NUM_OPTIMIZERS 270

The maximum number of simultaneous optimizations that will be started by the con-
current optimizer.

C.1.

PARAMETER GROUPS 221

MSK_TPAR_CONCURRENT_PRIORITY DUAL_SIMPLEXottt 270
Priority of the dual simplex algorithm when selecting solvers for concurrent optimization.

MSK_TPAR_CONCURRENT _PRIORITY FREE SIMPLEXooviiriiiiineeennnn, 271
Priority of the free simplex optimizer when selecting solvers for concurrent optimization.

MSK_TIPAR_CONCURRENT _PRIORITY INTPNT ...ttt it i e et 271
Priority of the interior-point algorithm when selecting solvers for concurrent optimiza-
tion.

MSK_TPAR_CONCURRENT _PRIORITY PRIMAL SIMPLEX......c.itriiriininnnennnn, 271
Priority of the primal simplex algorithm when selecting solvers for concurrent optimiza-
tion.

MSK_IPAR DATA _CHECKot e e e e e e e e 272
Enable data checking for debug purposes.

MSK_TPAR FEASREPATR OPTIMIZE ...ttt ettt ettt e 273
Controls which type of feasibility analysis is to be performed.

MSK_IPAR_INFEAS PREFER PRIMAL ... e et e e et et et e e 274
Controls which certificate is used if both primal- and dual- certificate of infeasibility is
available.

MSK _TPAR LICENSE WAL T ittt et e et e e et et ettt et e e e e 281
Controls if MOSEK should queue for a license if none is available.

MSK _IPAR MIO CONT SO . ottt et ettt e e e ettt et et et ettt ettt e 291
Controls the meaning of interior-point and basic solutions in MIP problems.

MSK_TPAR MIO_LOCAL BRANCH NUMBER.ttt ittt et et et et ie e 294
Controls the size of the local search space when doing local branching.

MSK_TIPAR MIO MODE e e e i e 295
Turns on/off the mixed integer mode.

MSK_IPAR OPTIMIZER.ttt e e e e e e et 302
Controls which optimizer is used to optimize the task.

MSK_TIPAR PRESOLVE _LEVELttt et e et 304
Currently not used.

MSK_IPAR PRESOLVE USE . .ottt ittt ittt et ettt et et et ettt e 305
Controls whether the presolve is applied to a problem before it is optimized.

222 APPENDIX C. PARAMETERS

o MSK_IPAR_SENSITIVITY_OPTIMIZER...... ...ttt

Controls which optimizer is used for optimal partition sensitivity analysis.

o MSK IPAR SENSITIVITY TYPE. e

Controls which type of sensitivity analysis is to be performed.

o MSK_TPAR _SOLUTION_CALLBACK ...ttt e e e e e
Indicates whether solution call-backs will be performed during the optimization.

C.1.20 Behavior of the optimization task.

Parameters defining the behavior of an optimization task when loading data.

o MSK_IPAR ALLOC_ADD _QNZ. . .. e e i

Controls how the quadratic matrixes are extended.

o MSK_SPAR _FEASREPATIR NAME WSUMVIOLttt
Feasibility repair name violation name.

o MSK_TIPAR_MAXNUMANZ DOUBLE_TRHot e e e e e e
Controls how the constraint matrix is extended.

o MSK_IPAR READ _ADD _ANZ . .. e e et e

Controls how the constraint matrix is extended.

o MSK_IPAR READ _ADD _CON. ...ttt e e e

Additional number of constraints that is made room for in the problem.

e MSK_IPAR READ ADD _CONE. ... o i i

Additional number of conic constraints that is made room for in the problem.

o MSK_IPAR READ _ADD _QNZ. ... o e e e e e

Controls how the quadratic matrixes are extended.

e MSK_ IPAR READ ADD VAR . .. i e i

Additional number of variables that is made room for in the problem.

® MSK IPAR READ AN Z .ttt e e e e e e et e e ettt e
Controls the expected number of constraint non-zeros.

@ MSK TP AR READ CON ..ttt i e ettt ettt et et e ettt et e e e
Controls the expected number of constraints.

@ MSK_ IPAR READ CONE ...ttt it e e ettt et et ettt et ettt e
Controls the expected number of conic constraints.

C.1.

PARAMETER GROUPS 223

MSK_TPAR READ QN Z . .ttt e e e e e e et ettt e e e 312
Controls the expected number of quadratic non-zeros.

MSK_IPAR READ _TASK _IGNORE _PARAM ...ttt e e e e e e 312
Controls what information is used from the task files.

MSK _IPAR READ VAR .t e e e e e e e et e e e et e et 312
Controls the expected number of variables.

MSK_IPAR WRITE _TASK _INC _SOLttt e e e e e e e e e 331
Controls whether the solutions are stored in the task file too.

C.1.21 Data input/output parameters.

Parameters defining the behavior of data readers and writers.

MSK_SPAR BAS SOL _FILE NAMEttt e e e e e e e e 333
Name of the bas solution file.

MSK_SPAR DAT A FILE NAME . . e e e e e e e e e i 333
Data are read and written to this file.

MSK_SPAR DEBUG _FILE NAMEt e e e e e e e en 334
MOSEK debug file.

MSK_TPAR _INFEAS REPORT AUT 0. ...ttt ettt ettt et et ettt et et iaee 274
Turns the feasibility report on or off.

MSK_SPAR_INT _SOL_FILE NAME ... i e e e e e e i 334
Name of the int solution file.

MSK_SPAR _ITR_SOL _FILE NAMEttt e e e e e e e 334
Name of the itr solution file.

MSK_TPAR LOG FILE . ..ttt ettt ettt et et et e e e ettt e e e e e 284
If turned on, then some log info is printed when a file is written or read.

MSK_IPAR_LP WRITE_IGNORE_INCOMPATIBLE ITEMS0ttt 290
Controls the result of writing a problem containing incompatible items to an LP file.

MSK_TIPAR OPF MAX _TERMS PER LINEt i i 299
The maximum number of terms (linear and quadratic) per line when an OPF file is
written.

MSK_IPAR _OPF _WRITE_HEADER ittt e e e e e e e 300
Write a text header with date and MOSEK version in an OPF file.

224

APPENDIX C. PARAMETERS

MSK_TIPAR OPF WRITE HINTS ...ttt e et e e 300
Write a hint section with problem dimensions in the beginning of an OPF file.

MSK_TPAR OPF _WRITE PARAMETERSttt ettt ettt et et et 300
Write a parameter section in an OPF file.

MSK_TPAR _OPF _WRITE PROBLEM. ...ttt et et et ettt et et e ee e 301
Write objective, constraints, bounds etc. to an OPF file.

MSK_IPAR _OPF WRITE _SOL _BAS ..ottt e e e e e e 301
Controls what is written to the OPF files.

MSK_IPAR _OPF _WRITE _SOL _TITG ..ttt ittt e e e e e e e e e e e e e 301
Controls what is written to the OPF files.

MSK_IPAR OPF _WRITE _SOL _ITR ...ttt ittt et et e e et et 302
Controls what is written to the OPF files.

MSK_IPAR OPF _WRITE _SOLUTIONS ..ottt e e e e e e e 302
Enable inclusion of solutions in the OPF files.

MSK_SPAR_PARAM _COMMENT _STIGNttt e e e e e e i 335
Solution file comment character.

MSK_IPAR PARAM READ CASE NAME. i e e e e e e 303
If turned on, then names in the parameter file are case sensitive.

MSK_SPAR _PARAM READ FILE NAME. ... ittt et et ettt e 335
Modifications to the parameter database is read from this file.

MSK_TIPAR_PARAM_READ_IGN_ERROR.ot e 303
If turned on, then errors in paramter settings is ignored.

MSK_SPAR_PARAM_WRITE FILE NAME e 335
The parameter database is written to this file.

MSK_IPAR _READ _ADD AN Z . . ot e e e e e e e e e e 305
Controls how the constraint matrix is extended.

MSK_TPAR READ _ADD CON ..\ttt ettt ettt e e e e e e et et e ettt e et et ee e 306
Additional number of constraints that is made room for in the problem.

MSK_IPAR READ _ADD _CONE. . .ttt e e et e e e et et et et ettt e 306
Additional number of conic constraints that is made room for in the problem.

MSK_TPAR READ _ADD QN Z . . .ttt ettt e e e e e e e e e e ettt 306
Controls how the quadratic matrixes are extended.

C.1.

PARAMETER GROUPS 225

MSK_TPAR READ _ADD VAR .ottt et e e e e e et et et e 306
Additional number of variables that is made room for in the problem.

MSK _IPAR READ AN Z .ttt e e e e e e e et et et e et e e e e e 307
Controls the expected number of constraint non-zeros.

MSK_TPAR READ _CON ...ttt e e e e e e e et ettt et et ettt 307
Controls the expected number of constraints.

MSK_TPAR READ CONE . . .ttt e e e e e e e e e e et e e e e 307
Controls the expected number of conic constraints.

MSK_TIPAR _READ DATA COMPRESSED . ..ottt ittt et et ettt et et it e e 308
Controls the input file decompression.

MSK_IPAR_READ DAT A FORMAT . ..t e e e e e i 308
Format of the data file to be read.

MSK_TIPAR READ KEEP FREE CONttt e e e 308
Controls whether the free constraints are included in the problem.

MSK_TIPAR_READ_LP DROP _NEW_VARS IN BOU.ttt ittt ieee e eaeenn 309
Controls how the LP files are interpreted.

MSK_TPAR READ LP QUOTED _NAMES. .. .t e e e et ettt et et ee e 309
If a name is in quotes when reading an LP file, the quotes will be removed.

MSK_SPAR READ MPS BOU NAME ...ttt e e e e et et e e e e e 335
Name of the BOUNDS vector used. An empty name means that the first BOUNDS
vector is used.

MSK_TPAR READ MP S FORMAT . .ottt e et et et ettt e e et ee e 309
Controls how strictly the MPS file reader interprets the MPS format.

MSK_IPAR READ MPS KEEP INT ..ottt ittt et et et ettt e et i e 310
Controls if integer constraints are read.

MSK_SPAR READ MPS OBJ NAMEot e e e e e e e 336
Objective name in the MPS file.

MSK_IPAR_READ MPS OBJ _SENSE . ..ttt e e e e e e e 310
Controls the MPS format extensions.

MSK_TIPAR _READ MPS _QUOTED _NAMES ..ottt et et et et e 310
Controls the MPS format extensions.

226

APPENDIX C. PARAMETERS

MSK_SPAR _READ MPS RAN NAME . .. i ittt et e et ettt 336
Name of the RANGE vector used. An empty name means that the first RANGE vector
is used.

MSK_TIPAR READ MPS RELAX ... e i e 311
Controls the meaning of integer constraints.

MSK_SPAR READ MPS RHS NAMEot e e e e e et 336
Name of the RHS used. An empty name means that the first RHS vector is used.

MSK_IPAR_ READ MPS WIDTH ..ottt e e e e e e e e e 311
Controls the maximal number of chars allowed in one line of the MPS file.

MSK_TPAR READ _Q MODEttt e e e e et e et ettt et 311
Controls how the Q matrices are read from the MPS file.

MSK_TPAR READ QN Z . .ottt e e e e e e e ettt e e 312
Controls the expected number of quadratic non-zeros.

MSK_IPAR_READ _TASK_IGNORE _PARAM . ..ot 312
Controls what information is used from the task files.

MSK _TPAR READ VAR .. e e e e e et et et ettt et e et 312
Controls the expected number of variables.

MSK_SPAR _SOL _FILTER _XC _ LOW . ottt ittt et et e e e e et e e 337
Solution file filter.

MSK_SPAR_SOL_FILTER _XC _UPR ... ittt e e e e e e e 337
Solution file filter.

MSK_SPAR _SOL _FILTER XX LOW ..ttt e e e e e e e e e 337
Solution file filter.

MSK_SPAR _SOL _FILTER XX _UPR ..ttt e e e e e e e e 338
Solution file filter.

MSK_IPAR _SOL_QUOTED _NAMES . ..ttt e e e e e e et et e e e 322
Controls the solution file format.

MSK_TPAR _SOL_READ NAME WIDTH. ...ttt ittt e ettt et et ettt eaens 322
Controls the input solution file format.

MSK_TIPAR _SOL _READ WIDTH ..ottt ettt e e et ettt ettt et et ettt 322
Controls the input solution file format.

C.1.

PARAMETER GROUPS 227

MSK_SPAR _STAT FILE NAME . ..ttt e e e e e e e e e e e 338
Statistics file name.

MSK _SPAR ST AT KEY .. e e e e e e e e 338
Key used when writing the summary file.

MSK _SPAR ST AT NAME . . . e e e e e e e e e e e 339
Name used when writing the statistics file.

MSK_IPAR WRITE BAS CONSTRAINTS ..ttt e e e e e e 323
Controls the basic solution file format.

MSK_IPAR WRITE BAS HEAD ..ttt e e e e e e e e e 324
Controls the basic solution file format.

MSK_IPAR WRITE BAS VARIABLES .. ottt e e e e e e e 324
Controls the basic solution file format.

MSK_TPAR WRITE DATA COMPRESSED ...ttt e it ettt ettt e eeeeas 324
Controls output file compression.

MSK_TPAR WRITE DAT A FORMAT . .ttt e e et et ettt et et et 325
Controls the output file problem format.

MSK_IPAR WRITE DATA PARAM ..ottt e e e e e e et et e e 325
Controls output file data.

MSK_TIPAR WRITE FREE CONttt ettt et ettt e e et ettt e e 325
Controls the output file data.

MSK_IPAR WRITE GENERIC NAMES ... @ittt i ettt et et ee e 326
Controls the output file data.

MSK_TPAR_WRITE_GENERIC NAMES _TO ... e i 326
Index origin used in generic names.

MSK_IPAR WRITE INT CONSTRAINTSottt e e e e e 326
Controls the integer solution file format.

MSK_IPAR WRITE INT HEADttt e e e e e 327
Controls the integer solution file format.

MSK_TIPAR WRITE INT VARIABLES ..ottt e e ittt et et ettt e 327
Controls the integer solution file format.

MSK_SPAR WRITE_LP _GEN_ VAR NAME ittt e e e e 339
Added variable names in the LP files.

228

APPENDIX C. PARAMETERS

MSK_TIPAR WRITE LP LINE WIDTH.ottt ittt et 327
Controls the LP output file format.

MSK_TPAR WRITE LP _QUOTED NAMES . .. ittt e et et et e et ee e 327
Controls LP output file format.

MSK_IPAR WRITE LP STRICT FORMAT ...ttt e e et ettt en 328
Controls whether LP output files satisfy the LP format strictly.

MSK_TPAR WRITE_LP_TERMS PER LINE ittt ieieee 328
Controls the LP output file format.

MSK_TPAR WRITE MP S TN T . .ttt ettt e e et et e e e e e e ettt et 328
Controls the output file data.

MSK_TIPAR WRITE MPS OBJ SENSE . ..ttt et et et et ettt e 329
Controls the output file data.

MSK_IPAR WRITE MPS _QUOTED NAMES ittt e ittt 329
Controls the output file data.

MSK_TIPAR WRITE MPS ST RICT ..ottt e e e e et et et ettt e e 329
Controls the output MPS file format.

MSK_TPAR WRITE PRECTISION . ..ttt ettt et e e e et et eeens 330
Controls data precision employed in when writing an MPS file.

MSK_IPAR WRITE_SOL_CONSTRAINTS ...ttt e e e e e e 330
Controls the solution file format.

MSK_IPAR WRITE _SOL _HEAD ...ttt e e e e e e e e e e e e 330
Controls solution file format.

MSK_IPAR WRITE _SOL_VARIABLES .. e e e e e 331
Controls the solution file format.

MSK_IPAR WRITE TASK _INC _SOL ..ttt ettt e e e e e e e 331
Controls whether the solutions are stored in the task file too.

MSK_IPAR WRITE XML MODEttt e e e ettt 331
Controls if linear coefficients should be written by row or column when writing in the
XML file format.

C.1. PARAMETER GROUPS
C.1.22 Solution input/output parameters.
Parameters defining the behavior of solution reader and writer.

o MSK_SPAR BAS SOL_FILE NAME ... e e e e e e i
Name of the bas solution file.

o MSK_IPAR_INFEAS REPORT_AUTO.ot i

Turns the feasibility report on or off.

o MSK_SPAR_INT _SOL_FILE NAME e e e e i
Name of the int solution file.

o MSK_SPAR _ITR _SOL _FILE NAMEt e e e e e e e i
Name of the itr solution file.

e MSK_IPAR SOL_FILTER KEEP BASTCttt et et i e
Controls the license manager client behavior.

o MSK_TPAR_SOL_FILTER KEEP RANGEDottt e ce e
Control the contents of the solution files.

o MSK_SPAR_SOL_FILTER XC_LOW ..ottt e e e e e e e e e e
Solution file filter.

o MSK_SPAR_SOL_FILTER XC_UPR ...ttt e e e e e e e e i
Solution file filter.

o MSK_SPAR_SOL _FILTER XX _LOW ..ottt e e e e e e
Solution file filter.

o MSK_SPAR_SOL_FILTER XX UPR ...ttt e e e e e e e i
Solution file filter.

o MSK_TPAR _SOL_QUOTED NAMES ..ttt e e e et e et e et et et e e
Controls the solution file format.

o MSK_IPAR_SOL_ READ NAME WIDTH...... .o i e

Controls the input solution file format.

@ MSK_IPAR SOL _ READ WIDTH ..ttt e e e e ettt e et et e et e e
Controls the input solution file format.

o MSK_TPAR WRITE_BAS CONSTRAINT S ..ottt e e e e e e
Controls the basic solution file format.

229

230

APPENDIX C. PARAMETERS

MSK_IPARWRITE BAS_HEADot i i

Controls the basic solution file format.

MSK_TPAR_WRITE_BAS_ VARTABLESo

Controls the basic solution file format.

MSK_TPAR WRITE_INT_CONSTRAINTSo

Controls the integer solution file format.

MSK_TPAR WRITE_INT HEAD e

Controls the integer solution file format.

MSK_TPAR WRITE_INT VARIABLESo

Controls the integer solution file format.

MSK_TPAR WRITE_SOL_CONSTRAINTSo i

Controls the solution file format.

MSK_TPAR WRITE_SOL_HEAD i e

Controls solution file format.

MSK_TPAR_WRITE_SOL_VARIABLES i

Controls the solution file format.

C.1.23 Infeasibility report parameters.

e MSK_IPAR_INFEAS_GENERIC_NAMES

e MSK_TPAR_INFEAS_REPORT_LEVEL

e MSK_TPAR_LOG_INFEAS_ANA

Controls the contents of the infeasibility report.

Controls the contents of the infeasibility report.

Controls log level for the infeasibility analyzer.

C.1.24 License manager parameters.

e MSK_IPAR_LICENSE_ALLOW_OVERUSE

e MSK_IPAR_LICENSE_CACHE_TIME

e MSK_IPAR_LICENSE_CHECK_TIME

Controls if license overuse is allowed when caching licenses

Controls the license manager client behavior.

Controls the license manager client behavior.

C.1. PARAMETER GROUPS 231

o MSK_IPAR LICENSE DEBUGttt ettt et et ie et 280
Controls the license manager client debugging behavior.

e MSK_IPAR LICENSE PAUSE TIME.ttt ittt 281
Controls license manager client behavior.

e MSK_IPAR LICENSE SUPPRESS EXPIRE WRNSottt 281
Controls license manager client behavior.

® MSK TPAR LICENSE WAL .ttt ettt ittt e e e et e et e e e ens 281
Controls if MOSEK should queue for a license if none is available.

C.1.25 Data check parameters.

These parameters defines data checking settings and problem data tolerances, i.e. which
values are rounded to 0 or infinity, and which values are large or small enough to produce a
warning.

@ MSK TPAR CHECK CONVEX I Y o ittt ettt e ettt et et et e et et ettt e 269
Specify the level of convexity check on quadratic problems

o MSK IPAR CHECK TASK DAT A ..o e e et et e ettt e e et e e 270
If this feature is turned on, then the task data is checked for bad values i.e. NaNs.
before an optimization is performed.

® MSK DPAR DAT A TOL AT T . ottt e e e e e e e e e e e e i 237
Data tolerance threshold.

e MSK DPAR DATA TOL_ATJ LARGE e e e e 237
Data tolerance threshold.

o MSK_DPAR_DATA _TOL_BOUND _INFttt e e e e e e e e e e 238
Data tolerance threshold.

o MSK_DPAR _DATA_TOL_BOUND _WRN . ..ttt e et et e e e et et 238
Data tolerance threshold.

o MSK DPAR DATA TOL_C_HUGE. ... e e e e e e i 238
Data tolerance threshold.

o MSK DPAR DATA TOL_CJ_LARGE ... e e e e e e e 239
Data tolerance threshold.

@ MSK DPAR DAT A TOL QL g . .ttt e et e et e e e et et et e e 239
Data tolerance threshold.

232

APPENDIX C. PARAMETERS

MSK DP AR D AT A T O X ottt ettt e e e e e e e e e e e e 239
Data tolerance threshold.

C.2 Double parameters

MSK DPAR BASTS REL TOL S, .ttt ittt e e et ettt et et e ettt et ieia e 236
Maximum relative dual bound violation allowed in an optimal basic solution.

MK DP AR BAST S T L S .ttt ettt ettt et e e e e e e e ettt e et e 236
Maximum absolute dual bound violation in an optimal basic solution.

MSK DP AR BAS TS Tl X ittt ettt et e e e e e e e e e e ettt et 236
Maximum absolute primal bound violation allowed in an optimal basic solution.

MSK DPAR BT LU TOL REL PIV L.ttt et e et et et ettt et e e 236
Relative pivot tolerance used in the LU factorization in the basis identification proce-
dure.

MSK DPAR _CALLBACK FREQ .t ittt ettt e et et e et et et it e e 237
Controls progress call-back frequency.

MSK DP AR DAT A TOL AT T . ottt e e e e e e e e e 237
Data tolerance threshold.

MSK_DPAR DATA TOL_ATJ LARGE ... it e e e e e e e 237
Data tolerance threshold.

MSK_DPAR_DATA _TOL_BOUND _INE . ..ttt et e e e e e e e e e e e 238
Data tolerance threshold.

MSK_DPAR_DATA _TOL_BOUND _WRN . ..ttt et e e e e e e e 238
Data tolerance threshold.

MSK_DPAR DATA _TOL_C_HUGE. . ..ottt e e e e e e e 238
Data tolerance threshold.

MSK_DPAR_DATA TOL_CJ_LARGE . .. ot e e e e e e e 239
Data tolerance threshold.

MSK DP AR DAT A TOL QLT . ettt e e e e e e e et et e et et et et e e 239
Data tolerance threshold.

MSK DP AR D AT A T 0L X ottt ettt e e e e e e e e e e 239
Data tolerance threshold.

C.2.

DOUBLE PARAMETERS 233

MSK DPAR FEASREPATR TOL ...ttt ettt et ettt e e ettt et ettt 239
Tolerance for constraint enforcing upper bound on sum of weighted violations in feasi-
bility repair.

MSK_DPAR_INTPNT _CO_TOL DEEAS . . . e e e e 240
Dual feasibility tolerance used by the conic interior-point optimizer.

MSK DPAR _INTPNT CO_TOL _INEFEAS. . ittt e ettt et et ettt 240
Infeasibility tolerance for the conic solver.

MSK _DPAR _INTPNT _CO_TOL MU REDttt ettt ettt et et e et e e e e iieene 240
Optimality tolerance for the conic solver.

MSK_DPAR_INTPNT _CO_TOL _NEAR REL ...ttt ittt ettt et ee e 241
Optimality tolerance for the conic solver.

MSK DPAR _INTPNT CO_TOL PEEAS . .ottt e ettt e ettt e 241
Primal feasibility tolerance used by the conic interior-point optimizer.

MSK_DPAR_INTPNT _CO_TOL REL _GAP e e e e 241
Relative gap termination tolerance used by the conic interior-point optimizer.

MSK _DPAR _INTPNT NL MERIT BALttt e ittt et et ettt et iaanns 242
Controls if the complementarity and infeasibility is converging to zero at about equal
rates.

MSK_DPAR_INTPNT NL_TOL DEEAS . ..ttt e e e et i 242
Dual feasibility tolerance used when a nonlinear model is solved.

MSK _DPAR _INTPNT NL_TOL MU REDttt ettt ittt et et ettt e 242
Relative complementarity gap tolerance.

MSK_DPAR_INTPNT NL_TOL_NEAR REL i e e 242
Nonlinear solver optimality tolerance parameter.

MSK DPAR _INTPNT NL _TOL PEEAS . .ttt ettt 243
Primal feasibility tolerance used when a nonlinear model is solved.

MSK DPAR _INTPNT NL _TOL REL _GAPttt e e et et et et it e e 243
Relative gap termination tolerance for nonlinear problems.

MSK_DPAR_INTPNT NL_TOL REL_STEPt i i i 243
Relative step size to the boundary for general nonlinear optimization problems.

MSK DPAR _INT PNT TOL DEE A S ..ottt et e e e e ettt it 244
Dual feasibility tolerance used for linear and quadratic optimization problems.

234

APPENDIX C. PARAMETERS

MSK_DPAR_INTPNT TOL DS AFE . ..ttt e e e e et 244
Controls the interior-point dual starting point.

MSK DPAR _INTPNT TOL _INEFE A S . .ottt e e et e ettt e et i e 244
Nonlinear solver infeasibility tolerance parameter.

MSK_DPAR_INTPNT TOL MU REDottt e et 244
Relative complementarity gap tolerance.

MSK DPAR _INTPNT TOL PATH ...ttt e e e e e ettt i 245
interior-point centering aggressiveness.

MSK DPAR _INTPNT TOL PEEAS .ot e e e e et et et et et e e 245
Primal feasibility tolerance used for linear and quadratic optimization problems.

MSK DPAR _INTPNT TOL PSAFE ... e e e e et 245
Controls the interior-point primal starting point.

MSK DPAR _INTPNT TOL REL _GAP ...ttt e ettt et e et et e iaeeanas 246
Relative gap termination tolerance.

MSK DPAR _INTPNT _TOL REL _STEP . ..ttt i et e et ettt et eaens 246
Relative step size to the boundary for linear and quadratic optimization problems.

MSK_DPAR _INTPNT _TOL _STEP _SIZE. ... ittt ettt et e e 246
If the step size falls below the value of this parameter, then the interior-point optimizer
assumes it is stalled. It it does not not make any progress.

MSK DPAR _LOWER _OBJ _CUT . . .ottt et et e e ettt et et et ettt eiaenes 246
Objective bound.

MSK_DPAR_LOWER_OBJ CUT _FINITE TRHcouiiii it it e e e ie i e 247
Objective bound.

MSK DPAR MIO DISABLE TERM . TIMEttt ittt et ettt e e 247
Certain termination criterias is disabled within the mixed integer optimizer for period
time specified by the parameter.

MSK DPAR MIO HEURISTIC TIME. ... ittt it ittt et et ettt e et 248
Time limit for the mixed integer heuristics.

MSK DPAR MIO MAX TIME . ..ttt e e e e e e e e e e e 248
Time limit for the mixed integer optimizer.

MSK_DPAR MIO MAX TIME APRX OPT . ..ttt e et et et i 248
Time limit for the mixed integer optimizer.

C.2.

DOUBLE PARAMETERS 235

MSK_DPAR MIO NEAR TOL _ABS GAP . .ttt e e e e et it 249
Relaxed absolute optimality tolerance employed by the mixed integer optimizer.

MSK_DPAR MIO NEAR_TOL REL GAPttt e e e et 249
The mixed integer optimizer is terminated when this tolerance is satisfied.

MSK_DPAR MIO_REL_ADD CUT _LIMITEDttt it ettt it e e ieeaen 249
Controls cut generation for MIP solver.

MSK DPAR MIO TOL _ABS GAP . .ttt e e e e e e et e e it 250
Absolute optimality tolerance employed by the mixed integer optimizer.

MSK DPAR MIO TOL _ABS RELAX INT .. ittt e e e e et et et ettt e 250
Integer constraint tolerance.

MSK DPAR MIO TOL REL GAP. ..ttt e e e e et e et et i 250
Relative optimality tolerance employed by the mixed integer optimizer.

MSK_DPAR MIO_TOL_REL _RELAX _INT e e e e i 251
Integer constraint tolerance.

MSK DPAR MIO TOL X .ttt ettt e e e e e e e et et e et e 251
Absolute solution tolerance used in mixed-integer optimizer.

MSK_DPAR _NONCONVEX TOL _FEAS. ..ttt ettt et et i 251
Feasibility tolerance used by the nonconvex optimizer.

MSK _DPAR _NONCONVEX TOL DR T . .t ittt et ettt et et ettt et et i 251
Optimality tolerance used by the nonconvex optimizer.

MSK_DPAR OPTIMIZER MAX TIME. ..ttt e e e e e e e 252
Solver time limit.

MSK_DPAR _PRESOLVE TOL AT .t e e e e e ettt 252
Absolute zero tolerance employed for constraint coefficients in the presolve.

MSK_DPAR _PRESOLVE TOL_LIN DEP.o e e e 252
Controls when a constraint is determined to be linearly dependent.

MSK DPAR PRESOLVE TOL S .ttt ettt e ettt et et ettt e e 253
Absolute zero tolerance employed for slack variables in the presolve.

MSK DPAR PRESOLVE TOL X . ittt ettt ettt et ettt e e et ettt ee e 253
Absolute zero tolerance employed for variables in the presolve.

MSK_DPAR _STMPLEX _ABS TOL PIV . .ttt ettt e e e ettt e 253
Absolute pivot tolerance employed by the simplex optimizers.

236

APPENDIX C. PARAMETERS

o MSK DPAR UPPER_OBJ _CUT i e e i i 253

Objective bound.

MSK_DPAR _UPPER _OBJ CUT FINITE TRH oottt i e e i i e 254
Objective bound.

basis_rel_tol._s
Corresponding constant:
MSK_DPAR _BASIS REL_TOL_S

Description:
Maximum relative dual bound violation allowed in an optimal basic solution.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-12
basis_tol_s
Corresponding constant:
MSK_DPAR BASIS_TOL_S

Description:
Maximum absolute dual bound violation in an optimal basic solution.

Possible Values:
Any number between 1.0e-9 and +inf.

Default value:
1.0e-6

e basis_tol x

Corresponding constant:
MSK_DPAR _BASIS _TOL_ X

Description:
Maximum absolute primal bound violation allowed in an optimal basic solution.

Possible Values:
Any number between 1.0e-9 and +inf.

Default value:
1.0e-6

e bi_lu tol rel piv

C.2. DOUBLE PARAMETERS 237

Corresponding constant:
MSK_DPAR BI_LU_TOL_REL_PIV

Description:
Relative pivot tolerance used in the LU factorization in the basis identification
procedure.

Possible Values:
Any number between 1.0e-6 and 0.999999.

Default value:
0.01
e callback freq
Corresponding constant:
MSK_DPAR_CALLBACK_FREQ

Description:
Controls the time between calls to the progress call-back function. Hence, if the
value of this parameter is for example 10, then the call-back is called approximately
each 10 seconds. A negative value is equivalent to infinity.

In general frequent call-backs may hurt the performance.

Possible Values:
Any number between -inf and +inf.

Default value:
-1.0
e data_tol_aij
Corresponding constant:
MSK_DPAR DATA_TOL_AIJ

Description:
Absolute zero tolerance for elements in A.

Possible Values:
Any number between 1.0e-16 and 1.0e-6.

Default value:
1.0e-12

e data_tol_aij_large

Corresponding constant:
MSK_DPAR DATA_TOL_AIJ LARGE

238

APPENDIX C. PARAMETERS

Description:
An element in A which is larger than this value in absolute size causes a warning
message to be printed.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0el0

data_tol_bound_inf

Corresponding constant:
MSK_DPAR _DATA_TOL_BOUND_INF

Description:
Any bound which in absolute value is greater than this parameter is considered
infinite.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0el6

data_tol_bound_wrn

Corresponding constant:
MSK_DPAR DATA_TOL_BOUND_WRN

Description:
If a bound value is larger than this value in absolute size, then a warning message
is issued.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e8

data_tol_c_huge

Corresponding constant:
MSK_DPAR DATA_TOL_C_HUGE

Description:
An element in ¢ which is larger than the value of this parameter in absolute terms
is considered to be huge and generates an error.

Possible Values:
Any number between 0.0 and +inf.

C.2. DOUBLE PARAMETERS 239

Default value:
1.0el6

e data_tol cj_large

Corresponding constant:
MSK_DPAR DATA_TOL_CJ_LARGE

Description:
An element in ¢ which is larger than this value in absolute terms causes a warning
message to be printed.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e8

e data_tol_qij
Corresponding constant:

MSK_DPAR_DATA_TOL_QIJ

Description:
Absolute zero tolerance for elements in () matrices.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-16

e data_tol x

Corresponding constant:
MSK_DPAR_DATA_TOL_X

Description:
Zero tolerance for constraints and variables i.e. if the distance between the lower
and upper bound is less than this value, then the lower and lower bound is consid-
ered identical.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-8

e feasrepair_tol

240

APPENDIX C. PARAMETERS

Corresponding constant:
MSK_DPAR_FEASREPAIR _TOL

Description:
Tolerance for constraint enforcing upper bound on sum of weighted violations in
feasibility repair.

Possible Values:
Any number between 1.0e-16 and 1.0e+16.

Default value:

1.0e-10
intpnt_co_tol_dfeas

Corresponding constant:
MSK_DPAR_INTPNT_CO_TOL _DFEAS

Description:
Dual feasibility tolerance used by the conic interior-point optimizer.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8

intpnt_co_tol_infeas

Corresponding constant:
MSK_DPAR_INTPNT_CO_TOL_INFEAS

Description:
Controls when the conic interior-point optimizer declares the model primal or dual
infeasible. A small number means the optimizer gets more conservative about
declaring the model infeasible.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8
intpnt_co_tol mu_red
Corresponding constant:
MSK_DPAR_INTPNT_CO_TOL_MU_RED

Description:
Relative complementarity gap tolerance feasibility tolerance used by the conic
interior-point optimizer.

C.2. DOUBLE PARAMETERS 241

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8
e intpnt_co_tol near_rel
Corresponding constant:
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL

Description:
If MOSEK cannot compute a solution that has the prescribed accuracy, then it will
multiply the termination tolerances with value of this parameter. If the solution
then satisfies the termination criteria, then the solution is denoted near optimal,
near feasible and so forth.

Possible Values:
Any number between 1.0 and +inf.

Default value:
100
e intpnt_co_tol_pfeas
Corresponding constant:
MSK_DPAR_INTPNT_CO_TOL_PFEAS

Description:
Primal feasibility tolerance used by the conic interior-point optimizer.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8
e intpnt_co_tol_rel_gap
Corresponding constant:
MSK_DPAR_INTPNT_CO_TOL_REL_GAP

Description:
Relative gap termination tolerance used by the conic interior-point optimizer.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8

242

APPENDIX C. PARAMETERS

e intpnt_nl merit_bal
Corresponding constant:
MSK_DPAR_INTPNT_NL_MERIT_BAL

Description:
Controls if the complementarity and infeasibility is converging to zero at about
equal rates.

Possible Values:
Any number between 0.0 and 0.99.

Default value:
1.0e-4
e intpnt_nl tol_dfeas
Corresponding constant:
MSK_DPAR_INTPNT_NL_TOL _DFEAS

Description:
Dual feasibility tolerance used when a nonlinear model is solved.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8
e intpnt nl tol mu red
Corresponding constant:
MSK_DPAR_INTPNT_NL_TOL_MU_RED

Description:
Relative complementarity gap tolerance.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-12
e intpnt nl tol near_rel
Corresponding constant:
MSK_DPAR_INTPNT_NL_TOL_NEAR_REL

Description:
If the MOSEK nonlinear interior-point optimizer cannot compute a solution that

C.2. DOUBLE PARAMETERS 243

has the prescribed accuracy, then it will multiply the termination tolerances with
value of this parameter. If the solution then satisfies the termination criteria, then
the solution is denoted near optimal, near feasible and so forth.

Possible Values:
Any number between 1.0 and +inf.

Default value:
1000.0
e intpnt_nl tol_pfeas
Corresponding constant:
MSK_DPAR_INTPNT_NL_TOL_PFEAS

Description:
Primal feasibility tolerance used when a nonlinear model is solved.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8
e intpnt_nl_tol rel_gap
Corresponding constant:
MSK_DPAR_INTPNT_NL_TOL_REL_GAP

Description:
Relative gap termination tolerance for nonlinear problems.

Possible Values:
Any number between 1.0e-14 and +inf.

Default value:
1.0e-6
e intpnt nl_tol rel_step
Corresponding constant:
MSK_DPAR_INTPNT_NL_TOL_REL_STEP

Description:
Relative step size to the boundary for general nonlinear optimization problems.

Possible Values:
Any number between 1.0e-4 and 0.9999999.

Default value:
0.995

244

APPENDIX C. PARAMETERS

e intpnt_tol_dfeas

Corresponding constant:
MSK_DPAR_INTPNT_TOL_DFEAS

Description:
Dual feasibility tolerance used for linear and quadratic optimization problems.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8
intpnt_tol_dsafe
Corresponding constant:
MSK_DPAR_INTPNT_TOL_DSAFE

Description:
Controls the initial dual starting point used by the interior-point optimizer. If the
interior-point optimizer converges slowly.

Possible Values:
Any number between 1.0e-4 and +inf.

Default value:
1.0
intpnt_tol_infeas
Corresponding constant:
MSK_DPAR_INTPNT_TOL_INFEAS

Description:
Controls when the optimizer declares the model primal or dual infeasible. A small
number means the optimizer gets more conservative about declaring the model
infeasible.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8

intpnt_tol mu_red

Corresponding constant:
MSK_DPAR_INTPNT_TOL_MU_RED

C.2. DOUBLE PARAMETERS 245

Description:
Relative complementarity gap tolerance.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-16

e intpnt_tol_path

Corresponding constant:
MSK_DPAR_INTPNT_TOL_PATH

Description:
Controls how close the interior-point optimizer follows the central path. A large
value of this parameter means the central is followed very closely. On numerical
unstable problems it might worthwhile to increase this parameter.

Possible Values:
Any number between 0.0 and 0.9999.

Default value:
1.0e-8

e intpnt_tol pfeas

Corresponding constant:
MSK_DPAR_INTPNT_TOL_PFEAS

Description:
Primal feasibility tolerance used for linear and quadratic optimization problems.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-8

e intpnt_tol_psafe

Corresponding constant:
MSK_DPAR_INTPNT_TOL_PSAFE

Description:
Controls the initial primal starting point used by the interior-point optimizer. If the
interior-point optimizer converges slowly and/or the constraint or variable bounds
are very large, then it might be worthwhile to increase this value.

Possible Values:
Any number between 1.0e-4 and +inf.

246 APPENDIX C. PARAMETERS

Default value:
1.0

e intpnt_tol rel_gap
Corresponding constant:

MSK_DPAR_INTPNT_TOL_REL_GAP

Description:
Relative gap termination tolerance.

Possible Values:
Any number between 1.0e-14 and +inf.

Default value:
1.0e-8
e intpnt_tol rel_ step
Corresponding constant:
MSK_DPAR_INTPNT_TOL_REL_STEP

Description:
Relative step size to the boundary for linear and quadratic optimization problems.

Possible Values:
Any number between 1.0e-4 and 0.999999.

Default value:
0.9999
e intpnt_tol_step_size
Corresponding constant:
MSK_DPAR_INTPNT_TOL_STEP_SIZE

Description:
If the step size falls below the value of this parameter, then the interior-point
optimizer assumes it is stalled. It it does not not make any progress.

Possible Values:
Any number between 0.0 and 1.0.

Default value:
1.0e-10

e lower_obj_cut

Corresponding constant:
MSK_DPAR_LOWER_0BJ_CUT

C.2. DOUBLE PARAMETERS 247

Description:
If a feasible solution having an objective value outside, the interval [MSK_DPAR_LOWER_0BJ_CUT,
MSK_DPAR_UPPER_0BJ_CUT], then MOSEK is terminated.

Possible Values:

Any number between -inf and +inf.

Default value:
-1.0e30

e lower_obj_cut_finite_trh

Corresponding constant:
MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

Description:
If the lower objective cut is less than the value of this parameter value, then the
lower objective cut i.e. MSK_DPAR_LOWER_0BJ_CUT is treated as —oo.

Possible Values:

Any number between -inf and +inf.

Default value:
-0.5e30

e mio_disable_term_time

Corresponding constant:
MSK_DPAR_MIO_DISABLE TERM_TIME

Description:
The termination criteria governed by
— MSK_IPAR_MIO_MAX_NUM_RELAXS
— MSK_IPAR_MIO_MAX_NUM_BRANCHES
— MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
— MSK_DPAR_MIO_NEAR_TOL_REL_GAP
is disabled the first n seconds. This parameter specifies the number n. A negative
value is identical to infinity i.e. the termination criterias are never checked.
Possible Values:
Any number between 0.0 and +inf.

Default value:
0.0

See also:

MSK_IPAR_MIO_MAX_NUM_RELAXS Maximum number of relaxations in branch and
bound search.

248 APPENDIX C. PARAMETERS

MSK_IPAR_MIO MAX NUM_BRANCHES Maximum number of branches allowed during
the branch and bound search.

MSK_DPAR MIO NEAR TOL_ABS GAP Relaxed absolute optimality tolerance employed
by the mixed integer optimizer.

MSK_DPAR_MIO_NEAR_TOL_REL_GAP The mixed integer optimizer is terminated when
this tolerance is satisfied.

e mio_heuristic_time

Corresponding constant:
MSK_DPAR_MIO_HEURISTIC_TIME

Description:
Minimum amount of time to be used in the heuristic search for a good feasible
integer solution. A negative values implies that the optimizer decides the amount
of time to be spent in the heuristic.

Possible Values:
Any number between -inf and +inf.

Default value:
-1.0

e mio_max_time

Corresponding constant:
MSK_DPAR_MIO_MAX_TIME
Description:
This parameter limits the maximum time spent by the mixed integer optimizer. A
negative number means infinity.
Possible Values:
Any number between -inf and +inf.

Default value:
-1.0

e mio max_time_aprx_opt

Corresponding constant:
MSK_DPAR_MIO_MAX_TIME_APRX_OPT

Description:
Number of seconds spent by the mixed integer optimizer before the MSK_DPAR_MIO_TOL_REL_RELAX_INT
is applied.

Possible Values:
Any number between 0.0 and +inf.

C.2. DOUBLE PARAMETERS 249

Default value:
60

e mio_near_tol_abs_gap
Corresponding constant:

MSK_DPAR_MIO_NEAR_TOL_ABS_GAP

Description:
Relaxed absolute optimality tolerance employed by the mixed integer optimizer.
This termination criteria is delayed. See MSK_DPAR MIO DISABLE TERM TIME for
details.

Possible Values:
Any number between 0.0 and +inf.

Default value:
0.0

See also:

MSK _DPAR MIO DISABLE TERM TIME Certain termination criterias is disabled within
the mixed integer optimizer for period time specified by the parameter.

e mio near_tol_rel_gap
Corresponding constant:

MSK_DPAR_MIO_NEAR_TOL_REL_GAP

Description:
The mixed integer optimizer is terminated when this tolerance is satisfied. This
termination criteria is delayed. See MSK DPAR_MIO DISABLE TERM TIVME for details.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-5

See also:
MSK_DPAR_MIO_DISABLE_TERM_TIME Certain termination criterias is disabled within
the mixed integer optimizer for period time specified by the parameter.

e mio_rel_add_cut_limited

Corresponding constant:
MSK_DPAR_MIO_REL_ADD_CUT_LIMITED

250

APPENDIX C. PARAMETERS

Description:
Controls how many cuts the mixed integer optimizer is allowed to add to the
problem. Let a be the value of this parameter and m the number constraints, then
mixed integer optimizer is allowed to am cuts.

Possible Values:
Any number between 0.0 and 2.0.

Default value:
0.75

e mio_tol_abs_gap

Corresponding constant:
MSK_DPAR_MIO_TOL_ABS_GAP

Description:
Absolute optimality tolerance employed by the mixed integer optimizer.

Possible Values:
Any number between 0.0 and +inf.

Default value:
0.0

e mio_tol_abs_relax_int

Corresponding constant:
MSK_DPAR MIO_TOL_ABS_RELAX_INT

Description:
Absolute relaxation tolerance of the integer constraints. I.e. min(|z|— |z, [z]—]|z|)
is less than the tolerance then the integer restrictions assumed to be satisfied.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-5

e mio_tol_rel_gap

Corresponding constant:
MSK_DPAR _MIO_TOL_REL_GAP

Description:
Relative optimality tolerance employed by the mixed integer optimizer.

Possible Values:
Any number between 0.0 and +inf.

C.2. DOUBLE PARAMETERS 251

Default value:
1.0e-8

e mio_tol_rel _relax_int

Corresponding constant:
MSK_DPAR_MIO_TOL_REL_RELAX_INT

Description:
Relative relaxation tolerance of the integer constraints. L.e. min(|z|— |z, [2] —|x]|)
is less than the tolerance times |z| then the integer restrictions assumed to be
satisfied.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-6

e mio_tol x

Corresponding constant:
MSK_DPAR _MIO_TOL_X

Description:
Absolute solution tolerance used in mixed-integer optimizer.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-6

e nonconvex_tol_feas

Corresponding constant:
MSK_DPAR_NONCONVEX_TOL_FEAS

Description:
Feasibility tolerance used by the nonconvex optimizer.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-6

e nonconvex_tol_opt

Corresponding constant:
MSK_DPAR_NONCONVEX_TOL_OPT

252

APPENDIX C. PARAMETERS

Description:
Optimality tolerance used by the nonconvex optimizer.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-7
optimizer max_time
Corresponding constant:
MSK_DPAR_OPTIMIZER MAX _TIME

Description:
Maximum amount of time the optimizer is allowed to spent on the optimization.
A negative number means infinity.

Possible Values:
Any number between -inf and +inf.

Default value:
-1.0

e presolve_tol_aij

Corresponding constant:
MSK_DPAR_PRESOLVE_TOL_AIJ

Description:
Absolute zero tolerance employed for a;; in the presolve.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-12

e presolve_tol_lin_dep

Corresponding constant:
MSK_DPAR_PRESOLVE_TOL_LIN _DEP

Description:
Controls when a constraint is determined to be linearly dependent.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-6

C.2. DOUBLE PARAMETERS 253

e presolve_tol_s
Corresponding constant:
MSK_DPAR_PRESOLVE_TOL_S

Description:
Absolute zero tolerance employed for s; in the presolve.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-8
e presolve_tol x
Corresponding constant:
MSK_DPAR_PRESOLVE_TOL_X

Description:
Absolute zero tolerance employed for x; in the presolve.

Possible Values:
Any number between 0.0 and +inf.

Default value:
1.0e-8
e simplex_abs_tol_piv
Corresponding constant:
MSK_DPAR_SIMPLEX_ABS_TOL_PIV

Description:
Absolute pivot tolerance employed by the simplex optimizers.

Possible Values:
Any number between 1.0e-12 and +inf.

Default value:
1.0e-7
e upper_obj_cut
Corresponding constant:
MSK_DPAR_UPPER_OBJ_CUT

Description:
If a feasible solution having and objective value outside, the interval [MSK_DPAR_LOWER_0BJ_CUT,
MSK_DPAR UPPER _0BJ CUT], then MOSEK is terminated.

254

APPENDIX C. PARAMETERS

Possible Values:
Any number between -inf and +inf.

Default value:
1.0e30

e upper_obj_cut_finite_trh

Corresponding constant:
MSK_DPAR_UPPER_0BJ_CUT_FINITE_TRH

Description:
If the upper objective cut is greater than the value of this value parameter, then
the the upper objective cut MSK_DPAR_UPPER _0BJ_CUT is treated as oo.

Possible Values:
Any number between -inf and +inf.

Default value:
0.5e30

C.3 Integer parameters

MSK_IPAR _ALLOC_ADD _QNZ. . . ottt e e e e ettt 267
Controls how the quadratic matrixes are extended.

MSK_IPAR BI _CLEAN _OPTIMIZER.ttt ittt ittt et et ettt e 267
Controls which simplex optimizer is used in the clean-up phase.

MSK_TPAR BT _IGNORE MAX TTERttt ittt ettt et et ettt e eeeaenen 267
Turns on basis identification in case the interior-point optimizer is terminated due to
maximum number of iterations.

MSK_TPAR BI_TIGNORE_NUM_ERROR.ttt et et et ettt 268
Turns on basis identification in case the interior-point optimizer is terminated due to a
numerical problem.

MSK_IPAR BT MAX _TTERATIONS . .ttt ittt et e e e e e e e e e 268
Maximum number of iterations after basis identification.

MSK TP AR CACHE ST ZE L. e e e e et et et ettt e e 268
Specifies the size of the level 1 cache of the processor.

MSK _IPAR CACHE SIZE L. .ttt ettt e e e e e e et ettt et 269
Specifies the size of the level 2 cache of the processor.

C.3.

INTEGER PARAMETERS 255

MSK_TPAR CHECK CONVEX LT Y .ttt ettt e e e e e e et ens 269
Specify the level of convexity check on quadratic problems

MSK_IPAR CHECK CTRL _C . .ttt e e e e e e e e e e 269
Turns ctrl-c check on or off.

MSK TP AR CHECK TASK DAT A L e e et et e et et e et et 270
If this feature is turned on, then the task data is checked for bad values i.e. NaNs.
before an optimization is performed.

MSK_IPAR_CONCURRENT _NUM_OPTIMIZERSttt ittt et i it e e 270
The maximum number of simultaneous optimizations that will be started by the con-
current optimizer.

MSK_IPAR_CONCURRENT_PRIORITY DUAL SIMPLEXcoiiriiiiiiinenen,. 270
Priority of the dual simplex algorithm when selecting solvers for concurrent optimization.

MSK_IPAR_CONCURRENT_PRIORITY FREE SIMPLEXc.iiriiniiiiinennn. 271
Priority of the free simplex optimizer when selecting solvers for concurrent optimization.

MSK_TIPAR_CONCURRENT PRIORITY INTPNT ...ttt it e e et e 271
Priority of the interior-point algorithm when selecting solvers for concurrent optimiza-
tion.

MSK_IPAR_CONCURRENT_PRIORITY PRIMAL SIMPLEX....... ...ttt 271
Priority of the primal simplex algorithm when selecting solvers for concurrent optimiza-
tion.

MK TP AR CPU T PE & .t e e e e e e e ettt e e e 272
Specifies the CPU type.

MSK_IPAR DAT A CHECK ..\ttt e e et ettt ettt et ettt ettt e e 272
Enable data checking for debug purposes.

MSK_TIPAR FEASREPATR OPTIMIZE ...ttt ettt e e ettt eens 273
Controls which type of feasibility analysis is to be performed.

MSK_IPAR FLUSH_STREAM FREQ.ot i e e 273
Controls the stream flushing frequency.

MSK_IPAR_INFEAS GENERIC NAMESo e e e 273
Controls the contents of the infeasibility report.

MSK_TIPAR _INFEAS PREFER PRIMAL ...ttt e ettt et et et i ee e 274
Controls which certificate is used if both primal- and dual- certificate of infeasibility is
available.

256

APPENDIX C. PARAMETERS

MSK_TPAR _INFEAS REPORT AUT 0. .ttt ettt e e e e ettt ettt ee s 274
Turns the feasibility report on or off.

MSK_IPAR_INFEAS REPORT _LEVEL i e e e 274
Controls the contents of the infeasibility report.

MK TP AR TN PN T BA ST S ittt e e e et e ettt e et e ettt 274
Controls whether basis identification is performed.

MSK_IPAR INTPNT DIFF ST P ..ottt e e et ettt et ettt e e 275
Controls whether different step sizes are allowed in the primal and dual space.

MSK_IPAR_INTPNT _FACTOR DEBUG LVL . ..ottt ittt et et et et ee e 275
Controls factorization debug level.

MSK_TPAR_INTPNT FACTOR METHOD . ..ottt ettt ittt et e e 276
Controls the method used to factor the Newton equation system.

MSK_TPAR _INTPNT MAX TTERATTIONS ...ttt e e et ettt eeens 276
Controls the maximum number of iterations allowed in the interior-point optimizer.

MSK_TPAR _INTPNT MAX NUM_COR . ..ottt e e et ettt e e 276
Maximum number of correction steps.

MSK_IPAR_INTPNT _MAX NUM_REFINEMENT STEPS........ciuuiiiiiiiiiiii .. 277
Maximum number of steps to be used by the iterative search direction refinement.

MSK_IPAR _INTPNT NUM_ THREADS. ..ottt e ettt et ettt e et 277
Controls the number of threads employed by the interior-point optimizer.

MSK_IPAR_INTPNT OFF COL_TRH.ottt e e e et 277
Controls the aggressiveness of the offending column detection.

MSK_IPAR_INTPNT_ORDER_METHOD i e 277
Controls the ordering strategy.

MSK_IPAR_INTPNT REGULARIZATION USEc .ttt 278
Controls whether regularization is allowed.

MSK_TIPAR INTPNT SCALTING . .ttt ettt et e e e et ettt e et et et ittt 278
Controls how the problem is scaled before the interior-point optimizer is used.

MSK_IPAR _INTPNT SOLVE FORM. ..ttt ittt et et et ettt ettt ie e 279
Controls whether the primal or the dual problem is solved.

MSK_IPAR _INTPNT STARTING POINTottt ittt ittt et ettt e e eaean 279
Starting point used by the interior-point optimizer.

C.3.

INTEGER PARAMETERS 257

MSK_TPAR_LICENSE_ALLOW_OVERUSEttt et en 279
Controls if license overuse is allowed when caching licenses

MSK_IPAR LICENSE CACHE TIME. ... ¢\ttt ettt et e it e e et 280
Controls the license manager client behavior.

MSK_IPAR LICENSE CHECK TIME.ttt i it 280
Controls the license manager client behavior.

MSK_TPAR_LICENSE DEBUGottt ittt ettt e et e e e e 280
Controls the license manager client debugging behavior.

MSK_IPAR LICENSE PAUSE TIME. ...ttt ittt et et ettt et 281
Controls license manager client behavior.

MSK_IPAR_LICENSE_SUPPRESS EXPIRE WRNSottt 281
Controls license manager client behavior.

MSK TP AR LICENSE WAL T ittt et et e et e et et e e e e 281
Controls if MOSEK should queue for a license if none is available.

1S S I = 2 O 282
Controls the amount of log information.

MK TP AR LG Bl .ttt e e e e et e e e et et et et e 282
Controls the amount of output printed by the basis identification procedure. A higher
level implies that more information is logged.

MSK_IPAR LOG BI FREQttt et e e e e e e et e 282
Controls the logging frequency.

MSK_IPAR_LOG_CONCURRENTot e e e e e et e 283
Controls amount of output printed by the concurrent optimizer.

MSK_TPAR _LOG_CUT_SECOND _OPT . ..\ttt ittt e et et 283
Controls the reduction in the log levels for the second and any subsequent optimizations.

MSK_IPAR LOG FACTOR . ..ottt e e e e e e e e e e e 283
If turned on, then the factor log lines are added to the log.

MSK_IPAR LOG FEASREPATRo e e e e e e e 284
Controls the amount of output printed when performing feasibility repair.

MSK_TPAR LOG FILE . ..ttt et ettt et e e e e e e e e ettt e eens 284
If turned on, then some log info is printed when a file is written or read.

258 APPENDIX C. PARAMETERS

o MSK_IPAR LOG_HEAD . ..ttt e e e et e e e e en 284
If turned on, then a header line is added to the log.

o MSK TPAR LOG INFEAS AN A .ttt e e e et e e e e e et e et e e 285
Controls log level for the infeasibility analyzer.

® MSK TPAR LOG INT PN T ...ttt et e e e e et et ettt et et 285
Controls the amount of log information from the interior-point optimizers.

® MSK TPAR LOG MIO .ttt ettt et e e e e e et e e e e e ettt 285
Controls the amount of log information from the mixed-integer optimizers.

o MSK TPAR LOG MIO FREQ.ttt ittt et et et ettt et e e 285
The mixed integer solver logging frequency.

e MSK_IPAR LOG NONCONVEX ...ttt e e e e ettt et 286
Controls amount of output printed by the nonconvex optimizer.

o MSK IPAR LOG_OPTIMIZERttt ittt ettt 286
Controls the amount of general optimizer information that is logged.

o MSK IPAR LOG_ORDER.ttt e e et et ettt 286
If turned on, then factor lines are added to the log.

o MSK IPAR LOG PARAM .. e e e e e e e e e 287
Controls the amount of information printed out about parameter changes.

o MSK TPAR LOG PRESOLVE ..ottt ittt et et e ettt et ettt e e 287
Controls amount of output printed by the presolve procedure. A higher level implies
that more information is logged.

o MSK IPAR LOG RESPONSE ...ttt e e e et et et et e e ens 287
Controls amount of output printed when response codes are reported. A higher level
implies that more information is logged.

® MSK IPAR LOG SENS T T IV I Y .ttt ettt et e e e e ettt 287
Control logging in sensitivity analyzer.

o MSK TPAR LOG SENSTITIVITY OPT ..ottt e et ettt et et et ettt e 288
Control logging in sensitivity analyzer.

@ MOK TP AR LG ST M .ttt e e e e e e ettt et ettt et et ettt 288
Controls the amount of log information from the simplex optimizers.

® MSK IPAR LOG _SIM FREQttt ettt e e ettt et et et et 288
Controls simplex logging frequency.

C.3.

INTEGER PARAMETERS 259

MSK_TPAR LOG_STIM MINOR. .\ttt ettt ettt et ettt e e e e e e ettt 289
Currently not in use.

MSK_TIPAR _LOG_SIM NETWORK FREQ. ...ttt it ittt et e e e 289
Controls the network simplex logging frequency.

MSK_IPAR LOG_STORAGE. . ..ot e e e e e e e e e 289
Controls the memory related log information.

MSK_TPAR_LP WRITE IGNORE_INCOMPATIBLE TITEMS ... ittt 290
Controls the result of writing a problem containing incompatible items to an LP file.

MSK_TIPAR MAX NUM WARNINGS . .ottt et e e et e e ettt et et ettt e 290
Waning level. A higher value results in more warnings.

MSK_IPAR_MAXNUMANZ DOUBLE_TRHttt e e e e e e e e 290
Controls how the constraint matrix is extended.

MSK_TPAR MIO BRANCH DIR ...ttt ittt ettt e e et e e e e ettt ettt 290
Controls whether the mixed integer optimizer is branching up or down by default.

MSK_IPAR MIO BRANCH PRIORITIES USE.ttt it 291
Controls whether branching priorities are used by the mixed integer optimizer.

MSK_IPAR_MIO_CONSTRUCT _SOLottt e e e e e e 291
Controls if initial MIP solution should be constructed from value of integer variables.

MSK _IPAR MIO CONT SO . sttt ettt et e e e ettt e et et ettt ettt 291
Controls the meaning of interior-point and basic solutions in MIP problems.

MSK_IPAR MIO_CUT_LEVEL ROOTttt e e e e 292
Controls the cut level employed by the mixed integer optimizer at the root node.

MSK_TPAR MIO_CUT_LEVEL TREE.ottt e 293
Controls the cut level employed by the mixed integer optimizer in the tree.

MSK_IPAR MIO _FEASPUMP LEVEL. ...ttt ittt et et ettt et 293
Controls the feasibility pump heuristic which is used to construct a good initial feasible
solution.

MSK_IPAR MIO HEURISTIC LEVELttt ittt et e ea e 293
Controls the heuristic employed by the mixed integer optimizer to locate an initial
integer feasible solution.

MSK_TPAR MIO KEEP BAS TS .ttt ettt et et e e e ettt et et 294
Controls whether the integer presolve keeps bases in memory.

260

APPENDIX C. PARAMETERS

MSK_TPAR_MIO_LOCAL BRANCH_NUMBER.t e e en 294
Controls the size of the local search space when doing local branching.

MSK_TIPAR MIO _MAX NUM BRANCHES. . ..ottt e et et et ettt 294
Maximum number of branches allowed during the branch and bound search.

MSK_IPAR MIO MAX NUM RELAXS ..ttt e e e e e e e 295
Maximum number of relaxations in branch and bound search.

MSK_TPAR MIO MAX NUM_ SOLUTIONS ..ottt ettt it ettt e et e ettt e i 295
Controls how many feasible solutions the mixed-integer optimizer investigates.

MSK_TIPAR MIO MODE e e e i ety 295
Turns on/off the mixed integer mode.

MSK_TIPAR_MIO_NODE_OPTIMIZER.ttt et e 296
Controls which optimizer is employed at the non-root nodes in the mixed integer opti-
mizer.

MSK_IPAR_MIO_NODE_SELECTION.ttt e e e et 296
Controls the node selection strategy employed by the mixed integer optimizer.

MSK_IPAR MIO PRESOLVE AGGREGATEot i e et e et 297
Controls whether problem aggregation is performed in the mixed integer presolve.

MSK_IPAR MIO PRESOLVE PROBINGottt 297
Controls whether probing is employed by the mixed integer presolve.

MSK_TPAR MIO PRESOLVE USE ...ttt ittt it ettt ettt et 298
Controls whether presolve is performed by the mixed integer optimizer.

MSK_IPAR MIO ROOT_OPTIMIZER.ttt ittt ittt ettt e 298
Controls which optimizer is employed at the root node in the mixed integer optimizer.

MSK_IPAR_MIO_STRONG_BRANCH.o e e e e et 298
The depth from the root in which strong branching is employed.

MSK_TIPAR _NONCONVEX MAX ITERATIONS ...ttt ittt et et et e et e eeaens 299
Maximum number of iterations that can be used by the nonconvex optimizer.

MSK _TIPAR OBJECTIVE SENSE . .ottt e e e et ettt et et et e 299
If the objective sense for the task is undefined, then the value of this parameter is used
as the default objective sense.

MSK_TPAR_OPF MAX_TERMS_ PER LINE e 299
The maximum number of terms (linear and quadratic) per line when an OPF file is
written.

C.3.

INTEGER PARAMETERS

MSK_IPAR OPF _WRITE_HEADERottt e e e e e
Write a text header with date and MOSEK version in an OPF file.

MSK_IPAR OPF WRITE HINTS ... i e e e e e
Write a hint section with problem dimensions in the beginning of an OPF file.

MSK_IPAR _OPF _WRITE PARAMETERS . ..ottt e ettt et et ettt e e i
Write a parameter section in an OPF file.

MSK_TIPAR _OPF _WRITE PROBLEM. ...ttt e ittt et ettt et et et ie e
Write objective, constraints, bounds etc. to an OPF file.

MSK_IPAR _OPF _WRITE _SOL _BAS . ittt e e e e e e e e e e i
Controls what is written to the OPF files.

MSK_IPAR OPF _WRITE _SOL _ITG ..ttt ittt et e et e et et e e e
Controls what is written to the OPF files.

MSK_IPAR OPF WRITE _SOL _TTR ..ottt e e e e e e e e
Controls what is written to the OPF files.

MSK_IPAR OPF _WRITE _SOLUTIONS ..ottt e e e e e e e e i
Enable inclusion of solutions in the OPF files.

MSK_IPAR OPTIMIZER.ttt ettt ettt et e e e e e et
Controls which optimizer is used to optimize the task.

MSK_IPAR PARAM READ CASE NAME. ...ttt ettt ettt e e
If turned on, then names in the parameter file are case sensitive.

MSK_TIPAR_PARAM_READ_IGN_ERROR.ot e
If turned on, then errors in paramter settings is ignored.

MSK_TPAR PRESOLVE ELTM FILL. ...ttt ittt e et ettt e e
Maximum amount of fill-in in the elimination phase.

MSK_TPAR PRESOLVE ELIMINATOR USE. ...ttt ettt et e e e
Controls whether free or implied free variables are eliminated from the problem.

MSK_IPAR PRESOLVE LEVELt et
Currently not used.

MSK_TIPAR PRESOLVE _LINDEP USEttt ittt ettt e et et ettt e
Controls whether the linear constraints are checked for linear dependencies.

MSK_TPAR PRESOLVE _LINDEP WORK _LIM.ttt ittt e,
Controls linear dependency check in presolve.

262

APPENDIX C. PARAMETERS

MSK_TPAR PRESOLVE USE . .ttt ittt ettt ettt e et 305
Controls whether the presolve is applied to a problem before it is optimized.

MSK_IPAR _READ _ADD AN Z . . i e e e e e e e e e e 305
Controls how the constraint matrix is extended.

MSK_TPAR READ _ADD _CON . ..ttt e e e e e e e e et et ettt e et 306
Additional number of constraints that is made room for in the problem.

MSK_TIPAR READ _ADD _CONE. . .ttt e e e e e e et et et ettt e 306
Additional number of conic constraints that is made room for in the problem.

MSK_TIPAR READ _ADD QN Z . . .ttt ettt e e ettt et et et ettt 306
Controls how the quadratic matrixes are extended.

MSK_TPAR READ ADD VAR ..ttt e e e e e e e e e e e 306
Additional number of variables that is made room for in the problem.

MSK TP AR READ AN Z ..ttt e e e e e et et et ettt et et e 307
Controls the expected number of constraint non-zeros.

MSK_TPAR READ _CON ...ttt e e e e e e e et et ettt et et ettt 307
Controls the expected number of constraints.

MSK_IPAR READ CONE . . .ttt e e e e e e e ettt e 307
Controls the expected number of conic constraints.

MSK_TIPAR _READ DATA COMPRESSED . ..ottt it ettt ettt e e ettt eeeeeeens 308
Controls the input file decompression.

MSK_IPAR READ DAT A FORMAT . .ottt e e e e e e e 308
Format of the data file to be read.

MSK_IPAR_READ KEEP_FREE_CON i e e e e 308
Controls whether the free constraints are included in the problem.

MSK_TPAR _READ_LP DROP _NEW_VARS TN BOUttt ittt ie i e eeeeen 309
Controls how the LP files are interpreted.

MSK_TPAR READ _LP QUOTED NAMES. . ..ttt t et e 309
If a name is in quotes when reading an LP file, the quotes will be removed.

MSK_TIPAR READ MP S FORMAT . .ottt e e e e e e e et e e et et e et eeeae s 309
Controls how strictly the MPS file reader interprets the MPS format.

MSK_IPAR READ MPS KEEP INT ..ottt it ittt et et ettt e e ettt i e 310
Controls if integer constraints are read.

C.3.

INTEGER PARAMETERS

MSK_IPAR READ MPS OBJ SENSE .. ittt e e e e e e e e e e
Controls the MPS format extensions.

MSK_IPAR_READ MPS_QUOTED _NAMESttt it et e et et e et et ee e
Controls the MPS format extensions.

MSK_IPAR READ MP S REL AX ..ttt e e e e e et e
Controls the meaning of integer constraints.

MSK_IPAR_READ MPS WIDTH ..ottt e e e e e e e e i
Controls the maximal number of chars allowed in one line of the MPS file.

MSK_IPAR READ Q MODE .. .ttt ettt ettt ettt et et ettt e ettt e e
Controls how the Q matrices are read from the MPS file.

MSK_IPAR READ QN Z ..ttt e e e e e ettt et et ettt et ettt
Controls the expected number of quadratic non-zeros.

MSK_IPAR_ READ _TASK_IGNORE _PARAM . ..o e e e e e e e
Controls what information is used from the task files.

MSK TP AR READ VAR ..t et e et et ettt et et e e
Controls the expected number of variables.

MSK_IPAR_SENSITIVITY OPTIMIZER.ttt ittt it
Controls which optimizer is used for optimal partition sensitivity analysis.

MSK _IPAR SENSTITIVITY T Y PE. .ottt e e e ettt et et e e
Controls which type of sensitivity analysis is to be performed.

MSK _IPAR SIM DEGEN ...ttt ettt et et ettt et et et ettt et ettt e
Controls how aggressive degeneration is approached.

MSK_IPAR_STIM DUAL _CRASH . ..ot e e e e e e et
Controls whether crashing is performed in the dual simplex optimizer.

MSK_TIPAR_SIM DUAL RESTRICT_SELECTIONcuuiiniit i,
Controls how aggressively restricted selection is used.

MSK_IPAR _STM DUAL SELECTION. ...\ttt ettt ittt et ettt
Controls the dual simplex strategy.

MSK _IPAR SIM HOT ST AR T ittt e e e e e ettt e ettt et ettt
Controls the type of hot-start that the simplex optimizer perform.

MSK_TPAR STM MAX TTERAT I ON S . .ttt ettt et e e e e e ettt e
Maximum number of iterations that can be used by a simplex optimizer.

264

APPENDIX C. PARAMETERS

MSK_TIPAR_SIM MAX _NUM_SETBACKS . ..ottt e e e e 316
Controls how many setbacks that are allowed within a simplex optimizer.

MSK_IPAR SIM NETWORK DETECT . .ottt ittt et et ettt et e 316
Level of aggressiveness of network detection.

MSK_IPAR_SIM NETWORK DETECT _HOTSTARTo 317
Level of aggressiveness of network detection in a simplex hot-start.

MSK_TPAR_STIM NETWORK DETECT METHOD.ttt ittt et i i i 317
Controls which type of detection method the network extraction should use.

MSK_TPAR _SIM NON_STINGUL AR . .ottt e e e e e e ettt e 317
Controls if the simplex optimizer ensures a non-singular basis, if possible.

MSK_TPAR STIM PRIMAL CRASH . .ottt e e e et e e et et et et et e e 318
Controls the simplex crash.

MSK_IPAR_SIM PRIMAL RESTRICT SELECTION.......ciuiiniiteii ittt ieienennn, 318
Controls how aggressively restricted selection is used.

MSK_IPAR_STIM PRIMAL SELECTIONttt e e 318
Controls the primal simplex strategy.

MSK_IPAR_SIM_REFACTOR_FREQ.t e e e 319
Controls the basis refactoring frequency.

MK TP AR STIM S AVE LU ..ttt et e e e e et et et e ettt e et e 319
Controls if the LU factorization stored should be replaced with the LU factorization
corresponding to the initial basis.

MSK_TPAR STM SCALTING. . ¢ttt ittt et et e e e e e e e e e e ettt et e e 320
Controls how the problem is scaled before a simplex optimizer is used.

MSK_TPAR _SIM SOLVE FORM . ..ttt ettt e et ettt et et et ettt e 320
Controls whether the primal or the dual problem is solved by the primal-/dual- simplex
optimizer.

MSK_TIPAR SIM STABILITY PRIORITY ..ottt ettt et et et et e e e 320
Controls how high priority the numerical stability should be given.

MSK_TPAR _SIM_SWITCH_OPTIMIZERttt ittt et et et 321
Controls the simplex behavior.

MSK_TPAR _SOL _FILTER KEEP BASTC ...ttt ittt ettt e it i ie e e 321
Controls the license manager client behavior.

C.3.

INTEGER PARAMETERS 265

MSK_IPAR_SOL_FILTER_KEEP_RANGEDttt ettt e ee e 321
Control the contents of the solution files.

MSK_IPAR _SOL _QUOTED _NAMES . .\ttt ettt et et ettt ettt et e ennns 322
Controls the solution file format.

MSK_TPAR _SOL_READ NAME WIDTH. ... ittt ettt et ettt et 322
Controls the input solution file format.

MSK_TPAR _SOL _READ WIDTH . .ottt et e e et et et et et ettt e 322
Controls the input solution file format.

MSK_TPAR _SOLUTION _CALLBACK ..ottt e e e e et et et e ettt e e i eea e 323
Indicates whether solution call-backs will be performed during the optimization.

MSK_TPAR WARNING_LEVELttt e et 323
Warning level.

MSK_IPAR WRITE BAS CONSTRAINT S ...ttt e e e e e e e 323
Controls the basic solution file format.

MSK_IPAR WRITE BAS HEAD .. i e e e e e e e e e e e 324
Controls the basic solution file format.

MSK_IPAR WRITE BAS VARIABLES .. o e e e e e 324
Controls the basic solution file format.

MSK_TIPAR WRITE DATA COMPRESSED ...ttt ittt it ittt et et et ettt e ieens 324
Controls output file compression.

MSK_TIPAR WRITE DATA FORMAT ..ottt e e e e e et et et 325
Controls the output file problem format.

MSK _IPAR WRITE DAT A PARAM . .o e e e e e et et ettt e e e 325
Controls output file data.

MSK_TPAR WRITE FREE CONttt et et et et et et e it ee e 325
Controls the output file data.

MSK_TPAR WRITE GENERIC NAMES .. ittt e ettt et et e ettt e e 326
Controls the output file data.

MSK_IPAR WRITE GENERIC NAMES T0ttt ittt e et e 326
Index origin used in generic names.

MSK_IPAR WRITE INT CONSTRAINTS ..ottt e ettt et et ettt e 326
Controls the integer solution file format.

266

APPENDIX C. PARAMETERS

MSK_IPAR WRITE_INT_HEAD ittt e e et et e i 327
Controls the integer solution file format.

MSK_IPAR WRITE INT VARIABLES .. ittt e e ettt et e it 327
Controls the integer solution file format.

MSK_TPAR WRITE LP LINE WIDTH.ttt ettt et et ettt eaens 327
Controls the LP output file format.

MSK_TPAR WRITE_LP _QUOTED NAMES e e ettt eee e 327
Controls LP output file format.

MSK_IPAR WRITE LP STRICT FORMAT ...ttt e e et et e 328
Controls whether LP output files satisfy the LP format strictly.

MSK_IPAR WRITE_LP TERMS PER LINEottt 328
Controls the LP output file format.

MSK _TPAR WRITE MPS TN T . ..ttt et e e e ettt et et ettt eiaenes 328
Controls the output file data.

MSK_TPAR WRITE MPS OBJ SENSE . .ttt ettt e et ettt et 329
Controls the output file data.

MSK_IPAR WRITE_MPS QUOTED NAMES ittt it ettt e et ie e 329
Controls the output file data.

MSK_TIPAR WRITE MPS ST RICT ..ttt e et e e et et et ettt e e 329
Controls the output MPS file format.

MSK_TIPAR WRITE PRECTISIONttt ettt et e it 330
Controls data precision employed in when writing an MPS file.

MSK_IPAR WRITE _SOL_CONSTRAINT S ..ttt e e e e e e e 330
Controls the solution file format.

MSK_IPAR WRITE _SOL_HEAD ...t e e e e e e e e 330
Controls solution file format.

MSK_IPAR WRITE _SOL_VARIABLES .. i e e e e e i i 331
Controls the solution file format.

MSK_IPAR WRITE TASK _INC _SOL ..ttt e et e e e e e e e 331
Controls whether the solutions are stored in the task file too.

C.3. INTEGER PARAMETERS 267

o MSK_IPAR WRITE XML MODE i e et i 331

Controls if linear coefficients should be written by row or column when writing in the
XML file format.

e alloc_add_gnz

Corresponding constant:
MSK_IPAR_ALLOC_ADD_QNZ

Description:
Additional number of) non-zeros that are allocated space for when numanz exceeds
maxnumqgnz during addition of new () entries.

Possible Values:
Any number between 0 and +inf.

Default value:
5000

e bi_clean_optimizer

Corresponding constant:
MSK_TPAR_BI_CLEAN_OPTIMIZER

Description:
Controls which simplex optimizer is used in the clean-up phase.

Possible Values:

MSK_OPTIMIZER_INTPNT The interior-point optimizer is used.
MSK_OPTIMIZER_CONCURRENT The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER_MIXED_INT The mixed integer optimizer.
MSK_OPTIMIZER_DUAL_SIMPLEX The dual simplex optimizer is used.
MSK_OPTIMIZER FREE The optimizer is chosen automatically.
MSK_OPTIMIZER_CONIC Another cone optimizer.
MSK_OPTIMIZER_NONCONVEX The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER_QCONE The Qcone optimizer is used.
MSK_OPTIMIZER PRIMAL_SIMPLEX The primal simplex optimizer is used.
MSK_OPTIMIZER_FREE SIMPLEX Either the primal or the dual simplex optimizer is
used.

Default value:
MSK_OPTIMIZER_FREE

e bi_ignore max iter

268

APPENDIX C. PARAMETERS

Corresponding constant:
MSK_IPAR BI_IGNORE_MAX_ITER

Description:
If the parameter MSK_IPAR_INTPNT_BASIS has the value MSK_BI_NO_ERROR and the
interior-point optimizer has terminated due to maximum number of iterations, then
basis identification is performed if this parameter has the value MSK_ON.

Possible Values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e bi_ignore_num error

Corresponding constant:
MSK_TIPAR_BI_IGNORE_NUM_ERROR

Description:
If the parameter MSK_TPAR_INTPNT BASIS has the value MSK_BI_NO_ERROR and the
interior-point optimizer has terminated due to a numerical problem, then basis
identification is performed if this parameter has the value MSK_ON.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e bi_max_iterations

Corresponding constant:
MSK_TPAR_BI_MAX_ITERATIONS

Description:
Controls the maximum number of simplex iterations allowed to optimize a basis
after the basis identification.

Possible Values:
Any number between 0 and +inf.

Default value:
1000000

e cache_size_ 11

C.3. INTEGER PARAMETERS 269

Corresponding constant:
MSK_IPAR_CACHE_SIZE L1

Description:
Specifies the size of the cache of the computer. This parameter is potentially very
important for the efficiency on computers if MOSEK cannot determine the cache
size automatically. If the cache size is negative, then MOSEK tries to determine
the value automatically.

Possible Values:

Any number between -inf and +inf.
Default value:
-1
e cache size 12
Corresponding constant:
MSK_TPAR_CACHE_SIZE_L2

Description:
Specifies the size of the cache of the computer. This parameter is potentially
very important for the efficiency on computers where MOSEK cannot determine
the cache size automatically. If the cache size is negative, then MOSEK tries to
determine the value automatically.

Possible Values:
Any number between -inf and +inf.

Default value:
-1
e check_convexity
Corresponding constant:
MSK_TPAR_CHECK_CONVEXITY

Description:
Specify the level of convexity check on quadratic problems

Possible Values:

MSK_CHECK_CONVEXITY_SIMPLE Perform simple and fast convexity check.
MSK_CHECK_CONVEXITY_NONE No convexity check.

Default value:
MSK_CHECK_CONVEXITY_SIMPLE

e check_ctrl_c

270

APPENDIX C. PARAMETERS

Corresponding constant:
MSK_IPAR_CHECK_CTRL_C

Description:
Specifies whether MOSEK should check for <ctrl>+<c> key presses. In case it has,
then control is returned to the user program.

In case a user-defined ctrl-c function is defined then that is used to check for ctrl-c.
Otherwise the system procedure signal is used.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

check_task_data

Corresponding constant:
MSK_IPAR_CHECK_TASK DATA

Description:
If this feature is turned on, then the task data is checked for bad values i.e. NaNs.
before an optimization is performed.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

concurrent_num_optimizers
Corresponding constant:

MSK_TPAR_CONCURRENT_NUM_OPTIMIZERS

Description:
The maximum number of simultaneous optimizations that will be started by the
concurrent optimizer.

Possible Values:
Any number between 0 and +inf.

Default value:
2

e concurrent _priority_dual_simplex

C.3. INTEGER PARAMETERS 271

Corresponding constant:
MSK_IPAR_CONCURRENT_PRIORITY DUAL_SIMPLEX

Description:
Priority of the dual simplex algorithm when selecting solvers for concurrent opti-
mization.

Possible Values:
Any number between 0 and +inf.

Default value:

2
e concurrent_priority_free_simplex

Corresponding constant:
MSK_IPAR_CONCURRENT_PRIORITY FREE _SIMPLEX

Description:
Priority of the free simplex optimizer when selecting solvers for concurrent opti-
mization.

Possible Values:
Any number between 0 and +inf.

Default value:
3

e concurrent_priority_intpnt

Corresponding constant:
MSK_IPAR_CONCURRENT_PRIORITY_INTPNT

Description:
Priority of the interior-point algorithm when selecting solvers for concurrent opti-
mization.

Possible Values:
Any number between 0 and +inf.

Default value:
4

e concurrent_priority primal_simplex
Corresponding constant:

MSK_IPAR_CONCURRENT_PRIORITY_PRIMAL_SIMPLEX

Description:
Priority of the primal simplex algorithm when selecting solvers for concurrent op-
timization.

272 APPENDIX C. PARAMETERS

Possible Values:
Any number between 0 and +inf.

Default value:
1

e cpu_type

Corresponding constant:
MSK_IPAR_CPU_TYPE

Description:
Specifies the CPU type. By default MOSEK tries to auto detect the CPU type.
Therefore, we recommend to change this parameter only if the auto detection does
not work properly.

Possible Values:

MSK_CPU_POWERPC_G5 A G5 PowerPC CPU.
MSK_CPU_INTEL_PM An Intel PM cpu.

MSK_CPU_GENERIC An generic CPU type for the platform
MSK_CPU_UNKNOWN An unknown CPU.
MSK_CPU_AMD_OPTERON An AMD Opteron (64 bit).
MSK_CPU_INTEL_ITANIUM2 An Intel Itanium2.
MSK_CPU_AMD_ATHLON An AMD Athlon.
MSK_CPU_HP_PARISC20 An HP PA RISC version 2.0 CPU.
MSK_CPU_INTEL_P4 An Intel Pentium P4 or Intel Xeon.
MSK_CPU_INTEL_P3 An Intel Pentium P3.
MSK_CPU_INTEL_CORE2 An Intel CORE2 cpu.

Default value:
MSK_CPU_UNKNOWN

e data_check
Corresponding constant:

MSK_TPAR_DATA_CHECK

Description:
If this option is turned on, then extensive data checking is enabled. It will slow
down MOSEK but on the other hand help locating bugs.

Possible Values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

C.3. INTEGER PARAMETERS 273

Default value:
MSK_ON

e feasrepair_optimize

Corresponding constant:
MSK_TIPAR_FEASREPAIR _OPTIMIZE

Description:
Controls which type of feasibility analysis is to be performed.

Possible Values:

MSK_FEASREPAIR _OPTIMIZE NONE Do not optimize the feasibility repair problem.

MSK_FEASREPAIR_OPTIMIZE_COMBINED Minimize with original objective subject to
minimal weighted violation of bounds.

MSK_FEASREPATR OPTIMIZE PENALTY Minimize weighted sum of violations.

Default value:
MSK_FEASREPAIR_OPTIMIZE_NONE

e flush stream freq
Corresponding constant:

MSK_IPAR_FLUSH_STREAM_FREQ

Description:
Controls how frequent the message and log streams are flushed. A value of 0 means
that it is never flushed. Otherwise a larger value results in less frequent flushes.

Possible Values:
Any number between 0 and +inf.

Default value:
24

e infeas_generic_names
Corresponding constant:

MSK_TPAR_INFEAS_GENERIC_NAMES

Description:
Controls whether generic names are used when an infeasible subproblem is created.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

274

APPENDIX C. PARAMETERS

e infeas prefer_primal

Corresponding constant:
MSK_IPAR_INFEAS PREFER PRIMAL

Description:
If both certificates of primal and dual infeasibility are supplied then only the primal
is used when this option is turned on.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

infeas_report_auto
Corresponding constant:

MSK_IPAR_INFEAS_REPORT_AUTO

Description:
Controls whether an infeasibility report is automatically produced after the opti-
mization if the problem is primal or dual infeasible.

Possible Values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.
Default value:

MSK_OFF
infeas_report_level
Corresponding constant:

MSK_TPAR_INFEAS_REPORT_LEVEL

Description:
Controls the amount of information presented in an infeasibility report. Higher
values imply more information.

Possible Values:
Any number between 0 and +inf.

Default value:
1

e intpnt_basis

C.3. INTEGER PARAMETERS 275

Corresponding constant:
MSK_IPAR_INTPNT_BASIS

Description:
Controls whether the interior-point optimizer also computes an optimal basis.

Possible Values:
MSK_BI_ALWAYS Basis identification is always performed even if the interior-point

optimizer terminates abnormally.

MSK_BI_NO_ERROR Basis identification is performed if the interior-point optimizer
terminates without an error.

MSK_BI_NEVER Never do basis identification.

MSK_BI_IF_FEASIBLE Basis identification is not performed if the interior-point op-
timizer terminates with a problem status saying that the problem is primal or
dual infeasible.

MSK_BI_OTHER Try another BI method.

Default value:
MSK_BI_ALWAYS

See also:

MSK_IPAR_BI_IGNORE_MAX_ITER Turns on basis identification in case the interior-
point optimizer is terminated due to maximum number of iterations.

MSK_TPAR_BI_IGNORE_NUM_ERROR Turns on basis identification in case the interior-
point optimizer is terminated due to a numerical problem.

e intpnt_diff step
Corresponding constant:

MSK_IPAR_INTPNT_DIFF_STEP

Description:
Controls whether different step sizes are allowed in the primal and dual space.

Possible Values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e intpnt_factor_debug 1lvl

Corresponding constant:
MSK_IPAR_INTPNT_FACTOR_DEBUG_LVL

276

APPENDIX C. PARAMETERS

Description:
Controls factorization debug level.

Possible Values:
Any number between 0 and +inf.

Default value:
0

intpnt_factor_method
Corresponding constant:

MSK_TPAR_INTPNT_FACTOR_METHOD

Description:
Controls the method used to factor the Newton equation system.

Possible Values:
Any number between 0 and +inf.

Default value:
0

intpnt max_iterations

Corresponding constant:
MSK_IPAR_INTPNT_MAX_ITERATIONS

Description:
Controls the maximum number of iterations allowed in the interior-point optimizer.

Possible Values:
Any number between 0 and +inf.

Default value:
400

intpnt_max num _cor
Corresponding constant:

MSK_TPAR_INTPNT_MAX_NUM_COR

Description:
Controls the maximum number of correctors allowed by the multiple corrector
procedure. A negative value means that MOSEK is making the choice.

Possible Values:
Any number between -1 and +inf.

Default value:
-1

C.3. INTEGER PARAMETERS 277

e intpnt max num refinement_steps

Corresponding constant:
MSK_IPAR_INTPNT _MAX_NUM_REFINEMENT_STEPS

Description:
Maximum number of steps to be used by the iterative refinement of the search
direction. A negative value implies that the optimizer Chooses the maximum
number of iterative refinement steps.

Possible Values:
Any number between -inf and +inf.

Default value:
-1
e intpnt_num threads
Corresponding constant:
MSK_IPAR_INTPNT_NUM_THREADS

Description:
Controls the number of threads employed by the interior-point optimizer.

Possible Values:
Any integer greater than 1.

Default value:
1

e intpnt_off col_trh

Corresponding constant:
MSK_IPAR_INTPNT_OFF_COL_TRH

Description:
Controls how many offending columns are detected in the Jacobian of the constraint
matrix.

1 means aggressive detection, higher values mean less aggressive detection.

0 means no detection.

Possible Values:
Any number between 0 and +inf.

Default value:
40

e intpnt_order_method

278 APPENDIX C. PARAMETERS

Corresponding constant:
MSK_IPAR_INTPNT_ORDER_METHOD

Description:
Controls the ordering strategy used by the interior-point optimizer when factorizing
the Newton equation system.

Possible Values:

MSK_ORDER_METHOD_NONE No ordering is used.

MSK_ORDER_METHOD_APPMINLOC2 A variant of the approximate minimum local-fill-
in ordering is used.

MSK_ORDER_METHOD_APPMINLOC1 Approximate minimum local-fill-in ordering is used.
MSK_ORDER_METHOD_GRAPHPAR2 An alternative graph partitioning based ordering.
MSK_ORDER_METHOD_FREE The ordering method is chosen automatically.
MSK_ORDER_METHOD_GRAPHPAR1 Graph partitioning based ordering.

Default value:
MSK_ORDER_METHOD _FREE

e intpnt_regularization_use
Corresponding constant:

MSK_TPAR_INTPNT_REGULARIZATION_USE

Description:
Controls whether regularization is allowed.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e intpnt_scaling
Corresponding constant:

MSK_IPAR_INTPNT_SCALING

Description:
Controls how the problem is scaled before the interior-point optimizer is used.
Possible Values:

MSK_SCALING_NONE No scaling is performed.
MSK_SCALING_MODERATE A conservative scaling is performed.
MSK_SCALING_AGGRESSIVE A very aggressive scaling is performed.

C.3. INTEGER PARAMETERS 279

MSK_SCALING_FREE The optimizer chooses the scaling heuristic.

Default value:
MSK_SCALING_FREE

e intpnt_solve_form
Corresponding constant:

MSK_TPAR_INTPNT_SOLVE_FORM

Description:
Controls whether the primal or the dual problem is solved.

Possible Values:
MSK_SOLVE_PRIMAL The optimizer should solve the primal problem.

MSK_SOLVE_DUAL The optimizer should solve the dual problem.

MSK_SOLVE_FREE The optimizer is free to solve either the primal or the dual prob-
lem.

Default value:
MSK_SOLVE_FREE
e intpnt_starting point
Corresponding constant:
MSK_IPAR_INTPNT_STARTING_POINT

Description:
Starting point used by the interior-point optimizer.

Possible Values:

MSK_STARTING_POINT_CONSTANT The starting point is set to a constant. This is
more reliable than a non-constant starting point.

MSK_STARTING_POINT_FREE The starting point is chosen automatically.
Default value:
MSK_STARTING_POINT_FREE
e license_allow_overuse
Corresponding constant:
MSK_TPAR_LICENSE_ALLOW_OVERUSE

Description:
Controls if license overuse is allowed when caching licenses

Possible Values:

MSK_ON Switch the option on.

280

APPENDIX C. PARAMETERS

MSK_OFF Switch the option off.

Default value:
MSK_ON

license_cache_time

Corresponding constant:
MSK_IPAR _LICENSE_CACHE_TIME

Description:

Controls the amount of time a license is cached in the MOSEK environment for
reuse. Checking out a license from the license server has a small overhead. There-
fore, if a large number of optimizations is performed within a small amount of time,
it is efficient to cache the license in the MOSEK environment for later use. This
way a number of license check outs from the license server is avoided.

If a license has not been used in the given amount of time, MOSEK will automati-
cally check in the license. To disable license caching set the value to 0.

Possible Values:
Any number between 0 and 65555.

Default value:
5

license_check_time

Corresponding constant:
MSK_TPAR_LICENSE_CHECK_TIME

Description:
The parameter specifies the number of seconds between the checks of all the active
licenses in the MOSEK environment license cache. These checks are performed to
determine if the licenses should be returned to the server.

Possible Values:
Any number between 1 and 120.

Default value:
1
license_debug
Corresponding constant:
MSK_IPAR_LICENSE_DEBUG

Description:
This option is used to turn on debugging of the incense manager.

C.3. INTEGER PARAMETERS 281

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF

e license_pause_time

Corresponding constant:
MSK_IPAR_LICENSE_PAUSE_TIME

Description:
If MSK_TPAR_LICENSE_WAIT=MSK_ON and no license is available, then MOSEK sleeps
a number of micro seconds between each check of whether a license as become free.

Possible Values:
Any number between 0 and 1000000.

Default value:
100
e license_suppress_expire_wrns
Corresponding constant:
MSK_TPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

Description:
Controls whether license features expire warnings are suppressed.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e license wait

Corresponding constant:

MSK_IPAR _LICENSE WAIT

Description:
If all licenses are in use MOSEK returns with an error code. However, by turning
on this parameter MOSEK will wait for an available license.

Possible Values:

MSK_ON Switch the option on.

282

APPENDIX C. PARAMETERS

MSK_OFF Switch the option off.

Default value:
MSK_OFF

log

Corresponding constant:
MSK_IPAR_LOG

Description:
Controls the amount of log information. The value 0 implies that all log information
is suppressed. A higher level implies that more information is logged.

Please note that if a task is employed to solve a sequence of optimization problems
the value of this parameter is reduced by the value of MSK_IPAR_LOG_CUT_SECOND_OPT
for the second and any subsequent optimizations.

Possible Values:
Any number between 0 and +inf.

Default value:
10
See also:

MSK_TPAR_LOG_CUT_SECOND_OPT Controls the reduction in the log levels for the sec-
ond and any subsequent optimizations.

log_bi
Corresponding constant:

MSK_TPAR_LOG_BI

Description:
Controls the amount of output printed by the basis identification procedure. A
higher level implies that more information is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
4

log_bi_freq
Corresponding constant:

MSK_TPAR_LOG_BI_FREQ

Description:
Controls how frequent the optimizer outputs information about the basis identifi-
cation and how frequent the user-defined call-back function is called.

C.3. INTEGER PARAMETERS 283

Possible Values:
Any number between 0 and +inf.

Default value:
2500

e log _concurrent

Corresponding constant:
MSK_TPAR_LOG_CONCURRENT

Description:
Controls amount of output printed by the concurrent optimizer.

Possible Values:
Any number between 0 and +inf.

Default value:
1

e log _cut_second_opt

Corresponding constant:
MSK_IPAR_LOG_CUT_SECOND_OPT

Description:
If a task is employed to solve a sequence of optimization problems, then the value
of the log levels is reduced by the value of this parameter. E.g MSK_IPAR _LOG and
MSK_IPAR_LOG_SIM are reduced by the value of this parameter for the second and
any subsequent optimizations.

Possible Values:
Any number between 0 and +inf.

Default value:
1

See also:

MSK_IPAR_LOG Controls the amount of log information.

MSK_IPAR_LOG_INTPNT Controls the amount of log information from the interior-
point optimizers.

MSK_IPAR_LOG_MIO Controls the amount of log information from the mixed-integer
optimizers.

MSK_TPAR_LOG_SIM Controls the amount of log information from the simplex opti-
mizers.

e log factor

284

APPENDIX C. PARAMETERS

Corresponding constant:
MSK_IPAR_LOG_FACTOR

Description:
If turned on, then the factor log lines are added to the log.

Possible Values:
Any number between 0 and +inf.

Default value:
1

log_feasrepair
Corresponding constant:

MSK_TPAR_LOG_FEASREPAIR

Description:
Controls the amount of output printed when performing feasibility repair.

Possible Values:
Any number between 0 and +inf.

Default value:
0

log_file

Corresponding constant:
MSK_IPAR_LOG_FILE

Description:
If turned on, then some log info is printed when a file is written or read.

Possible Values:
Any number between 0 and +inf.

Default value:
1

log head

Corresponding constant:
MSK_TPAR_LOG_HEAD

Description:
If turned on, then a header line is added to the log.

Possible Values:
Any number between 0 and +inf.

C.3. INTEGER PARAMETERS 285

Default value:
1

e log infeas_ana

Corresponding constant:
MSK_TPAR_LOG_INFEAS_ANA

Description:
Controls amount of output printed by the infeasibility analyzer procedures. A
higher level implies that more information is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
1

e log_intpnt
Corresponding constant:

MSK_IPAR_LOG_INTPNT

Description:
Controls amount of output printed printed by the interior-point optimizer. A
higher level implies that more information is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
4

e logmio
Corresponding constant:

MSK_TPAR_LOG_MIO

Description:
Controls the log level for the mixed integer optimizer. A higher level implies that
more information is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
4

e logmio_freq

286

APPENDIX C. PARAMETERS

Corresponding constant:
MSK_IPAR_LOG_MIO_FREQ

Description:
Controls how frequent the mixed integer optimizer prints the log line. It will print
line every time MSK_IPAR_LOG MIO_FREQ relaxations have been solved.

Possible Values:
A integer value.

Default value:
250
log nonconvex
Corresponding constant:
MSK_TIPAR_LOG_NONCONVEX

Description:
Controls amount of output printed by the nonconvex optimizer.

Possible Values:
Any number between 0 and +inf.

Default value:
1
log_optimizer
Corresponding constant:
MSK_TPAR_LOG_OPTIMIZER

Description:
Controls the amount of general optimizer information that is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
1

log_order

Corresponding constant:
MSK_TIPAR_LOG_ORDER

Description:
If turned on, then factor lines are added to the log.

Possible Values:
Any number between 0 and +inf.

C.3. INTEGER PARAMETERS 287

Default value:
1

e log_param
Corresponding constant:

MSK_IPAR_LOG_PARAM

Description:
Controls the amount of information printed out about parameter changes.

Possible Values:
Any number between 0 and +inf.

Default value:
0

e log presolve

Corresponding constant:
MSK_TPAR_LOG_PRESOLVE

Description:
Controls amount of output printed by the presolve procedure. A higher level implies
that more information is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
1

e log response

Corresponding constant:
MSK_IPAR_LOG_RESPONSE

Description:
Controls amount of output printed when response codes are reported. A higher
level implies that more information is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
0

e log sensitivity

Corresponding constant:
MSK_IPAR_LOG_SENSITIVITY

288

APPENDIX C. PARAMETERS

Description:
Controls the amount of logging during the sensitivity analysis. 0: Means no logging
information is produced. 1: Timing information is printed. 2: Sensitivity results
are printed.

Possible Values:
Any number between 0 and +inf.

Default value:
1

log_sensitivity_opt
Corresponding constant:

MSK_TPAR_LOG_SENSITIVITY_OPT

Description:
Controls the amount of logging from the optimizers employed during the sensitivity
analysis. 0 means no logging information is produced.

Possible Values:
Any number between 0 and +inf.

Default value:
0

log_sim
Corresponding constant:

MSK_TPAR_LOG_SIM

Description:
Controls amount of output printed by the simplex optimizer. A higher level implies
that more information is logged.

Possible Values:
Any number between 0 and +inf.

Default value:
4

log_sim_freq
Corresponding constant:

MSK_IPAR_LOG_SIM_FREQ

Description:
Controls how frequent the simplex optimizer outputs information about the opti-
mization and how frequent the user-defined call-back function is called.

C.3. INTEGER PARAMETERS 289

Possible Values:
Any number between 0 and +inf.

Default value:
500

e log sim minor

Corresponding constant:
MSK_IPAR_LOG_SIM_MINOR

Description:
Currently not in use.

Possible Values:
Any number between 0 and +inf.

Default value:
1

e log sim network freq

Corresponding constant:
MSK_TPAR_LOG_SIM_NETWORK_FREQ

Description:
Controls how frequent the network simplex optimizer outputs information about
the optimization and how frequent the user-defined call-back function is called. The
network optimizer will use a logging frequency equal to MSK_IPAR_LOG_SIM FREQ
times MSK_IPAR_LOG_SIM _NETWORK_FREQ.

Possible Values:
Any number between 0 and +inf.

Default value:
50

e log_storage

Corresponding constant:
MSK_TPAR_LOG_STORAGE

Description:
When turned on, MOSEK prints messages regarding the storage usage and alloca-
tion.

Possible Values:
Any number between 0 and +inf.

Default value:
0

290

APPENDIX C. PARAMETERS

e lp write_ignore_incompatible_items

Corresponding constant:
MSK_TIPAR_LP_WRITE_IGNORE_INCOMPATIBLE_ITEMS

Description:
Controls the result of writing a problem containing incompatible items to an LP
file.

Possible Values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

[] maxmum,warnings

Corresponding constant:
MSK_IPAR_MAX NUM_WARNINGS

Description:
Waning level. A higher value results in more warnings.

Possible Values:
Any number between 0 and +inf.

Default value:
10

e maxnumanz_double_trh

Corresponding constant:
MSK_IPAR_MAXNUMANZ DOUBLE_TRH

Description:
Whenever MOSEK runs out of storage for the A matrix, it will double the value
for maxnumanz until maxnumnza reaches the value of this parameter. When this
threshold is reached it will use a slower increase.

Possible Values:
Any number between -inf and +inf.

Default value:
-1

e mio_branch dir

Corresponding constant:
MSK_IPAR_MIO_BRANCH DIR

C.3. INTEGER PARAMETERS 291

Description:
Controls whether the mixed integer optimizer is branching up or down by default.

Possible Values:

MSK_BRANCH_DIR_DOWN The mixed integer optimizer always chooses the down branch
first.

MSK_BRANCH_DIR_UP The mixed integer optimizer always chooses the up branch
first.

MSK_BRANCH DIR_FREE The mixed optimizer decides which branch to choose.
Default value:
MSK_BRANCH_DIR_FREE
e mio_branch priorities_use
Corresponding constant:
MSK_IPAR_MIO_BRANCH_PRIORITIES USE

Description:
Controls whether branching priorities are used by the mixed integer optimizer.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e mio_construct_sol
Corresponding constant:
MSK_IPAR_MIO_CONSTRUCT_SOL

Description:
If set to MSK_ON and all integer variables have been given a value for which a feasible
MIP solution exists, then MOSEK generates an initial solution to the MIP by fixing
all integer values and solving for the continuous variables.

Possible Values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e mio_cont_sol

292

Corresponding constant:
MSK_IPAR_MIO_CONT_SOL

Description:

APPENDIX C. PARAMETERS

Controls the meaning of the interior-point and basic solutions in MIP problems.

Possible Values:

MSK_MIO_CONT_SOL_ITG The reported interior-point and basic solutions are a solu-
tion to the problem with all integer variables fixed at the value they have in
the integer solution. A solution is only reported in case the problem has a
primal feasible solution.

MSK_MIO_CONT_SOL_NONE No interior-point or basic solution are reported when the

mixed integer optimizer is used.

MSK_MIO_CONT_SOL_ROOT The reported interior-point and basic solutions are a so-
lution to the root node problem when mixed integer optimizer is used.

MSK_MIO_CONT_SOL_ITG_REL In case the problem is primal feasible then the reported
interior-point and basic solutions are a solution to the problem with all integer
variables fixed at the value they have in the integer solution. If the problem is
primal infeasible, then the solution to the root node problem is reported.

Default value:
MSK_MIO_CONT_SOL_NONE

e mio_cut_level_root

Corresponding constant:

MSK_IPAR_MIO_CUT_LEVEL_ROQOT

Description:

Controls the cut level employed by the mixed integer optimizer at the root node.
A negative value means a default value determined by the mixed integer optimizer
is used. By adding the appropriate values from the following table the employed
cut types can be controlled.

GUB cover
Flow cover
Lifting

Plant location
Disaggregation
Knapsack cover
Lattice
Gomory
Coefficient reduction
GCD

Obj. integrality

+2

+4

+8
+16
+32
+64
+128
+256
+512
+1024
42048

C.3. INTEGER PARAMETERS 293

Possible Values:
Any value.

Default value:
-1

e mio_cut_level_tree

Corresponding constant:
MSK_IPAR MIO_CUT_LEVEL_TREE

Description:
Controls the cut level employed by the mixed integer optimizer at the tree. See
MSK_IPAR_MIO_CUT_LEVEL ROOT for an explanation of the parameter values.

Possible Values:
Any value.

Default value:
-1

e mio_feaspump_level

Corresponding constant:
MSK_TIPAR_MIO_FEASPUMP_LEVEL

Description:
Feasibility pump is a heuristic designed to compute an initial feasible solution. A
value of 0 implies that the feasibility pump heuristic is not used. A value of -1
implies that the mixed integer optimizer decides how the feasibility pump heuristic
is used. A larger value than 1 implies that the feasibility pump is employed more
aggressively. Normally a value beyond 3 is not worthwhile.

Possible Values:
Any number between -inf and 3.

Default value:
-1

e mio_heuristic_level

Corresponding constant:
MSK_TPAR_MIO_HEURISTIC_LEVEL

Description:
Controls the heuristic employed by the mixed integer optimizer to locate an initial
good integer feasible solution. A value of zero means the heuristic is not used at
all. A larger value than 0 means that a gradually more sophisticated heuristic is
used which is computationally more expensive. A negative value implies that the
optimizer chooses the heuristic. Normally a value around 3 to 5 should be optimal.

294 APPENDIX C. PARAMETERS

Possible Values:
Any value.

Default value:
-1

e mio_keep_basis

Corresponding constant:
MSK_IPAR _MIO_KEEP_BASIS

Description:
Controls whether the integer presolve keeps bases in memory. This speeds on the
solution process at cost of bigger memory consumption.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e mio_local branch number
Corresponding constant:
MSK_TPAR _MIO_LOCAL_BRANCH_NUMBER

Description:

Possible Values:
Any number between -inf and +inf.

Default value:
-1

e mio_max_num_branches

Corresponding constant:
MSK_TPAR_MIO_MAX_NUM_BRANCHES

Description:
Maximum number of branches allowed during the branch and bound search. A
negative value means infinite.

Possible Values:
Any number between -inf and +inf.

Default value:
-1

C.3. INTEGER PARAMETERS 295

See also:

MSK_DPAR_MIO DISABLE TERM TIME Certain termination criterias is disabled within
the mixed integer optimizer for period time specified by the parameter.

e mio_max_num_relaxs

Corresponding constant:
MSK_TIPAR_MIO_MAX_NUM_RELAXS

Description:
Maximum number of relaxations allowed during the branch and bound search. A
negative value means infinite.

Possible Values:

Any number between -inf and +inf.
Default value:

-1
See also:

MSK_DPAR MIO_DISABLE TERM TIME Certain termination criterias is disabled within
the mixed integer optimizer for period time specified by the parameter.

e mio_max_num_solutions

Corresponding constant:
MSK_TPAR MIO_MAX_NUM_SOLUTIONS

Description:
The mixed integer optimizer can be terminated after a certain number of differ-
ent feasible solutions has been located. If this parameter has the value n and n
is strictly positive, then the mixed integer optimizer will be terminated when n
feasible solutions have been located.

Possible Values:
Any number between -inf and +inf.

Default value:
-1

See also:

MSK_DPAR_MIO_DISABLE_TERM_TIME Certain termination criterias is disabled within
the mixed integer optimizer for period time specified by the parameter.

e mio_mode

Corresponding constant:
MSK_IPAR_MIO_MODE

296 APPENDIX C. PARAMETERS

Description:
Controls whether the optimizer includes the integer restrictions when solving a
(mixed) integer optimization problem.

Possible Values:
MSK_MIO_MODE_IGNORED The integer constraints are ignored and the problem is
solved as a continuous problem.

MSK_MIO_MODE_LAZY Integer restrictions should be satisfied if an optimizer is avail-
able for the problem.

MSK_MIO_MODE_SATISFIED Integer restrictions should be satisfied.

Default value:
MSK_MIO_MODE_SATISFIED

e mio node_optimizer

Corresponding constant:
MSK_TIPAR_MIO_NODE_OPTIMIZER

Description:
Controls which optimizer is employed at the non-root nodes in the mixed integer
optimizer.

Possible Values:

MSK_OPTIMIZER_INTPNT The interior-point optimizer is used.
MSK_OPTIMIZER_CONCURRENT The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER MIXED_INT The mixed integer optimizer.
MSK_OPTIMIZER DUAL _SIMPLEX The dual simplex optimizer is used.
MSK_OPTIMIZER_FREE The optimizer is chosen automatically.
MSK_OPTIMIZER_CONIC Another cone optimizer.
MSK_OPTIMIZER _NONCONVEX The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER_QCONE The Qcone optimizer is used.
MSK_OPTIMIZER_PRIMAL_SIMPLEX The primal simplex optimizer is used.
MSK_OPTIMIZER_FREE_SIMPLEX Either the primal or the dual simplex optimizer is
used.

Default value:
MSK_OPTIMIZER_FREE

e mio_node_selection

Corresponding constant:
MSK_IPAR_MIO_NODE_SELECTION

C.3. INTEGER PARAMETERS 297

Description:
Controls the node selection strategy employed by the mixed integer optimizer.

Possible Values:
MSK_MIO_NODE_SELECTION_PSEUDO The optimizer employs selects the node based
on a pseudo cost estimate.
MSK_MIO_NODE_SELECTION_HYBRID The optimizer employs a hybrid strategy.
MSK_MIO_NODE_SELECTION_FREE The optimizer decides the node selection strategy.

MSK_MIO_NODE_SELECTION_WORST The optimizer employs a worst bound node se-
lection strategy.

MSK_MIO_NODE_SELECTION BEST The optimizer employs a best bound node selec-
tion strategy.

MSK_MIO_NODE_SELECTION_FIRST The optimizer employs a depth first node selec-
tion strategy.

Default value:
MSK_MIO_NODE_SELECTION_FREE
e mio_presolve_aggregate
Corresponding constant:
MSK_IPAR_MIO_PRESOLVE_AGGREGATE

Description:
Controls whether the presolve used by the mixed integer optimizer tries to aggre-
gate the constraints.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e mio_presolve_probing
Corresponding constant:
MSK_TIPAR_MIO_PRESOLVE_PROBING

Description:
Controls whether the mixed integer presolve performs probing. Probing can be
very time consuming.

Possible Values:

MSK_ON Switch the option on.

298

APPENDIX C. PARAMETERS

MSK_OFF Switch the option off.

Default value:

MSK_ON

e mio_presolve_use

Corresponding constant:
MSK_IPAR _MIO_PRESOLVE_USE

Description:
Controls whether presolve is performed by the mixed integer optimizer.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e mio_root_optimizer

Corresponding constant:
MSK_IPAR_MIO_ROOT_OPTIMIZER

Description:
Controls which optimizer is employed at the root node in the mixed integer opti-
mizer.

Possible Values:

MSK_OPTIMIZER_INTPNT The interior-point optimizer is used.
MSK_OPTIMIZER_CONCURRENT The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER MIXED_INT The mixed integer optimizer.
MSK_OPTIMIZER _DUAL_SIMPLEX The dual simplex optimizer is used.
MSK_OPTIMIZER_FREE The optimizer is chosen automatically.
MSK_OPTIMIZER_CONIC Another cone optimizer.
MSK_OPTIMIZER NONCONVEX The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER_QCONE The Qcone optimizer is used.
MSK_OPTIMIZER PRIMAL _SIMPLEX The primal simplex optimizer is used.
MSK_OPTIMIZER_FREE_SIMPLEX Either the primal or the dual simplex optimizer is
used.

Default value:
MSK_OPTIMIZER_FREE

e mio_strong branch

C.3. INTEGER PARAMETERS 299

Corresponding constant:
MSK_IPAR _MIO_STRONG_BRANCH

Description:
The value specifies the depth from the root in which strong branching is used. A
negative value means that the optimizer chooses a default value automatically.

Possible Values:
Any number between -inf and +inf.

Default value:
-1
e nonconvex_max_iterations
Corresponding constant:
MSK_IPAR_NONCONVEX_MAX_ITERATIONS

Description:
Maximum number of iterations that can be used by the nonconvex optimizer.

Possible Values:
Any number between 0 and +inf.

Default value:
100000
e objective_sense
Corresponding constant:
MSK_TIPAR_OBJECTIVE_SENSE

Description:
If the objective sense for the task is undefined, then the value of this parameter is
used as the default objective sense.

Possible Values:

MSK_OBJECTIVE_SENSE_MINIMIZE The problem should be minimized.
MSK_OBJECTIVE_SENSE_UNDEFINED The objective sense is undefined.
MSK_OBJECTIVE_SENSE MAXIMIZE The problem should be maximized.

Default value:
MSK_OBJECTIVE_SENSE_MINIMIZE

e opf max_terms_per_line

Corresponding constant:
MSK_IPAR_OPF_MAX_TERMS_PER_LINE

300 APPENDIX C. PARAMETERS

Description:
The maximum number of terms (linear and quadratic) per line when an OPF file
is written.

Possible Values:
Any number between 0 and +inf.

Default value:
5
e opf_write_header
Corresponding constant:
MSK_IPAR_OPF _WRITE_HEADER

Description:
Write a text header with date and MOSEK version in an OPF file.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e opf_write hints

Corresponding constant:

MSK_IPAR_OPF_WRITE_HINTS

Description:
Write a hint section with problem dimensions in the beginning of an OPF file.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e opf _write_parameters
Corresponding constant:
MSK_IPAR_OPF _WRITE_PARAMETERS

Description:
Write a parameter section in an OPF file.

Possible Values:

C.3. INTEGER PARAMETERS 301

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF
e opf _write_problem
Corresponding constant:
MSK_IPAR_OPF _WRITE_PROBLEM

Description:
Write objective, constraints, bounds etc. to an OPF file.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e opf _write_sol_bas
Corresponding constant:
MSK_IPAR_OPF _WRITE_SOL_BAS

Description:
If MSK_TPAR_OPF_WRITE_SOLUTIONS is MSK_ON and a basic solution is defined, include
the basic solution in OPF files.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e opf_write_sol_itg
Corresponding constant:
MSK_IPAR _OPF _WRITE_SOL_ITG

Description:
If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an integer solution is defined,
write the integer solution in OPF files.

Possible Values:

MSK_ON Switch the option on.

302 APPENDIX C. PARAMETERS

MSK_OFF Switch the option off.
Default value:
MSK_ON
e opf_write_sol_itr
Corresponding constant:
MSK_TIPAR_OPF_WRITE_SOL_ITR

Description:
If MSK_TPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an interior solution is defined,
write the interior solution in OPF files.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e opf_write_solutions
Corresponding constant:
MSK_IPAR_OPF_WRITE_SOLUTIONS

Description:
Enable inclusion of solutions in the OPF files.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e optimizer

Corresponding constant:

MSK_IPAR_OPTIMIZER

Description:
Controls which optimizer is used to optimize the task.

Possible Values:
MSK_OPTIMIZER_INTPNT The interior-point optimizer is used.

MSK_OPTIMIZER_CONCURRENT The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER_MIXED_INT The mixed integer optimizer.

C.3. INTEGER PARAMETERS 303

MSK_OPTIMIZER DUAL _SIMPLEX The dual simplex optimizer is used.
MSK_OPTIMIZER_FREE The optimizer is chosen automatically.
MSK_OPTIMIZER_CONIC Another cone optimizer.
MSK_OPTIMIZER _NONCONVEX The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER_QCONE The Qcone optimizer is used.
MSK_OPTIMIZER PRIMAL _SIMPLEX The primal simplex optimizer is used.
MSK_OPTIMIZER_FREE SIMPLEX Either the primal or the dual simplex optimizer is
used.

Default value:
MSK_OPTIMIZER_FREE

e param_read_case_name
Corresponding constant:

MSK_IPAR_PARAM_READ_CASE_NAME

Description:
If turned on, then names in the parameter file are case sensitive.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e param_read_ign error
Corresponding constant:
MSK_TPAR_PARAM READ_IGN_ERROR

Description:
If turned on, then errors in paramter settings is ignored.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF

e presolve_elim fill

Corresponding constant:
MSK_IPAR_PRESOLVE _ELIM FILL

304 APPENDIX C. PARAMETERS

Description:
Controls the maximum amount of fill-in that can be created during the elimination
phase of the presolve. This parameter times (numcon+numvar) denotes the amount
of fill-in.

Possible Values:
Any number between 0 and +inf.

Default value:
1

e presolve_eliminator_use
Corresponding constant:

MSK_TPAR_PRESOLVE_ELIMINATOR_USE

Description:
Controls whether free or implied free variables are eliminated from the problem.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e presolve_level

Corresponding constant:

MSK_TPAR_PRESOLVE_LEVEL

Description:
Currently not used.

Possible Values:
Any number between -inf and +inf.

Default value:
-1
e presolve_lindep_use
Corresponding constant:
MSK_TIPAR_PRESOLVE_LINDEP_USE

Description:
Controls whether the linear constraints are checked for linear dependencies.

Possible Values:

C.3. INTEGER PARAMETERS 305

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e presolve_lindep_work_lim

Corresponding constant:
MSK_TPAR_PRESOLVE_LINDEP_WORK_LIM

Description:
Is used to limit the amount of work that can done to locate linear dependencies. In
general the higher value this parameter is given the less work can be used. However,
a value of 0 means no limit on the amount work that can be used.

Possible Values:
Any number between 0 and +inf.

Default value:
1

e presolve_use

Corresponding constant:
MSK_IPAR_PRESOLVE_USE

Description:
Controls whether the presolve is applied to a problem before it is optimized.

Possible Values:
MSK_PRESOLVE_MODE_ON The problem is presolved before it is optimized.

MSK_PRESOLVE_MODE_OFF The problem is not presolved before it is optimized.

MSK_PRESOLVE_MODE_FREE It is decided automatically whether to presolve before
the problem is optimized.

Default value:
MSK_PRESOLVE_MODE_FREE
e read_add_anz
Corresponding constant:
MSK_IPAR_READ_ADD_ANZ

Description:
Additional number of non-zeros in A that is made room for in the problem.

Possible Values:
Any number between 0 and +inf.

306 APPENDIX C. PARAMETERS

Default value:
0

e read_add_con
Corresponding constant:

MSK_IPAR_READ_ADD_CON

Description:
Additional number of constraints that is made room for in the problem.

Possible Values:
Any number between 0 and +inf.

Default value:
0

e read_add_cone

Corresponding constant:
MSK_IPAR_READ_ADD_CONE

Description:
Additional number of conic constraints that is made room for in the problem.

Possible Values:
Any number between 0 and +inf.

Default value:
0
e read_add_gnz
Corresponding constant:
MSK_IPAR _READ_ADD_QNZ

Description:
Additional number of non-zeros in the () matrices that is made room for in the
problem.

Possible Values:
Any number between 0 and +inf.

Default value:
0

e read_add_var

Corresponding constant:
MSK_IPAR _READ_ADD_VAR

C.3. INTEGER PARAMETERS 307

Description:
Additional number of variables that is made room for in the problem.

Possible Values:
Any number between 0 and +inf.

Default value:
0

e read_anz

Corresponding constant:
MSK_IPAR READ_ANZ

Description:
Expected maximum number of A non-zeros to be read. The option is used only by
fast MPS and LP file readers.

Possible Values:
Any number between 0 and +inf.

Default value:
100000
e read_con
Corresponding constant:
MSK_TPAR _READ_CON

Description:
Expected maximum number of constraints to be read. The option is only used by
fast MPS and LP file readers.

Possible Values:
Any number between 0 and +inf.

Default value:
10000

e read_cone
Corresponding constant:

MSK_IPAR_READ_CONE

Description:
Expected maximum number of conic constraints to be read. The option is used
only by fast MPS and LP file readers.

Possible Values:
Any number between 0 and +inf.

308

APPENDIX C. PARAMETERS

Default value:
2500

e read _data_compressed

Corresponding constant:
MSK_TPAR_READ DATA_COMPRESSED

Description:
If this option is turned on,it is assumed that the data file is compressed.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e read_data_format

Corresponding constant:
MSK_TIPAR _READ DATA_FORMAT

Description:
Format of the data file to be read.

Possible Values:

MSK_DATA_FORMAT_XML The data file is an XML formatted file.

MSK_DATA_FORMAT_EXTENSION The file extension is used to determine the data file
format.

MSK_DATA_FORMAT_MPS The data file is MPS formatted.

MSK_DATA_FORMAT_LP The data file is LP formatted.

MSK _DATA_FORMAT MBT The data file is a MOSEK binary task file.
MSK_DATA_FORMAT 0P The data file is an optimization problem formatted file.

Default value:
MSK_DATA FORMAT_EXTENSION

e read keep_free_con

Corresponding constant:
MSK_IPAR _READ KEEP_FREE_CON

Description:
Controls whether the free constraints are included in the problem.

Possible Values:

C.3. INTEGER PARAMETERS 309

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF
e read_lp_drop._new_vars_in_bou
Corresponding constant:
MSK_TIPAR_READ_LP _DROP_NEW_VARS_IN_BOU

Description:
If this option is turned on, MOSEK will drop variables that are defined for the first
time in the bounds section.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF
e read_lp_quoted_names
Corresponding constant:
MSK_IPAR_READ_LP_QUOTED_NAMES

Description:
If a name is in quotes when reading an LP file, the quotes will be removed.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e read mps_format

Corresponding constant:

MSK_IPAR_READ _MPS_FORMAT

Description:
Controls how strictly the MPS file reader interprets the MPS format.

Possible Values:

MSK_MPS_FORMAT_STRICT It is assumed that the input file satisfies the MPS format
strictly.

310 APPENDIX C. PARAMETERS

MSK_MPS_FORMAT_RELAXED It is assumed that the input file satisfies a slightly re-
laxed version of the MPS format.

MSK_MPS_FORMAT_FREE It is assumed that the input file satisfies the free MPS for-
mat. This implies that spaces are not allowed in names. Otherwise the format
is free.

Default value:
MSK_MPS_FORMAT _RELAXED

e read mps_keep_int

Corresponding constant:
MSK_TIPAR_READ_MPS_KEEP_INT

Description:
Controls whether MOSEK should keep the integer restrictions on the variables
while reading the MPS file.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e read mps_obj_sense
Corresponding constant:

MSK_TPAR_READ_MPS_0BJ_SENSE

Description:
If turned on, the MPS reader uses the objective sense section. Otherwise the MPS
reader ignores it.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e read mps_quoted_names
Corresponding constant:
MSK_IPAR_READ _MPS_QUOTED_NAMES

Description:
If a name is in quotes when reading an MPS file, then the quotes will be removed.

C.3. INTEGER PARAMETERS 311

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e read mps_relax

Corresponding constant:

MSK_IPAR_READ MPS _RELAX

Description:
If this option is turned on, then the relaxation of the MIP will be read.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e read mps_width

Corresponding constant:

MSK_TPAR_READ MPS _WIDTH

Description:
Controls the maximal number of chars allowed in one line of the MPS file.

Possible Values:
Any positive number greater than 80.

Default value:
1024
e read_q-mode
Corresponding constant:
MSK_IPAR _READ_Q_MODE

Description:
Controls how the Q matrices are read from the MPS file.

Possible Values:

MSK_Q_READ_ADD All elements in a Q matrix are assumed to belong to the lower
triangular part. Duplicate elements in a (Q matrix are added together.

312

APPENDIX C. PARAMETERS

MSK_Q_READ_DROP_LOWER All elements in the strict lower triangular part of the Q
matrices are dropped.

MSK_Q_READ _DROP_UPPER All elements in the strict upper triangular part of the Q
matrices are dropped.

Default value:
MSK_Q_READ_ADD

e read_gnz

Corresponding constant:
MSK_TPAR_READ_QNZ

Description:
Expected maximum number of) non-zeros to be read. The option is used only by
MPS and LP file readers.

Possible Values:
Any number between 0 and +inf.

Default value:
20000

e read_task_ignore_param

Corresponding constant:
MSK_TPAR_READ_TASK_IGNORE_PARAM

Description:
Controls whether MOSEK should ignore the parameter setting defined in the task
file and use the default parameter setting instead.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e read_var

Corresponding constant:
MSK_TPAR_READ_VAR

Description:
Expected maximum number of variable to be read. The option is used only by
MPS and LP file readers.

C.3. INTEGER PARAMETERS 313

Possible Values:
Any number between 0 and +inf.

Default value:
10000

e sensitivity optimizer

Corresponding constant:
MSK_IPAR_SENSITIVITY OPTIMIZER

Description:
Controls which optimizer is used for optimal partition sensitivity analysis.

Possible Values:

MSK_OPTIMIZER_INTPNT The interior-point optimizer is used.
MSK_OPTIMIZER_CONCURRENT The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER MIXED_INT The mixed integer optimizer.
MSK_OPTIMIZER_DUAL_SIMPLEX The dual simplex optimizer is used.
MSK_OPTIMIZER_FREE The optimizer is chosen automatically.
MSK_OPTIMIZER_CONIC Another cone optimizer.
MSK_OPTIMIZER_NONCONVEX The optimizer for nonconvex nonlinear problems.
MSK_OPTIMIZER_QCONE The Qcone optimizer is used.
MSK_OPTIMIZER PRIMAL_SIMPLEX The primal simplex optimizer is used.
MSK_OPTIMIZER_FREE_SIMPLEX Either the primal or the dual simplex optimizer is
used.

Default value:
MSK_OPTIMIZER_FREE_SIMPLEX

e sensitivity_type
Corresponding constant:

MSK_IPAR_SENSITIVITY_TYPE

Description:
Controls which type of sensitivity analysis is to be performed.

Possible Values:

MSK_SENSITIVITY_TYPE OPTIMAL PARTITION Optimal partition sensitivity analy-
sis is performed.

MSK_SENSITIVITY_TYPE BASIS Basis sensitivity analysis is performed.

Default value:
MSK_SENSITIVITY_TYPE_BASIS

314

APPENDIX C. PARAMETERS

e sim degen

Corresponding constant:
MSK_IPAR_SIM DEGEN

Description:
Controls how aggressive degeneration is approached.

Possible Values:

MSK_SIM DEGEN_NONE The simplex optimizer should use no degeneration strategy.

MSK_SIM DEGEN_MODERATE The simplex optimizer should use a moderate degener-
ation strategy.

MSK_SIM DEGEN_MINIMUM The simplex optimizer should use a minimum degenera-
tion strategy.

MSK_SIM_DEGEN_AGGRESSIVE The simplex optimizer should use an aggressive de-
generation strategy.

MSK_SIM DEGEN_FREE The simplex optimizer chooses the degeneration strategy.

Default value:
MSK_SIM_DEGEN_FREE

sim_dual_crash

Corresponding constant:
MSK_TPAR_SIM_DUAL_CRASH

Description:
Controls whether crashing is performed in the dual simplex optimizer.

In general if a basis consists of more than (100-this parameter value)% fixed vari-
ables, then a crash will be performed.

Possible Values:
Any number between 0 and +inf.

Default value:
90

sim_dual_restrict_selection

Corresponding constant:
MSK_IPAR_SIM DUAL RESTRICT_SELECTION

Description:
The dual simplex optimizer can use a so-called restricted selection/pricing strategy
to chooses the outgoing variable. Hence, if restricted selection is applied, then the
dual simplex optimizer first choose a subset of all the potential outgoing variables.

C.3. INTEGER PARAMETERS 315

Next, for some time it will choose the outgoing variable only among the subset.
From time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be more aggressive
in its restriction strategy, i.e. a value of 0 implies that the restriction strategy is
not applied at all.

Possible Values:
Any number between 0 and 100.

Default value:
50

e sim_dual_selection

Corresponding constant:
MSK_TIPAR_SIM DUAL_SELECTION

Description:
Controls the choice of the incoming variable, known as the selection strategy, in
the dual simplex optimizer.

Possible Values:

MSK_SIM SELECTION_FULL The optimizer uses full pricing.

MSK_SIM_SELECTION_PARTIAL The optimizer uses a partial selection approach. The
approach is usually beneficial if the number of variables is much larger than
the number of constraints.

MSK_SIM_SELECTION_FREE The optimizer chooses the pricing strategy.
MSK_SIM SELECTION_ASE The optimizer uses approximate steepest-edge pricing.

MSK_SIM_SELECTION_DEVEX The optimizer uses devex steepest-edge pricing (or if it
is not available an approximate steep-edge selection).

MSK_SIM_SELECTION_SE The optimizer uses steepest-edge selection (or if it is not
available an approximate steep-edge selection).

Default value:
MSK_SIM_SELECTION_FREE
e sim_hotstart
Corresponding constant:
MSK_IPAR_SIM_HOTSTART

Description:
Controls the type of hot-start that the simplex optimizer perform.

Possible Values:

MSK_SIM _HOTSTART_NONE The simplex optimizer performs a coldstart.

316

APPENDIX C. PARAMETERS

MSK_SIM_HOTSTART_STATUS_KEYS Only the status keys of the constraints and vari-
ables are used to choose the type of hot-start.

MSK_SIM_HOTSTART_FREE The simplex optimize chooses the hot-start type.

Default value:
MSK_SIM_HOTSTART _FREE

sim_max_iterations

Corresponding constant:
MSK_IPAR_SIM MAX_ITERATIONS

Description:
Maximum number of iterations that can be used by a simplex optimizer.

Possible Values:
Any number between 0 and +inf.

Default value:
10000000

sim_max_num_setbacks

Corresponding constant:
MSK_TPAR_SIM_MAX_NUM_SETBACKS

Description:
Controls how many setbacks are allowed within a simplex optimizer. A setback is
an event where the optimizer moves in the wrong direction. This is impossible in
theory but may happen due to numerical problems.

Possible Values:
Any number between 0 and +inf.

Default value:
250

sim_network_detect

Corresponding constant:
MSK_IPAR_SIM NETWORK_DETECT

Description:
The simplex optimizer is capable of exploiting a network flow component in a
problem. However it is only worthwhile to exploit the network flow component if it
is sufficiently large. This parameter controls how large the network component has
to be in “relative” terms before it is exploited. For instance a value of 20 means
at least 20% of the model should be a network before it is exploited. If this value
is larger than 100 the network flow component is never detected or exploited.

C.3. INTEGER PARAMETERS 317

Possible Values:
Any number between 0 and +inf.

Default value:
101

e sim_network_detect_hotstart

Corresponding constant:
MSK_IPAR_SIM NETWORK_DETECT _HOTSTART

Description:
This parameter controls has large the network component in “relative” terms has
to be before it is exploited in a simplex hot-start. The network component should
be equal or larger than

max (MSK_IPAR_SIM_NETWORK_DETECT,MSK_IPAR_SIM_NETWORK_DETECT_HOTSTART)
before it is exploited. If this value is larger than 100 the network flow component
is never detected or exploited.

Possible Values:
Any number between 0 and +inf.

Default value:
100

e sim network_detect_method

Corresponding constant:
MSK_TIPAR_SIM NETWORK_DETECT_METHOD

Description:
Controls which type of detection method the network extraction should use.

Possible Values:

MSK_NETWORK_DETECT_SIMPLE The network detection should use a very simple heuris-
tic.

MSK_NETWORK_DETECT_ADVANCED The network detection should use a more advanced
heuristic.
MSK_NETWORK_DETECT_FREE The network detection is free.

Default value:
MSK_NETWORK_DETECT_FREE

e sim non_singular

Corresponding constant:
MSK_TIPAR_SIM _NON_SINGULAR

318 APPENDIX C. PARAMETERS

Description:
Controls if the simplex optimizer ensures a non-singular basis, if possible.

Possible Values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e sim_primal_crash

Corresponding constant:
MSK_IPAR_SIM PRIMAL_CRASH

Description:
Controls whether crashing is performed in the primal simplex optimizer.
In general, if a basis consists of more than (100-this parameter value)% fixed vari-
ables, then a crash will be performed.

Possible Values:
Any nonnegative integer value.

Default value:
90

e sim primal restrict_selection

Corresponding constant:
MSK_TIPAR_SIM PRIMAL RESTRICT_SELECTION

Description:

The primal simplex optimizer can use a so-called restricted selection/pricing strat-
egy to chooses the outgoing variable. Hence, if restricted selection is applied, then
the primal simplex optimizer first choose a subset of all the potential incoming
variables. Next, for some time it will choose the incoming variable only among the
subset. From time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be more aggressive
in its restriction strategy, i.e. a value of 0 implies that the restriction strategy is
not applied at all.

Possible Values:
Any number between 0 and 100.

Default value:
50

e sim primal_selection

C.3. INTEGER PARAMETERS 319

Corresponding constant:
MSK_IPAR_SIM PRIMAL_SELECTION

Description:
Controls the choice of the incoming variable, known as the selection strategy, in
the primal simplex optimizer.

Possible Values:

MSK_SIM_SELECTION_FULL The optimizer uses full pricing.

MSK_SIM_SELECTION_PARTIAL The optimizer uses a partial selection approach. The
approach is usually beneficial if the number of variables is much larger than
the number of constraints.

MSK_SIM SELECTION_FREE The optimizer chooses the pricing strategy.
MSK_SIM SELECTION_ASE The optimizer uses approximate steepest-edge pricing.

MSK_SIM_SELECTION_DEVEX The optimizer uses devex steepest-edge pricing (or if it
is not available an approximate steep-edge selection).

MSK_SIM_SELECTION_SE The optimizer uses steepest-edge selection (or if it is not
available an approximate steep-edge selection).

Default value:
MSK_SIM_SELECTION_FREE

e sim refactor_freq

Corresponding constant:
MSK_IPAR_SIM REFACTOR_FREQ

Description:
Controls how frequent the basis is refactorized. The value 0 means that the opti-
mizer determines the best point of refactorization.

It is strongly recommended NOT to change this parameter.

Possible Values:
Any number between 0 and +inf.

Default value:
0
e sim save_lu
Corresponding constant:
MSK_TPAR_SIM_SAVE_LU

Description:
Controls if the LU factorization stored should be replaced with the LU factorization
corresponding to the initial basis.

320

APPENDIX C. PARAMETERS

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

sim_scaling

Corresponding constant:
MSK_TPAR_SIM_SCALING

Description:
Controls how the problem is scaled before a simplex optimizer is used.

Possible Values:

MSK_SCALING_NONE No scaling is performed.
MSK_SCALING_MODERATE A conservative scaling is performed.
MSK_SCALING_AGGRESSIVE A very aggressive scaling is performed.
MSK_SCALING_FREE The optimizer chooses the scaling heuristic.

Default value:
MSK_SCALING_FREE

sim_solve_form

Corresponding constant:
MSK_TIPAR_SIM_SOLVE_FORM

Description:
Controls whether the primal or the dual problem is solved by the primal-/dual-
simplex optimizer.

Possible Values:
MSK_SOLVE_PRIMAL The optimizer should solve the primal problem.

MSK_SOLVE DUAL The optimizer should solve the dual problem.

MSK_SOLVE_FREE The optimizer is free to solve either the primal or the dual prob-
lem.

Default value:
MSK_SOLVE_FREE

sim_stability_priority

Corresponding constant:
MSK_IPAR_SIM STABILITY PRIORITY

C.3. INTEGER PARAMETERS 321

Description:
Controls how high priority the numerical stability should be given.

Possible Values:
Any number between 0 and 100.

Default value:
50

e sim switch optimizer

Corresponding constant:
MSK_TPAR_SIM_SWITCH_OPTIMIZER

Description:
The simplex optimizer sometimes chooses to solve the dual problem instead of the
primal problem. This implies that if you have chosen to use the dual simplex opti-
mizer and the problem is dualized, then it actually makes sense to use the primal
simplex optimizer instead. If this parameter is on and the problem is dualized and
furthermore the simplex optimizer is chosen to be the primal (dual) one, then it is
switched to the dual (primal).

Possible Values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF
e sol_filter_keep_basic
Corresponding constant:
MSK_IPAR_SOL_FILTER_KEEP BASIC

Description:
If turned on, then basic and super basic constraints and variables are written to
the solution file independent of the filter setting.

Possible Values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e sol filter keep_ranged

322

APPENDIX C. PARAMETERS

Corresponding constant:
MSK_IPAR_SOL_FILTER _KEEP_RANGED

Description:
If turned on, then ranged constraints and variables are written to the solution file
independent of the filter setting.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

sol_quoted_names

Corresponding constant:
MSK_TIPAR_SOL_QUOTED_NAMES

Description:
If this options is turned on, then MOSEK will quote names that contains blanks
while writing the solution file. Moreover when reading leading and trailing quotes
will be stripped of.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

sol_read_name_width

Corresponding constant:
MSK_IPAR_SOL_READ NAME WIDTH

Description:
When a solution is read by MOSEK and some constraint, variable or cone names
contain blanks, then a maximum name width much be specified. A negative value
implies that no name contain blanks.

Possible Values:
Any number between -inf and +inf.

Default value:
-1

e sol_read_width

C.3. INTEGER PARAMETERS 323

Corresponding constant:
MSK_IPAR_SOL_READ _WIDTH

Description:
Controls the maximal acceptable width of line in the solutions when read by MO-
SEK.

Possible Values:
Any positive number greater than 80.

Default value:
1024

e solution_callback

Corresponding constant:
MSK_IPAR_SOLUTION_CALLBACK

Description:
Indicates whether solution call-backs will be performed during the optimization.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e warning level
Corresponding constant:

MSK_IPAR_WARNING_LEVEL

Description:
Warning level.

Possible Values:
Any number between 0 and +inf.

Default value:
1
e write_bas_constraints
Corresponding constant:
MSK_IPAR_WRITE_BAS_CONSTRAINTS

Description:
Controls whether the constraint section is written to the basic solution file.

Possible Values:

324

APPENDIX C. PARAMETERS

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e write_bas_head

Corresponding constant:
MSK_IPAR WRITE_BAS_HEAD

Description:
Controls whether the header section is written to the basic solution file.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e write_bas_variables

Corresponding constant:
MSK_IPAR WRITE_BAS_VARIABLES

Description:
Controls whether the variables section is written to the basic solution file.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e write_data_compressed

Corresponding constant:
MSK_TPAR_WRITE_DATA_COMPRESSED

Description:
Controls whether the data file is compressed while it is written. 0 means no com-
pression while higher values mean more compression.

Possible Values:
Any number between 0 and +inf.

C.3. INTEGER PARAMETERS 325

Default value:
0

e write_data_format

Corresponding constant:
MSK_TIPAR_WRITE_DATA_FORMAT

Description:

Controls the file format when writing task data to a file.
Possible Values:

MSK_DATA_FORMAT_XML The data file is an XML formatted file.

MSK_DATA_FORMAT_EXTENSION The file extension is used to determine the data file
format.

MSK_DATA _FORMAT MPS The data file is MPS formatted.

MSK_DATA_FORMAT_LP The data file is LP formatted.

MSK_DATA_FORMAT MBT The data file is a MOSEK binary task file.
MSK_DATA_FORMAT_OP The data file is an optimization problem formatted file.

Default value:
MSK_DATA _FORMAT_EXTENSION

e write_data param

Corresponding constant:
MSK_IPAR WRITE DATA PARAM

Description:
If this option is turned on the parameter settings are written to the data file as
parameters.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e write_free_con

Corresponding constant:

MSK_TPAR WRITE_FREE_CON

Description:
Controls whether the free constraints are written to the data file.

326 APPENDIX C. PARAMETERS

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e write_generic_names
Corresponding constant:

MSK_IPAR_WRITE_GENERIC_NAMES

Description:
Controls whether the generic names or user-defined names are used in the data file.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_OFF

e write_generic names_io
Corresponding constant:

MSK_TPAR_WRITE_GENERIC_NAMES_IO

Description:
Index origin used in generic names.

Possible Values:
Any number between 0 and +inf.

Default value:
1
e write_int_constraints
Corresponding constant:
MSK_TPAR WRITE_INT_CONSTRAINTS

Description:
Controls whether the constraint section is written to the integer solution file.

Possible Values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

C.3. INTEGER PARAMETERS 327

Default value:
MSK_ON

e write_int_head
Corresponding constant:

MSK_TPAR_WRITE_INT_HEAD

Description:
Controls whether the header section is written to the integer solution file.

Possible Values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON
e write_ int variables
Corresponding constant:
MSK_IPAR WRITE_INT_VARIABLES

Description:
Controls whether the variables section is written to the integer solution file.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e write_lp_line width
Corresponding constant:
MSK_IPAR _WRITE_LP_LINE_WIDTH

Description:
Maximum width of line in an LP file written by MOSEK.

Possible Values:
Any positive number.

Default value:
80

e write_lp_quoted_names

328 APPENDIX C. PARAMETERS

Corresponding constant:
MSK_IPAR WRITE_LP_QUOTED_NAMES

Description:
If this option is turned on, then MOSEK will quote invalid LP names when writing
an LP file.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e write lp_strict_format
Corresponding constant:
MSK_IPAR WRITE_LP_STRICT_FORMAT

Description:
Controls whether LP output files satisfy the LP format strictly.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF
e write lp terms_per_line
Corresponding constant:
MSK_IPAR WRITE_LP_TERMS_PER_LINE

Description:
Maximum number of terms on a single line in an LP file written by MOSEK. 0
means unlimited.

Possible Values:
Any number between 0 and +inf.

Default value:
10

e write mps_int

Corresponding constant:
MSK_IPAR WRITE MPS_INT

C.3. INTEGER PARAMETERS 329

Description:
Controls if marker records are written to the MPS file to indicate whether variables
are integer restricted.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_ON
e write mps_obj_sense
Corresponding constant:
MSK_TPAR _WRITE_MPS_0BJ_SENSE

Description:
If turned off, the objective sense section is not written to the MPS file.

Possible Values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON
e write mps_quoted_names
Corresponding constant:
MSK_IPAR WRITE_MPS_QUOTED_NAMES

Description:
If a name contains spaces (blanks) when writing an MPS file, then the quotes will
be removed.

Possible Values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e write mps_strict

Corresponding constant:
MSK_IPAR WRITE MPS_STRICT

330 APPENDIX C. PARAMETERS

Description:
Controls whether the written MPS file satisfies the MPS format strictly or not.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.
Default value:
MSK_OFF
e write precision
Corresponding constant:
MSK_IPAR WRITE_PRECISION

Description:
Controls the precision with which double numbers are printed in the MPS data
file. In general it is not worthwhile to use a value higher than 15.

Possible Values:
Any number between 0 and +inf.

Default value:
8
e write_sol_constraints
Corresponding constant:
MSK_IPAR_WRITE_SOL_CONSTRAINTS

Description:
Controls whether the constraint section is written to the solution file.

Possible Values:

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON
e write_sol head
Corresponding constant:
MSK_IPAR WRITE_SOL_HEAD

Description:
Controls whether the header section is written to the solution file.

Possible Values:

C.3. INTEGER PARAMETERS 331

MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e write_sol_variables

Corresponding constant:
MSK_TPAR_WRITE_SOL_VARIABLES

Description:
Controls whether the variables section is written to the solution file.

Possible Values:
MSK_ON Switch the option on.
MSK_OFF Switch the option off.

Default value:
MSK_ON

e write_task_inc_sol

Corresponding constant:
MSK_TPAR_WRITE_TASK_INC_SOL

Description:

Controls whether the solutions are stored in the task file too.
Possible Values:

MSK_ON Switch the option on.

MSK_OFF Switch the option off.

Default value:
MSK_ON

e write_xml_mode

Corresponding constant:
MSK_TPAR WRITE_XML_MODE
Description:
Controls if linear coefficients should be written by row or column when writing in
the XML file format.
Possible Values:
MSK_WRITE_XML_MODE_COL Write in column order.
MSK_WRITE_XML_MODE_ROW Write in row order.

Default value:
MSK_WRITE_XML_MODE_ROW

332

APPENDIX C. PARAMETERS

C.4 String parameter types

MSK_SPAR BAS SOL _FILE NAMEttt e e e e e e 333
Name of the bas solution file.

MSK_SPAR DAT A FILE NAME . . e e e e e e e e e e i 333
Data are read and written to this file.

MSK_SPAR DEBUG _FILE NAMEt e e et ettt ettt i e 334
MOSEK debug file.

MSK_SPAR _FEASREPATIR NAME WSUMVIOLttt ittt ettt e et 334
Feasibility repair name violation name.

MSK_SPAR _INT _SOL _FILE NAMEttt e e e e e e e e 334
Name of the int solution file.

MSK_SPAR _ITR _SOL_FILE NAME ... i e e e e e i 334
Name of the itr solution file.

MSK_SPAR_PARAM _COMMENT _STIGN. ...ttt e e e e e e e e e 335
Solution file comment character.

MSK_SPAR _PARAM READ FILE NAME. ... ittt et et ettt e et 335
Modifications to the parameter database is read from this file.

MSK_SPAR PARAM WRITE FILE NAMEttt ittt et ettt ee e 335
The parameter database is written to this file.

MSK_SPAR READ MPS BOU NAME ...ttt e e et e et ettt e s 335
Name of the BOUNDS vector used. An empty name means that the first BOUNDS
vector is used.

MSK_SPAR _READ MPS OBJ NAME . .. ittt it et et e et ettt e e 336
Objective name in the MPS file.

MSK_SPAR _READ MPS RAN NAME it it et e e et ettt e et et i e 336
Name of the RANGE vector used. An empty name means that the first RANGE vector
is used.

MSK_SPAR _READ MPS RHS NAME it ettt e et e e e e i e e 336
Name of the RHS used. An empty name means that the first RHS vector is used.

MSK_SPAR _SOL _FILTER _XC _ LOW .ottt et et e e e e e e e e 337
Solution file filter.

c4.

STRING PARAMETER TYPES

MSK_SPAR_SOL_FILTERXCUPR...........oiiiiiiiiiii

Solution file filter.

MSK_SPAR_SOL_FILTER XX LOWcoooiiiiii i

Solution file filter.

MSK_SPAR_SOL_FILTER XX UPR...........i i

Solution file filter.

MSK_SPAR_STAT FILE NAME i

Statistics file name.

MSK_SPAR STAT KEY ...ttt i e

Key used when writing the summary file.

MSK_SPAR _STAT NAME e e e
Name used when writing the statistics file.

MSK_SPAR_WRITE.LP_.GEN_.VAR NAME...... it

Added variable names in the LP files.

bas_sol_file name
Corresponding constant:
MSK_SPAR_BAS_SOL_FILE_NAME

Description:
Name of the bas solution file.

Possible Values:
Any valid file name.
Default value:

999

data_file_name

Corresponding constant:
MSK_SPAR DATA FILE NAME

Description:

Data are read and written to this file.

Possible Values:
Any valid file name.

Default value:

334

e debug_file name

Corresponding constant:
MSK_SPAR_DEBUG_FILE_NAME

Description:
MOSEK debug file.

Possible Values:
Any valid file name.

Default value:

feasrepair name _wsumviol

Corresponding constant:

MSK_SPAR_FEASREPATR _NAME WSUMVIOL

Description:

APPENDIX C. PARAMETERS

The constraint and variable associated with the total weighted sum of violations
are each given the name of this parameter postfixed with CON and VAR respectively.

Possible Values:
Any valid string.

Default value:

"WSUMVIOL”
int_sol file name
Corresponding constant:

MSK_SPAR_INT_SOL_FILE_NAME

Description:
Name of the int solution file.

Possible Values:
Any valid file name.
Default value:

279

itr_sol_file_name
Corresponding constant:
MSK_SPAR_ITR_SOL_FILE_NAME

Description:
Name of the itr solution file.

C.4. STRING PARAMETER TYPES 335

Possible Values:
Any valid file name.
Default value:

999

e param_comment_sign
Corresponding constant:
MSK_SPAR_PARAM_COMMENT_SIGN

Description:
Only the first character in this string is used. It is considered as a start of comment
sign in the MOSEK parameter file. Spaces are ignored in the string.

Possible Values:
Any valid string.

Default value:
” %%’7
e param read file name
Corresponding constant:
MSK_SPAR_PARAM READ FILE NAME

Description:
Modifications to the parameter database is read from this file.

Possible Values:
Any valid file name.
Default value:

979

e param write_file name
Corresponding constant:
MSK_SPAR_PARAM WRITE FILE NAME

Description:
The parameter database is written to this file.

Possible Values:
Any valid file name.

Default value:

e read mps_bou_name

336

APPENDIX C. PARAMETERS

Corresponding constant:
MSK_SPAR_READ_MPS_BOU_NAME

Description:
Name of the BOUNDS vector used. An empty name means that the first BOUNDS
vector is used.

Possible Values:
Any valid MPS name.
Default value:

9999

read_mps_obj_name
Corresponding constant:
MSK_SPAR_READ_MPS_0BJ_NAME

Description:
Name of the free constraint used as objective function. An empty name means
that the first constraint is used as objective function.

Possible Values:
Any valid MPS name.
Default value:

279

read_mps_ran_name
Corresponding constant:
MSK_SPAR_READ MPS_RAN_NAME

Description:
Name of the RANGE vector used. An empty name means that the first RANGE
vector is used.

Possible Values:
Any valid MPS name.
Default value:

999

read mps_rhs_name
Corresponding constant:
MSK_SPAR_READ_MPS_RHS_NAME

Description:
Name of the RHS used. An empty name means that the first RHS vector is used.

C.4. STRING PARAMETER TYPES 337

Possible Values:
Any valid MPS name.

Default value:

999

e sol_filter_xc_low

Corresponding constant:
MSK_SPAR_SOL_FILTER_XC_LOW

Description:
A filter used to determine which constraints should be listed in the solution file.
A value of “0.5” means that all constraints having xc[i]>0.5 should be listed,
whereas “+0.5” means that all constraints having xc[i]>=blc[i]+0.5 should be
listed. An empty filter means that no filter is applied.

Possible Values:
Any valid filter.

Default value:

279

e sol filter xc_upr

Corresponding constant:
MSK_SPAR_SOL_FILTER_XC_UPR

Description:
A filter used to determine which constraints should be listed in the solution file.
A value of “0.5” means that all constraints having xc[i1]1<0.5 should be listed,
whereas “-0.5” means all constraints having xc[i]<=buc[i]-0.5 should be listed.
An empty filter means that no filter is applied.

Possible Values:
Any valid filter.

Default value:

999

e sol _filter_xx_low

Corresponding constant:
MSK_SPAR_SOL_FILTER XX _LOW

Description:
A filter used to determine which variables should be listed in the solution file.
A value of “0.5” means that all constraints having xx[j]1>=0.5 should be listed,
whereas “+0.5” means that all constraints having xx[j1>=b1x[j]1+0.5 should be
listed. An empty filter means no filter is applied.

338 APPENDIX C. PARAMETERS

Possible Values:
Any valid filter..

Default value:

279

e sol filter xx upr

Corresponding constant:
MSK_SPAR_SOL_FILTER XX UPR

Description:
A filter used to determine which variables should be listed in the solution file.
A value of “0.5” means that all constraints having xx[j]1<0.5 should be printed,
whereas “-0.5” means all constraints having xx[j]<=bux[j]-0.5 should be listed.
An empty filter means no filter is applied.

Possible Values:
Any valid file name.
Default value:

999

e stat_file name
Corresponding constant:
MSK_SPAR_STAT FILE NAME

Description:
Statistics file name.

Possible Values:
Any valid file name.
Default value:

999

e stat_key
Corresponding constant:
MSK_SPAR_STAT KEY

Description:
Key used when writing the summary file.

Possible Values:
Any valid XML string.

Default value:

C.4. STRING PARAMETER TYPES 339

e stat_name
Corresponding constant:
MSK_SPAR_STAT _NAME

Description:
Name used when writing the statistics file.

Possible Values:
Any valid XML string.
Default value:

9799

e write_lp_gen_var_name

Corresponding constant:
MSK_SPAR_WRITE_LP_GEN_VAR_NAME

Description:
Sometimes when an LP file is written additional variables must be inserted. They
will have the prefix denoted by this parameter.

Possible Values:
Any valid string.

Default value:
”xmskgen”

340 APPENDIX C. PARAMETERS

Appendix D

Symbolic constants

D.1 Constraint or variable access modes

Value Name

Description
0 MSK_ACC_VAR

Access data by columns (variable orinted)
1 MSK_ACC_CON

Access data by rows (constraint oriented)

D.2 Basis identification

Value Name
Description
1 MSK_BI_ALWAYS

Basis identification is always performed even if the interior-point op-
timizer terminates abnormally.

MSK_BI_NO_ERROR

Basis identification is performed if the interior-point optimizer termi-
nates without an error.

MSK_BI_NEVER

Never do basis identification.

MSK_BI_IF FEASIBLE

Basis identification is not performed if the interior-point optimizer
terminates with a problem status saying that the problem is primal
or dual infeasible.

continued on next page

341

342

D.3

D4

APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

4 MSK_BI_OTHER
Try another BI method.
Bound keys
Value Name
Description
2 MSK_BK_FX
The constraint or variable is fixed.
0 MSK_BK_LO
The constraint or variable has a finite lower bound and an infinite
upper bound.
3 MSK_BK_FR
The constraint or variable is free.
1 MSK_BK_UP
The constraint or variable has an infinite lower bound and an finite
upper bound.
4 MSK_BK_RA

The constraint or variable is ranged.

Specifies the branching direction.

Value Name
Description
2 MSK_BRANCH_DIR_DOWN
The mixed integer optimizer always chooses the down branch first.
1 MSK_BRANCH_DIR_UP
The mixed integer optimizer always chooses the up branch first.
0 MSK_BRANCH_DIR_FREE

The mixed optimizer decides which branch to choose.

D.5 Progress call-back codes

continued on next page

D.5. PROGRESS CALL-BACK CODES 343

continued from previous page

Value

Name
Description

17

70

37

79

95

76

48

46

42

20

40

22

13

35

MSK_CALLBACK _BEGIN_PRIMAL_SENSITIVITY

Primal sensitivity analysis is started.

MSK_CALLBACK_NEW_INT_MIO

The call-back function is called after a new integer solution has been
located by the mixed integer optimizer.
MSK_CALLBACK_END_NETWORK_PRIMAL_SIMPLEX

The call-back function is called when the primal network simplex
optimizer is terminated.

MSK_CALLBACK_UPDATE_PRESOLVE

The call-back function is called from within the presolve procedure.
MSK_CALLBACK_IM_LICENSE WAIT

MOSEK is waiting for a license.

MSK_CALLBACK_BEGIN_CONCURRENT

Concurrent optimizer is started.
MSK_CALLBACK_UPDATE_NETWORK_DUAL_SIMPLEX

The call-back function is called in the dual network simplex optimizer.
MSK_CALLBACK_IGNORE_VALUE

This code means that the call-back does not indicate a new phase in
the optimization, but is simply a time-triggered call-back.
MSK_CALLBACK_END_STMPLEX BT

The call-back function is called from within the basis identification
procedure when the simplex clean-up phase is terminated.
MSK_CALLBACK_END_PRIMAL_SENSITIVITY

Primal sensitivity analysis is terminated.
MSK_CALLBACK_BEGIN_SIMPLEX

The call-back function is called when the simplex optimizer is started.
MSK_CALLBACK_END_PRESOLVE

The call-back function is called when the presolve is completed.
MSK_CALLBACK BEGIN_SIMPLEX NETWORK_DETECT

The call-back function is called when the network detection procedure
is started.

MSK_CALLBACK_BEGIN_NETWORK_SIMPLEX

The call-back function is called when the simplex network optimizer
is started.

MSK_CALLBACK_END_MIO

continued on next page

344 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page
The call-back function is called when the mixed integer optimizer is
terminated.

73 MSK_CALLBACK_QCONE
The call-back function is called from within the Qcone optimizer.

27 MSK_CALLBACK_END_CONIC
The call-back function is called when the conic optimizer is termi-
nated.

11 MSK_CALLBACK_BEGIN_NETWORK_DUAL_SIMPLEX
The call-back function is called when the dual network simplex opti-
mizer is started.

7 MSK_CALLBACK_BEGIN_INFEAS_ANA
The call-back function is called when the infeasibility analyzer is
started.

67 MSK_CALLBACK_IM_PRIMAL_SIMPLEX
The call-back function is called at an intermediate point in the primal
simplex optimizer.

63 MSK_CALLBACK_IM_NONCONVEX
The call-back function is called at an intermediate stage within the
nonconvex optimizer where the information database has not been
updated.

61 MSK_CALLBACK_IM_NETWORK_DUAL_SIMPLEX
The call-back function is called at an intermediate point in the dual
network simplex optimizer.

66 MSK_CALLBACK_IM PRIMAL _SENSIVITY
The call-back function is called at an intermediate stage of the primal
sensitivity analysis.

38 MSK_CALLBACK_END_NETWORK_SIMPLEX
The call-back function is called when the simplex network optimizer
is terminated.

34 MSK_CALLBACK_END_LICENSE_WAIT
End waiting for license.
28 MSK_CALLBACK_END_DUAL _BI

The call-back function is called from within the basis identification
procedure when the dual phase is terminated.

29 MSK_CALLBACK_END_DUAL_SENSITIVITY
Dual sensitivity analysis is terminated.

24 MSK_CALLBACK_DUAL_SIMPLEX
The call-back function is called from within the dual simplex opti-
mizer.

continued on next page

D.5. PROGRESS CALL-BACK CODES

continued from previous page

21

52

47

45

72

26

56

31

36

o4

68

o1

MSK_CALLBACK_BEGIN_SIMPLEX BI

The call-back function is called from within the basis identification
procedure when the simplex clean-up phase is started.
MSK_CALLBACK_BEGIN_INTPNT

The call-back function is called when the interior-point optimizer is
started.

MSK_CALLBACK_IM _DUAL_SENSIVITY

The call-back function is called at an intermediate stage of the dual
sensitivity analysis.

MSK_CALLBACK_END_SIMPLEX _NETWORK_DETECT

The call-back function is called when the network detection procedure
is terminated.

MSK_CALLBACK_END_SIMPLEX

The call-back function is called when the simplex optimizer is termi-
nated.

MSK_CALLBACK_PRIMAL_SIMPLEX

The call-back function is called from within the primal simplex opti-
mizer.

MSK_CALLBACK_END_CONCURRENT

Concurrent optimizer is terminated.

MSK_CALLBACK_IM_MIO

The call-back function is called at an intermediate point in the mixed
integer optimizer.

MSK_CALLBACK_END_DUAL_SIMPLEX

The call-back function is called when the dual simplex optimizer is
terminated.

MSK_CALLBACK_END_NETWORK_DUAL_SIMPLEX

The call-back function is called when the dual network simplex opti-
mizer is terminated.

MSK_CALLBACK_IM_INTPNT

The call-back function is called at an intermediate stage within the
interior-point optimizer where the information database has not been
updated.

MSK_CALLBACK_IM_SIMPLEX BI

The call-back function is called from within the basis identifi-
cation procedure at an intermediate point in the simplex clean-
up phase. The frequency of the call-backs is controlled by the
MSK_IPAR _LOG_SIM _FREQ parameter.

MSK_CALLBACK_IM DUAL BI

continued on next page

345

346 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page
The call-back function is called from within the basis identification
procedure at an intermediate point in the dual phase.

75 MSK_CALLBACK_UPDATE_DUAL_SIMPLEX
The call-back function is called in the dual simplex optimizer.
82 MSK_CALLBACK_UPDATE_SIMPLEX BI

The call-back function is called from within the basis identifi-
cation procedure at an intermediate point in the simplex clean-
up phase. The frequency of the call-backs is controlled by the
MSK_IPAR_LOG_SIM_FREQ parameter.

19 MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX
The call-back function is called when the primal simplex optimizer is
started.

58 MSK_CALLBACK_IM_MIO_INTPNT

The call-back function is called at an intermediate point in the mixed
integer optimizer while running the interior-point optimizer.

6 MSK_CALLBACK_BEGIN_DUAL_SIMPLEX
The call-back function is called when the dual simplex optimizer
started.

64 MSK_CALLBACK_IM _PRESOLVE

The call-back function is called from within the presolve procedure
at an intermediate stage.

30 MSK_CALLBACK_END_DUAL_SETUP_BI
The call-back function is called when the dual BI phase is terminated.
3 MSK_CALLBACK_BEGIN_DUAL _BI

The call-back function is called from within the basis identification
procedure when the dual phase is started.

4 MSK_CALLBACK_BEGIN_DUAL_SENSITIVITY
Dual sensitivity analysis is started.
50 MSK_CALLBACK_IM_CONIC

The call-back function is called at an intermediate stage within the

conic optimizer where the information database has not been updated.
60 MSK_CALLBACK_IM MIO_PRIMAL_SIMPLEX

The call-back function is called at an intermediate point in the mixed

integer optimizer while running the primal simplex optimizer.

77 MSK_CALLBACK_UPDATE_NETWORK_PRIMAL_SIMPLEX
The call-back function is called in the primal network simplex opti-
mizer.

99 MSK_CALLBACK_IM_MIO_PRESOLVE

continued on next page

D.5. PROGRESS CALL-BACK CODES

continued from previous page

14

33

16

41

18

32

74

39

69

53

44

81

80

The call-back function is called at an intermediate point in the mixed
integer optimizer while running the presolve.
MSK_CALLBACK_BEGIN_NONCONVEX

The call-back function is called when the nonconvex optimizer is
started.

MSK_CALLBACK_BEGIN_BI

The basis identification procedure has been started.
MSK_CALLBACK_END_INTPNT

The call-back function is called when the interior-point optimizer is
terminated.

MSK_CALLBACK_BEGIN_PRIMAL_BI

The call-back function is called from within the basis identification
procedure when the primal phase is started.
MSK_CALLBACK_END_PRIMAL BI

The call-back function is called from within the basis identification
procedure when the primal phase is terminated.
MSK_CALLBACK_BEGIN_PRIMAL_SETUP_BI

The call-back function is called when the primal BI setup is started.
MSK_CALLBACK_END_INFEAS_ANA

The call-back function is called when the infeasibility analyzer is ter-
minated.

MSK_CALLBACK_UPDATE_DUAL BI

The call-back function is called from within the basis identification
procedure at an intermediate point in the dual phase.
MSK_CALLBACK_END_NONCONVEX

The call-back function is called when the nonconvex optimizer is ter-
minated.

MSK_CALLBACK_INTPNT

The call-back function is called from within the interior-point opti-
mizer after the information database has been updated.
MSK_CALLBACK_IM_DUAL_STMPLEX

The call-back function is called at an intermediate point in the dual
simplex optimizer.

MSK_CALLBACK_END_PRIMAL_SIMPLEX

The call-back function is called when the primal simplex optimizer is
terminated.

MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX

The call-back function is called in the primal simplex optimizer.
MSK_CALLBACK_UPDATE_PRIMAL BI

continued on next page

347

348 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page
The call-back function is called from within the basis identification
procedure at an intermediate point in the primal phase.

71 MSK_CALLBACK_NONCOVEX
The call-back function is called from within the nonconvex optimizer
after the information database has been updated.

62 MSK_CALLBACK_IM _NETWORK_PRIMAL_SIMPLEX
The call-back function is called at an intermediate point in the primal
network simplex optimizer.

65 MSK_CALLBACK_IM_PRIMAL BT
The call-back function is called from within the basis identification
procedure at an intermediate point in the primal phase.

5Y4 MSK_CALLBACK_IM_MIO_DUAL_SIMPLEX
The call-back function is called at an intermediate point in the mixed
integer optimizer while running the dual simplex optimizer.

15 MSK_CALLBACK_BEGIN_PRESOLVE
The call-back function is called when the presolve is started.
23 MSK_CALLBACK_CONIC

The call-back function is called from within the conic optimizer after
the information database has been updated.

49 MSK_CALLBACK_IM_BI
The call-back function is called from within the basis identification
procedure at an intermediate point.

43 MSK_CALLBACK_END_PRIMAL_SETUP_BI
The call-back function is called when the primal BI setup is termi-
nated.

10 MSK_CALLBACK_BEGIN_MIO
The call-back function is called when the mixed integer optimizer is
started.

12 MSK_CALLBACK BEGIN_NETWORK_PRIMAL_STMPLEX
The call-back function is called when the primal network simplex
optimizer is started.

2 MSK_CALLBACK_BEGIN_CONIC

The call-back function is called when the conic optimizer is started.
9 MSK_CALLBACK_BEGIN_LICENSE WAIT

Begin waiting for license.
25 MSK_CALLBACK_END_BI

The call-back function is called when the basis identification proce-
dure is terminated.
78 MSK_CALLBACK_UPDATE_NONCONVEX

continued on next page

D.8. CONE TYPES 349

D.6

D.7

D.8

continued from previous page

The call-back function is called at an intermediate stage within the
nonconvex optimizer where the information database has been up-
dated.

MSK_CALLBACK_BEGIN_DUAL_SETUP_BI

The call-back function is called when the dual BI phase is started.

Types of convexity checks.

Value Name

Description
1 MSK_CHECK_CONVEXITY_SIMPLE

Perform simple and fast convexity check.
0 MSK_CHECK_CONVEXITY_NONE

No convexity check.

Compression types

Value Name
Description
2 MSK_COMPRESS_GZIP
The type of compression used is gzip compatible.
0 MSK_COMPRESS_NONE
No compression is used.
1 MSK_COMPRESS_FREE
The type of compression used is chosen automatically.
Cone types
Value Name
Description
0 MSK_CT_QUAD
The cone is a quadratic cone.
1 MSK_CT_RQUAD

The cone is a rotated quadratic cone.

350 APPENDIX D. SYMBOLIC CONSTANTS

D.9 CPU type

Value Name

Description
8 MSK_CPU_POWERPC_G5
A G5 PowerPC CPU.
9 MSK_CPU_INTEL_PM
An Intel PM cpu.
1 MSK_CPU_GENERIC
An generic CPU type for the platform
0 MSK_CPU_UNKNOWN
An unknown CPU.
7 MSK_CPU_AMD_OPTERON
An AMD Opteron (64 bit).
6 MSK_CPU_INTEL_ITANIUM2
An Intel Itanium?2.
4 MSK_CPU_AMD_ATHLON
An AMD Athlon.
5 MSK_CPU_HP_PARISC20
An HP PA RISC version 2.0 CPU.
3 MSK_CPU_INTEL_P4
An Intel Pentium P4 or Intel Xeon.
2 MSK_CPU_INTEL_P3
An Intel Pentium P3.
10 MSK_CPU_INTEL_CORE2

An Intel CORE2 cpu.

D.10 Data format types

Value Name

Description
5 MSK_DATA_FORMAT_XML
The data file is an XML formatted file.
0 MSK_DATA_FORMAT_EXTENSION
The file extension is used to determine the data file format.
1 MSK_DATA_FORMAT_MPS
The data file is MPS formatted.
2 MSK_DATA_FORMAT_LP

continued on next page

D.11. DOUBLE INFORMATION ITEMS 351

continued from previous page

3

The data file is LP formatted.

MSK_DATA_FORMAT_MBT

The data file is a MOSEK binary task file.
MSK_DATA_FORMAT_QOP

The data file is an optimization problem formatted file.

D.11 Double information items

Value Name
Description
12 MSK_DINF_INTPNT_PRIMAL_FEAS

11

24

27

28

32

47

19

49

Primal feasibility measure reported by the interior-point or Qcone
optimizers. (For the interior-point optimizer this measure does not
directly related to the original problem because a homogeneous model
is employed).

MSK_DINF_INTPNT_ORDER_CPUTIME

Order time (in CPU seconds).

MSK_DINF_PRESOLVE_CPUTIME

Total time (in CPU seconds) spent in the presolve since it was invoked.
MSK_DINF_RD_CPUTIME

Time (in CPU seconds) spent reading the data file.
MSK_DINF_SIM_CPUTIME

Time (in CPU seconds) spent in the simplex optimizer since invoking
it.

MSK_DINF_SOL_BAS_MAX DBI

Maximal dual bound infeasibility in the basic solution. Updated at
the end of the optimization.

MSK_DINF_SOL_ITR_MAX_PCNI

Maximal primal cone infeasibility in the interior-point solution. Up-
dated at the end of the optimization.

MSK_DINF_MIO_OBJ_INT

The primal objective value corresponding to the best integer feasible
solution. Please note that at least one integer feasible solution must
have located i.e. check MSK_IINF MIO NUM_INT_SOLUTIONS.
MSK_DINF_CONCURRENT_CPUTIME

Time (in CPU seconds) spent within the concurrent optimizer since
its invocation.

MSK_DINF_SOL_ITR_MAX PINTI

continued on next page

352 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

Maximal primal integer infeasibility in the interior-point solution.
Updated at the end of the optimization.

30 MSK_DINF_SIM _0OBJ
Objective value reported by the simplex optimizer.
20 MSK_DINF_MIO_OBJ_REL_GAP

Given that the mixed integer optimizer has computed a feasible so-
lution and a bound on the optimal objective value, then this item
contains the relative gap defined by

|(objective value of feasible solution) — (objective bound)|

max(1, |(objective value of feasible solution)|)

Otherwise it has the value -1.0.

37 MSK_DINF_SOL_BAS_PRIMAL_0BJ
Primal objective value of the basic solution. Updated at the end of
the optimization.

26 MSK_DINF_PRESOLVE_LINDEP _CPUTIME
Total time (in CPU seconds) spent in the linear dependency checker
since the presolve was invoked.

46 MSK_DINF_SOL_ITR_MAX PBI
Maximal primal bound infeasibility in the interior-point solution. Up-
dated at the end of the optimization.

34 MSK_DINF_SOL_BAS _MAX PBI
Maximal primal bound infeasibility in the basic solution. Updated at
the end of the optimization.

44 MSK _DINF_SOL_ITR_MAX DCNI
Maximal dual cone infeasibility in the interior-point solution. Up-
dated at the end of the optimization.

8 MSK_DINF_INTPNT_DUAL_OBJ
Dual objective value reported by the interior-point or Qcone opti-
mizer.

45 MSK_DINF_SOL_ITR_MAX DEQI

Maximal dual equality infeasibility in the interior-point solution. Up-
dated at the end of the optimization.

14 MSK_DINF_INTPNT _REALTIME
Time (in wall-clock seconds) spent within the interior-point optimizer
since its invocation.

29 MSK_DINF_SIM FEAS
Feasibility measure reported by the simplex optimizer.

continued on next page

D.11. DOUBLE INFORMATION ITEMS

continued from previous page

15

36

40

35

42

22

38

23

10

MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ

If MOSEK has successfully constructed an integer feasible solution,
then this item contains the optimal objective value corresponding to
the feasible solution.

MSK_DINF_SOL_BAS MAX PINTI

Maximal primal integer infeasibility in the basic solution. Updated
at the end of the optimization.

MSK _DINF_SOL_INT_MAX PINTI

Maximal primal integer infeasibility in the integer solution. Updated
at the end of the optimization.

MSK_DINF_INTPNT_CPUTIME

Time (in CPU seconds) spent within the interior-point optimizer since
its invocation.

MSK_DINF_SOL_BAS_MAX PEQI

Maximal primal equality infeasibility in the basic solution. Updated
at the end of the optimization.

MSK_DINF_INTPNT_FACTOR_NUM_FLOPS

An estimate of the number of flops used in the factorization.

MSK _DINF_SOL_ITR_DUAL_OBJ

Dual objective value of the interior-point solution. Updated at the
end of the optimization.

MSK_DINF_OPTIMIZER_CPUTIME

Total time (in CPU seconds) spent in the optimizer since it was in-
voked.

MSK_DINF_SOL_INT_MAX_PBI

Maximal primal bound infeasibility in the integer solution. Updated
at the end of the optimization.

MSK _DINF_INTPNT_DUAL_FEAS

Dual feasibility measure reported by the interior-point and QQcone
optimizer. (For the interior-point optimizer this measure does not
directly related to the original problem because a homogeneous model
is employed.)

MSK_DINF_OPTIMIZER _REALTIME

Total time (in wall-clock seconds) spent in the optimizer since it was
invoked.

MSK_DINF_INTPNT_KAP _DIV_TAU

continued on next page

353

354 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

This measure should converge to zero if the problem has a primal-
dual optimal solution or to infinity if problem is (strictly) primal or
dual infeasible. In case the measure is converging towards a positive
but bounded constant the problem is usually ill-posed.

3 MSK_DINF_BI_PRIMAL_CPUTIME
Time (in CPU seconds) spent within the primal phase of the basis
identification procedure since its invocation.

39 MSK_DINF_SOL_INT_MAX PEQI
Maximal primal equality infeasibility in the basic solution. Updated
at the end of the optimization.

50 MSK_DINF_SOL_ITR_PRIMAL_OBJ
Primal objective value of the interior-point solution. Updated at the
end of the optimization.

21 MSK_DINF_MIO_USER_0BJ_CUT
If the objective cut is used, then this information item has the value
of the cut.

25 MSK_DINF_PRESOLVE_ELI_CPUTIME

Total time (in CPU seconds) spent in the eliminator since the presolve
was invoked.

) MSK_DINF_CONCURRENT _REALTIME
Time (in wall-clock seconds) within the concurrent optimizer since its
invocation.

18 MSK_DINF_MIO_0BJ_BOUND
The best bound objective value corresponding to the best in-
teger feasible solution is located. Please note that at least
one integer feasible solution must be located i.e. check
MSK_IINF _MIO_NUM_INT_SOLUTIONS.

1 MSK_DINF_BI_CPUTIME
Time (in CPU seconds) spent within the basis identification procedure
since its invocation.

31 MSK_DINF_SOL_BAS DUAL_OBJ
Dual objective value of the basic solution. Updated at the end of the
optimization.

13 MSK_DINF_INTPNT_PRIMAL_OBJ
Primal objective value reported by the interior-point or Qcone opti-
mizer.

41 MSK_DINF_SOL_INT_PRIMAL_OBJ
Primal objective value of the integer solution. Updated at the end of
the optimization.

continued on next page

D.12. DOUBLE PARAMETERS

continued from previous page

16

17

33

48

43

MSK_DINF_MIO_CPUTIME

Time spent in the mixed integer optimizer.
MSK_DINF_MIO_OBJ_ABS_GAP

Given the mixed integer optimizer has computed a feasible solution
and a bound on the optimal objective value, then this item contains
the absolute gap defined by

|(objective value of feasible solution) — (objective bound)]|.

Otherwise it has the value -1.0.

MSK_DINF_SOL_BAS_MAX DEQI

Maximal dual equality infeasibility in the basic solution. Updated at
the end of the optimization.

MSK_DINF_SOL_ITR_MAX PEQI

Maximal primal equality infeasibility in the interior-point solution.
Updated at the end of the optimization.

MSK_DINF_BI_DUAL_CPUTIME

Time (in CPU seconds) spent within the dual phase basis identifica-
tion procedure since its invocation.

MSK_DINF_BI_CLEAN_CPUTIME

Time (in CPU seconds) spent within the clean-up phase of the basis
identification procedure since its invocation.
MSK_DINF_SOL_ITR_MAX DBI

Maximal dual bound infeasibility in the interior-point solution. Up-
dated at the end of the optimization.

D.12 Double parameters

Value Name
Description
38 MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH

41

If the lower objective cut is less than the value of this parameter value,
then the lower objective cut i.e. MSK_DPAR_LOWER_OBJ_CUT is treated
as —oo.

MSK_DPAR _MIO_MAX TIME

This parameter limits the maximum time spent by the mixed integer
optimizer. A negative number means infinity.

MSK_DPAR BASTS_TOL_S

continued on next page

355

356

APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

Maximum absolute dual bound violation in an optimal basic solution.

56 MSK_DPAR_PRESOLVE_TOL_S
Absolute zero tolerance employed for s; in the presolve.
59 MSK_DPAR_UPPER_0BJ_CUT

If a feasible solution having and objective value outside, the interval
[MSK,DPAR,LOWER,UBJ,CUT, MSK,DPAR,UPPER,UBJ,CUT], then MOSEK
is terminated.

14 MSK_DPAR_INTPNT_CO_TOL_DFEAS
Dual feasibility tolerance used by the conic interior-point optimizer.
6 MSK_DPAR DATA_TOL_ATJ_LARGE

An element in A which is larger than this value in absolute size causes
a warning message to be printed.

46 MSK_DPAR_MIO_TOL_ABS_GAP
Absolute optimality tolerance employed by the mixed integer opti-
mizer.

60 MSK_DPAR _UPPER_0BJ_CUT_FINITE_TRH

If the upper objective cut is greater than the value of this value pa-
rameter, then the the upper objective cut MSK_DPAR_UPPER_0BJ_CUT
is treated as oo.

52 MSK_DPAR_NONCONVEX_TOL_OPT

Optimality tolerance used by the nonconvex optimizer.
ol MSK_DPAR_NONCONVEX_TOL_FEAS

Feasibility tolerance used by the nonconvex optimizer.
40 MSK_DPAR_MIO_HEURISTIC_TIME

Minimum amount of time to be used in the heuristic search for a good
feasible integer solution. A negative values implies that the optimizer
decides the amount of time to be spent in the heuristic.

57 MSK_DPAR_PRESOLVE_TOL_X
Absolute zero tolerance employed for x; in the presolve.

22 MSK_DPAR_INTPNT_NL_TOL_MU_RED
Relative complementarity gap tolerance.

44 MSK_DPAR_MIO_NEAR_TOL_REL_GAP
The mixed integer optimizer is terminated when this toler-
ance is satisfied. = This termination criteria is delayed. See
MSK_DPAR_MIO_DISABLE_TERM_TIME for details.

98 MSK_DPAR_SIMPLEX_ABS_TOL_PIV
Absolute pivot tolerance employed by the simplex optimizers.

) MSK_DPAR DATA_TOL_AIJ

Absolute zero tolerance for elements in A.

continued on next page

D.12.

DOUBLE PARAMETERS

continued from previous page

13

28

29

23

53

12

45

30

16

19

MSK_DPAR _FEASREPAIR _TOL

Tolerance for constraint enforcing upper bound on sum of weighted
violations in feasibility repair.

MSK_DPAR_INTPNT_TOL_DSAFE

Controls the initial dual starting point used by the interior-point op-
timizer. If the interior-point optimizer converges slowly.
MSK_DPAR_INTPNT_TOL_INFEAS

Controls when the optimizer declares the model primal or dual infea-
sible. A small number means the optimizer gets more conservative
about declaring the model infeasible.
MSK_DPAR_INTPNT_NL_TOL_NEAR_REL

If the MOSEK nonlinear interior-point optimizer cannot compute a
solution that has the prescribed accuracy, then it will multiply the
termination tolerances with value of this parameter. If the solution
then satisfies the termination criteria, then the solution is denoted
near optimal, near feasible and so forth.
MSK_DPAR_OPTIMIZER MAX TIME

Maximum amount of time the optimizer is allowed to spent on the
optimization. A negative number means infinity.

MSK_DPAR DATA_TOL_X

Zero tolerance for constraints and variables i.e. if the distance be-
tween the lower and upper bound is less than this value, then the
lower and lower bound is considered identical.

MSK_DPAR MIO_REL_ADD _CUT_LIMITED

Controls how many cuts the mixed integer optimizer is allowed to
add to the problem. Let a be the value of this parameter and m the
number constraints, then mixed integer optimizer is allowed to am
cuts.

MSK_DPAR BI LU TOL_REL_PIV

Relative pivot tolerance used in the LU factorization in the basis
identification procedure.

MSK_DPAR_INTPNT_TOL_MU_RED

Relative complementarity gap tolerance.
MSK_DPAR_INTPNT_CO_TOL_MU_RED

Relative complementarity gap tolerance feasibility tolerance used by
the conic interior-point optimizer.

MSK_DPAR_INTPNT_CO_TOL_REL_GAP

Relative gap termination tolerance used by the conic interior-point
optimizer.

continued on next page

357

358 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

37 MSK_DPAR_LOWER_OBJ_CUT
If a feasible solution having an objective value outside, the interval
[MSK,DPAR,LOWER,OBJ,CUT, MSK,DPAR,UPPER,DBJ,CUT], then MOSEK
is terminated.

39 MSK_DPAR _MIO_DISABLE TERM_TIME
The termination criteria governed by

e MSK_TPAR_MIO_MAX NUM_RELAXS

e MSK_TPAR_MIO_MAX NUM_BRANCHES
e MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
e MSK_DPAR_MIO_NEAR_TOL_REL_GAP

is disabled the first n seconds. This parameter specifies the number n.
A negative value is identical to infinity i.e. the termination criterias
are never checked.

50 MSK_DPAR_MIO_TOL X
Absolute solution tolerance used in mixed-integer optimizer.
9 MSK_DPAR DATA_TOL_C_HUGE

An element in ¢ which is larger than the value of this parameter in
absolute terms is considered to be huge and generates an error.

99 MSK_DPAR_PRESOLVE_TOL_LIN _DEP
Controls when a constraint is determined to be linearly dependent.
35 MSK_DPAR_INTPNT_TOL_REL_STEP

Relative step size to the boundary for linear and quadratic optimiza-
tion problems.

10 MSK_DPAR DATA_TOL_CJ_LARGE
An element in ¢ which is larger than this value in absolute terms
causes a warning message to be printed.

26 MSK_DPAR_INTPNT_NL_TOL_REL_STEP
Relative step size to the boundary for general nonlinear optimization
problems.

36 MSK_DPAR_INTPNT_TOL_STEP_SIZE

If the step size falls below the value of this parameter, then the
interior-point optimizer assumes it is stalled. It it does not not make
any progress.

32 MSK_DPAR_INTPNT_TOL_PFEAS

continued on next page

D.12.

DOUBLE PARAMETERS

continued from previous page

15

47

54

42

31

20

34

33

Primal feasibility tolerance used for linear and quadratic optimization
problems.

MSK_DPAR BASTS REL_TOL_S

Maximum relative dual bound violation allowed in an optimal basic
solution.

MSK_DPAR_INTPNT_CO_TOL_INFEAS

Controls when the conic interior-point optimizer declares the model
primal or dual infeasible. A small number means the optimizer gets
more conservative about declaring the model infeasible.
MSK_DPAR_MIO_TOL_ABS_RELAX_INT

Absolute relaxation tolerance of the integer constraints. I.e. min(|z|—
||, [x] — |x|) is less than the tolerance then the integer restrictions
assumed to be satisfied.

MSK_DPAR_PRESOLVE_TOL_AIJ

Absolute zero tolerance employed for a;; in the presolve.

MSK_DPAR _MIO_MAX TIME APRX OPT

Number of seconds spent by the mixed integer optimizer before the
MSK_DPAR_MIO_TOL_REL_RELAX_INT is applied.
MSK_DPAR_INTPNT_TOL_PATH

Controls how close the interior-point optimizer follows the central
path. A large value of this parameter means the central is followed
very closely. On numerical unstable problems it might worthwhile to
increase this parameter.

MSK_DPAR_INTPNT_NL_MERIT BAL

Controls if the complementarity and infeasibility is converging to zero
at about equal rates.

MSK_DPAR BASTS TOL X

Maximum absolute primal bound violation allowed in an optimal ba-
sic solution.

MSK_DPAR_INTPNT_TOL_REL_GAP

Relative gap termination tolerance.

MSK_DPAR _DATA_TOL_BOUND_WRN

If a bound value is larger than this value in absolute size, then a
warning message is issued.

MSK_DPAR DATA_TOL_BOUND_INF

Any bound which in absolute value is greater than this parameter is
considered infinite.

MSK_DPAR_INTPNT_TOL_PSAFE

continued on next page

359

360 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page
Controls the initial primal starting point used by the interior-point
optimizer. If the interior-point optimizer converges slowly and/or
the constraint or variable bounds are very large, then it might be
worthwhile to increase this value.
17 MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
If MOSEK cannot compute a solution that has the prescribed accu-
racy, then it will multiply the termination tolerances with value of
this parameter. If the solution then satisfies the termination criteria,
then the solution is denoted near optimal, near feasible and so forth.
4 MSK_DPAR_CALLBACK_FREQ
Controls the time between calls to the progress call-back function.
Hence, if the value of this parameter is for example 10, then the call-
back is called approximately each 10 seconds. A negative value is
equivalent to infinity.
In general frequent call-backs may hurt the performance.
24 MSK_DPAR_INTPNT_NL_TOL_PFEAS
Primal feasibility tolerance used when a nonlinear model is solved.
21 MSK_DPAR_INTPNT_NL_TOL_DFEAS
Dual feasibility tolerance used when a nonlinear model is solved.
48 MSK_DPAR_MIO_TOL_REL_GAP
Relative optimality tolerance employed by the mixed integer opti-
mizer.
27 MSK_DPAR_INTPNT_TOL_DFEAS
Dual feasibility tolerance used for linear and quadratic optimization

problems.

43 MSK_DPAR_MIO_NEAR_TOL_ABS_GAP
Relaxed absolute optimality tolerance employed by the mixed
integer optimizer. This termination criteria is delayed. See
MSK_DPAR_MIO_DISABLE_TERM_TIME for details.

49 MSK_DPAR_MIO_TOL_REL_RELAX_INT

Relative relaxation tolerance of the integer constraints. I.e. min(|z|—
||, [x] — |z|) is less than the tolerance times |z| then the integer
restrictions assumed to be satisfied.

11 MSK_DPAR DATA_TOL_QIJ

Absolute zero tolerance for elements in () matrices.
25 MSK_DPAR_INTPNT_NL_TOL_REL_GAP

Relative gap termination tolerance for nonlinear problems.
18 MSK_DPAR_INTPNT_CO_TOL_PFEAS

Primal feasibility tolerance used by the conic interior-point optimizer.

D.15. INTEGER INFORMATION ITEMS.

D.13 Double values

Value Name
Description
le+30 MSK_INFINITY

Definition of infinity.

D.14 Feasibility repair types

Value Name
Description
0 MSK_FEASREPATIR _OPTIMIZE_NONE
Do not optimize the feasibility repair problem.
2 MSK_FEASREPATR _OPTIMIZE_COMBINED
Minimize with original objective subject to minimal weighted viola-
tion of bounds.
1 MSK_FEASREPAIR OPTIMIZE_PENALTY

Minimize weighted sum of violations.

D.15 Integer information items.

Value

Name
Description

10

62

45

71

20

MSK_IINF_MIO_CONSTRUCT_SOLUTION

If this item has the value 0, then MOSEK did not try to construct an
initial integer feasible solution. If the item has a positive value, then
MOSEK successfully constructed an initial integer feasible solution.
MSK_TINF_SIM PRIMAL_INF_ITER

The number of iterations taken with primal infeasibility.
MSK_IINF_RD_NUMCON

Number of constraints read.

MSK_TIINF_STO_NUM_A_CACHE_FLUSHES

Number of times the cache of A elements is flushed. A large number
implies that maxnumanz is too small as well as an inefficient usage of
MOSEK.

MSK_TIINF_MIO_NUMINT

continued on next page

361

362

APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

67

o1

73

25

68

12

39

28

66

50

64

47

46

43

Number of integer variables in the problem solved be the mixed inte-
ger optimizer.

MSK_IINF_SOL_INT_PROSTA

Problem status of the integer solution. Updated after each optimiza-
tion.

MSK_IINF_RD_PROTYPE

Problem type.

MSK_TIINF_STO_NUM_A_TRANSPOSES

Number of times the A matrix is transposed. A large number implies
that maxnumanz is too small or an inefficient usage of MOSEK. This
will occur in particular if the code alternate between accessing rows
and columns of A.

MSK_IINF_MIO_TOTAL_NUM_CLIQUE_CUTS

Number of clique cuts.

MSK_IINF_SOL_INT_SOLSTA

Solution status of the integer solution. Updated after each optimiza-
tion.

MSK_IINF_MIO_NUM_ACTIVE_NODES

Number of active nodes in the branch and bound tree.
MSK_IINF_INTPNT_SOLVE_DUAL

Non-zero if the interior-point optimizer is solving the dual problem.
MSK_IINF_MIO_TOTAL_NUM_RELAX

Number of relaxations solved during the optimization.
MSK_IINF_MIO_TOTAL_NUM_CUTS

Total number of cuts generated by the mixed integer optimizer.
MSK_IINF_CACHE SIZE L2

L2 cache size used.

MSK_IINF_SOL_BAS_SOLSTA

Solution status of the basic solution. Updated after each optimiza-
tion.

MSK_IINF_RD_NUMVAR

Number of variables read.

MSK_IINF_SIM_SOLVE_DUAL

Is non-zero if dual problem is solved.

MSK_IINF_RD_NUMINTVAR

Number of integer constrained variables read.

MSK_IINF_RD_NUMCONE

Number of conic constraints read.

MSK_IINF_OPTIMIZE RESPONSE

continued on next page

D.15. INTEGER INFORMATION ITEMS. 363

continued from previous page

52

69

37

11

36

65

54

70

19

42

58

35

63

33

44

The reponse code returned by optimize.
MSK_IINF_SIM DUAL DEG_ITER

The number of dual degenerate iterations.
MSK_IINF_SOL_ITR_PROSTA

Problem status of the interior-point solution. Updated after each
optimization.

MSK_IINF_MIO_TOTAL_NUM_0OBJ_CUTS

Number of obj cuts.

MSK_IINF_MIO_INITTAL_SOLUTION

Is non-zero if an initial integer solution is specified.
MSK_IINF_MIO_TOTAL_NUM_LIFT_CUTS

Number of lift cuts.

MSK_IINF_INTPNT_NUM_THREADS

Number of threads that the interior-point optimizer is using.
MSK_IINF_SOL_BAS_PROSTA

Problem status of the basic solution. Updated after each optimiza-
tion.

MSK_IINF_SIM DUAL HOTSTART_LU

If 1 then a valid basis factorization of full rank was located and used
by the dual simplex algorithm.

MSK_IINF_SOL_ITR_SOLSTA

Solution status of the interior-point solution. Updated after each
optimization.

MSK_IINF_MIO_NUMCON

Number of constraints in the problem solved be the mixed integer
optimizer.

MSK_IINF_OPT_NUMVAR

Number of variables in the problem solved when the optimizer is
called

MSK_TIINF_SIM _NUMVAR

Number of variables in the problem solved by the simplex optimizer.
MSK_IINF_MIO_TOTAL_NUM_LATTICE_CUTS

Number of lattice cuts.

MSK_IINF_SIM PRIMAL_ITER

Number of primal simplex iterations during the last optimization.
MSK_IINF_MIO_TOTAL_NUM_GUB_COVER_CUTS

Number of GUB cover cuts.

MSK_IINF_RD_NUMANZ

Number of non-zeros in A that is read.

continued on next page

364

APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

5

24

16

60

27

13

40

32

29

48

26

72

17

MSK_IINF_INTPNT_FACTOR_NUM_NZ

Number of non-zeros in factorization.
MSK_IINF_MIO_TOTAL_NUM_CARDGUB_CUTS

Number of cardgub cuts.

MSK_IINF_MIO_NUM_INTPNT_ITER

Number of interior-point iterations performed by the mixed-integer
optimizer.

MSK_IINF_SIM PRIMAL _HOTSTART

If 1 then the primal simplex algorithm is solving from an advance
basis.

MSK_IINF_MIO_TOTAL_NUM_CONTRA_CUTS

Number of contra cuts.

MSK_IINF BI_ITER

Number of simplex pivots performed since invoking the basis identi-
fication procedure.

MSK_IINF_MIO_NUM_BRANCH

Number of branches performed during the optimization.
MSK_IINF_CONCURRENT_FASTEST _OPTIMIZER

The type of the optimizer that finished first in a concurrent optimiza-
tion.

MSK_IINF_MIO_USER_OBJ_CUT

If it is non-zero, then the objective cut is used.
MSK_TIINF_MIO_TOTAL_NUM_GOMORY_CUTS

Number of Gomory cuts.

MSK_IINF_CACHE_SIZE_L1

L1 cache size used.

MSK_TINF_MIO_TOTAL_NUM_DISAGG_CUTS

Number of diasagg cuts.

MSK_IINF_RD_NUMQ

Number of nonempty Q matrices read.
MSK_IINF_MIO_TOTAL_NUM_COEF_REDC_CUTS

Number of coef. redc. cuts.

MSK_IINF_INTPNT_FACTOR_NUM_OFFCOL

Number of columns in the constraint matrix (or Jacobian) that has
an offending structure.

MSK_TIINF_STO_NUM_A _REALLOC

Number of times the storage for storing A has been changed. A large
value may indicates that memory fragmentation may occur.
MSK_IINF_MIO_NUM _RELAX

continued on next page

D.15. INTEGER INFORMATION ITEMS. 365

continued from previous page

38

23

49

99

31

53

18

56

95

30

21

15

61

14

34

Number of relaxations solved during the optimization.
MSK_IINF_MIO_TOTAL_NUM_PLAN_LOC_CUTS

Number of loc cuts.

MSK_IINF_MIO_TOTAL_NUM_BRANCH

Number of branches performed during the optimization.
MSK_IINF_RD_NUMQNZ

Number of Q non-zeros.

MSK_TIINF_SIM PRIMAL DEG_ITER

The number of primal degenerate iterations.
MSK_IINF_MIO_TOTAL_NUM_GCD_CUTS

Number of ged cuts.

MSK_IINF_SIM DUAL HOTSTART

If 1 then the dual simplex algorithm is solving from an advance basis.
MSK_TIINF_MIO_NUM_SIMPLEX ITER

Number of simplex iterations performed by the mixed-integer opti-
mizer.

MSK_IINF_SIM DUAL_ITER

Number of dual simplex iterations during the last optimization.
MSK_IINF_SIM DUAL_INF_ITER

The number of iterations taken with dual infeasibility.
MSK_IINF_MIO_TOTAL_NUM_FLOW_COVER_CUTS

Number of flow cover cuts.

MSK_TIINF_MIO_NUMVAR

Number of variables in the problem solved be the mixed integer op-
timizer.

MSK_IINF_MIO_NUM_INT_SOLUTIONS

Number of integer feasible solutions that has been found.
MSK_IINF_SIM PRIMAL HOTSTART_LU

If 1 then a valid basis factorization of full rank was located and used
by the primal simplex algorithm.

MSK_IINF_MIO_NUM_CUTS

Number of cuts generated by the mixed integer optimizer.
MSK_IINF_CPU_TYPE

The type of cpu detected.

MSK_IINF_INTPNT_ITER

Number of interior-point iterations since invoking the interior-point
optimizer.

MSK_IINF_MIO_TOTAL_NUM_KNAPSUR_COVER_CUTS

Number of knapsack cover cuts.

continued on next page

366 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

41 MSK_IINF_OPT_NUMCON
Number of constraints in the problem solved when the optimizer is
called.

22 MSK_IINF_MIO_TOTAL_NUM_BASIS_CUTS
Number of basis cuts.

57 MSK_IINF_SIM _NUMCON

Number of constraints in the problem solved by the simplex optimizer.

D.16 Information item types

Value Name

Description
0 MSK_INF_DOU_TYPE

Is a double information type.
1 MSK_INF_INT_TYPE

Is an integer.

D.17 Input/output modes

Value Name

Description
0 MSK_IOMODE_READ
The file is read-only.
1 MSK_IOMODE_WRITE

The file is write-only. If the file exists then it is truncated when it is
opened. Otherwise it is created when it is opened.

2 MSK_TIOMODE_READWRITE
The file is to read and written.

D.18 Integer parameters

Value Name
Description
157 MSK_IPAR_SIM _STABILITY PRIORITY
Controls how high priority the numerical stability should be given.

continued on next page

D.18. INTEGER PARAMETERS

continued from previous page

115

185

21

87

109

117

112

64

101

167

74

78

169

130

MSK_IPAR_READ_ADD_CONE

Additional number of conic constraints that is made room for in the
problem.

MSK_TPAR WRITE MPS_STRICT

Controls whether the written MPS file satisfies the MPS format
strictly or not.

MSK_TPAR_INFEAS REPORT_AUTO

Controls whether an infeasibility report is automatically produced
after the optimization if the problem is primal or dual infeasible.
MSK_IPAR_MIO_NODE_OPTIMIZER

Controls which optimizer is employed at the non-root nodes in the
mixed integer optimizer.

MSK_IPAR_PRESOLVE_LEVEL

Currently not used.

MSK_TPAR READ_ADD_VAR

Additional number of variables that is made room for in the problem.
MSK_IPAR_PRESOLVE_USE

Controls whether the presolve is applied to a problem before it is
optimized.

MSK_TIPAR_LOG_SENSITIVITY_OPT

Controls the amount of logging from the optimizers employed during
the sensitivity analysis. 0 means no logging information is produced.
MSK_TPAR _OPF _WRITE_SOL_ITG

If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an integer solution
is defined, write the integer solution in OPF files.
MSK_TIPAR WRITE BAS_HEAD

Controls whether the header section is written to the basic solution
file.

MSK_TPAR _MIO_BRANCH_PRIORITIES_USE

Controls whether branching priorities are used by the mixed integer
optimizer.

MSK_IPAR_MIO_CUT_LEVEL_TREE

Controls the cut level employed by the mixed integer optimizer at
the tree. See MSK_IPAR MIO CUT_LEVEL ROOT for an explanation of
the parameter values.

MSK_TPAR WRITE DATA_COMPRESSED

Controls whether the data file is compressed while it is written. 0
means no compression while higher values mean more compression.
MSK_TPAR READ _MPS_RELAX

continued on next page

367

368 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page
If this option is turned on, then the relaxation of the MIP will be
read.

98 MSK_TIPAR_OPF_WRITE_PARAMETERS
Write a parameter section in an OPF file.

119 MSK_IPAR_READ_CON
Expected maximum number of constraints to be read. The option is
only used by fast MPS and LP file readers.

177 MSK_TPAR WRITE_INT_VARIABLES
Controls whether the variables section is written to the integer solu-
tion file.

113 MSK_IPAR_READ_ADD_ANZ
Additional number of non-zeros in A that is made room for in the

problem.

32 MSK_TPAR_INTPNT_ORDER_METHOD
Controls the ordering strategy used by the interior-point optimizer
when factorizing the Newton equation system.

102 MSK_IPAR_OPF_WRITE_SOL_ITR
If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and an interior solution
is defined, write the interior solution in OPF files.

63 MSK_TPAR_LOG_SENSITIVITY
Controls the amount of logging during the sensitivity analysis. O0:
Means no logging information is produced. 1: Timing information is
printed. 2: Sensitivity results are printed.

133 MSK_TIPAR_READ_QNZ
Expected maximum number of () non-zeros to be read. The option
is used only by MPS and LP file readers.

93 MSK_TPAR_LOG_INFEAS_ANA
Controls amount of output printed by the infeasibility analyzer pro-
cedures. A higher level implies that more information is logged.

152 MSK_IPAR_SIM_PRIMAL_SELECTION
Controls the choice of the incoming variable, known as the selection
strategy, in the primal simplex optimizer.

175 MSK_TIPAR WRITE_INT _CONSTRAINTS
Controls whether the constraint section is written to the integer so-
lution file.

180 MSK_TPAR WRITE_LP_STRICT_FORMAT
Controls whether LP output files satisfy the LP format strictly.

138 MSK_TPAR _SENSITIVITY TYPE
Controls which type of sensitivity analysis is to be performed.

continued on next page

D.18. INTEGER PARAMETERS

continued from previous page

141

56

100

91

172

107

93

82

173

165

46

MSK_TPAR_SIM DUAL RESTRICT_SELECTION

The dual simplex optimizer can use a so-called restricted selec-
tion/pricing strategy to chooses the outgoing variable. Hence, if
restricted selection is applied, then the dual simplex optimizer first
choose a subset of all the potential outgoing variables. Next, for some
time it will choose the outgoing variable only among the subset. From
time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be
more aggressive in its restriction strategy, i.e. a value of 0 implies
that the restriction strategy is not applied at all.
MSK_IPAR_LOG_MIO_FREQ

Controls how frequent the mixed integer optimizer prints the log line.
It will print line every time MSK_IPAR_LOG_MIO_FREQ relaxations have
been solved.

MSK_TPAR _OPF_WRITE_SOL_BAS

If MSK_IPAR_OPF_WRITE_SOLUTIONS is MSK_ON and a basic solution is
defined, include the basic solution in OPF files.

MSK_TPAR _MIO_ROOT_OPTIMIZER

Controls which optimizer is employed at the root node in the mixed
integer optimizer.

MSK_IPAR _WRITE_FREE_CON

Controls whether the free constraints are written to the data file.
MSK_IPAR_PRESOLVE _ELIM FILL

Controls the maximum amount of fill-in that can be created dur-
ing the elimination phase of the presolve. This parameter times
(numcon+numvar) denotes the amount of fill-in.

MSK_TPAR _NONCONVEX_MAX_ITERATIONS

Maximum number of iterations that can be used by the nonconvex
optimizer.

MSK_TPAR MIO_LOCAL_BRANCH_NUMBER

MSK_TPAR WRITE GENERIC_NAMES

Controls whether the generic names or user-defined names are used
in the data file.

MSK_IPAR_WARNING_LEVEL

Warning level.

MSK_TIPAR_LOG_BI_FREQ

continued on next page

369

370 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

Controls how frequent the optimizer outputs information about the
basis identification and how frequent the user-defined call-back func-
tion is called.
61 MSK_IPAR _LOG_PRESOLVE
Controls amount of output printed by the presolve procedure. A
higher level implies that more information is logged.
8 MSK_TIPAR_CHECK_CTRL_C
Specifies whether MOSEK should check for <ctrl>+<c> key presses.
In case it has, then control is returned to the user program.
In case a user-defined ctrl-¢ function is defined then that is used to
check for ctrl-c. Otherwise the system procedure signal is used.
116 MSK_TPAR_READ_ADD_QNZ
Additional number of non-zeros in the () matrices that is made room
for in the problem.
187 MSK_TPAR WRITE_SOL_CONSTRAINTS
Controls whether the constraint section is written to the solution file.
31 MSK_TPAR_INTPNT_OFF_COL_TRH
Controls how many offending columns are detected in the Jacobian
of the constraint matrix.
1 means aggressive detection, higher values mean less aggressive de-
tection.
0 means no detection.
118 MSK_IPAR_READ_ANZ
Expected maximum number of A non-zeros to be read. The option
is used only by fast MPS and LP file readers.
86 MSK_TPAR _MIO_MODE
Controls whether the optimizer includes the integer restrictions when
solving a (mixed) integer optimization problem.
124 MSK_TPAR_READ_LP_DROP_NEW_VARS_IN_BQOU
If this option is turned on, MOSEK will drop variables that are de-
fined for the first time in the bounds section.
65 MSK_TPAR _LOG_SIM
Controls amount of output printed by the simplex optimizer. A higher
level implies that more information is logged.
58 MSK_TPAR_LOG_OPTIMIZER
Controls the amount of general optimizer information that is logged.
164 MSK_TPAR_SOLUTION_CALLBACK
Indicates whether solution call-backs will be performed during the
optimization.

continued on next page

D.18. INTEGER PARAMETERS

continued from previous page

66

o7

17

179

49

125

184

131

59

7

MSK_TPAR _LOG_SIM_FREQ

Controls how frequent the simplex optimizer outputs information
about the optimization and how frequent the user-defined call-back
function is called.

MSK_TPAR_LOG_NONCONVEX

Controls amount of output printed by the nonconvex optimizer.
MSK_TPAR_FEASREPAIR_OPTIMIZE

Controls which type of feasibility analysis is to be performed.
MSK_TPAR WRITE_LP_QUOTED_NAMES

If this option is turned on, then MOSEK will quote invalid LP names
when writing an LP file.

MSK_TPAR _LOG_FACTOR

If turned on, then the factor log lines are added to the log.
MSK_IPAR_READ_LP_QUOTED_NAMES

If a name is in quotes when reading an LP file, the quotes will be
removed.

MSK_TPAR WRITE_MPS_QUOTED_NAMES

If a name contains spaces (blanks) when writing an MPS file, then
the quotes will be removed.

MSK_TPAR_READ MPS _WIDTH

Controls the maximal number of chars allowed in one line of the MPS
file.

MSK_TPAR_LOG_ORDER

If turned on, then factor lines are added to the log.

MSK_TPAR MIO_CUT_LEVEL _ROOT

continued on next page

371

372 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

Controls the cut level employed by the mixed integer optimizer at the
root node. A negative value means a default value determined by the
mixed integer optimizer is used. By adding the appropriate values
from the following table the employed cut types can be controlled.

GUB cover +2
Flow cover +4
Lifting +8
Plant location +16
Disaggregation +32
Knapsack cover +64
Lattice +128
Gomory +256
Coefficient reduction +512
GCD +1024
Obj. integrality +2048

132 MSK_TPAR _READ_Q_MODE
Controls how the Q matrices are read from the MPS file.

88 MSK_TPAR _MIO_NODE_SELECTION
Controls the node selection strategy employed by the mixed integer
optimizer.

163 MSK_TPAR_SOL_READ WIDTH
Controls the maximal acceptable width of line in the solutions when
read by MOSEK.

72 MSK_TPAR _MAXNUMANZ DOUBLE_TRH
Whenever MOSEK runs out of storage for the A matrix, it will dou-
ble the value for maxnumanz until maxnumnza reaches the value of
this parameter. When this threshold is reached it will use a slower
increase.

29 MSK_TPAR_INTPNT _MAX NUM_REFINEMENT_STEPS
Maximum number of steps to be used by the iterative refinement
of the search direction. A negative value implies that the optimizer
Chooses the maximum number of iterative refinement steps.

114 MSK_TPAR_READ_ADD_CON
Additional number of constraints that is made room for in the prob-
lem.

47 MSK_TPAR_LOG_CONCURRENT
Controls amount of output printed by the concurrent optimizer.

67 MSK_TPAR_LOG_SIM_MINOR
Currently not in use.

continued on next page

D.18. INTEGER PARAMETERS

continued from previous page

144

27

15

45

28

178

162

40

43

174

10

153

142

MSK_TPAR_STM MAX _TITERATIONS

Maximum number of iterations that can be used by a simplex opti-
mizer.

MSK_TPAR_INTPNT_MAX_ITERATIONS

Controls the maximum number of iterations allowed in the interior-
point optimizer.

MSK_TPAR_CPU_TYPE

Specifies the CPU type. By default MOSEK tries to auto detect the
CPU type. Therefore, we recommend to change this parameter only
if the auto detection does not work properly.

MSK_IPAR_LOG_BI

Controls the amount of output printed by the basis identification
procedure. A higher level implies that more information is logged.
MSK_TPAR_INTPNT_MAX_NUM_COR

Controls the maximum number of correctors allowed by the multiple
corrector procedure. A negative value means that MOSEK is making
the choice.

MSK_TPAR WRITE LP_LINE WIDTH

Maximum width of line in an LP file written by MOSEK.
MSK_TPAR_SOL_READ NAME WIDTH

When a solution is read by MOSEK and some constraint, variable or
cone names contain blanks, then a maximum name width much be
specified. A negative value implies that no name contain blanks.
MSK_IPAR_LICENSE_DEBUG

This option is used to turn on debugging of the incense manager.
MSK_TPAR LICENSE WAIT

If all licenses are in use MOSEK returns with an error code. How-
ever, by turning on this parameter MOSEK will wait for an available
license.

MSK_TPAR WRITE GENERIC NAMES_T0

Index origin used in generic names.
MSK_TPAR_CONCURRENT_NUM_OPTIMIZERS

The maximum number of simultaneous optimizations that will be
started by the concurrent optimizer.

MSK_TPAR_SIM REFACTOR_FREQ

Controls how frequent the basis is refactorized. The value 0 means
that the optimizer determines the best point of refactorization.

It is strongly recommended NOT to change this parameter.
MSK_TPAR_SIM DUAL_SELECTION

continued on next page

373

374 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

Controls the choice of the incoming variable, known as the selection
strategy, in the dual simplex optimizer.

156 MSK_TPAR_SIM_SOLVE_FORM
Controls whether the primal or the dual problem is solved by the
primal- /dual- simplex optimizer.

7 MSK_TPAR_CHECK_CONVEXITY
Specify the level of convexity check on quadratic problems

70 MSK_TPAR LP WRITE_IGNORE_INCOMPATIBLE_ITEMS
Controls the result of writing a problem containing incompatible items
to an LP file.

134 MSK_IPAR_READ_TASK_IGNORE_PARAM
Controls whether MOSEK should ignore the parameter setting de-
fined in the task file and use the default parameter setting instead.
9 MSK_TPAR_CHECK_TASK _DATA
If this feature is turned on, then the task data is checked for bad
values i.e. NaNs. before an optimization is performed.
54 MSK_TPAR LOG_INTPNT
Controls amount of output printed printed by the interior-point op-
timizer. A higher level implies that more information is logged.
99 MSK_TPAR_LOG_MIO
Controls the log level for the mixed integer optimizer. A higher level
implies that more information is logged.
143 MSK_TPAR_STM HOTSTART
Controls the type of hot-start that the simplex optimizer perform.
60 MSK_TPAR _LOG_PARAM
Controls the amount of information printed out about parameter
changes.
170 MSK_TPAR WRITE DATA FORMAT
Controls the file format when writing task data to a file.

73 MSK_TPAR _MIO_BRANCH DIR
Controls whether the mixed integer optimizer is branching up or down
by default.

25 MSK_TPAR_INTPNT_FACTOR_DEBUG_LVL
Controls factorization debug level.

18 MSK_TPAR _FLUSH_STREAM_FREQ

Controls how frequent the message and log streams are flushed. A
value of 0 means that it is never flushed. Otherwise a larger value
results in less frequent flushes.

continued on next page

D.18. INTEGER PARAMETERS 375

continued from previous page

161 MSK_TPAR_SOL_QUOTED_NAMES
If this options is turned on, then MOSEK will quote names that
contains blanks while writing the solution file. Moreover when reading
leading and trailing quotes will be stripped of.

41 MSK_TPAR_LICENSE_PAUSE_TIME
If MSK_TPAR_LICENSE WAIT=MSK_ON and no license is available, then
MOSEK sleeps a number of micro seconds between each check of
whether a license as become free.

89 MSK_TPAR _MIO_PRESOLVE_AGGREGATE
Controls whether the presolve used by the mixed integer optimizer
tries to aggregate the constraints.

190 MSK_TPAR WRITE_TASK_INC_SOL
Controls whether the solutions are stored in the task file too.

38 MSK_TIPAR_LICENSE_CACHE_TIME
Controls the amount of time a license is cached in the MOSEK en-
vironment for reuse. Checking out a license from the license server
has a small overhead. Therefore, if a large number of optimizations is
performed within a small amount of time, it is efficient to cache the
license in the MOSEK environment for later use. This way a number
of license check outs from the license server is avoided.
If a license has not been used in the given amount of time,MOSEK
will automatically check in the license. To disable license caching set
the value to 0.

4 MSK_TPAR BI _MAX _ITERATIONS
Controls the maximum number of simplex iterations allowed to opti-
mize a basis after the basis identification.

103 MSK_TPAR_OPF_WRITE_SOLUTIONS
Enable inclusion of solutions in the OPF files.

147 MSK_TPAR_STM _NETWORK_DETECT_HOTSTART
This parameter controls has large the network component in “rela-
tive” terms has to be before it is exploited in a simplex hot-start. The
network component should be equal or larger than

max (MSK_IPAR_SIM_NETWORK_DETECT ,MSK_IPAR_SIM_NETWORK_DETECT_HOTSTART)

before it is exploited. If this value is larger than 100 the network flow
component is never detected or exploited.
110 MSK_TIPAR_PRESOLVE_LINDEP_USE

continued on next page

376 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page
Controls whether the linear constraints are checked for linear depen-
dencies.

106 MSK_TPAR_PARAM READ_IGN_ERROR
If turned on, then errors in paramter settings is ignored.

96 MSK_TPAR_OPF_WRITE_HEADER
Write a text header with date and MOSEK version in an OPF file.
76 MSK_TIPAR _MIO_CONT_SOL
Controls the meaning of the interior-point and basic solutions in MIP
problems.
94 MSK_IPAR_OBJECTIVE_SENSE

If the objective sense for the task is undefined, then the value of this
parameter is used as the default objective sense.

176 MSK_IPAR WRITE_INT_HEAD
Controls whether the header section is written to the integer solution

file.
36 MSK_TIPAR_INTPNT_STARTING_POINT

Starting point used by the interior-point optimizer.
44 MSK_IPAR_LOG

Controls the amount of log information. The value 0 implies that
all log information is suppressed. A higher level implies that more
information is logged.
Please note that if a task is employed to solve a sequence of optimiza-
tion problems the value of this parameter is reduced by the value
of MSK_IPAR_LOG_CUT_SECOND_OPT for the second and any subsequent
optimizations.

14 MSK_TPAR_CONCURRENT_PRIORITY PRIMAL_SIMPLEX
Priority of the primal simplex algorithm when selecting solvers for
concurrent optimization.

128 MSK_TIPAR_READ _MPS_0BJ_SENSE
If turned on, the MPS reader uses the objective sense section. Oth-
erwise the MPS reader ignores it.

68 MSK_TPAR _LOG_SIM_NETWORK_FREQ
Controls how frequent the network simplex optimizer outputs in-
formation about the optimization and how frequent the user-
defined call-back function is called. The network optimizer will
use a logging frequency equal to MSK_IPAR LOG_SIM FREQ times
MSK_IPAR_LOG_SIM_NETWORK_FREQ.

24 MSK_TPAR_INTPNT DIFF_STEP

continued on next page

D.18. INTEGER PARAMETERS

continued from previous page

155

181

136

160

50

35

95

186

191

33

192

Controls whether different step sizes are allowed in the primal and
dual space.

MSK_TPAR_STIM_SCALING

Controls how the problem is scaled before a simplex optimizer is used.
MSK_TPAR WRITE_LP_TERMS_PER_LINE

Maximum number of terms on a single line in an LP file written by
MOSEK. 0 means unlimited.

MSK_TPAR_SENSITIVITY_ALL

Not applicable.

MSK_IPAR_SOL_FILTER_KEEP_RANGED

If turned on, then ranged constraints and variables are written to the
solution file independent of the filter setting.

MSK_TPAR BI_TIGNORE_MAX_ITER

If the parameter MSK_IPAR INTPNT BASIS has the value
MSK BI NO_ERROR and the interior-point optimizer has terminated
due to maximum number of iterations, then basis identification is
performed if this parameter has the value MSK_ON.

MSK_TPAR _LOG_FEASREPAIR

Controls the amount of output printed when performing feasibility
repair.

MSK_IPAR_INTPNT_SOLVE_FORM

Controls whether the primal or the dual problem is solved.
MSK_IPAR_OPF_MAX TERMS PER_LINE

The maximum number of terms (linear and quadratic) per line when
an OPF file is written.

MSK_TPAR WRITE PRECISION

Controls the precision with which double numbers are printed in the
MPS data file. In general it is not worthwhile to use a value higher
than 15.

MSK_TPAR _WRITE_XML_MODE

Controls if linear coefficients should be written by row or column
when writing in the XML file format.

MSK_TPAR_INTPNT REGULARIZATION_USE

Controls whether regularization is allowed.
MSK_TPAR BI _CLEAN OPTIMIZER

Controls which simplex optimizer is used in the clean-up phase.
MSK_TPAR _MIO_PRESOLVE_PROBING

continued on next page

377

378 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page
Controls whether the mixed integer presolve performs probing. Prob-
ing can be very time consuming.

37 MSK_TPAR_LICENSE_ALLOW_OVERUSE
Controls if license overuse is allowed when caching licenses

20 MSK_TPAR_INFEAS_PREFER_PRIMAL
If both certificates of primal and dual infeasibility are supplied then
only the primal is used when this option is turned on.

168 MSK_TPAR WRITE BAS _VARIABLES
Controls whether the variables section is written to the basic solution
file.

69 MSK_TPAR_LOG_STORAGE
When turned on, MOSEK prints messages regarding the storage usage
and allocation.

90 MSK_IPAR_MIO_PRESOLVE_USE
Controls whether presolve is performed by the mixed integer opti-
mizer.

111 MSK_TPAR _PRESOLVE_LINDEP WORK_LIM
Is used to limit the amount of work that can done to locate linear
dependencies. In general the higher value this parameter is given the
less work can be used. However, a value of 0 means no limit on the
amount work that can be used.

23 MSK_TIPAR_INTPNT_BASIS
Controls whether the interior-point optimizer also computes an opti-
mal basis.

48 MSK_TPAR _LOG_CUT_SECOND_OPT

If a task is employed to solve a sequence of optimization problems,
then the value of the log levels is reduced by the value of this param-
eter. E.g MSK_IPAR_LOG and MSK_IPAR_LOG_SIM are reduced by the
value of this parameter for the second and any subsequent optimiza-
tions.

127 MSK_TPAR_READ MPS _KEEP_INT
Controls whether MOSEK should keep the integer restrictions on the
variables while reading the MPS file.

85 MSK_TPAR MIO_MAX_NUM_SOLUTIONS
The mixed integer optimizer can be terminated after a certain number
of different feasible solutions has been located. If this parameter has
the value n and n is strictly positive, then the mixed integer optimizer
will be terminated when n feasible solutions have been located.

39 MSK_TPAR LICENSE_CHECK_TIME

continued on next page

D.18. INTEGER PARAMETERS

continued from previous page

189

137

182

145

16

12

123

o1

13

149

171

139

The parameter specifies the number of seconds between the checks
of all the active licenses in the MOSEK environment license cache.
These checks are performed to determine if the licenses should be
returned to the server.

MSK_TPAR WRITE_SOL_VARIABLES

Controls whether the variables section is written to the solution file.
MSK_IPAR_SENSITIVITY OPTIMIZER

Controls which optimizer is used for optimal partition sensitivity anal-
ysis.

MSK_IPAR_WRITE_MPS_INT

Controls if marker records are written to the MPS file to indicate
whether variables are integer restricted.
MSK_TPAR_SIM MAX NUM_SETBACKS

Controls how many setbacks are allowed within a simplex optimizer.
A setback is an event where the optimizer moves in the wrong direc-
tion. This is impossible in theory but may happen due to numerical
problems.

MSK_TPAR DATA_CHECK

If this option is turned on, then extensive data checking is enabled.
It will slow down MOSEK but on the other hand help locating bugs.
MSK_IPAR_CONCURRENT_PRIORITY_FREE_SIMPLEX

Priority of the free simplex optimizer when selecting solvers for con-
current optimization.

MSK_TIPAR READ KEEP FREE_CON

Controls whether the free constraints are included in the problem.
MSK_TPAR LOG_FILE

If turned on, then some log info is printed when a file is written or
read.

MSK_TPAR_CONCURRENT _PRIORITY_INTPNT

Priority of the interior-point algorithm when selecting solvers for con-
current optimization.

MSK_IPAR_SIM_NON_SINGULAR

Controls if the simplex optimizer ensures a non-singular basis, if pos-
sible.

MSK_TPAR WRITE DATA PARAM

If this option is turned on the parameter settings are written to the
data file as parameters.

MSK_TPAR_SIM DEGEN

Controls how aggressive degeneration is approached.

continued on next page

379

380 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page
97 MSK_TPAR_OPF _WRITE_HINTS
Write a hint section with problem dimensions in the beginning of an
OPF file.
108 MSK_TPAR _PRESOLVE _ELIMINATOR_USE
Controls whether free or implied free variables are eliminated from
the problem.
0 MSK_TPAR_ALLOC_ADD_QNZ
Additional number of () non-zeros that are allocated space for when
numanz exceeds maxnumgnz during addition of new @) entries.
126 MSK_IPAR_READ _MPS_FORMAT
Controls how strictly the MPS file reader interprets the MPS format.
105 MSK_TPAR_PARAM READ_CASE_NAME
If turned on, then names in the parameter file are case sensitive.
129 MSK_TPAR_READ _MPS_QUOTED_NAMES
If a name is in quotes when reading an MPS file, then the quotes will
be removed.
11 MSK_TPAR_CONCURRENT_PRIORITY DUAL_SIMPLEX
Priority of the dual simplex algorithm when selecting solvers for con-
current optimization.
183 MSK_TIPAR _WRITE_MPS_0OBJ_SENSE
If turned off, the objective sense section is not written to the MPS

file.

30 MSK_TPAR_INTPNT_NUM_THREADS
Controls the number of threads employed by the interior-point opti-
mizer.

83 MSK_IPAR_MIO_MAX_NUM_BRANCHES

Maximum number of branches allowed during the branch and bound
search. A negative value means infinite.

150 MSK_TPAR_SIM PRIMAL_CRASH
Controls whether crashing is performed in the primal simplex opti-
mizer.
In general, if a basis consists of more than (100-this parameter
value)% fixed variables, then a crash will be performed.

75 MSK_TPAR _MIO_CONSTRUCT_SOL
If set to MSK_ON and all integer variables have been given a value
for which a feasible MIP solution exists, then MOSEK generates an
initial solution to the MIP by fixing all integer values and solving for
the continuous variables.

92 MSK_TIPAR_MIO_STRONG_BRANCH

continued on next page

D.18. INTEGER PARAMETERS

continued from previous page

151

120

104

71

42

188

166

79

19

146

The value specifies the depth from the root in which strong branching
is used. A negative value means that the optimizer chooses a default
value automatically.

MSK_TPAR_SIM PRIMAL RESTRICT_SELECTION

The primal simplex optimizer can use a so-called restricted selec-
tion/pricing strategy to chooses the outgoing variable. Hence, if re-
stricted selection is applied, then the primal simplex optimizer first
choose a subset of all the potential incoming variables. Next, for some
time it will choose the incoming variable only among the subset. From
time to time the subset is redefined.

A larger value of this parameter implies that the optimizer will be
more aggressive in its restriction strategy, i.e. a value of 0 implies
that the restriction strategy is not applied at all.

MSK_TPAR _READ_CONE

Expected maximum number of conic constraints to be read. The
option is used only by fast MPS and LP file readers.

MSK_TPAR _OPTIMIZER

Controls which optimizer is used to optimize the task.
MSK_TPAR MAX NUM_WARNINGS

Waning level. A higher value results in more warnings.

MSK_TPAR _LICENSE_SUPPRESS_EXPIRE_WRNS

Controls whether license features expire warnings are suppressed.
MSK_TPAR WRITE_SOL_HEAD

Controls whether the header section is written to the solution file.
MSK_TPAR WRITE BAS_CONSTRAINTS

Controls whether the constraint section is written to the basic solution
file.

MSK_TPAR MIO_FEASPUMP_LEVEL

Feasibility pump is a heuristic designed to compute an initial feasible
solution. A value of 0 implies that the feasibility pump heuristic
is not used. A value of -1 implies that the mixed integer optimizer
decides how the feasibility pump heuristic is used. A larger value than
1 implies that the feasibility pump is employed more aggressively.
Normally a value beyond 3 is not worthwhile.

MSK_TPAR_INFEAS _GENERIC_NAMES

Controls whether generic names are used when an infeasible subprob-
lem is created.

MSK_TPAR_SIM NETWORK_DETECT

continued on next page

381

382 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

The simplex optimizer is capable of exploiting a network flow com-
ponent in a problem. However it is only worthwhile to exploit the
network flow component if it is sufficiently large. This parameter
controls how large the network component has to be in “relative”
terms before it is exploited. For instance a value of 20 means at least
20% of the model should be a network before it is exploited. If this
value is larger than 100 the network flow component is never detected
or exploited.

62 MSK_TPAR_LOG_RESPONSE
Controls amount of output printed when response codes are reported.
A higher level implies that more information is logged.

22 MSK_TPAR_INFEAS REPORT_LEVEL
Controls the amount of information presented in an infeasibility re-
port. Higher values imply more information.

5 MSK_TPAR_CACHE SIZE L1
Specifies the size of the cache of the computer. This parameter is
potentially very important for the efficiency on computers if MOSEK
cannot determine the cache size automatically. If the cache size is
negative, then MOSEK tries to determine the value automatically.

6 MSK_TPAR_CACHE_SIZE_L2
Specifies the size of the cache of the computer. This parameter is
potentially very important for the efficiency on computers where MO-
SEK cannot determine the cache size automatically. If the cache size
is negative, then MOSEK tries to determine the value automatically.

158 MSK_TPAR_SIM SWITCH_OPTIMIZER
The simplex optimizer sometimes chooses to solve the dual problem
instead of the primal problem. This implies that if you have chosen
to use the dual simplex optimizer and the problem is dualized, then
it actually makes sense to use the primal simplex optimizer instead.
If this parameter is on and the problem is dualized and furthermore
the simplex optimizer is chosen to be the primal (dual) one, then it
is switched to the dual (primal).

121 MSK_IPAR_READ DATA_COMPRESSED
If this option is turned on,it is assumed that the data file is com-
pressed.

3 MSK_TPAR BI_IGNORE_NUM_ERROR

continued on next page

D.18. INTEGER PARAMETERS

continued from previous page

99

122

140

148

135

52

154

26

84

159

80

If the parameter MSK IPAR INTPNT BASIS has the value
MSK BI NO_ERROR and the interior-point optimizer has termi-
nated due to a numerical problem, then basis identification is
performed if this parameter has the value MSK_ON.
MSK_TPAR_OPF_WRITE_PROBLEM

Write objective, constraints, bounds etc. to an OPF file.
MSK_TPAR_READ DATA FORMAT

Format of the data file to be read.

MSK_TPAR_STM DUAL_CRASH

Controls whether crashing is performed in the dual simplex optimizer.
In general if a basis consists of more than (100-this parameter value)%
fixed variables, then a crash will be performed.

MSK_TIPAR_SIM NETWORK_DETECT_METHOD

Controls which type of detection method the network extraction
should use.

MSK_TPAR_READ_VAR

Expected maximum number of variable to be read. The option is
used only by MPS and LP file readers.

MSK_TPAR_LOG_HEAD

If turned on, then a header line is added to the log.

MSK_TPAR_STM _SAVE_ LU

Controls if the LU factorization stored should be replaced with the
LU factorization corresponding to the initial basis.
MSK_TIPAR_INTPNT_FACTOR_METHOD

Controls the method used to factor the Newton equation system.
MSK_TPAR MIO_MAX NUM_RELAXS

Maximum number of relaxations allowed during the branch and
bound search. A negative value means infinite.
MSK_TPAR_SOL_FILTER _KEEP _BASIC

If turned on, then basic and super basic constraints and variables are
written to the solution file independent of the filter setting.
MSK_IPAR_MIO_HEURISTIC_LEVEL

Controls the heuristic employed by the mixed integer optimizer to
locate an initial good integer feasible solution. A value of zero means
the heuristic is not used at all. A larger value than 0 means that
a gradually more sophisticated heuristic is used which is computa-
tionally more expensive. A negative value implies that the optimizer
chooses the heuristic. Normally a value around 3 to 5 should be
optimal.

continued on next page

383

384 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page
81 MSK_TPAR MIO_KEEP BASIS
Controls whether the integer presolve keeps bases in memory. This
speeds on the solution process at cost of bigger memory consumption.
34 MSK_TPAR_INTPNT_SCALING
Controls how the problem is scaled before the interior-point optimizer
is used.

D.19 Bound keys

Value Name

Description
0 MSK_MARK_LO

The lower bound is selected for sensitivity analysis.
1 MSK_MARK_UP

The upper bound is selected for sensitivity analysis.

D.20 Continuous mixed integer solution type

Value Name
Description

2 MSK_MIO_CONT_SOL_ITG
The reported interior-point and basic solutions are a solution to the
problem with all integer variables fixed at the value they have in the
integer solution. A solution is only reported in case the problem has
a primal feasible solution.

0 MSK_MIO_CONT_SOL_NONE
No interior-point or basic solution are reported when the mixed inte-
ger optimizer is used.

1 MSK_MIO_CONT_SOL_ROOT
The reported interior-point and basic solutions are a solution to the
root node problem when mixed integer optimizer is used.

3 MSK_MIO_CONT_SOL_ITG_REL
In case the problem is primal feasible then the reported interior-point
and basic solutions are a solution to the problem with all integer
variables fixed at the value they have in the integer solution. If the
problem is primal infeasible, then the solution to the root node prob-
lem is reported.

D.23. MPS FILE FORMAT TYPE 385

D.21 Integer restrictions

Value Name
Description
0 MSK_MIO_MODE_IGNORED

The integer constraints are ignored and the problem is solved as a
continuous problem.

MSK_MIO_MODE_LAZY

Integer restrictions should be satisfied if an optimizer is available for
the problem.

MSK_MIO_MODE_SATISFIED

Integer restrictions should be satisfied.

D.22 Mixed integer node selection types

Value Name
Description
5 MSK_MIO_NODE_SELECTION_PSEUDO

The optimizer employs selects the node based on a pseudo cost esti-
mate.

MSK_MIO_NODE_SELECTION_HYBRID

The optimizer employs a hybrid strategy.
MSK_MIO_NODE_SELECTION_FREE

The optimizer decides the node selection strategy.
MSK_MIO_NODE_SELECTION_WORST

The optimizer employs a worst bound node selection strategy.
MSK_MIO_NODE_SELECTION_BEST

The optimizer employs a best bound node selection strategy.
MSK_MIO_NODE_SELECTION_FIRST

The optimizer employs a depth first node selection strategy.

D.23 MPS file format type

Value Name
Description
0 MSK_MPS_FORMAT_STRICT

It is assumed that the input file satisfies the MPS format strictly.

continued on next page

386 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

1 MSK_MPS_FORMAT _RELAXED
It is assumed that the input file satisfies a slightly relaxed version of
the MPS format.

2 MSK_MPS_FORMAT_FREE
It is assumed that the input file satisfies the free MPS format. This
implies that spaces are not allowed in names. Otherwise the format
is free.

D.24 Message keys

Value Name
Description

1000 MSK_MSG_READING_FILE
None

1001 MSK_MSG_WRITING_FILE
None

1100 MSK_MSG_MPS_SELECTED
None

D.25 Network detection method

Value Name

Description
1 MSK_NETWORK_DETECT_SIMPLE

The network detection should use a very simple heuristic.
2 MSK_NETWORK_DETECT_ADVANCED

The network detection should use a more advanced heuristic.
0 MSK_NETWORK_DETECT_FREE

The network detection is free.

D.26 Objective sense types

Value Name
Description
1 MSK_OBJECTIVE_SENSE_MINIMIZE

continued on next page

D.28. OPTIMIZER TYPES

continued from previous page

The problem should be minimized.

0 MSK_OBJECTIVE_SENSE_UNDEFINED
The objective sense is undefined.
2 MSK_OBJECTIVE_SENSE_MAXIMIZE

The problem should be maximized.

D.27 On/off
Value Name
Description
1 MSK_ON
Switch the option on.
0 MSK_OFF

Switch the option off.

D.28 Optimizer types

Value Name

Description
1 MSK_OPTIMIZER_INTPNT
The interior-point optimizer is used.
9 MSK_OPTIMIZER_CONCURRENT
The optimizer for nonconvex nonlinear problems.
7 MSK_OPTIMIZER MIXED_INT
The mixed integer optimizer.
) MSK_OPTIMIZER DUAL_SIMPLEX
The dual simplex optimizer is used.
0 MSK_OPTIMIZER_FREE
The optimizer is chosen automatically.
2 MSK_OPTIMIZER_CONIC
Another cone optimizer.
8 MSK_OPTIMIZER _NONCONVEX
The optimizer for nonconvex nonlinear problems.
3 MSK_OPTIMIZER_QCONE
The Qcone optimizer is used.
4 MSK_OPTIMIZER_PRIMAL_SIMPLEX

continued on next page

387

388 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page
The primal simplex optimizer is used.
6 MSK_OPTIMIZER FREE_SIMPLEX
Either the primal or the dual simplex optimizer is used.

D.29 Ordering strategies

Value Name

Description
) MSK_ORDER_METHOD_NONE

No ordering is used.
2 MSK_ORDER_METHOD_APPMINLOC2

A variant of the approximate minimum local-fill-in ordering is used.
1 MSK_ORDER_METHOD_APPMINLOC1

Approximate minimum local-fill-in ordering is used.
4 MSK_ORDER_METHOD_GRAPHPAR2

An alternative graph partitioning based ordering.
0 MSK_ORDER_METHOD_FREE

The ordering method is chosen automatically.
3 MSK_ORDER_METHOD_GRAPHPAR1

Graph partitioning based ordering.

D.30 Parameter type

Value Name

Description
0 MSK_PAR_INVALID_TYPE

Not a valid parameter.
3 MSK_PAR_STR_TYPE

Is a string parameter.
1 MSK_PAR_DOU_TYPE

Is a double parameter.
2 MSK_PAR_INT_TYPE

Is an integer parameter.

D.31 Presolve method.

D.33. PROBLEM TYPES

Value Name
Description
1 MSK_PRESOLVE_MODE_ON
The problem is presolved before it is optimized.
0 MSK_PRESOLVE_MODE_OFF
The problem is not presolved before it is optimized.
2 MSK_PRESOLVE_MODE_FREE

It is decided automatically whether to presolve before the problem is
optimized.

D.32 Problem data items

Value Name
Description

0 MSK_PI_VAR
Item is a variable.

2 MSK_PI_CONE
Item is a cone.

1 MSK_PI_CON

Item is a constraint.

D.33 Problem types

Value Name
Description
2 MSK_PROBTYPE_QCQO
The problem is a quadratically constrained optimization problem.
0 MSK_PROBTYPE_LO
The problem is a linear optimization problem.
4 MSK_PROBTYPE_CONIC
A conic optimization.
3 MSK_PROBTYPE_GECO
General convex optimization.
) MSK_PROBTYPE_MIXED
General nonlinear constraints and conic constraints. This combina-
tion can not be solved by MOSEK.
1 MSK_PROBTYPE_QO

The problem is a quadratic optimization problem.

389

390

APPENDIX D. SYMBOLIC CONSTANTS

D.34 Problem status keys

Value Name
Description
6 MSK_PRO_STA_PRIM_AND DUAL_INFEAS
The problem is primal and dual infeasible.
4 MSK_PRO_STA_PRIM_INFEAS
The problem is primal infeasible.
7 MSK_PRO_STA_TILL_POSED
The problem is ill-posed. For example, it may be primal and dual
feasible but have a positive duality gap.
0 MSK_PRO_STA_UNKNOWN
Unknown problem status.
2 MSK_PRO_STA_PRIM FEAS
The problem is primal feasible.
8 MSK_PRO_STA_NEAR_PRIM_AND_DUAL_FEAS
The problem is at least nearly primal and dual feasible.
10 MSK_PRO_STA_NEAR _DUAL_FEAS
The problem is at least nearly dual feasible.
11 MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED
The problem is either primal infeasible or unbounded. This may occur
for mixed integer problems.
1 MSK_PRO_STA_PRIM_AND DUAL_FEAS
The problem is primal and dual feasible.
) MSK_PRO_STA DUAL_INFEAS
The problem is dual infeasible.
9 MSK_PRO_STA_NEAR_PRIM_FEAS
The problem is at least nearly primal feasible.
3 MSK_PRO_STA _DUAL_FEAS

The problem is dual feasible.

D.35 Interpretation of quadratic terms in MPS files

Value Name
Description
0 MSK_Q_READ_ADD

All elements in a Q matrix are assumed to belong to the lower trian-
gular part. Duplicate elements in a Q matrix are added together.

continued on next page

D.36. RESPONSE CODES 391

continued from previous page

1

MSK_Q_READ_DROP_LOWER

All elements in the strict lower triangular part of the (3 matrices are
dropped.

MSK_Q_READ_DROP_UPPER

All elements in the strict upper triangular part of the Q matrices are
dropped.

D.36 Response codes

Value

Name
Description

1218

1268

1203

803

1500

2505

1551

3003

4004

1254

1170

1114

MSK_RES_ERR_PARAM_TYPE

The parameter type is invalid.

MSK_RES_ERR_INV_SKX

Invalid value in skx.

MSK_RES_ERR_INDEX_IS_TOO_SMALL

An index in an argument is too small.
MSK_RES_WRN_PRESOLVE_BAD_PRECISION

The presolve estimates that the model is specified with insufficient
precision.

MSK_RES_ERR_INV_PROBLEM

Invalid problem type. Probably a nonconvex problem has been spec-
ified.

MSK_RES_ERR_CANNOT_CLONE_NL

A task with a nonlinear function call-back cannot be cloned.
MSK_RES_ERR_MIO_NO_OPTIMIZER

No optimizer is available for the current class of integer optimization
problems.

MSK_RES_ERR_APT _NL _DATA

None

MSK_RES_TRM_MIO_NEAR_ABS_GAP

The mixed-integer optimizer terminated because the near optimal
absolute gap tolerance was satisfied.

MSK_RES_ERR_MUL_A_ELEMENT

An element in A is defined multiple times.
MSK_RES_ERR_INVALID NAME IN_SOL_FILE

An invalid name occurred in a solution file.
MSK_RES_ERR_MPS_MUL_QOBJ

continued on next page

392 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

The Q term in the objective is specified multiple times in the MPS
data file.
1063 MSK_RES_ERR_NO_INIT_ENV
env is not initialized.
1265 MSK_RES_ERR_UNDEF _SOLUTION
The required solution is not defined.
1288 MSK_RES_ERR_LASTJ
Invalid lastj.
1001 MSK_RES_ERR_LICENSE_EXPIRED
The license has expired.
3055 MSK_RES_ERR_SEN_INDEX_INVALID
Invalid range given in the sensitivity file.
1274 MSK_RES_ERR_INV_SKN
Invalid value in skn.
1295 MSK_RES_ERR_0BJ_Q_NOT_PSD
The quadratic coefficient matrix in the objective is not positive semi-
definite as expected for a minimization problem.
1267 MSK_RES_ERR_INV_SKC
Invalid value in skc.
1008 MSK_RES_ERR_MISSING_LICENSE_FILE
MOSEK cannot find the license file or license server. Usually this
happens if the operating system variable MOSEKLM_LICENSE_FILE is
not set up appropriately. Please see the MOSEK installation manual
for details.
1235 MSK_RES_ERR_INDEX
An index is out of range.
3058 MSK_RES_ERR_SEN_NUMERICAL
Numerical difficulties encountered performing the sensitivity analysis.
2800 MSK_RES_ERR_LU_MAX_NUM_TRIES
Could not compute the LU factors of the matrix within the maximum
number of allowed tries.
201 MSK_RES_WRN_DROPPED_NZ_QOBJ
One or more non-zero elements were dropped in the QQ matrix in the
objective.
3000 MSK_RES_ERR_INTERNAL
An internal error occurred. Please report this problem.
800 MSK_RES_WRN_NONCOMPLETE_LINEAR _DEPENDENCY_CHECK
The linear dependency check(s) was not completed and therefore the
A matrix may contain linear dependencies.

continued on next page

D.36. RESPONSE CODES

continued from previous page

1204

1154

2950

1150

1501

1700

1207

3057

1432

405

1081

1205

3056

200

505

1263

1404

1406

MSK_RES_ERR_INDEX_IS_TOO_LARGE

An index in an argument is too large.
MSK_RES_ERR_LP_INVALID VAR _NAME

A variable name is invalid when used in an LP formatted file.
MSK_RES_ERR_NO_DUAL _FOR_ITG_SOL

No dual information is available for the integer solution.
MSK_RES_ERR_LP_INCOMPATIBLE

The problem cannot be written to an LP formatted file.
MSK_RES_ERR_MIXED_PROBLEM

The problem contains both conic and nonlinear constraints.
MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX

An optimization problem cannot be relaxed. This is the case e.g. for
general nonlinear optimization problems.

MSK_RES_ERR_PARAM NAME_INT

The parameter name is not correct for an integer parameter.
MSK_RES_ERR_SEN_SOLUTION_STATUS

No optimal solution found to the original problem given for sensitivity
analysis.

MSK_RES_ERR_USER_NLO_FUNC

The user-defined nonlinear function reported an error.
MSK_RES_WRN_TOO_MANY_BASIS_VARS

A basis with too many variables has been specified.
MSK_RES_ERR_SPACE_NO_INFO

No available information about the space usage.
MSK_RES_ERR_PARAM NAME

The parameter name is not correct.
MSK_RES_ERR_SEN_INVALID _REGEXP

Syntax error in regexp or regexp longer than 1024.
MSK_RES_WRN_NZ_IN_UPR_TRI

Non-zero elements specified in the upper triangle of a matrix were
ignored.

MSK_RES_WRN_LICENSE FEATURE EXPIRE

The license expires.

MSK_RES_ERR_NEGATIVE_SURPLUS

Negative surplus.

MSK_RES_ERR_INV_QCON_SUBK

Invalid value in gcsubk.

MSK_RES_ERR_INV_QCON_SUBJ

Invalid value in qcsubj.

continued on next page

393

394

APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

1198

1017

2901

1059

1462

1290

1055

1210

1285

1000

1299

85

1287

1090

1219

1286

1199

1293

MSK_RES_ERR_ARGUMENT_TYPE

Incorrect argument type.

MSK_RES_ERR_LICENSE_MOSEKLM _DAEMON

The MOSEKLM license manager daemon is not up and running.
MSK_RES_ERR_INVALID WCHAR

An invalid wchar string is encountered.
MSK_RES_ERR_END_OF _FILE

End of file reached.

MSK_RES_ERR_NAN_IN_BUC

u® contains an invalid floating point value, i.e. a NaN.
MSK_RES_ERR_NONLINEAR EQUALITY

The model contains a nonlinear equality which defines a nonconvex
set.

MSK_RES_ERR _DATA FILE EXT

The data file format cannot be determined from the file name.
MSK_RES_ERR_PARAM_INDEX

Parameter index is out of range.

MSK_RES_ERR_FIRSTI

Invalid firsti.

MSK_RES_ERR_LICENSE

Invalid license.

MSK_RES_ERR_ARGUMENT _PERM_ARRAY

An invalid permutation array is specified.
MSK_RES_WRN_LP_DROP_VARIABLE

Ignored a variable because the variable was not previously defined.
Usually this implies that a variable appears in the bound section but
not in the objective or the constraints.

MSK_RES_ERR_FIRSTJ

Invalid firstj.

MSK_RES_ERR_READ_FORMAT

The specified format cannot be read.
MSK_RES_ERR_INF_DOU_INDEX

A double information index is out of range for the specified type.
MSK_RES_ERR_LASTI

Invalid lasti.

MSK_RES_ERR_NR_ARGUMENTS

Incorrect number of function arguments.
MSK_RES_ERR_CON_Q_NOT_PSD

continued on next page

D.36. RESPONSE CODES 395

continued from previous page

63

2504

1650

3201

1216

1163

4000

1240

1050

1162

2503

1292

1047

1100

1156

1152

The quadratic constraint matrix is not positive semi-definite as ex-
pected for a constraint with finite upper bound. This results in a
nonconvex problem.

MSK_RES_WRN_ZERO_ATIJ

One or more zero elements are specified in A.
MSK_RES_ERR_INV_NUMJ

Invalid numj.

MSK_RES_ERR_FACTOR

An error occurred while factorizing a matrix.

MSK_RES_ERR_INVALID BRANCH_PRIORITY

An invalid branching priority is specified. It should be nonnegative.
MSK_RES_ERR_PARAM_IS _TOO_SMALL

The parameter value is too small.
MSK_RES_ERR_LP_WRITE_CONIC_PROBLEM

The problem contains cones that cannot be written to an LP format-
ted file.

MSK_RES_TRM_MAX_ITERATIONS

The optimizer terminated at the maximum number of iterations.
MSK_RES_ERR_MAXNUMCON

The maximum number of constraints specified is smaller than the
number of constraints in the task.

MSK_RES_ERR_UNKNOWN

Unknown error.

MSK_RES_ERR_READ _LP_NONEXISTING_NAME

A variable never occurred in objective or constraints.
MSK_RES_ERR_INV_NUMI

Invalid numi.

MSK_RES_ERR_NONLINEAR _RANGED

The model contains a nonlinear ranged constraint which by definition
defines a nonconvex set.

MSK_RES_ERR_THREAD MUTEX_UNLOCK

Could not unlock a mutex.

MSK_RES_ERR_MPS _FILE

An error occurred while reading an MPS file.

MSK_RES_ERR _WRITE_OPF_INVALID VAR _NAME

Empty variable names cannot be written to OPF files.
MSK_RES_ERR_LP_DUP_SLACK_NAME

The name of the slack variable added to a ranged constraint already
exists.

continued on next page

396 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page
2000 MSK_RES_ERR_NO_PRIMAL_INFEAS_CER
A certificate of primal infeasibility is not available.
1158 MSK_RES_ERR _WRITE_LP_FORMAT
Problem cannot be written as an LP file.
3052 MSK_RES_ERR_SEN_INDEX_RANGE
Index out of range in the sensitivity analysis file.
66 MSK_RES_WRN_SPAR_MAX_LEN
A value for a string parameter is longer than the buffer that is sup-
posed to hold it.
3050 MSK_RES_ERR_SEN_FORMAT
Syntax error in sensitivity analysis file.
1407 MSK_RES_ERR_INV_QCON_VAL
Invalid value in qcval.
1206 MSK_RES_ERR_PARAM NAME DOU
The parameter name is not correct for a double parameter.
1291 MSK_RES_ERR_NONCONVEX
The optimization problem is nonconvex.
1300 MSK_RES_ERR_CONE_INDEX
An index of a non-existing cone has been specified.
1470 MSK_RES_ERR_NAN_IN_C
¢ contains an invalid floating point value, i.e. a NaN.
1304 MSK_RES_ERR_MAXNUMCONE
The value specified for maxnumcone is too small.
1103 MSK_RES_ERR_MPS_NULL_CON_NAME
An empty constraint name is used in an MPS file.
1417 MSK_RES_ERR_QCON_UPPER_TRIANGLE
An element in the upper triangle of a Q* is specified. Only elements
in the lower triangle should be specified.
4015 MSK_RES_TRM_NUM_MAX NUM_INT_SOLUTIONS
The mixed-integer optimizer terminated as the maximum number of
feasible solutions was reached.
1125 MSK_RES_ERR_MPS_TAB_IN_FIELD2
A tab char occurred in field 2.
270 MSK_RES_WRN_MIO_INFEASIBLE_FINAL
The final mixed integer problem with all the integer variables fixed
at their optimal values is infeasible.
1251 MSK_RES_ERR_NUMVARLIM
Maximum number of variables limit is exceeded.
1433 MSK_RES_ERR_USER_NLO_EVAL

continued on next page

D.36. RESPONSE CODES 397

continued from previous page

1232

1106

503

1127

1056

804

1415

1054

1164

1243

2506

1600

1131

1303

1075

1052

250

The user-defined nonlinear function reported an error.
MSK_RES_ERR_INF_TYPE

The information type is invalid.

MSK_RES_ERR_MPS_UNDEF_VAR_NAME

An undefined variable name occurred in an MPS file.
MSK_RES_WRN_USING_GENERIC_NAMES

The file writer reverts to generic names because a name is blank.
MSK_RES_ERR_MPS_TAB_IN _FIELD5

A tab char occurred in field 5.

MSK_RES_ERR_INVALID_FILE_NAME

An invalid file name has been specified.

MSK_RES_WRN_WRITE DISCARDED _CFIX

The fixed objective term could not be converted to a variable and was
discarded in the output file.

MSK_RES_ERR_QOBJ_UPPER_TRIANGLE

An element in the upper triangle of QQ° is specified. Only elements in
the lower triangle should be specified.

MSK_RES_ERR_FILE WRITE

File write error.

MSK_RES_ERR_LP_WRITE_GECO_PROBLEM

The problem contains general convex terms that cannot be written
to an LP formatted file.

MSK_RES_ERR_MAXNUMQNZ

The maximum number of non-zeros specified for the) matrices is
smaller than the number of non-zeros in the current) matrices.
MSK_RES_ERR_CANNOT_HANDLE_NL

A function cannot handle a task with nonlinear function call-backs.
MSK_RES_ERR_NO_BASIS_SOL

No basic solution is defined.

MSK_RES_ERR_ORD_INVALID

Invalid content in branch ordering file.

MSK_RES_ERR_CONE_REP_VAR

A variable is included multiple times in the cone.
MSK_RES_ERR_INVALID OBJ_NAME

An invalid objective name is specified.

MSK_RES_ERR_FILE _OPEN

Error while opening a file.

MSK_RES_WRN_IGNORE_INTEGER

Ignored integer constraints.

continued on next page

398

APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

1296

1064

1065

3005

1550

1310

62

1208

1018

251

1040

1701

1221

1259

1220

1053

1440

MSK_RES_ERR_0BJ_Q_NOT_NSD

The quadratic coefficient matrix in the objective is not negative semi-
definite as expected for a maximization problem.
MSK_RES_ERR_INVALID _TASK

The task is invalid.

MSK_RES_ERR_NULL_POINTER

An argument to a function is unexpectedly a NULL pointer.
MSK_RES_ERR_API FATAL_ERROR

An internal error occurred in the API. Please report this problem.
MSK_RES_ERR_INV_OPTIMIZER

An invalid optimizer has been chosen for the problem. This means
that the simplex or the conic optimizer is chosen to optimize a non-
linear problem.

MSK_RES_ERR_REMOVE_CONE_VARIABLE

A variable cannot be removed because it will make a cone invalid.
MSK_RES_WRN_LARGE_ATJ

A numerically large value is specified for one a; ;.
MSK_RES_ERR_PARAM NAME_STR

The parameter name is not correct for a string parameter.
MSK_RES_ERR_LICENSE_FEATURE

A requested feature is not available in the license file(s). Most likely
due to an incorrect license system setup.
MSK_RES_WRN_NO_GLOBAL_OPTIMIZER

No global optimizer is available.

MSK_RES_ERR_LINK_FILE DLL

A file cannot be linked to a stream in the DLL version.
MSK_RES_ERR_FEASREPATR_SOLVING_RELAXED

The relaxed problem could not be solved to optimality. Please consult
the log file for further details.

MSK_RES_ERR_INDEX_ARR_IS TOO_SMALL

An index in an array argument is too small.
MSK_RES_ERR_SOLVER_PROBTYPE

Problem type does not match the chosen optimizer.
MSK_RES_ERR_INF_INT_INDEX

An integer information index is out of range for the specified type.
MSK_RES_ERR_FILE READ

File read error.

MSK_RES_ERR_USER_NLO_EVAL_HESSUBI

continued on next page

D.36. RESPONSE CODES

continued from previous page

1441

300

3100

4030

1110

1400

1030

3001

1046

1262

1151

1011

1062

2520

1250

The user-defined nonlinear function reported an invalid subscript in
the Hessian.

MSK_RES_ERR_USER_NLO_EVAL_HESSUBJ

The user-defined nonlinear function reported an invalid subscript in
the Hessian.

MSK_RES_WRN_SOL_FILTER

Invalid solution filter is specified.

MSK_RES_ERR_UNB_STEP_SIZE

A step size in an optimizer was unexpectedly unbounded. For in-
stance, if the step-size becomes unbounded in phase 1 of the simplex
algorithm then an error occurs. Normally this will happen only if the
problem is badly formulated. Please contact MOSEK support if this
€rror OCCurs.

MSK_RES_TRM_INTERNAL

The optimizer terminated due to some internal reason. Please contact
MOSEK support.

MSK_RES_ERR_MPS_NO_OBJECTIVE

No objective is defined in an MPS file.
MSK_RES_ERR_INFINITE BOUND

A finite bound value is too large in absolute value.
MSK_RES_ERR_OPEN_DL

A dynamic link library could not be opened.
MSK_RES_ERR_APTI_ARRAY TOO_SMALL

An input array was too short.

MSK_RES_ERR_THREAD MUTEX_LOCK

Could not lock a mutex.

MSK_RES_ERR_LAST

Invalid last.

MSK_RES_ERR_LP_EMPTY

The problem cannot be written to an LP formatted file.
MSK_RES_ERR_SIZE _LICENSE_VAR

The problem has too many variables to be solved with the available
license.

MSK_RES_ERR_INVALID _STREAM

An invalid stream is referenced.

MSK_RES_ERR_INVALID_ACCMODE

An invalid access mode is specified.

MSK_RES_ERR_NUMCONLIM

Maximum number of constraints limit is exceeded.

continued on next page

399

400

APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

1104

72

1026

1025

1045

1280

53

4009

1272

1112

1801

1115

1016

4007

1430

1058

1294

MSK_RES_ERR_MPS_NULL_VAR_NAME

An empty variable name is used in an MPS file.
MSK_RES_WRN_MPS_SPLIT BOU_VECTOR

A BOUNDS vector is split into several nonadjacent parts in an MPS
file.

MSK_RES_ERR_LICENSE_SERVER_VERSION

The version specified in the checkout request is greater than the high-
est version number the daemon supports.
MSK_RES_ERR_LICENSE_INVALID _HOSTID

The host ID specified in the license file does not match the host ID
of the computer.

MSK_RES_ERR_THREAD MUTEX_INIT

Could not initialize a mutex.

MSK_RES_ERR_INV_NAME_ITEM

An invalid name item code is used.

MSK_RES_WRN_LARGE_UP_BOUND

A large but finite upper bound in absolute value has been specified.
MSK_RES_TRM_MIO_NUM_BRANCHES

The mixed-integer optimizer terminated as to the maximum number
of branches was reached.

MSK_RES_ERR_INV_CONE_TYPE

Invalid cone type code is encountered.
MSK_RES_ERR_MPS_MUL_CON_NAME

A constraint name was specified multiple times in the ROWS section.
MSK_RES_ERR_INVALID_IOMODE

Invalid io mode.

MSK_RES_ERR_MPS_INV_SEC_ORDER

The sections in the MPS data file are not in the correct order.
MSK_RES_ERR_LICENSE_MAX

Maximum number of licenses is reached.
MSK_RES_TRM_USER_CALLBACK

The optimizer terminated due to the return of the user-defined call-
back function.

MSK_RES_ERR_USER_FUNC_RET

An user function reported an error.

MSK_RES_ERR_INVALID MBT_FILE

A MOSEK binary task file is invalid.

MSK_RES_ERR_CON_Q_NOT_NSD

continued on next page

D.36. RESPONSE CODES 401

continued from previous page

3600

1231

1107

2001

4025

52

3999

70

3053

1702

1449

3200

3004

1305

4008

1256

4020

The quadratic constraint matrix is not negative semi-definite as ex-
pected for a constraint with finite lower bound. This results in a
nonconvex problem.

MSK_RES_ERR_XML_INVALID _PROBLEM_TYPE

The problem type is not supported by the XML format.
MSK_RES_ERR_INF_INT _NAME

A integer information name is invalid.
MSK_RES_ERR_MPS_INV_CON_KEY

An invalid constraint key occurred in an MPS file.
MSK_RES_ERR_NO_DUAL_INFEAS_CER

A certificate of infeasibility is not available.
MSK_RES_TRM_NUMERICAL_PROBLEM

The optimizer terminated due to numerical problems.
MSK_RES_WRN_LARGE_LO_BOUND

A large but finite lower bound in absolute value has been specified.
MSK_RES_ERR_APTI_TINTERNAL

None

MSK_RES_WRN_MPS_SPLIT _RHS_VECTOR

An RHS vector is split into several nonadjacent parts in an MPS file.
MSK_RES_ERR_SEN_BOUND_INVALID_UP

Analysis of upper bound requested for an index, where no upper
bound exists.

MSK_RES_ERR_FEASREPATR_INCONSISTENT_BOUND

The upper bound is less than the lower bound for a variable or a
constraint. Please correct this before running the feasibility repair.
MSK_RES_ERR_Y_IS UNDEFINED

The solution item y is undefined.
MSK_RES_ERR_INVALID BRANCH DIRECTION

An invalid branching direction is specified.
MSK_RES_ERR_APT_CALLBACK

None

MSK_RES_ERR_CONE_TYPE

Invalid cone type specified.

MSK_RES_TRM_MIO_NUM_RELAXS

The mixed-integer optimizer terminated as the maximum number of
relaxations was reached.

MSK_RES_ERR_INV_BKC

Invalid bound key is specified for a constraint.
MSK_RES_TRM_MAX_NUM_SETBACKS

continued on next page

402

APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

3101

1020

1402

1302

1401

1153

1553

1061

1450

3059

1252

1197

500

1200

1051

1241

The optimizer terminated as the maximum number of set-backs was
reached. This indicates numerical problems and a possibly badly
formulated problem.

MSK_RES_ERR_IDENTICAL_TASKS

Some tasks related to this function call were identical. Unique tasks
were expected.

MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE

The license system cannot allocate the memory required.
MSK_RES_ERR_INV_QOBJ_SUBJ

Invalid value in qosubj.

MSK_RES_ERR_CONE_OVERLAP

A new cone which variables overlap with an existing cone has been
specified.

MSK_RES_ERR_INV_QOBJ_SUBI

Invalid value in qosubi.

MSK_RES_ERR_WRITE_MPS_INVALID NAME

An invalid name is created while writing an MPS file. Usually this
will make the MPS file unreadable.

MSK_RES_ERR_MIQ_NOT_LOADED

The mixed-integer optimizer is not loaded.

MSK_RES_ERR_NULL_TASK

task is a NULL pointer.

MSK_RES_ERR_NAN_IN _DOUBLE_DATA

An invalid floating point value was used in some double data.
MSK_RES_ERR_CONCURRENT_OPTIMIZER

An unsupported optimizer was chosen for use with the concurrent
optimizer.

MSK_RES_ERR_TOO_SMALL_MAXNUMANZ

Maximum number of non-zeros allowed in A is too small.
MSK_RES_ERR_ARGUMENT_LENNEQ

Incorrect length of arguments.

MSK_RES_WRN_LICENSE _EXPIRE

The license expires.

MSK_RES_ERR_IN_ARGUMENT

A function argument is incorrect.

MSK_RES_ERR_SPACE

Out of space.

MSK_RES_ERR_MAXNUMVAR

continued on next page

D.36. RESPONSE CODES 403

continued from previous page

1800

1101

1060

3500

501

1122

1168

1269

1071

1116

o1

50

1431

1615

1155

1445

3002

1253

The maximum number of variables specified is smaller than the num-
ber of variables in the task.
MSK_RES_ERR_INVALID_COMPRESSION

Invalid compression type.
MSK_RES_ERR_MPS_INV_FIELD

A field in the MPS file is invalid. Probably it is too wide.
MSK_RES_ERR_NULL_ENV

env is a NULL pointer.

MSK_RES_ERR_INTERNAL _TEST_FAILED

An internal unit test function failed.
MSK_RES_WRN_LICENSE_SERVER

The license server is not responding.
MSK_RES_ERR_MPS_INVALID_OBJSENSE

An invalid objective sense is specified.
MSK_RES_ERR_OPF_FORMAT

Syntax error in an OPF file
MSK_RES_ERR_INV_SK_STR

Invalid status key string encountered.
MSK_RES_ERR_DUP_NAME

An error occurred while reading an MPS file..
MSK_RES_ERR_MPS_MUL_CSEC

Multiple CSECTIONs are given the same name.
MSK_RES_WRN_LARGE_BOUND

A very large bound in absolute value has been specified.
MSK_RES_WRN_OPEN_PARAM FILE

The parameter file could not be opened.
MSK_RES_ERR_USER_FUNC_RET _DATA

An user function returned invalid data.
MSK_RES_ERR_BASIS_SINGULAR

The basis is singular and hence cannot be factored.
MSK_RES_ERR_LP_FREE_CONSTRAINT

Free constraints cannot be written in LP file format.
MSK_RES_ERR_INVALID_OBJECTIVE_SENSE

An invalid objective sense is specified.

MSK_RES_OK

No error occurred.

MSK_RES_ERR_API_CB_CONNECT

None

MSK_RES_ERR_INV_APTRE

continued on next page

404

APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

1013

1007

1160

1237

1010

1118

700

1408

1610

1580

1215

1281

1057

1271

1283

o7

1035

1019

aptre[j] is strictly smaller than aptrb[j] for some j.
MSK_RES_ERR_OPTIMIZER_LICENSE

The optimizer required is not licensed.

MSK_RES_ERR_FILE _LICENSE

Invalid license file.

MSK_RES_ERR_LP_FORMAT

Syntax error in an LP file.

MSK_RES_ERR_SOLITEM

The solution item number solitem is invalid. Please note
MSK_SOL_ITEM SNX is invalid for the basic solution.
MSK_RES_ERR_SIZE _LICENSE_CON

The problem has too many constraints to be solved with the available
license.

MSK_RES_ERR_MPS_CONE_OVERLAP

A variable is specified to be a member of several cones.
MSK_RES_WRN_ZEROS_IN_SPARSE _DATA

One or more almost zero elements are specified in sparse input data.
MSK_RES_ERR_QCON_SUBI_TOO_SMALL

Invalid value in gcsubi.

MSK_RES_ERR_BASIS _FACTOR

The factorization of the basis is invalid.

MSK_RES_ERR_POSTSOLVE

An error occurred during the postsolve. Please contact MOSEK sup-
port.

MSK_RES_ERR_PARAM_IS_TOO_LARGE

The parameter value is too large.

MSK_RES_ERR_PRO_ITEM

An invalid problem is used.

MSK_RES_ERR_INVALID_SOL_FILE_NAME

An invalid file name has been specified.
MSK_RES_ERR_INV_CONE_TYPE_STR

Invalid cone type string encountered.
MSK_RES_ERR_INVALID_FORMAT_TYPE

Invalid format type.

MSK_RES_WRN_LARGE_CJ

A numerically large value is specified for one c;.
MSK_RES_ERR_OLDER_DLL

The dynamic link library is older than the specified version.
MSK_RES_ERR_PLATFORM_NOT_LICENSED

continued on next page

D.36. RESPONSE CODES 405

continued from previous page

1119

3051

1403

71

3054

1111

1080

1201

280

4001

1461

1350

3700

1260

1238

1471

1236

A requested license feature is not available for the required platform.
MSK_RES_ERR_MPS_CONE_REPEAT

A variable is repeated within the CSECTION.
MSK_RES_ERR_SEN_UNDEF_NAME

An undefined name was encountered in the sensitivity analysis file.
MSK_RES_ERR_INV_QOBJ_VAL

Invalid value in qoval.

MSK_RES_WRN_MPS_SPLIT RAN_VECTOR

A RANGE vector is split into several nonadjacent parts in an MPS
file.

MSK_RES_ERR_SEN_BOUND_INVALID_LO

Analysis of lower bound requested for an index, where no lower bound
exists.

MSK_RES_ERR_MPS_SPLITTED_VAR

A variable is split in an MPS data file.

MSK_RES_ERR_SPACE_LEAKING

MOSEK is leaking memory. This can be due to either an incorrect
use of MOSEK or a bug.

MSK_RES_ERR_ARGUMENT _DIMENSION

A function argument is of incorrect dimension.
MSK_RES_WRN_FIXED_BOUND_VALUES

A fixed constraint/variable has been specified using the bound keys
but the numerical bounds are different. The variable is fixed at the
lower bound.

MSK_RES_TRM_MAX_TIME

The optimizer terminated at the maximum amount of time.
MSK_RES_ERR_NAN_IN_BLC

[¢ contains an invalid floating point value, i.e. a NaN.
MSK_RES_ERR_SOL_FILE_NUMBER

An invalid number is specified in a solution file.
MSK_RES_ERR_INVALID_AMPL_STUB

Invalid AMPL stub.

MSK_RES_ERR_OBJECTIVE_RANGE

Empty objective range.

MSK_RES_ERR _WHICHITEM_NOT_ALLOWED

whichitem is unacceptable.

MSK_RES_ERR_NAN_IN_BLX

[* contains an invalid floating point value, i.e. a NaN.
MSK_RES_ERR_WHICHSOL

continued on next page

406

APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

1242

801

1049

1405

1036

1409

1113

502

4003

80

1102

1070

1264

1270

1006

1015

4005

The solution defined by compwhichsol does not exists.
MSK_RES_ERR_MAXNUMANZ

The maximum number of non-zeros specified for A is smaller than
the number of non-zeros in the current A.
MSK_RES_WRN_ELIMINATOR_SPACE

The eliminator is skipped at least once due to lack of space.
MSK_RES_ERR_THREAD _COND_INIT

Could not initialize a condition.

MSK_RES_ERR_INV_QCON_SUBI

Invalid value in qcsubi.

MSK_RES_ERR_NEWER DLL

The dynamic link library is newer than the specified version.
MSK_RES_ERR_QCON_SUBI_TOO_LARGE

Invalid value in gcsubi.

MSK_RES_ERR_MPS_MUL_QSEC

Multiple QSECTIONs are specified for a constraint in the MPS data
file.

MSK_RES_WRN_EMPTY_NAME

A wvariable or constraint name is empty. The output file may be
invalid.

MSK_RES_TRM_MIO_NEAR_REL_GAP

The mixed-integer optimizer terminated because the near optimal
relative gap tolerance was satisfied.
MSK_RES_WRN_LP_OLD_QUAD_FORMAT

Missing ’/2’ after quadratic expressions in bound or objective.
MSK_RES_ERR_MPS_INV_MARKER

An invalid marker has been specified in the MPS file.
MSK_RES_ERR_NULL_NAME

An all blank name has been specified.
MSK_RES_ERR_NEGATIVE_APPEND

Cannot append a negative number.

MSK_RES_ERR_INV_SK

Invalid status key code.

MSK_RES_ERR_PROB_LICENSE

The software is not licensed to solve the problem.
MSK_RES_ERR_LICENSE_SERVER

The license server is not responding.

MSK_RES_TRM_USER_BREAK

The optimizer terminated due to a user break.

continued on next page

D.36. RESPONSE CODES 407

continued from previous page

400

1161

1108

1472

1109

1266

1257

1002

4006

1048

1128

1217

1222

1306

1301

1258

MSK_RES_WRN_TOO_FEW_BASIS_VARS

An incomplete basis has been specified. Too few basis variables are
specified.

MSK_RES_ERR_WRITE_LP _NON_UNIQUE_NAME

An auto-generated name is not unique.
MSK_RES_ERR_MPS_INV_BOUND_KEY

An invalid bound key occurred in an MPS file.
MSK_RES_ERR_NAN_IN_BUX

u® contains an invalid floating point value, i.e. a NaN.
MSK_RES_ERR_MPS_INV_SEC_NAME

An invalid section name occurred in an MPS file.
MSK_RES_ERR_BASIS

An invalid basis is specified. Either too many or too few basis vari-
ables are specified.

MSK_RES_ERR_INV_BKX

An invalid bound key is specified for a variable.
MSK_RES_ERR_LICENSE_VERSION

The license is valid for another version of MOSEK.
MSK_RES_TRM_STALL

The optimizer terminated due to slow progress. Normally there are
three possible reasons for this: Either a bug in MOSEK, the problem
is badly formulated, or, in case of nonlinear problems, the nonlinear
call-back functions are incorrect.

Please contact MOSEK support if this happens.
MSK_RES_ERR_THREAD _CREATE

Could not create a thread. This error may occur if a large number of
environments are created and not deleted again. In any case it is a
good practice to minimize the number of environments created.
MSK_RES_ERR_MPS_INVALID_0BJ_NAME

An invalid objective name is specified.

MSK_RES_ERR_PARAM VALUE_STR

The parameter value string is incorrect.
MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE

An index in an array argument is too large.
MSK_RES_ERR_CONE_TYPE_STR

Invalid cone type specified.

MSK_RES_ERR_CONE_SIZE

A cone with too few members is specified.
MSK_RES_ERR_INV_VAR_TYPE

continued on next page

408

APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

1157

1021

4002

1126

350

1255

1014

2550

65

1165

1261

4031

1117

1005

1375

1446

802

1130

An invalid variable type is specified for a variable.
MSK_RES_ERR_LP_FILE FORMAT

Syntax error in an LP file.

MSK_RES_ERR_LICENSE_CANNOT_CONNECT

MOSEK cannot connect to the license server. Most likely the license
server is not up and running.

MSK_RES_TRM_OBJECTIVE_RANGE

The optimizer terminated on the bound of the objective range.
MSK_RES_ERR_MPS_TAB_IN_FIELD3

A tab char occurred in field 3.

MSK_RES_WRN_UNDEF_SOL_FILE_NAME

Undefined name occurred in a solution.

MSK_RES_ERR_INV_BK

Invalid bound key.

MSK_RES_ERR_FLEXLM

The FLEXIm license manager reported an error.
MSK_RES_ERR_MBT_INCOMPATIBLE

The MBT file is incompatible with this platform. This results from
reading a file on a 32 bit platform generated on a 64 bit platform.
MSK_RES_WRN_NAME_MAX_LEN

A name is longer than the buffer that is supposed to hold it.
MSK_RES_ERR_NAME_MAX_LEN

A name is longer than the buffer that is supposed to hold it.
MSK_RES_ERR_FIRST

Invalid first.

MSK_RES_TRM_INTERNAL_STOP

The optimizer terminated for internal reasons. Please contact MO-
SEK support.

MSK_RES_ERR_MPS_CONE_TYPE

Invalid cone type specified in a CSECTION.

MSK_RES_ERR_SIZE LICENSE

The problem is bigger than the license.

MSK_RES_ERR_HUGE_C

A huge value in absolute size is specified for one c;.
MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE

The objective sense has not been specified before the optimization.
MSK_RES_WRN_PRESOLVE_QOUTQFSPACE

The presolve is incomplete due to lack of space.
MSK_RES_ERR_ORD_INVALID _BRANCH DIR

continued on next page

D.38. SCALING TYPE 409

continued from previous page

2501

2502

2500

2900

1105

1012

1230

1552

An invalid branch direction key is specified.
MSK_RES_ERR_INV_MARKI

Invalid value in marki.

MSK_RES_ERR_INV_MARKJ

Invalid value in markj.

MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK

The required solution is not available.
MSK_RES_ERR_INVALID UTF8

An invalid UTFS8 string is encountered.
MSK_RES_ERR_MPS_UNDEF_CON_NAME

An undefined constraint name occurred in an MPS file.
MSK_RES_ERR_SIZE LICENSE_INTVAR

The problem contains too many integer variables to be solved with
the available license.

MSK_RES_ERR_INF _DOU_NAME

A double information name is invalid.
MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE

No optimizer is available for this class of optimization problems.

D.37 Response code type

Value Name

Description
1 MSK_RESPONSE_WRN

The response code is a warning.
2 MSK_RESPONSE_TRM

The response code is an optimizer termination status.
4 MSK_RESPONSE_UNK

The response code does not belong to any class.
0 MSK_RESPONSE_OK

The response code is OK.
3 MSK_RESPONSE_ERR

The response code is an error.

D.38 Scaling type

410 APPENDIX D. SYMBOLIC CONSTANTS
Value Name
Description
1 MSK_SCALING_NONE
No scaling is performed.
2 MSK_SCALING_MODERATE
A conservative scaling is performed.
3 MSK_SCALING_AGGRESSIVE
A very aggressive scaling is performed.
0 MSK_SCALING_FREE

The optimizer chooses the scaling heuristic.

D.39 Sensitivity types

Value Name
Description
1 MSK_SENSITIVITY_TYPE_ OPTIMAL_PARTITION

Optimal partition sensitivity analysis is performed.
MSK_SENSITIVITY TYPE BASIS
Basis sensitivity analysis is performed.

D.40 Degeneracy strategies

Value Name

Description
0 MSK_SIM_DEGEN_NONE

The simplex optimizer should use no degeneration strategy.
3 MSK_SIM _DEGEN_MODERATE

The simplex optimizer should use a moderate degeneration strategy.
4 MSK_SIM_DEGEN_MINIMUM

The simplex optimizer should use a minimum degeneration strategy.
2 MSK_SIM_DEGEN_AGGRESSIVE

The simplex optimizer should use an aggressive degeneration strategy.
1 MSK_SIM_DEGEN_FREE

The simplex optimizer chooses the degeneration strategy.

D.41 Hot-start type employed by the simplex optimizer

D.43. SOLUTION ITEMS

Value Name
Description
0 MSK_SIM_HOTSTART_NONE
The simplex optimizer performs a coldstart.
2 MSK_SIM HOTSTART_STATUS_KEYS
Only the status keys of the constraints and variables are used to
choose the type of hot-start.
1 MSK_SIM _HOTSTART_FREE

The simplex optimize chooses the hot-start type.

D.42 Simplex selection strategy

Value

Name
Description

MSK_SIM _SELECTION_FULL

The optimizer uses full pricing.

MSK_SIM _SELECTION_PARTIAL

The optimizer uses a partial selection approach. The approach is
usually beneficial if the number of variables is much larger than the
number of constraints.

MSK_SIM _SELECTION_FREE

The optimizer chooses the pricing strategy.

MSK_SIM _SELECTION_ASE

The optimizer uses approximate steepest-edge pricing.
MSK_SIM_SELECTION_DEVEX

The optimizer uses devex steepest-edge pricing (or if it is not available
an approximate steep-edge selection).

MSK_SIM _SELECTION_SE

The optimizer uses steepest-edge selection (or if it is not available an
approximate steep-edge selection).

D.43 Solution items

Value Name
Description
4 MSK_SOL_ITEM_SUC

Lagrange multipliers for upper bounds on the constraints.
MSK_SOL_ITEM _XC

continued on next page

411

412 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

Solution for the constraints.

1 MSK_SOL_ITEM XX
Variable solution.
2 MSK_SOL_ITEM.Y
Lagrange multipliers for equations.
) MSK_SOL_ITEM_SLX
Lagrange multipliers for lower bounds on the variables.
6 MSK_SOL_ITEM_SUX
Lagrange multipliers for upper bounds on the variables.
7 MSK_SOL_ITEM_SNX
Lagrange multipliers corresponding to the conic constraints on the
variables.
3 MSK_SOL_ITEM_SLC

Lagrange multipliers for lower bounds on the constraints.

D.44 Solution status keys

Value Name

Description
6 MSK_SOL_STA_DUAL_INFEAS_CER
The solution is a certificate of dual infeasibility.
) MSK_SOL_STA_PRIM_INFEAS_CER
The solution is a certificate of primal infeasibility.
0 MSK_SOL_STA_UNKNOWN
Status of the solution is unknown.
8 MSK_SOL_STA_NEAR_OPTIMAL
The solution is nearly optimal.
12 MSK_SOL_STA_NEAR_PRIM_INFEAS_CER
The solution is almost a certificate of primal infeasibility.
2 MSK_SOL_STA_PRIM FEAS
The solution is primal feasible.
15 MSK_SOL_STA_NEAR_INTEGER_OPTIMAL
The primal solution is near integer optimal.
10 MSK_SOL_STA_NEAR _DUAL_FEAS
The solution is nearly dual feasible.
14 MSK_SOL_STA_INTEGER_OPTIMAL
The primal solution is integer optimal.
13 MSK_SOL_STA_NEAR_DUAL_INFEAS_CER

continued on next page

D.47. STRING PARAMETER TYPES

continued from previous page

The solution is almost a certificate of dual infeasibility.

11 MSK_SOL_STA_NEAR _PRIM_AND DUAL_FEAS
The solution is nearly both primal and dual feasible.
1 MSK_SOL_STA_OPTIMAL
The solution is optimal.
4 MSK_SOL_STA_PRIM_AND DUAL_FEAS
The solution is both primal and dual feasible.
9 MSK_SOL_STA_NEAR_PRIM FEAS
The solution is nearly primal feasible.
3 MSK_SOL_STA _DUAL_FEAS

The solution is dual feasible.

D.45 Solution types

Value Name

Description
2 MSK_SOL_ITG

The integer solution.
0 MSK_SOL_ITR

The interior solution.
1 MSK_SOL_BAS

The basic solution.

D.46 Solve primal or dual form

Value Name

Description
1 MSK_SOLVE_PRIMAL

The optimizer should solve the primal problem.
2 MSK_SOLVE_DUAL

The optimizer should solve the dual problem.
0 MSK_SOLVE_FREE

The optimizer is free to solve either the primal or the dual problem.

D.47 String parameter types

413

414

APPENDIX D. SYMBOLIC CONSTANTS

Value Name
Description
8 MSK_SPAR_PARAM_COMMENT_SIGN

12

10

14

21

24

13

17

Only the first character in this string is used. It is considered as
a start of comment sign in the MOSEK parameter file. Spaces are
ignored in the string.

MSK_SPAR_FEASREPAIR_NAME_PREFIX

Not applicable.

MSK_SPAR _BAS_SOL_FILE_NAME

Name of the bas solution file.

MSK_SPAR_READ _MPS_0BJ_NAME

Name of the free constraint used as objective function. An empty
name means that the first constraint is used as objective function.
MSK_SPAR _FEASREPAIR NAME WSUMVIOL

The constraint and variable associated with the total weighted sum
of violations are each given the name of this parameter postfixed with
CON and VAR respectively.

MSK_SPAR_FEASREPATR _NAME_SEPARATOR

Not applicable.

MSK_SPAR_PARAM WRITE_FILE_NAME

The parameter database is written to this file.
MSK_SPAR_INT_SOL_FILE_NAME

Name of the int solution file.

MSK_SPAR_READ_MPS_RHS_NAME

Name of the RHS used. An empty name means that the first RHS
vector is used.

MSK_SPAR_STAT_FILE_NAME

Statistics file name.

MSK_SPAR _WRITE_LP_GEN_VAR_NAME

Sometimes when an LP file is written additional variables must be
inserted. They will have the prefix denoted by this parameter.
MSK_SPAR _DATA_FILE_NAME

Data are read and written to this file.

MSK_SPAR_READ_MPS_RAN_NAME

Name of the RANGE vector used. An empty name means that the
first RANGE vector is used.

MSK_SPAR_SOL_FILTER_XC_LOW

continued on next page

D.47. STRING PARAMETER TYPES

continued from previous page

18

11

20

23

15

22

16

19

A filter used to determine which constraints should be listed in the
solution file. A wvalue of “0.5” means that all constraints having
xc[1]>0.5 should be listed, whereas “+0.5” means that all con-
straints having xc [1]>=blc [i]+0.5 should be listed. An empty filter
means that no filter is applied.

MSK_SPAR_SOL_FILTER _XC_UPR

A filter used to determine which constraints should be listed in the
solution file. A wvalue of “0.5” means that all constraints having
xc[1]<0.5 should be listed, whereas “-0.5” means all constraints hav-
ing xc[1]<=buc[i1]-0.5 should be listed. An empty filter means that
no filter is applied.

MSK_SPAR_READ _MPS_BOU_NAME

Name of the BOUNDS vector used. An empty name means that the
first BOUNDS vector is used.

MSK_SPAR_SOL_FILTER XX UPR

A filter used to determine which variables should be listed in the
solution file. A wvalue of “0.5” means that all constraints having
xx[j1<0.5 should be printed, whereas “-0.5” means all constraints
having xx[j1<=bux[j]1-0.5 should be listed. An empty filter means
no filter is applied.

MSK_SPAR_STAT_NAME

Name used when writing the statistics file.

MSK_SPAR_PARAM READ_FILE_NAME

Modifications to the parameter database is read from this file.
MSK_SPAR_ITR_SOL_FILE_NAME

Name of the itr solution file.

MSK_SPAR_SENSITIVITY FILE _NAME

Not applicable.

MSK_SPAR_DEBUG_FILE_NAME

MOSEK debug file.

MSK_SPAR_STAT _KEY

Key used when writing the summary file.
MSK_SPAR _SENSITIVITY RES _FILE NAME
Not applicable.

MSK_SPAR_SOL_FILTER_XX_LOW

continued on next page

415

416 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page
A filter used to determine which variables should be listed in the
solution file. A wvalue of “0.5” means that all constraints having
xx[j]>=0.5 should be listed, whereas “+0.5” means that all con-
straints having xx [j1>=blx [j]1+0.5 should be listed. An empty filter
means no filter is applied.

D.48 Status keys

Value Name

Description
2 MSK_SK_SUPBAS
The constraint or variable is super basic.
1 MSK_SK_BAS
The constraint or variable is in the basis.
5 MSK_SK_FIX
The constraint or variable is fixed.
3 MSK_SK_LOW
The constraint or variable is at its lower bound.
6 MSK_SK_INF
The constraint or variable is infeasible in the bounds.
0 MSK_SK_UNK
The status for the constraint or variable is unknown.
4 MSK_SK_UPR

The constraint or variable is at its upper bound.

D.49 Starting point types

Value Name
Description
1 MSK_STARTING_POINT_CONSTANT
The starting point is set to a constant. This is more reliable than a
non-constant starting point.
0 MSK_STARTING_POINT_FREE
The starting point is chosen automatically.

D.50 Stream types

D.53. XML WRITER OUTPUT MODE 417

Value Name

Description
1 MSK_STREAM_MSG
Message stream.
3 MSK_STREAM_WRN
Warning stream.
0 MSK_STREAM_LOG
Log stream.
2 MSK_STREAM_ERR

Error stream.

D.51 Integer values

Value Name

Description
1024 MSK_MAX_STR_LEN

Maximum string length allowed in MOSEK.
20 MSK_LICENSE_BUFFER_LENGTH

The length of a license key buffer.

D.52 Variable types

Value Name

Description
1 MSK_VAR_TYPE_INT

Is an integer variable.
0 MSK_VAR_TYPE_CONT

Is a continuous variable.

D.53 XML writer output mode

Value Name

Description

1 MSK_WRITE_XML_MODE_COL
Write in column order.

0 MSK_WRITE_XML_MODE_ROW

continued on next page

418 APPENDIX D. SYMBOLIC CONSTANTS

continued from previous page

Write in row order.

Bibliography

1]

2]

Richard C. Grinold abd Ronald N. Kahn. Active portfolio management. McGraw-Hill,
New York, 2 edition, 2000.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. In G. L. Nemhauser, A. H.
G. Rinnooy Kan, and M. J. Todd, editors, Optimization, volume 1, pages 211-369. North
Holland, Amsterdam, 1989.

F. Alizadeh and D. Goldfarb. Second-order cone programming. Math. Programming,
95(1):3-51, 2003.

E. D. Andersen and K. D. Andersen. Presolving in linear programming. Math. Program-
ming, 71(2):221-245, 1995.

E. D. Andersen and K. D. Andersen. The MOSEK interior point optimizer for linear
programming: an implementation of the homogeneous algorithm. In J. B. G. Frenk,

C. Roos, T. Terlaky, and S. Zhang, editors, High Performance Optimization Techniques,
Proceedings of the HPOPT-II conference, 1997. forthcoming.

E. D. Andersen, J. Gondzio, Cs. Mészéaros, and X. Xu. Implementation of interior point
methods for large scale linear programming. In T. Terlaky, editor, Interior-point methods
of mathematical programming, pages 189-252. Kluwer Academic Publishers, 1996.

E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point
method for conic quadratic optimization. Math. Programming, 95(2), February 2003.

E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms. Manage-
ment Sci., 42(12):1719-1731, December 1996.

E. D. Andersen and Y. Ye. A computational study of the homogeneous algorithm for
large-scale convex optimization. Computational Optimization and Applications, 10:243—
269, 1998.

E. D. Andersen and Y. Ye. On a homogeneous algorithm for the monotone complemen-
tarity problem. Math. Programming, 84(2):375-399, February 1999.

419

420

[11]

[17]

[18]

[19]

22]

[23]

[24]

BIBLIOGRAPHY

K. D. Andersen. A Modified Schur Complement Method for Handling Dense Columns in
Interior-Point Methods for Linear Programming. ACM Trans. Math. Software, 22(3):348—
356, 1996.

M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming: Theory and
algorithms. John Wiley and Sons, New York, 2 edition, 1993.

C. Beightler and D. T. Phillips. Applied geometric programming. John Wiley and Sons,
New York, 1976.

A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems con-
taminated with uncertain data. Math. Programming, 88(3):411-424, 2000.

A. Ben-Tal and A Nemirovski. Lectures on Modern Convexr Optimization: Analysis,
Algorithms, and Engineering Applications. MPS/SIAM Series on Optimization. STAM,
2001.

S.P. Boyd, S.J. Kim, L. Vandenberghe, and A. Hassibi. A Tutorial on Geometric Pro-
gramming. Technical report, ISL, Electrical Engineering Department, Stanford Univer-
sity, Stanford, CA, 2004. Available at http://www.stanford.edu/ boyd/gp_tutorial.
html.

V. Chvatal. Linear programming. W.H. Freeman and Company, 1983.

N. Gould and P. L. Toint. Preprocessing for quadratic programming. Math. Programming,
100(1):95-132, 2004.

J. L. Kenningon and K. R. Lewis. Generalized networks: The theory of preprocessing
and an emperical analysis. INFORMS Journal on Computing, 16(2):162-173, 2004.

M. S. Lobo, L. Vanderberghe, S. Boyd, and H. Lebret. Applications of second-order cone
programming. Linear Algebra Appl., 284:193-228, November 1998.

M. S. Lobo, M. Fazel, and S. Boyd. Portfolio optimization with linear and fixed trans-
action costs. Technical report, CDS, California Institute of Technology, 2005. To appear
in Annals of Operations Research. http://www.cds.caltech.edu/ maryam/portfolio.
html.

J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, New
York, 1987.

C. Roos, T. Terlaky, and J. -Ph. Vial. Theory and algorithms for linear optimization: an
interior point approach. John Wiley and Sons, New York, 1997.

Bernd Scherer. Portfolio construction and risk budgeting. Risk Books, 2 edition, 2004.

http://www.stanford.edu/~boyd/gp_tutorial.html
http://www.stanford.edu/~boyd/gp_tutorial.html
http://www.cds.caltech.edu/~maryam/portfolio.html
http://www.cds.caltech.edu/~maryam/portfolio.html

BIBLIOGRAPHY 421

[25] R. J. Vanderbei. Linear Programming. Foundations and Extensions. Kluwer Academic
Publishers, Boston/London/Dordrect, 1997.

[26] S. W. Wallace. Decision making under uncertainty: Is sensitivity of any use. Oper. Res.,
48(1):20-25, January 2000.

[27] H. P. Williams. Model building in mathematical programming. John Wiley and Sons, 3
edition, 1993.

[28] L. A. Wolsey. Integer programming. John Wiley and Sons, 1998.

Index

MOSEK / Matlab integration, 17

absolute value, 135
alloc_add_gnz (parameter), 267

bas_sol_file name (parameter), 333
basis identification, 142
basis_rel_tol_s (parameter), 236
basis_tol_s (parameter), 236
basis_tol_x (parameter), 236
bi_clean optimizer (parameter), 267
bi_ignore max_iter (parameter), 267
bi_ignore num_error (parameter), 268
bi_lu_tol_rel piv (parameter), 236
bi_max_iterations (parameter), 268
bounds, infinite, 118

cache_size 11 (parameter), 268
cache_size_ 12 (parameter), 269
call-back, 66

iteration, 67

log, 66
callback_freq (parameter), 237
certificate

concurrent priority primal simplex (parame-

ter), 271
conic, 26
optimization, 124
problem, 124
conic modelling, 125
minimizing norms, example, 127
pitfalls, 130
quadratic objective, example, 126
risk and market impact, example
Markowitz model, example, 136
conic optimization, 26
conic quadratic optimization, 26
constraint
matrix, 117, 132, 181
quadratic, 122
constraints
lower limit, 118, 132, 181
upper limit, 118, 132, 181
continuous relaxation, 151
cpu_type (parameter), 272

data structures, 69

dual, 120 callback, 77
primal, 120 cones, 74
check_convexity (parameter), 269 duasen, 76
check_ctrl_c (parameter), 269 info, 77
check_task_data (parameter), 270 names, 74
complementarity conditions, 119 prisen, 76
concurrent optimization, 148 prob, 69
concurrent solution, 147 sol, 75
concurrent num optimizers (parameter), 270 symbcon, 77
concurrent_priority_dual simplex (parameter), data_check (parameter), 272
270 data_file_name (parameter), 333
concurrent_priority_free_simplex (parameter), data_tol_aij (parameter), 237
271 data_tol_aij-large (parameter), 237

concurrent priority_intpnt (parameter), 271 data_tol_bound_ inf (parameter), 238

422

INDEX

data_tol_bound_wrn (parameter), 238
data_tol_c_huge (parameter), 238
data_tol_cj_large (parameter), 239
data_tol_qij (parameter), 239
data_tol_x (parameter), 239
debug_file name (parameter), 334
dual certificate, 120

dual infeasible, 118, 120

duality gap (linear problem), 119
dualizer, 141

eliminator, 140
Embedded network flow problems, 146

feasible, primal, 118
feasrepair_name_wsumviol (parameter), 334
feasrepair_optimize (parameter), 273
feasrepair_tol (parameter), 239
flush_stream freq (parameter), 273

geometric optimization, 43, 110

help desk, 15
hot-start, 143

infeas_generic_names (parameter), 273
infeas prefer primal (parameter), 274
infeas_report_auto (parameter), 274
infeas report_level (parameter), 274
infeasible, 157

dual, 120

primal, 120
infeasible problems, 157
infeasible, dual, 118
infeasible, primal, 118
infinite bounds, 118
int_sol_file name (parameter), 334
integer optimization, 151

relaxation, 151
interior-point optimizer, 142, 146
interior-point or simplex optimizer, 145
intpnt_basis (parameter), 274
intpnt_co_tol_dfeas (parameter), 240
intpnt_co_tol_infeas (parameter), 240
intpnt_co_tol mu_red (parameter), 240
intpnt_co_tol near_rel (parameter), 241
intpnt_co_tol_pfeas (parameter), 241

423

intpnt_co_tol_rel_gap (parameter), 241
intpnt_diff_step (parameter), 275
intpnt_factor_debug lvl (parameter), 275
intpnt_factor_method (parameter), 276
intpnt max_iterations (parameter), 276
intpnt_max _num_cor (parameter), 276
intpnt max num refinement_steps (parameter),
277
intpnt_nl merit_bal (parameter), 242
intpnt nl_tol_dfeas (parameter), 242
intpnt nl_tol mu_red (parameter), 242
intpnt_nl_tol near_rel (parameter), 242
intpnt nl_tol_pfeas (parameter), 243
intpnt nl_tol_rel gap (parameter), 243
intpnt_nl_tol_rel_step (parameter), 243
intpnt_num threads (parameter), 277
intpnt_off_col_trh (parameter), 277
intpnt_order_method (parameter), 277
intpnt_regularization_use (parameter), 278
intpnt_scaling (parameter), 278
intpnt_solve_form (parameter), 279
intpnt_starting point (parameter), 279
intpnt_tol_dfeas (parameter), 244
intpnt_tol_dsafe (parameter), 244
intpnt_tol_infeas (parameter), 244
intpnt_tol mu_red (parameter), 244
intpnt_tol_path (parameter), 245
intpnt_tol_pfeas (parameter), 245
intpnt_tol_psafe (parameter), 245
intpnt_tol_rel_gap (parameter), 246
intpnt_tol_rel_step (parameter), 246
intpnt_tol_step_size (parameter), 246
itr_sol_file name (parameter), 334

license_allow_overuse (parameter), 279
license_cache_time (parameter), 280
license_check time (parameter), 280
license_debug (parameter), 280
license_pause_time (parameter), 281
license_suppress_expire_wrns (parameter), 281
license_wait (parameter), 281

linear dependency check, 140

Linear network flow problems, 121

linear problem, 117

linearity interval, 169

log (parameter), 282

424

log bi (parameter), 282

log bi_freq (parameter), 282

log_concurrent (parameter), 283

log_cut_second_opt (parameter), 283

log_factor (parameter), 283

log_feasrepair (parameter), 284

log_file (parameter), 284

log_head (parameter), 284

log_infeas_ana (parameter), 285

log_intpnt (parameter), 285

log mio (parameter), 285

log mio_freq (parameter), 285

log-nonconvex (parameter), 286

log_optimizer (parameter), 286

log_order (parameter), 286

log_param (parameter), 287

log_presolve (parameter), 287

log_response (parameter), 287

log_sensitivity (parameter), 287

log sensitivity_ opt (parameter), 288

log_sim (parameter), 288

log_sim_freq (parameter), 288

log_sim minor (parameter), 289

log_sim network freq (parameter), 289

log_storage (parameter), 289

lower_obj_cut (parameter), 246

lower_obj_cut_finite_trh (parameter), 247

lp_write_ignore_incompatible_items (parame-
ter), 290

max_num_warnings (parameter), 290
maxnumanz_double_trh (parameter), 290
mio_branch dir (parameter), 290
mio_branch priorities_use (parameter), 291
mio_construct_sol (parameter), 291
mio_cont_sol (parameter), 291
mio_cut_level _root (parameter), 292
mio_cut_level_tree (parameter), 293
mio_disable_term_time (parameter), 247
mio_feaspump_level (parameter), 293

mio heuristic_level (parameter), 293
mio_heuristic_time (parameter), 248
mio_keep_basis (parameter), 294
mio_local_branch number (parameter), 294
mio_max_num branches (parameter), 294
mio max num relaxs (parameter), 295

INDEX

mio_max_num_solutions (parameter), 295
miomax_time (parameter), 248
mio max_time_aprx_opt (parameter), 248
mio_mode (parameter), 295
mio_near_tol_abs_gap (parameter), 249
mio near_tol rel gap (parameter), 249
mio_node_optimizer (parameter), 296
mio_node_selection (parameter), 296
mio_presolve_aggregate (parameter), 297
mio_presolve_probing (parameter), 297
mio_presolve_use (parameter), 298
mio_rel_add _cut_limited (parameter), 249
mio_root_optimizer (parameter), 298
mio_strong branch (parameter), 298
mio_tol_abs_gap (parameter), 250
mio_tol_abs_relax_int (parameter), 250
mio_tol_rel_gap (parameter), 250
mio_tol_rel relax_int (parameter), 251
mio_tol_x (parameter), 251
mixed integer optimization, 151
modelling

absolute value, 135

in cones, 125

market impact term, 137

Markowitz portfolio optimization, 137

minimizing a sum of norms, 127

portfolio optimization, 136

transaction costs, 137
monomial, 110
MPS format, 181

BOUNDS, 188

COLUMNS, 185

free, 193

NAME, 183

OBJNAME, 184

OBJSENSE, 184

QSECTION, 187

RANGES, 186

RHS, 185

ROWS, 184
mskenopt

mskenopt, 43
mskgpopt

mskgpopt, 44
msklpopt

msklpopt, 21

INDEX

mskqpopt
mskqgpopt, 24

mskscopt
mskscopt, 48

Network flow problems
embedded, 146
fomulating, 121
optimizing, 145

nonconvex max_iterations (parameter), 299

nonconvex_tol_feas (parameter), 251
nonconvex_tol_opt (parameter), 251

objective

quadratic, 122

vector, 117
objective vector, 132
objective_sense (parameter), 299
opf _max_terms_per_line (parameter), 299
opf _write header (parameter), 300
opf _write hints (parameter), 300
opf_write_parameters (parameter), 300
opf_write_problem (parameter), 301
opf_write_sol_bas (parameter), 301
opf_write_sol_itg (parameter), 301
opf_write_sol_itr (parameter), 302
opf_write_solutions (parameter), 302
optimal solution, 119
optimization

conic, 124

integer, 151

mixed integer, 151
optimization toolbox for MATLAB, 19
optimizer (parameter), 302
optimizer max_time (parameter), 252
optimizers

concurrent, 148

conic interior-point, 146

convex interior-point, 146

linear interior-point, 142

parallel, 147

simplex, 143
Optimizing

network flow problems, 145

parallel extensions, 147
parallel interior-point, 142

parallel optimizers

interior point, 142
parallel solution, 147
param_comment_sign (parameter), 335
param read_case name (parameter), 303
param read_file name (parameter), 335
param read_ign_error (parameter), 303
param write_file name (parameter), 335
positive semi-definite, 24
posynomial, 110
posynomial optimization, 110
presolve, 139

eliminator, 140

linear dependency check, 140
presolve elim fill (parameter), 303

presolve_eliminator_use (parameter), 304

presolve_level (parameter), 304
presolve_lindep_use (parameter), 304

presolve_lindep_work_lim (parameter), 305

presolve_tol_aij (parameter), 252
presolve_tol_lin dep (parameter), 252
presolve_tol_s (parameter), 253
presolve_tol_x (parameter), 253
presolve_use (parameter), 305

primal feasible, 118

primal certificate, 120

primal infeasible, 118, 120

primal-dual solution, 118

quadratic constraint, 122
quadratic objective, 122
quadratic optimization, 121

read_add_anz (parameter), 305
read_add_con (parameter), 306
read_add_cone (parameter), 306
read_add_qnz (parameter), 306
read_add_var (parameter), 306
read_anz (parameter), 307

read_con (parameter), 307
read_cone (parameter), 307

read _data_compressed (parameter), 308
read_data_format (parameter), 308
read_keep_free_con (parameter), 308

425

read_lp_drop.new_vars_in bou (parameter), 309

read 1lp_quoted names (parameter), 309
read mps_bou name (parameter), 335

426

read mps_format (parameter), 309

read mps_keep_int (parameter), 310
read mps_obj_name (parameter), 336
read mps_obj_sense (parameter), 310
read mps_quoted_names (parameter), 310
read mps_ran name (parameter), 336
read mps_relax (parameter), 311

read mps_rhs_name (parameter), 336
read mps_width (parameter), 311
read_qg-mode (parameter), 311

read_gnz (parameter), 312
read_task_ignore_param (parameter), 312
read_var (parameter), 312

relaxation, continuous, 151

scaling, 141
sensitivity analysis, 167

basis type, 169

optimal partition type, 170
sensitivity_optimizer (parameter), 313
sensitivity_type (parameter), 313
separable convex optimization, 46
shadow price, 169
sim degen (parameter), 314
sim dual_crash (parameter), 314
sim dual restrict_selection (parameter), 314
sim_dual_selection (parameter), 315
sim hotstart (parameter), 315
sim max_iterations (parameter), 316
sim max_num_setbacks (parameter), 316
sim network_detect (parameter), 316
sim network_detect_hotstart (parameter), 317
sim network_detect_method (parameter), 317
sim non_singular (parameter), 317
sim primal_crash (parameter), 318
sim_primal_restrict_selection (parameter), 318
sim primal_selection (parameter), 318
sim refactor_freq (parameter), 319
sim_save_lu (parameter), 319
sim_scaling (parameter), 320
sim_solve_form (parameter), 320
sim_stability_priority (parameter), 320
sim switch optimizer (parameter), 321
simplex optimizer, 143
simplex_abs_tol_piv (parameter), 253
sol_filter _keep basic (parameter), 321

INDEX

sol_filter keep.ranged (parameter), 321
sol_filter_xc_low (parameter), 337
sol_filter_xc_upr (parameter), 337
sol_filter_xx_low (parameter), 337
sol_filter xx upr (parameter), 338
sol_quoted names (parameter), 322
sol_read name_width (parameter), 322
sol_read width (parameter), 322
solution, primal-dual, 118
solution, optimal, 119
solution_callback (parameter), 323
stat_file name (parameter), 338
stat_key (parameter), 338
stat_name (parameter), 339
symbolic constants
MSK_ACC_CON, 341
MSK_ACC_VAR, 341
MSK_BI_ALWAYS, 341
MSK_BI_IF_FEASIBLE, 341
MSK_BI_NEVER, 341
MSK_BI_NO_ERROR, 341
MSK_BI_OTHER, 342
MSK_BK_FR, 342
MSK_BK_FX, 342
MSK_BK_LO, 342
MSK_BK_RA, 342
MSK_BK_UP, 342
MSK_BRANCH_DIR _DOWN, 342
MSK_BRANCH_DIR_FREE, 342
MSK_BRANCH_DIR_UP, 342
MSK_CALLBACK_BEGIN_BI, 347
MSK_CALLBACK_BEGIN_CONCURRENT, 343
MSK_CALLBACK_BEGIN_CONIC, 348
MSK_CALLBACK_BEGIN_DUAL BI, 346
MSK_CALLBACK BEGIN DUAL_SENSITIVITY, 346
MSK_CALLBACK_BEGIN_DUAL_SETUP_BI, 349
MSK_CALLBACK_BEGIN_DUAL_SIMPLEX, 346
MSK_CALLBACK_BEGIN_INFEAS_ANA, 344
MSK_CALLBACK_BEGIN_INTPNT, 345
MSK_CALLBACK_BEGIN_LICENSE WAIT, 348
MSK_CALLBACK_BEGIN_MIO, 348
MSK_CALLBACK_BEGIN_NETWORK_DUAL_SIMPLEX,
344
MSK_CALLBACK_BEGIN_NETWORK_PRIMAL_SIMPLEX,
348
MSK_CALLBACK_BEGIN_NETWORK_SIMPLEX, 343

INDEX

MSK_CALLBACK_BEGIN_NONCONVEX, 347
MSK_CALLBACK_BEGIN_PRESOLVE, 348
MSK_CALLBACK_BEGIN_PRIMAL_BI, 347
MSK_CALLBACK_BEGIN_PRIMAL_SENSITIVITY, 343
MSK_CALLBACK_BEGIN_PRIMAL_SETUP_BI, 347
MSK_CALLBACK_BEGIN_PRIMAL_SIMPLEX, 346
MSK_CALLBACK_BEGIN_SIMPLEX, 343
MSK_CALLBACK_BEGIN_SIMPLEX BI, 345
MSK_CALLBACK_BEGIN_SIMPLEX _NETWORK_DETECT,
343
MSK_CALLBACK_CONIC, 348
MSK_CALLBACK DUAL_SIMPLEX, 344
MSK_CALLBACK_END_BI, 348
MSK_CALLBACK_END_CONCURRENT, 345
MSK_CALLBACK_END_CONIC, 344
MSK_CALLBACK_END_DUAL_BI, 344
MSK_CALLBACK_END_DUAL_SENSITIVITY, 344
MSK_CALLBACK_END_DUAL_SETUP_BI, 346
MSK_CALLBACK_END_DUAL_SIMPLEX, 345
MSK_CALLBACK_END_INFEAS_ANA, 347
MSK_CALLBACK_END_INTPNT, 347
MSK_CALLBACK_END_LICENSE_WAIT, 344
MSK_CALLBACK_END_MIO, 343
MSK_CALLBACK_END_NETWORK_DUAL_SIMPLEX, 345
MSK_CALLBACK_END_NETWORK_PRIMAL_SIMPLEX,
343
MSK_CALLBACK_END_NETWORK_SIMPLEX, 344
MSK_CALLBACK_END_NONCONVEX, 347
MSK_CALLBACK_END_PRESOLVE, 343
MSK_CALLBACK_END_PRIMAL BI, 347
MSK_CALLBACK_END_PRIMAL_SENSITIVITY, 343
MSK_CALLBACK_END_PRIMAL_SETUP_BI, 348
MSK_CALLBACK_END_PRIMAL_SIMPLEX, 347
MSK_CALLBACK_END_SIMPLEX, 345
MSK_CALLBACK_END_SIMPLEX_BI, 343
MSK_CALLBACK_END_SIMPLEX NETWORK_DETECT,
345
MSK_CALLBACK_IGNORE_VALUE, 343
MSK_CALLBACK_IM_BI, 348
MSK_CALLBACK_IM_CONIC, 346
MSK_CALLBACK_IM_DUAL_BI, 345
MSK_CALLBACK_IM_DUAL_SENSIVITY, 345
MSK_CALLBACK_IM DUAL_SIMPLEX, 347
MSK_CALLBACK_IM_INTPNT, 345
MSK_CALLBACK_IM_LICENSE_WAIT, 343
MSK_CALLBACK_IM_MIO, 345

427

MSK_CALLBACK_IM_MIO_DUAL_SIMPLEX, 348
MSK_CALLBACK_IM_MIQ_INTPNT, 346
MSK_CALLBACK_IM_MIO_PRESOLVE, 346
MSK_CALLBACK_IM_MIQ_PRIMAL_SIMPLEX, 346
MSK_CALLBACK_IM_NETWORK_DUAL_SIMPLEX, 344
MSK_CALLBACK_IM_NETWORK_PRIMAL_SIMPLEX, 348
MSK_CALLBACK_IM_NONCONVEX, 344
MSK_CALLBACK_IM_PRESOLVE, 346
MSK_CALLBACK_IM_PRIMAL_BI, 348
MSK_CALLBACK_IM_PRIMAL_SENSIVITY, 344
MSK_CALLBACK_IM_PRIMAL_SIMPLEX, 344
MSK_CALLBACK_IM_SIMPLEX_BI, 345
MSK_CALLBACK_INTPNT, 347
MSK_CALLBACK_NEW_INT_MIO, 343
MSK_CALLBACK_NONCOVEX, 348
MSK_CALLBACK_PRIMAL_SIMPLEX, 345
MSK_CALLBACK_QCONE, 344
MSK_CALLBACK_UPDATE_DUAL_BI, 347
MSK_CALLBACK_UPDATE_DUAL_SIMPLEX, 346
MSK_CALLBACK_UPDATE_NETWORK_DUAL_SIMPLEX,
343
MSK_CALLBACK_UPDATE_NETWORK_PRIMAL_SIMPLEX,
346
MSK_CALLBACK_UPDATE_NONCONVEX, 348
MSK_CALLBACK_UPDATE_PRESOLVE, 343
MSK_CALLBACK_UPDATE_PRIMAL_BI, 347
MSK_CALLBACK_UPDATE_PRIMAL_SIMPLEX, 347
MSK_CALLBACK_UPDATE_SIMPLEX_ BI, 346
MSK_CHECK_CONVEXITY_NONE, 349
MSK_CHECK_CONVEXITY_SIMPLE, 349
MSK_COMPRESS_FREE, 349
MSK_COMPRESS_GZIP, 349
MSK_COMPRESS_NONE, 349
MSK_CPU_AMD_ATHLON, 350
MSK_CPU_AMD_OPTERON, 350
MSK_CPU_GENERIC, 350
MSK_CPU_HP_PARISC20, 350
MSK_CPU_INTEL_CORE2, 350
MSK_CPU_INTEL_ITANIUM2, 350
MSK_CPU_INTEL_P3, 350
MSK_CPU_INTEL_P4, 350
MSK_CPU_INTEL_PM, 350
MSK_CPU_POWERPC_G5, 350
MSK_CPU_UNKNOWN, 350
MSK_CT_QUAD, 349
MSK_CT_RQUAD, 349

428

MSK_DATA_FORMAT_EXTENSION, 350
MSK_DATA_FORMAT_LP, 350
MSK_DATA_FORMAT_MBT, 351
MSK_DATA_FORMAT_MPS, 350
MSK_DATA_FORMAT_OP, 351
MSK_DATA_FORMAT_XML, 350
MSK_DINF_BI_CLEAN_CPUTIME, 355
MSK_DINF_BI_CPUTIME, 354
MSK_DINF_BI_DUAL_CPUTIME, 355
MSK_DINF_BI_PRIMAL_CPUTIME, 354
MSK_DINF_CONCURRENT_CPUTIME, 351
MSK_DINF_CONCURRENT_REALTIME, 354
MSK_DINF_INTPNT_CPUTIME, 353
MSK_DINF_INTPNT_DUAL_FEAS, 353
MSK_DINF_INTPNT_DUAL_OBJ, 352
MSK_DINF_INTPNT_FACTOR_NUM_FLOPS, 353
MSK_DINF_INTPNT_KAP_DIV_TAU, 353
MSK_DINF_INTPNT_ORDER_CPUTIME, 351
MSK_DINF_INTPNT_PRIMAL _FEAS, 351
MSK_DINF_INTPNT_PRIMAL_OBJ, 354
MSK_DINF_INTPNT_REALTIME, 352
MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ, 353
MSK_DINF_MIO_CPUTIME, 355
MSK_DINF_MIO_0BJ_ABS_GAP, 355
MSK_DINF_MIO_0BJ_BOUND, 354
MSK_DINF_MIO_OBJ_INT, 351
MSK_DINF_MIO_OBJ_REL_GAP, 352
MSK_DINF_MIO_USER_0BJ_CUT, 354
MSK_DINF_OPTIMIZER_CPUTIME, 353
MSK_DINF_OPTIMIZER REALTIME, 353
MSK_DINF_PRESOLVE_CPUTIME, 351
MSK_DINF_PRESOLVE_ELI_CPUTIME, 354
MSK_DINF_PRESOLVE_LINDEP_CPUTIME, 352
MSK_DINF_RD_CPUTIME, 351
MSK_DINF_SIM_CPUTIME, 351
MSK_DINF_SIM_FEAS, 352
MSK_DINF_SIM_0BJ, 352
MSK_DINF_SOL_BAS_DUAL_0BJ, 354
MSK_DINF_SOL_BAS_MAX_DBI, 351
MSK_DINF_SOL_BAS_MAX_DEQI, 355
MSK_DINF_SOL_BAS_MAX_PBI, 352
MSK_DINF_SOL_BAS_MAX_PEQI, 353
MSK_DINF_SOL_BAS_MAX_PINTI, 353
MSK_DINF_SOL_BAS_PRIMAL_0BJ, 352
MSK_DINF_SOL_INT_MAX_PBI, 353
MSK_DINF_SOL_INT_MAX PEQI, 354

INDEX

MSK_DINF_SOL_INT_MAX_PINTI, 353
MSK_DINF_SOL_INT_PRIMAL_0BJ, 354
MSK_DINF_SOL_ITR_DUAL_0BJ, 353
MSK_DINF_SOL_ITR-MAX_DBI, 355
MSK_DINF_SOL_ITR_MAX_DCNI, 352
MSK_DINF_SOL_ITR_MAX_DEQI, 352
MSK_DINF_SOL_ITR-MAX_PBI, 352
MSK_DINF_SOL_ITR_MAX_PCNI, 351
MSK_DINF_SOL_ITR_MAX_PEQI, 355
MSK_DINF_SOL_ITR_MAX_PINTI, 351
MSK_DINF_SOL_ITR_PRIMAL_0BJ, 354
MSK_DPAR_BASIS_REL_TOL_S, 359
MSK_DPAR_BASIS_TOL_S, 355
MSK_DPAR_BASIS_TOL_X, 359
MSK_DPAR_BI_LU_TOL_REL_PIV, 357
MSK_DPAR_CALLBACK_FREQ, 360
MSK_DPAR_DATA_TOL_AIJ, 356
MSK_DPAR_DATA_TOL_AIJ_LARGE, 356
MSK_DPAR_DATA_TOL_BOUND_INF, 359
MSK_DPAR_DATA_TOL_BOUND_WRN, 359
MSK_DPAR_DATA_TOL_C_HUGE, 358
MSK_DPAR_DATA_TOL_CJ_LARGE, 358
MSK_DPAR_DATA_TOL_QIJ, 360
MSK_DPAR_DATA _TOL X, 357
MSK_DPAR_FEASREPAIR_TOL, 357
MSK_DPAR_INTPNT_CO_TOL_DFEAS, 356
MSK_DPAR_INTPNT_CO_TOL_INFEAS, 359
MSK_DPAR_INTPNT_CO_TOL_MU_RED, 357
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL, 360
MSK_DPAR_INTPNT_CO_TOL_PFEAS, 360
MSK_DPAR_INTPNT_CO_TOL_REL_GAP, 357
MSK_DPAR_INTPNT_NL_MERIT_BAL, 359
MSK_DPAR_INTPNT_NL_TOL_DFEAS, 360
MSK_DPAR_INTPNT_NL_TOL_MU_RED, 356
MSK_DPAR_INTPNT_NL_TOL_NEAR_REL, 357
MSK_DPAR_INTPNT_NL_TOL_PFEAS, 360
MSK_DPAR_INTPNT_NL_TOL_REL_GAP, 360
MSK_DPAR_INTPNT_NL_TOL_REL_STEP, 358
MSK_DPAR_INTPNT_TOL_DFEAS, 360
MSK_DPAR_INTPNT_TOL_DSAFE, 357
MSK_DPAR_INTPNT_TOL_INFEAS, 357
MSK_DPAR_INTPNT_TOL_MU_RED, 357
MSK_DPAR_INTPNT_TOL_PATH, 359
MSK_DPAR_INTPNT_TOL_PFEAS, 358
MSK_DPAR_INTPNT_TOL_PSAFE, 359
MSK_DPAR_INTPNT_TOL_REL_GAP, 359

INDEX

MSK_DPAR_INTPNT_TOL_REL_STEP, 358
MSK_DPAR_INTPNT_TOL_STEP_SIZE, 358
MSK_DPAR_LOWER_OBJ_CUT, 358
MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH, 355
MSK_DPAR_MIO_DISABLE TERM_TIME, 358
MSK_DPAR_MIO_HEURISTIC_TIME, 356
MSK_DPAR_MIO_MAX_TIME, 355
MSK_DPAR_MIO_MAX_TIME_APRX_OPT, 359
MSK_DPAR_MIO_NEAR_TOL_ABS_GAP, 360
MSK_DPAR_MIO_NEAR_TOL_REL_GAP, 356
MSK_DPAR_MIO_REL_ADD_CUT_LIMITED, 357
MSK_DPAR_MIO_TOL_ABS_GAP, 356
MSK_DPAR_MIO_TOL_ABS_RELAX_INT, 359
MSK_DPAR_MIO_TOL_REL_GAP, 360
MSK_DPAR_MIO_TOL_REL_RELAX_INT, 360
MSK_DPAR_MIO_TOL_X, 358
MSK_DPAR_NONCONVEX_TOL_FEAS, 356
MSK_DPAR_NONCONVEX_TOL_OPT, 356
MSK_DPAR_OPTIMIZER _MAX_TIME, 357
MSK_DPAR_PRESOLVE_TOL_AIJ, 359
MSK_DPAR_PRESOLVE_TOL_LIN_DEP, 358
MSK_DPAR_PRESOLVE_TOL_S, 356
MSK_DPAR_PRESOLVE_TOL_X, 356
MSK_DPAR_SIMPLEX_ABS_TOL_PIV, 356
MSK_DPAR_UPPER_0BJ_CUT, 356
MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH, 356
MSK_FEASREPAIR_OPTIMIZE COMBINED, 361
MSK_FEASREPAIR_OPTIMIZE_NONE, 361
MSK_FEASREPAIR_OPTIMIZE_PENALTY, 361
MSK_IINF BI_ITER, 364
MSK_IINF_CACHE_SIZE_L1, 364
MSK_IINF_CACHE_SIZE_L2, 362

MSK_IINF_CONCURRENT_FASTEST_OPTIMIZER, 364

MSK_IINF_CPU_TYPE, 365
MSK_IINF_INTPNT_FACTOR_NUM_NZ, 364
MSK_IINF_INTPNT_FACTOR_NUM_OFFCOL, 364
MSK_IINF_INTPNT_ITER, 365
MSK_IINF_INTPNT_NUM_THREADS, 363
MSK_IINF_INTPNT_SOLVE_DUAL, 362
MSK_IINF_MIO_CONSTRUCT_SOLUTION, 361
MSK_IINF_MIO_INITIAL_SOLUTION, 363
MSK_IINF_MIO_NUM_ACTIVE_NODES, 362
MSK_IINF_MIO_NUM_BRANCH, 364
MSK_IINF_MIO_NUM_CUTS, 365
MSK_IINF_MIO_NUM_INT_SOLUTIONS, 365
MSK_IINF MIO_NUM_INTPNT_ITER, 364

429

MSK_IINF_MIO_NUM_RELAX, 364
MSK_IINF_MIO_NUM_SIMPLEX_ITER, 365
MSK_IINF_MIO_NUMCON, 363
MSK_IINF_MIO_NUMINT, 361
MSK_IINF_MIO_NUMVAR, 365
MSK_IINF_MIO_TOTAL_NUM_BASIS_CUTS, 366
MSK_IINF_MIO_TOTAL_NUM_BRANCH, 365
MSK_IINF_MIO_TOTAL_NUM_CARDGUB_CUTS, 364
MSK_IINF_MIO_TOTAL_NUM_CLIQUE_CUTS, 362
MSK_IINF_MIO_TOTAL_NUM_COEF_REDC_CUTS, 364
MSK_IINF_MIO_TOTAL_NUM_CONTRA_CUTS, 364
MSK_IINF_MIO_TOTAL_NUM_CUTS, 362
MSK_IINF_MIO_TOTAL_NUM_DISAGG_CUTS, 364

MSK_IINF_MIO_TOTAL_NUM_FLOW_COVER_CUTS, 365

MSK_IINF_MIO_TOTAL_NUM_GCD_CUTS, 365
MSK_IINF_MIO_TOTAL_NUM_GOMORY_CUTS, 364
MSK_IINF_MIO_TOTAL_NUM_GUB_COVER_CUTS, 363

MSK_IINF_MIO_TOTAL_NUM_KNAPSUR_COVER_CUTS,

365
MSK_IINF_MIO_TOTAL_NUM_LATTICE_CUTS, 363
MSK_IINF_MIO_TOTAL_NUM_LIFT_CUTS, 363
MSK_IINF_MIO_TOTAL_NUM_OBJ_CUTS, 363
MSK_IINF_MIO_TOTAL_NUM_PLAN_LOC_CUTS, 365
MSK_IINF_MIO_TOTAL_NUM_RELAX, 362
MSK_IINF_MIO_USER_OBJ_CUT, 364
MSK_IINF_OPT_NUMCON, 366
MSK_IINF_OPT_NUMVAR, 363
MSK_IINF_OPTIMIZE RESPONSE, 362
MSK_IINF_RD_NUMANZ, 363
MSK_IINF_RD_NUMCON, 361
MSK_IINF_RD_NUMCONE, 362
MSK_IINF_RD_NUMINTVAR, 362
MSK_IINF_RD_NUMQ, 364
MSK_IINF_RD_NUMQNZ, 365
MSK_IINF_RD_NUMVAR, 362
MSK_IINF_RD_PROTYPE, 362
MSK_IINF_SIM DUAL_DEG_ITER, 363
MSK_IINF_SIM_DUAL_HOTSTART, 365
MSK_IINF_SIM_DUAL_HOTSTART_LU, 363
MSK_IINF_SIM DUAL_INF_ITER, 365
MSK_IINF_SIM_DUAL_ITER, 365
MSK_IINF_SIM_NUMCON, 366
MSK_IINF_SIM_NUMVAR, 363
MSK_IINF_SIM_PRIMAL DEG_ITER, 365
MSK_IINF_SIM_PRIMAL_HOTSTART, 364
MSK_IINF_SIM_PRIMAL_HOTSTART_LU, 365

430

MSK_IINF_SIM_PRIMAL_INF_ITER, 361
MSK_IINF_SIM_PRIMAL_ITER, 363
MSK_IINF_SIM_SOLVE_DUAL, 362
MSK_IINF_SOL_BAS_PROSTA, 363
MSK_IINF_SOL_BAS_SOLSTA, 362
MSK_IINF_SOL_INT_PROSTA, 362
MSK_IINF_SOL_INT_SOLSTA, 362
MSK_IINF_SOL_ITR_PROSTA, 363
MSK_IINF_SOL_ITR_SOLSTA, 363
MSK_IINF_STO_NUM_A_CACHE_FLUSHES, 361
MSK_IINF_STO_NUM_A_REALLOC, 364
MSK_IINF_STO_NUM_A_TRANSPOSES, 362
MSK_INF_DOU_TYPE, 366
MSK_INF_INT_TYPE, 366
MSK_INFINITY, 361

MSK_IOMODE_READ, 366
MSK_IOMODE_READWRITE, 366
MSK_IOMODE_WRITE, 366
MSK_IPAR_ALLOC_ADD_QNZ, 380
MSK_IPAR_BI_CLEAN_OPTIMIZER, 377
MSK_IPAR_BI_IGNORE_MAX_ITER, 377
MSK_IPAR_BI_IGNORE_NUM_ERROR, 382
MSK_IPAR_BI_MAX_ITERATIONS, 375
MSK_IPAR_CACHE_SIZE_L1, 382
MSK_IPAR_CACHE_SIZE_L2, 382
MSK_IPAR_CHECK_CONVEXITY, 374
MSK_IPAR_CHECK_CTRL_C, 370
MSK_IPAR_CHECK_TASK_DATA, 374
MSK_IPAR_CONCURRENT_NUM_OPTIMIZERS, 373

MSK_IPAR_CONCURRENT_PRIORITY_DUAL_SIMPLEX,

380

MSK_IPAR_CONCURRENT_PRIORITY_FREE_SIMPLEX,

379
MSK_IPAR_CONCURRENT_PRIORITY_INTPNT, 379

MSK_IPAR_CONCURRENT_PRIORITY_PRIMAL_SIMPLEX,

376
MSK_IPAR_CPU_TYPE, 373
MSK_IPAR_DATA_CHECK, 379
MSK_IPAR_FEASREPAIR OPTIMIZE, 371
MSK_IPAR_FLUSH_STREAM FREQ, 374
MSK_IPAR_INFEAS_GENERIC_NAMES, 381
MSK_IPAR_INFEAS_PREFER_PRIMAL, 378
MSK_IPAR_INFEAS_REPORT_AUTO, 367
MSK_IPAR_INFEAS_REPORT_LEVEL, 382
MSK_IPAR_INTPNT_BASIS, 378
MSK_IPAR_INTPNT DIFF_STEP, 376

INDEX

MSK_IPAR_INTPNT_FACTOR_DEBUG_LVL, 374
MSK_IPAR_INTPNT_FACTOR_METHOD, 383
MSK_IPAR_INTPNT_MAX_ITERATIONS, 373
MSK_IPAR_INTPNT_MAX_NUM_COR, 373
MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS,
372
MSK_IPAR_INTPNT_NUM_THREADS, 380
MSK_IPAR_INTPNT_OFF_COL_TRH, 370
MSK_IPAR_INTPNT_ORDER_METHOD, 368
MSK_IPAR_INTPNT_REGULARIZATION_USE, 377
MSK_IPAR_INTPNT_SCALING, 384
MSK_IPAR_INTPNT_SOLVE_FORM, 377
MSK_IPAR_INTPNT_STARTING_POINT, 376
MSK_IPAR_LICENSE_ALLOW_OVERUSE, 378
MSK_IPAR_LICENSE_CACHE_TIME, 375
MSK_IPAR_LICENSE_CHECK_TIME, 378
MSK_IPAR_LICENSE_DEBUG, 373
MSK_IPAR_LICENSE_PAUSE_TIME, 375
MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS, 381
MSK_IPAR_LICENSE_WAIT, 373
MSK_IPAR_LOG, 376
MSK_IPAR_LOG_BI, 373
MSK_IPAR_LOG_BI_FREQ, 369
MSK_IPAR_LOG_CONCURRENT, 372
MSK_IPAR_LOG_CUT_SECOND_OPT, 378
MSK_IPAR_LOG_FACTOR, 371
MSK_IPAR_LOG_FEASREPAIR, 377
MSK_IPAR_LOG_FILE, 379
MSK_IPAR_LOG_HEAD, 383
MSK_IPAR_LOG_INFEAS_ANA, 368
MSK_IPAR_LOG_INTPNT, 374
MSK_IPAR_LOG_MIO, 374
MSK_IPAR_LOG_MIO_FREQ, 369
MSK_IPAR_LOG_NONCONVEX, 371
MSK_IPAR_LOG_OPTIMIZER, 370
MSK_IPAR_LOG_ORDER, 371
MSK_IPAR_LOG_PARAM, 374
MSK_IPAR_LOG_PRESOLVE, 370
MSK_IPAR_LOG_RESPONSE, 382
MSK_IPAR_LOG_SENSITIVITY, 368
MSK_IPAR_LOG_SENSITIVITY_OPT, 367
MSK_IPAR_LOG_SIM, 370
MSK_IPAR_LOG_SIM_FREQ, 371
MSK_IPAR_LOG_SIM_MINOR, 372
MSK_IPAR_LOG_SIM_NETWORK_FREQ, 376
MSK_IPAR_LOG_STORAGE, 378

INDEX

431

MSK_IPAR_LP_WRITE_IGNORE_INCOMPATIBLE_ITEMS, MSK_IPAR_READ_ADD_CON, 372

374
MSK_IPAR_MAX_NUM_WARNINGS, 381
MSK_IPAR_MAXNUMANZ DOUBLE_TRH, 372
MSK_IPAR_MIO_BRANCH.DIR, 374
MSK_IPAR_MIO_BRANCH_PRIORITIES_USE, 367
MSK_IPAR_MIO_CONSTRUCT_SOL, 380
MSK_IPAR_MIO_CONT_SOL, 376
MSK_IPAR_MIO_CUT_LEVEL_ROOT, 371
MSK_IPAR_MIO_CUT_LEVEL_TREE, 367
MSK_IPAR_MIO_FEASPUMP_LEVEL, 381
MSK_IPAR_MIO_HEURISTIC_LEVEL, 383
MSK_IPAR_MIO_KEEP_BASIS, 384
MSK_IPAR_MIO_LOCAL_BRANCH_NUMBER, 369
MSK_IPAR_MIO_MAX_NUM_BRANCHES, 380
MSK_IPAR_MIO_MAX_NUM_RELAXS, 383
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS, 378
MSK_IPAR_MIO_MODE, 370
MSK_IPAR_MIO_NODE_OPTIMIZER, 367
MSK_IPAR_MIO_NODE_SELECTION, 372
MSK_IPAR_MIO_PRESOLVE_AGGREGATE, 375
MSK_IPAR_MIO_PRESOLVE_PROBING, 377
MSK_IPAR_MIO_PRESOLVE_USE, 378
MSK_IPAR_MIO_ROOT_OPTIMIZER, 369
MSK_IPAR_MIO_STRONG_BRANCH, 380
MSK_IPAR_NONCONVEX_MAX_ITERATIONS, 369
MSK_IPAR_OBJECTIVE_SENSE, 376
MSK_IPAR_OPF_MAX_TERMS_PER_LINE, 377
MSK_IPAR_OPF_WRITE_HEADER, 376
MSK_IPAR_OPF_WRITE_HINTS, 380
MSK_IPAR_OPF_WRITE_PARAMETERS, 368
MSK_IPAR_OPF_WRITE_PROBLEM, 383
MSK_IPAR_OPF_WRITE_SOL_BAS, 369
MSK_IPAR_OPF_WRITE_SOL_ITG, 367
MSK_IPAR_OPF_WRITE_SOL_ITR, 368
MSK_IPAR_OPF_WRITE_SOLUTIONS, 375
MSK_IPAR_OPTIMIZER, 381
MSK_IPAR_PARAM_READ_CASE_NAME, 380
MSK_IPAR_PARAM_READ_IGN_ERROR, 376
MSK_IPAR_PRESOLVE_ELIM_FILL, 369
MSK_IPAR_PRESOLVE_ELIMINATOR_USE, 380
MSK_IPAR_PRESOLVE_LEVEL, 367
MSK_IPAR_PRESOLVE_LINDEP _USE, 375
MSK_IPAR_PRESOLVE_LINDEP_WORK_LIM, 378
MSK_IPAR_PRESOLVE_USE, 367
MSK_IPAR_READ_ADD_ANZ, 368

MSK_IPAR_READ_ADD_CONE, 367
MSK_IPAR_READ_ADD_QNZ, 370
MSK_IPAR_READ_ADD_VAR, 367
MSK_IPAR_READ_ANZ, 370
MSK_IPAR_READ_CON, 368
MSK_IPAR_READ_CONE, 381

MSK_IPAR_READ DATA_COMPRESSED, 382
MSK_IPAR_READ_DATA_FORMAT, 383
MSK_IPAR_READ_KEEP_FREE_CON, 379
MSK_IPAR_READ_LP_DROP_NEW_VARS_IN_BOU, 370
MSK_IPAR_READ_LP_QUOTED_NAMES, 371
MSK_IPAR_READ_MPS_FORMAT, 380
MSK_IPAR_READ_MPS_KEEP_INT, 378
MSK_IPAR_READ_MPS_0BJ_SENSE, 376
MSK_IPAR_READ_MPS_QUOTED_NAMES, 380
MSK_IPAR_READ_MPS_RELAX, 367
MSK_IPAR_READ_MPS_WIDTH, 371
MSK_IPAR_READ_Q_MODE, 372
MSK_IPAR_READ_QNZ, 368
MSK_IPAR_READ_TASK_IGNORE_PARAM, 374
MSK_IPAR_READ_VAR, 383
MSK_IPAR_SENSITIVITY_ALL, 377
MSK_IPAR_SENSITIVITY OPTIMIZER, 379
MSK_IPAR_SENSITIVITY_TYPE, 368
MSK_IPAR_SIM_DEGEN, 379
MSK_IPAR_SIM_DUAL_CRASH, 383
MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION, 369
MSK_IPAR_SIM_DUAL_SELECTION, 373
MSK_IPAR_SIM _HOTSTART, 374
MSK_IPAR_SIM_MAX_ITERATIONS, 373
MSK_IPAR_SIM_MAX_NUM_SETBACKS, 379
MSK_IPAR_SIM_NETWORK_DETECT, 381
MSK_IPAR_SIM_NETWORK_DETECT_HOTSTART, 375
MSK_IPAR_SIM_NETWORK_DETECT_METHOD, 383
MSK_IPAR_SIM_NON_SINGULAR, 379
MSK_IPAR_SIM_PRIMAL_CRASH, 380
MSK_IPAR_SIM_PRIMAL RESTRICT_SELECTION, 381
MSK_IPAR_SIM_PRIMAL_SELECTION, 368
MSK_IPAR_SIM_REFACTOR_FREQ, 373
MSK_IPAR_SIM_SAVE_LU, 383
MSK_IPAR_SIM_SCALING, 377
MSK_IPAR_SIM_SOLVE_FORM, 374
MSK_IPAR_SIM_STABILITY_PRIORITY, 366
MSK_IPAR_SIM_SWITCH_OPTIMIZER, 382
MSK_IPAR_SOL_FILTER KEEP_BASIC, 383

432

MSK_IPAR_SOL_FILTER_KEEP_RANGED, 377
MSK_IPAR_SOL_QUOTED_NAMES, 375
MSK_IPAR_SOL_READ_NAME_WIDTH, 373
MSK_IPAR_SOL_READ_WIDTH, 372
MSK_IPAR_SOLUTION_CALLBACK, 370
MSK_IPAR_WARNING_LEVEL, 369
MSK_IPAR_WRITE_BAS_CONSTRAINTS, 381
MSK_IPAR WRITE_BAS_HEAD, 367
MSK_IPAR_WRITE_BAS_VARIABLES, 378
MSK_IPAR_WRITE_DATA_COMPRESSED, 367
MSK_IPAR WRITE_DATA_FORMAT, 374
MSK_IPAR_WRITE_DATA_PARAM, 379
MSK_IPAR_WRITE_FREE_CON, 369
MSK_IPAR_WRITE_GENERIC_NAMES, 369
MSK_IPAR_WRITE_GENERIC_NAMES_IO, 373
MSK_IPAR_WRITE_INT_CONSTRAINTS, 368
MSK_IPAR_WRITE_INT_HEAD, 376
MSK_IPAR_WRITE_INT_VARIABLES, 368
MSK_IPAR_WRITE_LP_LINE_WIDTH, 373
MSK_IPAR_WRITE_LP_QUOTED_NAMES, 371
MSK_IPAR_WRITE_LP_STRICT_FORMAT, 368
MSK_IPAR_WRITE_LP_TERMS_PER_LINE, 377
MSK_IPAR_WRITE_MPS_INT, 379

MSK_IPAR WRITE_MPS_OBJ_SENSE, 380
MSK_IPAR_WRITE_MPS_QUOTED_NAMES, 371
MSK_IPAR_WRITE_MPS_STRICT, 367
MSK_IPAR WRITE_PRECISION, 377
MSK_IPAR_WRITE_SOL_CONSTRAINTS, 370
MSK_IPAR_WRITE_SOL_HEAD, 381
MSK_IPAR WRITE_SOL_VARIABLES, 379
MSK_IPAR_WRITE_TASK_INC_SOL, 375
MSK_IPAR_WRITE_XML_MODE, 377
MSK_LICENSE_BUFFER_LENGTH, 417
MSK_MARK_LO, 384

MSK_MARK_UP, 384

MSK_MAX_STR_LEN, 417
MSK_MIO_CONT_SOL_ITG, 384
MSK_MIO_CONT_SOL_ITG_REL, 384
MSK_MIO_CONT_SOL_NONE, 384
MSK_MIO_CONT_SOL_ROOT, 384
MSK_MIO_MODE_IGNORED, 385
MSK_MIO_MODE_LAZY, 385
MSK_MIO_MODE_SATISFIED, 385
MSK_MIO_NODE_SELECTION_BEST, 385
MSK_MIO_NODE_SELECTION_FIRST, 385
MSK_MIO_NODE_SELECTION_FREE, 385

INDEX

MSK_MIO_NODE_SELECTION_HYBRID, 385
MSK_MIO_NODE_SELECTION_PSEUDO, 385
MSK_MIO_NODE_SELECTION_WORST, 385
MSK_MPS_FORMAT_FREE, 386
MSK_MPS_FORMAT_RELAXED, 386
MSK_MPS_FORMAT_STRICT, 385
MSK_MSG_MPS_SELECTED, 386
MSK_MSG_READING_FILE, 386
MSK_MSG_WRITING_FILE, 386
MSK_NETWORK_DETECT_ADVANCED, 386
MSK_NETWORK_DETECT_FREE, 386
MSK_NETWORK_DETECT_SIMPLE, 386
MSK_OBJECTIVE_SENSE_MAXIMIZE, 387
MSK_OBJECTIVE_SENSE_MINIMIZE, 386
MSK_OBJECTIVE_SENSE_UNDEFINED, 387
MSK_OFF, 387

MSK_ON, 387
MSK_OPTIMIZER_CONCURRENT, 387
MSK_OPTIMIZER_CONIC, 387
MSK_OPTIMIZER_DUAL_SIMPLEX, 387
MSK_OPTIMIZER_FREE, 387
MSK_OPTIMIZER_FREE_SIMPLEX, 388
MSK_OPTIMIZER_INTPNT, 387
MSK_OPTIMIZER MIXED_INT, 387
MSK_OPTIMIZER_NONCONVEX, 387
MSK_OPTIMIZER_PRIMAL_SIMPLEX, 387
MSK_OPTIMIZER_QCONE, 387
MSK_ORDER_METHOD_APPMINLOC1, 388
MSK_ORDER_METHOD_APPMINLOC2, 388
MSK_ORDER_METHOD_FREE, 388
MSK_ORDER_METHOD_GRAPHPAR1, 388
MSK_ORDER_METHOD_GRAPHPAR2, 388
MSK_ORDER_METHOD_NONE, 388
MSK_PAR_DOU_TYPE, 388
MSK_PAR_INT_TYPE, 388
MSK_PAR_INVALID_TYPE, 388
MSK_PAR_STR_TYPE, 388

MSK_PI_CON, 389

MSK_PI_CONE, 389

MSK_PI_VAR, 389
MSK_PRESOLVE_MODE_FREE, 389
MSK_PRESOLVE_MODE_OFF, 389
MSK_PRESOLVE_MODE_ON, 389
MSK_PRO_STA_DUAL_FEAS, 390
MSK_PRO_STA_DUAL_INFEAS, 390
MSK_PRO_STA_ILL_POSED, 390

INDEX

MSK_PRO_STA_NEAR_DUAL_FEAS, 390
MSK_PRO_STA_NEAR_PRIM_AND_DUAL_FEAS, 390
MSK_PRO_STA_NEAR_PRIM_FEAS, 390
MSK_PRO_STA_PRIM_AND_DUAL_FEAS, 390
MSK_PRO_STA_PRIM_AND_DUAL_INFEAS, 390
MSK_PRO_STA_PRIM_FEAS, 390
MSK_PRO_STA_PRIM_INFEAS, 390

MSK_PRO_STA_PRIM_INFEAS_OR_UNBOUNDED, 390

MSK_PRO_STA_UNKNOWN, 390
MSK_PROBTYPE_CONIC, 389
MSK_PROBTYPE_GECO, 389
MSK_PROBTYPE_LO, 389
MSK_PROBTYPE_MIXED, 389
MSK_PROBTYPE_QCQQO, 389
MSK_PROBTYPE_QO, 389

MSK_Q-READ_ADD, 390
MSK_Q-READ_DROP_LOWER, 391
MSK_Q_READ_DROP_UPPER, 391
MSK_RES_ERR_API_ARRAY_TOO_SMALL, 399
MSK_RES_ERR_API_CALLBACK, 401
MSK_RES_ERR_API_CB_CONNECT, 403
MSK_RES_ERR_API_FATAL_ERROR, 398
MSK_RES_ERR_API_INTERNAL, 401
MSK_RES_ERR_API_NL_DATA, 391
MSK_RES_ERR_ARGUMENT_DIMENSION, 405
MSK_RES_ERR_ARGUMENT_LENNEQ, 402
MSK_RES_ERR_ARGUMENT_PERM_ARRAY, 394
MSK_RES_ERR_ARGUMENT_TYPE, 394
MSK_RES_ERR_BASIS, 407
MSK_RES_ERR_BASIS FACTOR, 404
MSK_RES_ERR_BASIS_SINGULAR, 403
MSK_RES_ERR_CANNOT_CLONE_NL, 391
MSK_RES_ERR_CANNOT_HANDLE NL, 397
MSK_RES_ERR_CON_Q_NOT_NSD, 400
MSK_RES_ERR_CON_Q_NOT_PSD, 394
MSK_RES_ERR_CONCURRENT_OPTIMIZER, 402
MSK_RES_ERR_CONE_INDEX, 396
MSK_RES_ERR_CONE_OVERLAP, 402
MSK_RES_ERR_CONE_REP_VAR, 397
MSK_RES_ERR_CONE_SIZE, 407
MSK_RES_ERR_CONE_TYPE, 401
MSK_RES_ERR_CONE_TYPE_STR, 407
MSK_RES_ERR_DATA_FILE_EXT, 394
MSK_RES_ERR_DUP_NAME, 403
MSK_RES_ERR_END_OF_FILE, 394
MSK_RES_ERR_FACTOR, 395

433

MSK_RES_ERR_FEASREPAIR_CANNOT_RELAX, 393

MSK_RES_ERR_FEASREPAIR_INCONSISTENT_BOUND,

401

MSK_RES_ERR_FEASREPAIR_SOLVING_RELAXED, 398

MSK_RES_ERR_FILE_LICENSE, 404
MSK_RES_ERR_FILE_OPEN, 397
MSK_RES_ERR_FILE_READ, 398
MSK_RES_ERR_FILE_WRITE, 397
MSK_RES_ERR_FIRST, 408
MSK_RES_ERR_FIRSTI, 394
MSK_RES_ERR_FIRSTJ, 394
MSK_RES_ERR_FLEXLM, 408
MSK_RES_ERR_HUGE_C, 408
MSK_RES_ERR_IDENTICAL_TASKS, 402
MSK_RES_ERR_IN_ARGUMENT, 402
MSK_RES_ERR_INDEX, 392
MSK_RES_ERR_INDEX_ARR_IS_TOO_LARGE, 407
MSK_RES_ERR_INDEX_ARR_IS_TO0_SMALL, 398
MSK_RES_ERR_INDEX_IS_TOO_LARGE, 393
MSK_RES_ERR_INDEX_IS_TOO_SMALL, 391
MSK_RES_ERR_INF_DOU_INDEX, 394
MSK_RES_ERR_INF_DOU_NAME, 409
MSK_RES_ERR_INF_INT_INDEX, 398
MSK_RES_ERR_INF_INT_NAME, 401
MSK_RES_ERR_INF_TYPE, 397
MSK_RES_ERR_INFINITE_BOUND, 399
MSK_RES_ERR_INTERNAL, 392
MSK_RES_ERR_INTERNAL_TEST_FAILED, 403
MSK_RES_ERR_INV_APTRE, 403
MSK_RES_ERR_INV_BK, 408
MSK_RES_ERR_INV_BKC, 401
MSK_RES_ERR_INV_BKX, 407
MSK_RES_ERR_INV_CONE_TYPE, 400
MSK_RES_ERR_INV_CONE_TYPE_STR, 404
MSK_RES_ERR_INV_MARKI, 409
MSK_RES_ERR_INV_MARKJ, 409
MSK_RES_ERR_INV_NAME_ITEM, 400
MSK_RES_ERR_INV_NUMI, 395
MSK_RES_ERR_INV_NUMJ, 395
MSK_RES_ERR_INV_OPTIMIZER, 398
MSK_RES_ERR_INV_PROBLENM, 391
MSK_RES_ERR_INV_QCON_SUBI, 406
MSK_RES_ERR_INV_QCON_SUBJ, 393
MSK_RES_ERR_INV_QCON_SUBK, 393
MSK_RES_ERR_INV_QCON_VAL, 396
MSK_RES_ERR_INV_QOBJ_SUBI, 402

434

MSK_RES_ERR_INV_QOBJ_SUBJ, 402
MSK_RES_ERR_INV_QOBJ_VAL, 405
MSK_RES_ERR_INV_SK, 406
MSK_RES_ERR_INV_SK_STR, 403
MSK_RES_ERR_INV_SKC, 392
MSK_RES_ERR_INV_SKN, 392
MSK_RES_ERR_INV_SKX, 391
MSK_RES_ERR_INV_VAR_TYPE, 407
MSK_RES_ERR_INVALID_ACCMODE, 399
MSK_RES_ERR_INVALID_AMPL_STUB, 405
MSK_RES_ERR_INVALID BRANCH_DIRECTION, 401
MSK_RES_ERR_INVALID_BRANCH_PRIORITY, 395
MSK_RES_ERR_INVALID_COMPRESSION, 403
MSK_RES_ERR_INVALID_FILE_NAME, 397
MSK_RES_ERR_INVALID_FORMAT_TYPE, 404
MSK_RES_ERR_INVALID_IOMODE, 400
MSK_RES_ERR_INVALID_MBT_FILE, 400
MSK_RES_ERR_INVALID_NAME_IN_SOL_FILE, 391
MSK_RES_ERR_INVALID_0BJ_NAME, 397
MSK_RES_ERR_INVALID_0BJECTIVE_SENSE, 403
MSK_RES_ERR_INVALID_SOL_FILE_NAME, 404
MSK_RES_ERR_INVALID_STREAM, 399
MSK_RES_ERR_INVALID_TASK, 398
MSK_RES_ERR_INVALID UTF8, 409
MSK_RES_ERR_INVALID_WCHAR, 394
MSK_RES_ERR_LAST, 399

MSK_RES_ERR_LASTI, 394
MSK_RES_ERR_LASTJ, 392
MSK_RES_ERR_LICENSE, 394
MSK_RES_ERR_LICENSE_CANNOT_ALLOCATE, 402
MSK_RES_ERR_LICENSE_CANNOT_CONNECT, 408
MSK_RES_ERR_LICENSE_EXPIRED, 392
MSK_RES_ERR_LICENSE_FEATURE, 398
MSK_RES_ERR_LICENSE_INVALID_HOSTID, 400
MSK_RES_ERR_LICENSE_MAX, 400
MSK_RES_ERR_LICENSE_MOSEKLM_DAEMON, 394
MSK_RES_ERR_LICENSE_SERVER, 406
MSK_RES_ERR_LICENSE_SERVER_VERSION, 400
MSK_RES_ERR_LICENSE_VERSION, 407
MSK_RES_ERR_LINK_FILE DLL, 398
MSK_RES_ERR_LP_DUP_SLACK_NAME, 395
MSK_RES_ERR_LP_EMPTY, 399
MSK_RES_ERR_LP_FILE_FORMAT, 408
MSK_RES_ERR_LP_FORMAT, 404
MSK_RES_ERR_LP_FREE_CONSTRAINT, 403
MSK_RES_ERR_LP_INCOMPATIBLE, 393

INDEX

MSK_RES_ERR_LP_INVALID_VAR_NAME, 393
MSK_RES_ERR_LP_WRITE_CONIC_PROBLEM, 395
MSK_RES_ERR_LP_WRITE_GECO_PROBLEM, 397
MSK_RES_ERR_LU_MAX_NUM_TRIES, 392
MSK_RES_ERR_MAXNUMANZ, 406
MSK_RES_ERR_MAXNUMCON, 395
MSK_RES_ERR_MAXNUMCONE, 396
MSK_RES_ERR_MAXNUMQNZ, 397
MSK_RES_ERR_MAXNUMVAR, 402
MSK_RES_ERR_MBT_INCOMPATIBLE, 408
MSK_RES_ERR_MIO_NO_OPTIMIZER, 391
MSK_RES_ERR_MIO_NOT_LOADED, 402
MSK_RES_ERR_MISSING_LICENSE_FILE, 392
MSK_RES_ERR_MIXED_PROBLEM, 393
MSK_RES_ERR_MPS_CONE_OVERLAP, 404
MSK_RES_ERR_MPS_CONE_REPEAT, 405
MSK_RES_ERR_MPS_CONE_TYPE, 408
MSK_RES_ERR_MPS_FILE, 395
MSK_RES_ERR_MPS_INV_BOUND_KEY, 407
MSK_RES_ERR_MPS_INV_CON_KEY, 401
MSK_RES_ERR_MPS_INV_FIELD, 403
MSK_RES_ERR_MPS_INV_MARKER, 406
MSK_RES_ERR_MPS_INV_SEC_NAME, 407
MSK_RES_ERR_MPS_INV_SEC_ORDER, 400
MSK_RES_ERR_MPS_INVALID_0BJ_NAME, 407
MSK_RES_ERR_MPS_INVALID_OBJSENSE, 403
MSK_RES_ERR_MPS_MUL_CON_NAME, 400
MSK_RES_ERR_MPS_MUL_CSEC, 403
MSK_RES_ERR_MPS_MUL_QOBJ, 391
MSK_RES_ERR_MPS_MUL_QSEC, 406
MSK_RES_ERR_MPS_NO_OBJECTIVE, 399
MSK_RES_ERR_MPS_NULL_CON_NAME, 396
MSK_RES_ERR_MPS_NULL_VAR_NAME, 400
MSK_RES_ERR_MPS_SPLITTED_VAR, 405
MSK_RES_ERR_MPS_TAB_IN_FIELD2, 396
MSK_RES_ERR_MPS_TAB_IN_FIELD3, 408
MSK_RES_ERR_MPS_TAB_IN_FIELD5, 397
MSK_RES_ERR_MPS_UNDEF_CON_NAME, 409
MSK_RES_ERR_MPS_UNDEF_VAR_NAME, 397
MSK_RES_ERR_MUL_A_ELEMENT, 391
MSK_RES_ERR_NAME_MAX_LEN, 408
MSK_RES_ERR_NAN_IN_BLC, 405
MSK_RES_ERR_NAN_IN BLX, 405
MSK_RES_ERR_NAN_IN_BUC, 394
MSK_RES_ERR_NAN_IN_BUX, 407
MSK_RES_ERR_NAN_IN_C, 396

INDEX

MSK_RES_ERR_NAN_IN_DOUBLE_DATA, 402
MSK_RES_ERR_NEGATIVE_APPEND, 406
MSK_RES_ERR_NEGATIVE_SURPLUS, 393
MSK_RES_ERR_NEWER_DLL, 406
MSK_RES_ERR_NO_BASIS_SOL, 397
MSK_RES_ERR_NO_DUAL_FOR_ITG_SOL, 393
MSK_RES_ERR_NO_DUAL_INFEAS_CER, 401
MSK_RES_ERR_NO_INIT_ENV, 392
MSK_RES_ERR_NO_OPTIMIZER_VAR_TYPE, 409
MSK_RES_ERR_NO_PRIMAL_INFEAS_CER, 396
MSK_RES_ERR_NO_SOLUTION_IN_CALLBACK, 409
MSK_RES_ERR_NONCONVEX, 396
MSK_RES_ERR_NONLINEAR_EQUALITY, 394
MSK_RES_ERR_NONLINEAR_RANGED, 395
MSK_RES_ERR_NR_ARGUMENTS, 394
MSK_RES_ERR_NULL_ENV, 403
MSK_RES_ERR_NULL_NAME, 406
MSK_RES_ERR_NULL_POINTER, 398
MSK_RES_ERR_NULL_TASK, 402
MSK_RES_ERR_NUMCONLIM, 399
MSK_RES_ERR_NUMVARLIM, 396
MSK_RES_ERR_0BJ_Q_NOT_NSD, 398
MSK_RES_ERR_0BJ_Q_NOT_PSD, 392
MSK_RES_ERR_OBJECTIVE_RANGE, 405
MSK_RES_ERR_OLDER_DLL, 404
MSK_RES_ERR_OPEN_DL, 399
MSK_RES_ERR_OPF_FORMAT, 403
MSK_RES_ERR_OPTIMIZER_LICENSE, 404
MSK_RES_ERR_ORD_INVALID, 397
MSK_RES_ERR_ORD_INVALID BRANCH_DIR, 408
MSK_RES_ERR_PARAM_INDEX, 394
MSK_RES_ERR_PARAM_IS_TOO_LARGE, 404
MSK_RES_ERR_PARAM_IS_TOO_SMALL, 395
MSK_RES_ERR_PARAM_NAME, 393
MSK_RES_ERR_PARAM_NAME_DQU, 396
MSK_RES_ERR_PARAM_NAME_INT, 393
MSK_RES_ERR_PARAM_NAME_STR, 398
MSK_RES_ERR_PARAM_TYPE, 391
MSK_RES_ERR_PARAM_VALUE_STR, 407
MSK_RES_ERR_PLATFORM_NOT_LICENSED, 404
MSK_RES_ERR_POSTSOLVE, 404
MSK_RES_ERR_PRO_ITEM, 404
MSK_RES_ERR_PROB_LICENSE, 406
MSK_RES_ERR_QCON_SUBI_TOO0_LARGE, 406
MSK_RES_ERR_QCON_SUBI_TOO_SMALL, 404
MSK_RES_ERR_QCON_UPPER_TRIANGLE, 396

435

MSK_RES_ERR_QOBJ_UPPER_TRIANGLE, 397
MSK_RES_ERR_READ_FORMAT, 394
MSK_RES_ERR_READ_LP_NONEXISTING_NAME, 395
MSK_RES_ERR_REMOVE_CONE_VARIABLE, 398
MSK_RES_ERR_SEN_BOUND_INVALID_LO, 405
MSK_RES_ERR_SEN_BOUND_INVALID_UP, 401
MSK_RES_ERR_SEN_FORMAT, 396
MSK_RES_ERR_SEN_INDEX_INVALID, 392
MSK_RES_ERR_SEN_INDEX_RANGE, 396
MSK_RES_ERR_SEN_INVALID_REGEXP, 393
MSK_RES_ERR_SEN_NUMERICAL, 392
MSK_RES_ERR_SEN_SOLUTION_STATUS, 393
MSK_RES_ERR_SEN_UNDEF_NAME, 405
MSK_RES_ERR_SIZE_LICENSE, 408
MSK_RES_ERR_SIZE_LICENSE_CON, 404
MSK_RES_ERR_SIZE_LICENSE_INTVAR, 409
MSK_RES_ERR_SIZE_LICENSE_VAR, 399
MSK_RES_ERR_SOL_FILE_NUMBER, 405
MSK_RES_ERR_SOLITEM, 404
MSK_RES_ERR_SOLVER_PROBTYPE, 398
MSK_RES_ERR_SPACE, 402
MSK_RES_ERR_SPACE_LEAKING, 405
MSK_RES_ERR_SPACE_NO_INFO, 393
MSK_RES_ERR_THREAD_COND_INIT, 406
MSK_RES_ERR_THREAD_CREATE, 407
MSK_RES_ERR_THREAD_MUTEX_INIT, 400
MSK_RES_ERR_THREAD MUTEX_LOCK, 399
MSK_RES_ERR_THREAD_MUTEX_UNLOCK, 395
MSK_RES_ERR_TOO_SMALL_MAXNUMANZ, 402
MSK_RES_ERR_UNB_STEP_SIZE, 399
MSK_RES_ERR_UNDEF_SOLUTION, 392
MSK_RES_ERR_UNDEFINED_OBJECTIVE_SENSE, 408
MSK_RES_ERR_UNKNOWN, 395
MSK_RES_ERR_USER_FUNC_RET, 400
MSK_RES_ERR_USER_FUNC_RET_DATA, 403
MSK_RES_ERR_USER_NLO_EVAL, 396
MSK_RES_ERR_USER_NLO_EVAL_HESSUBI, 398
MSK_RES_ERR_USER_NLO_EVAL_HESSUBJ, 399
MSK_RES_ERR_USER_NLO_FUNC, 393
MSK_RES_ERR_WHICHITEM_NOT_ALLOWED, 405
MSK_RES_ERR_WHICHSOL, 405
MSK_RES_ERR_WRITE_LP_FORMAT, 396
MSK_RES_ERR_WRITE_LP_NON_UNIQUE_NAME, 407
MSK_RES_ERR_WRITE_MPS_INVALID_NAME, 402
MSK_RES_ERR_WRITE_OPF_INVALID_VAR_NAME, 395
MSK_RES_ERR_XML_INVALID PROBLEM_TYPE, 401

436

MSK_RES_ERR_Y_IS_UNDEFINED, 401
MSK_RES_OK, 403

MSK_RES_TRM_INTERNAL, 399
MSK_RES_TRM_INTERNAL_STOP, 408
MSK_RES_TRM_MAX_ITERATIONS, 395
MSK_RES_TRM_MAX_NUM_SETBACKS, 401
MSK_RES_TRM_MAX_TIME, 405
MSK_RES_TRM_MIO_NEAR_ABS_GAP, 391
MSK_RES_TRM_MIO_NEAR_REL_GAP, 406
MSK_RES_TRM_MIO_NUM_BRANCHES, 400
MSK_RES_TRM_MIO_NUM_RELAXS, 401
MSK_RES_TRM_NUM_MAX_NUM_INT_SOLUTIONS, 396
MSK_RES_TRM_NUMERICAL_PROBLEM, 401
MSK_RES_TRM_OBJECTIVE_RANGE, 408
MSK_RES_TRM_STALL, 407
MSK_RES_TRM_USER_BREAK, 406
MSK_RES_TRM_USER_CALLBACK, 400
MSK_RES_WRN_DROPPED_NZ_QOBJ, 392
MSK_RES_WRN_ELIMINATOR_SPACE, 406
MSK_RES_WRN_EMPTY_NAME, 406
MSK_RES_WRN_FIXED_BOUND_VALUES, 405
MSK_RES_WRN_IGNORE_INTEGER, 397
MSK_RES_WRN_LARGE_AIJ, 398
MSK_RES_WRN_LARGE_BOUND, 403
MSK_RES_WRN_LARGE_CJ, 404
MSK_RES_WRN_LARGE_LO_BOUND, 401
MSK_RES_WRN_LARGE_UP_BOUND, 400
MSK_RES_WRN_LICENSE_EXPIRE, 402
MSK_RES_WRN_LICENSE_FEATURE_EXPIRE, 393
MSK_RES_WRN_LICENSE_SERVER, 403
MSK_RES_WRN_LP_DROP_VARIABLE, 394
MSK_RES_WRN_LP_OLD_QUAD_FORMAT, 406
MSK_RES_WRN_MIO_INFEASIBLE_FINAL, 396
MSK_RES_WRN_MPS_SPLIT_BOU_VECTOR, 400
MSK_RES_WRN_MPS_SPLIT_RAN_VECTOR, 405
MSK_RES_WRN_MPS_SPLIT_RHS_VECTOR, 401
MSK_RES_WRN_NAME_MAX_LEN, 408
MSK_RES_WRN_NO_GLOBAL_OPTIMIZER, 398

INDEX

MSK_RES_WRN_TOO_FEW_BASIS_VARS, 407
MSK_RES_WRN_TOO_MANY_BASIS_VARS, 393
MSK_RES_WRN_UNDEF_SOL_FILE_NAME, 408
MSK_RES_WRN_USING_GENERIC_NAMES, 397
MSK_RES_WRN_WRITE_DISCARDED_CFIX, 397
MSK_RES_WRN_ZERO_AIJ, 395
MSK_RES_WRN_ZEROS_IN_SPARSE_DATA, 404
MSK_RESPONSE_ERR, 409
MSK_RESPONSE_OK, 409
MSK_RESPONSE_TRM, 409
MSK_RESPONSE_UNK, 409
MSK_RESPONSE_WRN, 409
MSK_SCALING_AGGRESSIVE, 410
MSK_SCALING_FREE, 410
MSK_SCALING_MODERATE, 410
MSK_SCALING_NONE, 410
MSK_SENSITIVITY_TYPE_BASIS, 410
MSK_SENSITIVITY_TYPE_OPTIMAL_PARTITION, 410
MSK_SIM_DEGEN_AGGRESSIVE, 410
MSK_SIM_DEGEN_FREE, 410
MSK_SIM_DEGEN_MINIMUM, 410
MSK_SIM_DEGEN_MODERATE, 410
MSK_SIM_DEGEN_NONE, 410
MSK_SIM_HOTSTART_FREE, 411
MSK_SIM_HOTSTART_NONE, 411
MSK_SIM_HOTSTART_STATUS_KEYS, 411
MSK_SIM_SELECTION_ASE, 411
MSK_SIM_SELECTION_DEVEX, 411
MSK_SIM_SELECTION_FREE, 411
MSK_SIM_SELECTION_FULL, 411

MSK_SIM SELECTION_PARTIAL, 411
MSK_SIM_SELECTION_SE, 411
MSK_SK_BAS, 416

MSK_SK_FIX, 416

MSK_SK_INF, 416

MSK_SK_LOW, 416

MSK_SK_SUPBAS, 416

MSK_SK_UNK, 416

MSK_RES_WRN_NONCOMPLETE_LINEAR DEPENDENCY_CHEMEK_SK_UPR, 416

392
MSK_RES_WRN_NZ_IN_UPR_TRI, 393
MSK_RES_WRN_OPEN_PARAM_FILE, 403
MSK_RES_WRN_PRESOLVE_BAD_PRECISION, 391
MSK_RES_WRN_PRESOLVE_OUTOFSPACE, 408
MSK_RES_WRN_SOL_FILTER, 399
MSK_RES_WRN_SPAR_MAX_LEN, 396

MSK_SOL_BAS, 413
MSK_SOL_ITEM_SLC, 412
MSK_SOL_ITEM_SLX, 412
MSK_SOL_ITEM_SNX, 412
MSK_SOL_ITEM_SUC, 411
MSK_SOL_ITEM_SUX, 412
MSK_SOL_ITEM_XC, 411

INDEX

MSK_SOL_ITEM XX, 412

MSK_SOL_ITEM.Y, 412

MSK_SOL_ITG, 413

MSK_SOL_ITR, 413
MSK_SOL_STA_DUAL_FEAS, 413
MSK_SOL_STA_DUAL_INFEAS_CER, 412
MSK_SOL_STA_INTEGER_OPTIMAL, 412
MSK_SOL_STA_NEAR_DUAL_FEAS, 412
MSK_SOL_STA_NEAR_DUAL_INFEAS_CER, 412
MSK_SOL_STA_NEAR_INTEGER_OPTIMAL, 412
MSK_SOL_STA_NEAR_OPTIMAL, 412
MSK_SOL_STA_NEAR_PRIM_AND_DUAL_FEAS, 413
MSK_SOL_STA_NEAR_PRIM_FEAS, 413
MSK_SOL_STA_NEAR_PRIM_INFEAS_CER, 412
MSK_SOL_STA_OPTIMAL, 413
MSK_SOL_STA_PRIM_AND_DUAL_FEAS, 413
MSK_SOL_STA_PRIM_FEAS, 412
MSK_SOL_STA_PRIM_INFEAS_CER, 412
MSK_SOL_STA_UNKNOWN, 412
MSK_SOLVE_DUAL, 413

MSK_SOLVE_FREE, 413

MSK_SOLVE_PRIMAL, 413
MSK_SPAR_BAS_SOL_FILE_NAME, 414
MSK_SPAR DATA _FILE_NAME, 414
MSK_SPAR_DEBUG_FILE_NAME, 415
MSK_SPAR_FEASREPAIR_NAME_PREFIX, 414
MSK_SPAR_FEASREPAIR NAME_SEPARATOR, 414
MSK_SPAR_FEASREPAIR_NAME_WSUMVIOL, 414
MSK_SPAR_INT_SOL_FILE_NAME, 414
MSK_SPAR_ITR_SOL_FILE_NAME, 415
MSK_SPAR_PARAM_COMMENT_SIGN, 414
MSK_SPAR_PARAM_READ _FILE_NAME, 415
MSK_SPAR_PARAM WRITE_FILE_NAME, 414
MSK_SPAR_READ_MPS_BOU_NAME, 415
MSK_SPAR_READ_MPS_OBJ_NAME, 414
MSK_SPAR_READ_MPS_RAN_NAME, 414
MSK_SPAR_READ_MPS_RHS_NAME, 414
MSK_SPAR_SENSITIVITY_FILE_NAME, 415
MSK_SPAR_SENSITIVITY_RES_FILE_NAME, 415
MSK_SPAR_SOL_FILTER_XC_LOW, 414
MSK_SPAR_SOL_FILTER_XC_UPR, 415
MSK_SPAR_SOL_FILTER_XX_LOW, 415
MSK_SPAR_SOL_FILTER_XX_UPR, 415
MSK_SPAR_STAT_FILE_NAME, 414
MSK_SPAR_STAT KEY, 415
MSK_SPAR_STAT_NAME, 415

437

MSK_SPAR_WRITE_LP_GEN_VAR_NAME, 414
MSK_STARTING_POINT_CONSTANT, 416
MSK_STARTING_POINT_FREE, 416
MSK_STREAM_ERR, 417
MSK_STREAM_LOG, 417
MSK_STREAM_MSG, 417
MSK_STREAM_WRN, 417
MSK_VAR_TYPE_CONT, 417
MSK_VAR_TYPE_INT, 417
MSK_WRITE_XML_MODE_COL, 417
MSK_WRITE_XML_MODE_ROW, 417

upper_obj_cut (parameter), 253
upper_obj_cut_finite_trh (parameter), 254

variables
decision, 117, 132, 181
lower limit, 118, 132, 181
upper limit, 118, 132, 181

warning level (parameter), 323

write bas_constraints (parameter), 323
write_bas_head (parameter), 324
write_bas_variables (parameter), 324
write_data_compressed (parameter), 324
write_data_format (parameter), 325
write_data_param (parameter), 325
write_free_con (parameter), 325
write_generic names (parameter), 326
write_generic names_io (parameter), 326
write_int_constraints (parameter), 326
write_int_head (parameter), 327
write_int_variables (parameter), 327
write_lp_gen var name (parameter), 339
write_ lp_line width (parameter), 327
write_lp_quoted names (parameter), 327
write_lp_strict_format (parameter), 328
write_lp_terms_per_line (parameter), 328
write mps_int (parameter), 328

write mps_obj_sense (parameter), 329
write mps_quoted names (parameter), 329
write mps_strict (parameter), 329
write_precision (parameter), 330
write_sol_constraints (parameter), 330
write_sol head (parameter), 330
write_sol_variables (parameter), 331
write_task_inc_sol (parameter), 331

438 INDEX

write_xml mode (parameter), 331

	Changes and new features in MOSEK
	File formats
	Optimizers
	API changes
	License system
	Other changes
	Interfaces
	Supported platforms

	Introduction
	What is optimization
	Why you need the MOSEK optimization toolbox
	Features of the MOSEK optimization toolbox

	Comparison with the MATLAB optimization toolbox

	Installation
	Locating the toolbox functions
	On Windows
	On Linux/UNIX/MAC OSX
	Permanently changing matlabpath

	Verifying MOSEK works
	Troubleshooting
	??? Undefined function or variable 'mosekopt'
	libgcc_s.so.1 must be installed for pthread_cancel to work
	Compiling with the MATLAB compiler
	Shadows the M-file
	Cannot find authentication file

	Getting support and help
	MOSEK documentation
	Additional reading

	MOSEK / MATLAB integration
	MOSEK replacements for MATLAB functions
	The license system

	A guided tour
	Introduction
	The tour starts
	The MOSEK terminolgy
	Linear optimization
	Using msklpopt
	Using mosekopt

	Convex quadratic optimization
	Two important assumptions
	Using mskqpopt
	Using mosekopt

	Conic optimization
	The conic optimization problem
	Solving an example
	Quadratic and conic optimization
	Conic duality and the dual solution
	Setting accuracy parameters for the conic optimizer

	Quadratically constrained optimization
	Linear least squares and related norm minimization problems
	The case of the 2 norm
	The case of the infinity norm
	The case of the one norm

	More about solving linear least squares problems
	Using conic optimization linear least squares problems

	Entropy optimization
	Using mskenopt

	Geometric optimization
	Using mskgpopt
	Comments

	Separable convex optimization
	Using mskscopt

	Mixed integer optimization
	Solving an example
	Speeding up the solution of a mixed integer problem

	Sensitivity analysis
	The solutions
	The constraint and variable status keys

	Viewing the task information
	Inspecting and setting parameters
	Advanced start (warmstart)
	Some examples using warmstart
	Adding a new variable
	Fixing a variable
	Adding a new constraint
	Using numeric values to represent status key codes

	Using names
	Blanks in names

	MPS files
	Reading a MPS file
	Writing a MPS files

	User call-back functions
	Controlling log printing via call-back
	The iteration call-back function

	Command reference
	Data structures
	prob
	names
	cones
	sol
	prisen
	duasen
	info
	symbcon
	callback

	An example of a command reference
	Functions provided by the MOSEK optimization toolbox
	MATLAB optimization toolbox compatible functions
	For linear and quadratic optimization
	For linear least squares problems
	The optimization options

	Case studies
	Robust linear optimization
	Introductory example
	Data uncertainty and its consequences.
	Robust linear optimization methodology
	Random uncertainty and Ellipsoidal Robust Counterpart
	Further references

	Geometric (posynomial) optimization
	The problem
	Applications
	Modelling tricks
	Problematic formulations
	An example
	Solving the example
	Exporting to a file
	Further information

	Modelling
	Linear optimization
	Duality for linear optimization
	Primal and dual infeasible case

	Linear network flow problems
	Quadratic and quadratically constrained optimization
	A general recommendation
	Reformulating as a separable quadratic problem

	Conic optimization
	Duality for conic optimization
	The dual of the dual
	Infeasibility
	Examples
	Potential pitfalls in conic optimization

	Nonlinear convex optimization
	Duality

	Recommendations
	Avoid nearly infeasible models

	Examples continued
	The absolute value
	The Markowitz portfolio model

	The optimizers for continuous problems
	How an optimizer works
	Presolve
	Dualizer
	Scaling
	Using multiple CPU's

	Linear optimization
	Optimizer selection
	The interior-point optimizer
	The simplex based optimizer
	The interior-point or the simplex optimizer?
	The primal or the dual simplex variant?

	Linear network optimization
	Network flow problems
	Embedded network problems

	Conic optimization
	The interior-point optimizer

	Nonlinear convex optimization
	The interior-point optimizer

	Solving problems in parallel
	Thread safety
	The parallelized interior-point optimizer
	The concurrent optimizer
	A more flexible concurrent optimizer

	The optimizer for mixed integer problems
	Some notation
	An important fact about integer optimization problems
	How the integer optimizer works
	Presolve
	Heuristic
	The optimization phase

	Termination criterion
	How to speed up the solution process

	Analyzing infeasible problems
	Example: Primal infeasibility
	Locating the cause of primal infeasibility
	Locating the cause of dual infeasibility
	The infeasibility report

	Theory concerning infeasible problems
	Certificat of primal infeasibility
	Certificat of dual infeasibility

	Sensitivity analysis
	Introduction
	Restrictions
	References
	Sensitivity analysis for linear problems
	The optimal objective value function
	The basis type sensitivity analysis
	The optimal partition type sensitivity analysis
	An example

	Sensitivity analysis in the MATLAB toolbox
	On bounds
	Selecting analysis type
	An example

	The MPS file format
	The MPS file format
	An example
	NAME
	OBJSENSE (optional)
	OBJNAME (optional)
	ROWS
	COLUMNS
	RHS (optional)
	RANGES (optional)
	QSECTION (optional)
	BOUNDS (optional)
	CSECTION (optional)
	ENDATA

	Integer variables
	General limitations
	Interpretation of the MPS format
	The free MPS format

	The LP file format
	A warning
	The LP file format
	The sections
	LP format peculiarities
	The strict LP format
	Formatting of an LP file

	Parameters
	Parameter groups
	Logging parameters.
	Basis identification parameters.
	The Interior-point method parameters.
	Simplex optimizer parameters.
	Primal simplex optimizer parameters.
	Dual simplex optimizer parameters.
	Network simplex optimizer parameters.
	Nonlinear convex method parameters.
	The conic interior-point method parameters.
	The mixed integer optimization parameters.
	Presolve parameters.
	Termination criterion parameters.
	Progress call-back parameters.
	Non-convex solver parameters.
	Feasibility repair parameters.
	Optimization system parameters.
	Output information parameters.
	Extra information about the optimization problem.
	Overall solver parameters.
	Behavior of the optimization task.
	Data input/output parameters.
	Solution input/output parameters.
	Infeasibility report parameters.
	License manager parameters.
	Data check parameters.

	Double parameters
	Integer parameters
	String parameter types

	Symbolic constants
	Constraint or variable access modes
	Basis identification
	Bound keys
	Specifies the branching direction.
	Progress call-back codes
	Types of convexity checks.
	Compression types
	Cone types
	CPU type
	Data format types
	Double information items
	Double parameters
	Double values
	Feasibility repair types
	Integer information items.
	Information item types
	Input/output modes
	Integer parameters
	Bound keys
	Continuous mixed integer solution type
	Integer restrictions
	Mixed integer node selection types
	MPS file format type
	Message keys
	Network detection method
	Objective sense types
	On/off
	Optimizer types
	Ordering strategies
	Parameter type
	Presolve method.
	Problem data items
	Problem types
	Problem status keys
	Interpretation of quadratic terms in MPS files
	Response codes
	Response code type
	Scaling type
	Sensitivity types
	Degeneracy strategies
	Hot-start type employed by the simplex optimizer
	Simplex selection strategy
	Solution items
	Solution status keys
	Solution types
	Solve primal or dual form
	String parameter types
	Status keys
	Starting point types
	Stream types
	Integer values
	Variable types
	XML writer output mode

